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Abstract In this paper we propose and analyse a hybrid numerical-asymptotic
boundary element method for the solution of problems of high frequency acoustic
scattering by a class of sound-soft nonconvex polygons. The approximation space
is enriched with carefully chosen oscillatory basis functions; these are selected via a
study of the high frequency asymptotic behaviour of the solution. We demonstrate
via a rigorous error analysis, supported by numerical examples, that to achieve
any desired accuracy it is sufficient for the number of degrees of freedom to grow
only in proportion to the logarithm of the frequency as the frequency increases,
in contrast to the at least linear growth required by conventional methods. This
appears to be the first such numerical analysis result for any problem of scattering
by a nonconvex obstacle. Our analysis is based on new frequency-explicit bounds
on the normal derivative of the solution on the boundary and on its analytic
continuation into the complex plane.

Keywords High frequency scattering · Boundary Element Method · Helmholtz
equation

1 Introduction

There has been considerable interest in recent years in the development of numer-
ical methods for time harmonic acoustic and electromagnetic scattering problems
that can efficiently resolve the scattered field at high frequencies. Standard finite
or boundary element methods, with piecewise polynomial approximation spaces,
suffer from the restriction that a fixed number of degrees of freedom is required
per wavelength in order to represent the oscillatory solution, leading to excessive
computational cost when the scatterer is large compared to the wavelength.

A general methodology that has shown a great deal of promise is the so-called
“hybrid numerical-asymptotic” (HNA) approach, where the numerical approxima-
tion space is enriched with oscillatory functions, chosen using partial knowledge
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of the high frequency (short wavelength) asymptotic behaviour. We refer to [14]
(and the very many references therein) for a review of this fast-evolving field and
its historical development. The HNA approach is particularly attractive when em-
ployed within a boundary element method (BEM) framework, since knowledge of
the high frequency asymptotics is required only on the boundary of the scatterer.
In this setting one first reformulates the boundary value problem (defined precisely
in §2) as a boundary integral equation, with frequency dependent solution V , and
then seeks to approximate V using an ansatz of the form

V (x, k) ≈ V0(x, k) +
M∑
m=1

Vm(x, k) exp(ikψm(x)), x ∈ Γ, (1)

where k (the wavenumber) is proportional to the frequency of the incident wave,
Γ is the boundary of the scatterer, V0 is a known (generally oscillatory) function
(derived from the high frequency asymptotics), the phases ψm are chosen a-priori
and the amplitudes Vm, m = 1, . . . ,M , are approximated numerically. The key
idea behind the HNA approach is that if V0 and ψm, m = 1, . . . ,M , in (1) are
chosen wisely, then Vm(·, k), m = 1, . . . ,M , will be much less oscillatory than
V (·, k) and so can be better approximated by piecewise polynomials than V itself.

Indeed, whereas conventional BEMs for two-dimensional (2D) problems require
the number of degrees of freedom to grow at least linearly with respect to frequency
in order to maintain a prescribed level of accuracy as the frequency increases, HNA
BEMs have been shown, for a range of problems, to require a significantly milder
(often only logarithmic) growth in computational cost [14]. However, to date, the
vast majority of HNA algorithms have been restricted to problems of scattering
by single convex obstacles.

The aim of this paper is to show, via rigorous numerical analysis supported by
numerical results, that HNA methods can be as effective for nonconvex scatterers
as they are for convex scatterers. We propose and analyse a HNA BEM for a
class of nonconvex polygons, using an ansatz of the form (1), with Vm, m =
1, . . . ,M , approximated using an hp approximation space. The novelty of our
analysis compared to most numerical analysis for scattering problems is that it
is uniform with respect to both the discretisation and the frequency. On the one
hand, our rigorous error estimates prove that, for fixed frequency, the method
converges exponentially as the number of degrees of freedom is increased. On the
other hand, they also show that to achieve any prescribed level of accuracy it
is sufficient for the number of degrees of freedom to grow only logarithmically
with respect to frequency, as frequency increases. This is the same growth as that
required by the scheme for convex polygons in [26]. But this is the first time, to
our knowledge, that an algorithm has been proposed, for any configuration where
multiple scattering is present, that provably maintains accuracy at high frequency
with degrees of freedom growing only logarithmically with frequency.

The main difficulty in developing and analysing HNA methods for nonconvex
scatterers is that the high frequency asymptotic behaviour is significantly more
complicated than in the convex case, because of the possibility of highly non-
trivial multiple scattering and shadowing effects. Indeed, constructing a high-order
uniform asymptotic solution for any given nonconvex obstacle, for example using
ray-based approximations such as Geometrical Optics and the Geometrical Theory
of Diffraction [27,28,4,7,8], is a formidable task in general (cf. e.g. [7, §7-§8]), and



High frequency scattering by nonconvex obstacles 3

proving rigorously the validity of high frequency asymptotic approximations is
extremely challenging. Indeed, even for the simpler case of scattering by a convex
polygon, while there exist methodologies to construct asymptotic approximations
(e.g. [7,31]), the authors know of no rigorous theory which establishes the accuracy
of such asymptotic approximations.

The HNA methodology proposed in this paper does not require knowledge of
the full asymptotic solution. Rather, in order to design a HNA approximation space
one needs only a representation of the form (1), with an explicit (and relatively sim-
ple) term V0 and explicit phases ψm, that captures the high frequency oscillations
present in the solution. But to design HNA algorithms optimally, and prove their
effectiveness by rigorous numerical analysis, one needs additionally to understand
the regularity of the amplitudes Vm, m = 1, . . . ,M , moreover obtaining bounds on
these amplitudes that are explicit in their dependence on the wavenumber. This
requires rigorous high frequency asymptotics which aims at coarser information
than the full asymptotic solution. Results of this type are proved for the case of
convex polygons in [16,17,26]; we emphasise that even for the considerably sim-
pler case of scattering by convex polygons, the results of these papers are the only
rigorous high frequency asymptotics known to the authors. Because of multiple
scattering and shadowing effects, developing any sort of rigorous high frequency
asymptotics for scattering by nonconvex polygons is a formidable task. The results
of this kind needed to analyse our HNA algorithm form the largest section of the
paper and are proved in §3 and §4 below.

At present our full analysis applies only to a particular class of nonconvex
polygons, defined explicitly in §3. Essentially we assume: (i) an “orthogonality”
condition, that each exterior angle smaller than π is a right-angle; (ii) a “visibility”
condition, ensuring that each point on the boundary is only visible to at most
three corners of the polygon (notably, this assumption avoids “trapping” domains
as discussed, e.g., in [13,6]). As will be discussed in detail in §3, these assumptions
limit the possible complexity of the high frequency asymptotic behaviour, and
hence the complexity of the ansatz (1). The reason for adopting them is that they
make possible a full frequency-explicit best approximation error analysis of our
HNA approximation space (even so, as we shall see, this requires significant new
ideas compared to the convex case [26]). We believe though that the underlying
principles behind our method apply much more generally, and in §8 we give detailed
suggestions as to how these assumptions could be relaxed to allow the development
of both algorithms and analysis for more general nonconvex polygons.

An outline of the paper is as follows. We begin in §2 by stating the scattering
problem and its boundary integral equation reformulation. In §3 we clarify the
class of nonconvex polygons for which our analysis holds, and state the exact form
of the ansatz (1) that we use. We then provide regularity estimates for those parts
of the solution (Vm, m = 1, . . . ,M) that we will approximate numerically. These
estimates, which take the form of k-explicit bounds on the analytic continuation
of Vm, m = 1, . . . ,M , into the complex plane, constitute one of the main results
of this paper, since they prove that Vm, m = 1, . . . ,M , are not oscillatory, which
is the key to achieving our goal of approximating the solution in an (almost)
frequency independent way. The proof of these estimates occupies §4. We define
our hp-approximation space in §5, and prove best approximation estimates based
on the results obtained in §3-4. In §6 we describe our Galerkin method, combining
the results of the earlier sections to derive rigorous k-explicit error estimates for
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our approximations to the boundary solution, the total field in the exterior domain
and the far field pattern. In §7 we present numerical examples, demonstrating the
efficiency and accuracy of our scheme, and in §8 we discuss extensions to more
general geometries.

We end this section with some comments on the existing HNA literature. Of
the few HNA methods previously proposed for nonconvex scatterers we note the
algorithm for single smooth nonconvex scatterers outlined in [10,11]. The numer-
ical results presented in [10,11] suggest good performance at high frequencies for
certain scattering configurations; however, these results are not supported by a
rigorous numerical analysis, and it is not clear how the number of degrees of free-
dom required to achieve a prescribed accuracy depends on either the frequency
or the scatterer geometry. We also mention the preliminary work in [15], where
an outline of some key steps of the algorithm described in this paper is presented
without analysis. We remark also on the related case of multiple convex scatterers,
which shares many of the difficulties associated with single nonconvex scatterers
(multiple scattering, shadowing). The case of multiple smooth convex scatterers
has been considered in [24,22,23,3]. The key theme of that body of work is a
decomposition of the multiple scattering problem into a series of scattering prob-
lems for single convex obstacles, with in each case the incident field consisting of
the original incident field or previously scattered waves. Although this approach
cannot be applied directly to the single nonconvex scatterers considered in this
paper, it may, as we will discuss in §8, provide some insight into how to extend
the ideas presented here to more general nonconvex scatterers.

2 Problem statement and integral equation formulation

We consider the 2D problem of scattering of a time harmonic incident plane wave

ui(x) := eikx·d, x = (x1, x2) ∈ R2, (2)

with wavenumber k > 0 (proportional to frequency) and unit direction vector d,
by a sound soft polygon. Let Ω denote the interior of the polygon, and D := R2\Ω
the unbounded exterior domain. The boundary value problem (BVP) we study is:
given the incident field ui, determine the total field u ∈ C2 (D)∩C

(
D
)

such that

∆u+ k2u = 0, in D, (3)

u = 0, on Γ := ∂Ω, (4)

and us := u−ui satisfies the Sommerfeld radiation condition (see, e.g., [14, (2.9)]).
The unique solvability of this BVP is well known (see, e.g., [14, Theorem 2.12]).
Standard arguments connecting formulations in classical function spaces to those
in a Sobolev space setting (see, e.g., [19, Theorem 3.7] and [14, p. 107]) imply
that if u satisfies the above BVP then also u ∈ H1

loc(D). From standard elliptic
regularity results, it follows moreover that u is C∞ up to the boundary of ∂D,
excluding the corners of the polygon [14, Lemma 2.35].

The starting point of the boundary integral equation (BIE) formulation is that,
if u satisfies the BVP then a form of Green’s representation theorem holds, namely

u(x) = ui(x)−
∫
Γ

Φk(x,y)
∂u

∂n
(y) ds(y), x ∈ D (5)
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(see [16] and [14, (2.107)]), where Φk(x,y) := (i/4)H
(1)
0 (k |x− y|) is the funda-

mental solution for (3), H
(1)
ν the Hankel function of the first kind of order ν, and

∂u/∂n is the normal derivative, with n the unit normal directed into D. We note
that, as discussed in [16] and [14, Theorem 2.12], it holds that ∂u/∂n ∈ L2(Γ ).
It is well known (see, e.g., [14, §2]) that, starting from the representation formula
(5), we can derive various BIEs for ∂u/∂n ∈ L2 (Γ ), each taking the form

A∂u
∂n

= f, (6)

where f ∈ L2 (Γ ) and A : L2 (Γ )→ L2 (Γ ) is a bounded linear operator.
In the standard combined potential formulation (see [14, (2.114) and (2.69)]),

A = Ak,η :=
1

2
I +D′k − iηSk, (7)

and f = ∂ui/∂n − iηui, where η ∈ R is a coupling parameter, I is the identity
operator, and the single-layer potential operator Sk and the adjoint double-layer
potential operator D′k are defined, for x ∈ Γ and ψ ∈ L2(Γ ), by

Skψ(x) :=

∫
Γ

Φk(x,y)ψ(y) ds(y), D′kψ(x) :=

∫
Γ

∂Φk(x,y)

∂n(x)
ψ(y) ds(y).

From results in [20] for C2 domains, and [16] and [14, Theorem 2.27] for general
Lipschitz domains, Ak,η is invertible for k > 0, and hence (6) is uniquely solvable,
provided η ∈ R\ {0}. Recent results ([13, (6.10)], [5, Theorem 2.11]), building on
earlier work [29], suggest η = k is a good choice for large k, in that it approximately
minimises the condition number of Ak,η and its boundary element discretization.

In an important recent theoretical development [33] a new formulation has
been derived for the case when Ω is star-like. This takes the form (6) with

A = Ak := (x · n)

(
1

2
I +D′k

)
+ x · ∇ΓSk +

(
1

2
− ik|x|

)
Sk, (8)

the so-called “star-combined” operator (in which ∇Γ denotes surface gradient),
and f(x) = x ·∇ui(x)+(1/2− ik|x|)ui(x). From [33], for Ω Lipschitz and star-like
with respect to the origin, Ak is invertible for all k > 0. The point of this new
formulation, as shown in [33] and discussed below, is that Ak is coercive on L2(Γ ),
moreover with a coercivity constant which is explicitly known and wavenumber
independent.

For both formulations the following lemma holds provided Ω is Lipschitz and
provided |η| ≤ Ck in the standard formulation (we shall assume henceforth that
this condition always holds). Here and for the remainder of this paper C > 0
denotes a constant whose value may change from one occurence to the next, but
which is always independent of k, although it may (possibly) be dependent on Ω.

Lemma 21 (Continuity) [13, Theorem 3.6], [33, Theorem 4.2] Assume that Ω
is a bounded Lipschitz domain and k0 > 0. In the case A = Ak,η assume addition-
ally that |η| ≤ Ck. Then for both A = Ak and A = Ak,η there exists a constant
C0 > 0, independent of k, such that

‖A‖L2(Γ ) ≤ C0k
1/2, k ≥ k0.
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Lemma 21 suggests at worst mild growth in ‖A‖L2(Γ ) for both formulations as
k increases. For the case A = Ak,η, with η proportional to k, it is shown in [13,5]

that ‖A‖L2(Γ ) does grow proportionally to k1/2 for a polygonal scatterer, i.e. for
this case at least it is known that the bound is sharp.

The regularity results we derive in §3-§4, and the resulting best approximation
error estimates in §5, will make use of the following assumption on the boundary
solution, which, as will be discussed shortly, is known to hold in certain cases.

Assumption 22 (proved in [26, Lemma 4.2] in the star-like Lipschitz case)
There exist constants C1 > 0 and k1 > 0, independent of k, such that∥∥∥∥∂u∂n

∥∥∥∥
L2(Γ )

≤ C1k, k ≥ k1.

The numerical analysis of our Galerkin method will be based on the following
assumption on the boundary integral operator, which, as alluded to above, is also
known to hold in certain cases.

Assumption 23 (Coercivity) There exist constants C2 > 0 and k2 > 0, inde-
pendent of k, such that (where 〈·, ·〉L2(Γ ) denotes the inner product in L2(Γ ))∣∣ 〈Aψ,ψ〉L2(Γ )

∣∣ ≥ C2 ‖ψ‖2L2(Γ ) , ψ ∈ L2 (Γ ) , k ≥ k2.

If Assumption 23 holds, then by Lemma 21 and the Lax-Milgram lemma it follows
that A is invertible; moreover that A−1 is uniformly bounded as k →∞, with∥∥A−1

∥∥
L2(Γ )

≤ 1/C2, k ≥ k2. (9)

In particular, since for either formulation there exists a k-independent constant
C > 0 such that ‖f‖L2(Γ ) ≤ Ck, Assumption 22 then holds with k1 = k2 and C1 =
C/C2. Moreover, Assumption 23 guarantees that the linear system arising from
any Galerkin approximation method for (6) is invertible, and, via Céa’s lemma,
implies explicit error estimates for the Galerkin solution, as discussed in §6.

The main achievement of [33] is to show, via Morawetz-Ludwig identities, that,
for the star-combined formulation A = Ak, Assumption 23 (and hence (9)) holds
for any star-like Lipschitz Ω (including those star-like members of our class C of
polygons defined below), and for all k2 > 0, moreover with the explicit constant

C2 =
1

2
ess infx∈Γ (x · n(x)).

By contrast, for the standard formulation A = Ak,η, while (9) is known to hold for
all star-like Lipschitz Ω and for all k2 > 0 (provided η is proportional to k) [18],
Assumption 23 has only been proven to hold (for all k2 > 0) when the scatterer
is circular [21,33] and, for k2 sufficiently large, when the scatterer is a strictly
convex C3 domain with strictly positive curvature ([34] and [14, Theorem 5.25]).
However, recent 2D numerical evidence, based on clever numerical computations
of coercivity constants, suggests that Assumption 23 holds much more generally,
in particular for all star-like obstacles, and also for “non-trapping” non-star-like
polygons (hence for all members of the class of nonconvex polygons (defined in §3)
we study in this paper) [6, Conjecture 6.2].
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MR

DR

d

(a) Multiple reflections. MR=multiply-
reflected ray, DR=diffracted-reflected ray.

d

SB

(b) Partial illumination. SB=shadow
boundary.

Fig. 1 Plots of the real part of the total field for scattering of a plane wave by a sound-soft
nonconvex polygon for two incidence directions d (exact dimensions are given in §7; the circle
surrounding the scatterer is used for the computation of errors in the total field, see Figure 9).

3 High frequency asymptotics and regularity of solutions

Our goal is to derive a numerical method for the solution of the BIE (6) (and
hence of the scattering problem (3)-(4)), whose performance does not deteriorate
significantly as the wavenumber k increases, equivalently as the wavelength λ :=
2π/k decreases. Specifically, we wish to avoid the requirement of conventional
schemes for a fixed number of degrees of freedom per wavelength. To achieve
this goal, our numerical method for solving (6) uses a HNA approximation space
(defined explicitly in §5) adapted to the high frequency asymptotic behaviour of
the solution ∂u/∂n on each of the sides of the polygon. For sound-soft convex
polygons, this behaviour was determined in [26,16]. A key contribution of this
paper is to introduce new methods of argument which enable us to deduce precisely
and rigorously this behaviour for a range of cases when the polygon is not convex.

As alluded to in §1, the main difficulty in developing HNA methods for noncon-
vex scatterers is that the high frequency asymptotic behaviour, knowledge of which
is required for the choice of V0 and ψm in (1), is significantly more complicated
than in the convex case. For polygonal scatterers in 2D two additional complexities
are illustrated in Figure 1. First, multiply-reflected and diffracted-reflected rays
can be present in the asymptotic solution, as in Figure 1(a). (These do not occur
in the convex case, where all reflected rays propagate to infinity without further
interaction with the scatterer.) We expect this to increase the number of terms
required in the HNA ansatz (1). Second, there is the possibility of partial illumina-
tion of a side of the polygon by one of the ray fields in the asymptotic solution, as in
Figure 1(b). To explain the significance of this effect, we note that in the schemes
proposed for convex polygons in [16,17,26], the sides of the polygon are classified
according to whether they are “illuminated” or “in shadow” with respect to the
incident wave, with a different approximation space being used on the two types
of side. In the nonconvex case, a side can be partially illuminated and partially in
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shadow, because of the shadowing effect of another part of the scatterer, as for the
vertical side in Figure 1(b). Across the shadow boundary between the illuminated
and shadow regions the solution varies smoothly, but increasingly rapidly as the
frequency increases, approaching the jump discontinuity predicted by the classical
“geometrical optics” approximation in the limit of infinite frequency. This rapid
variation must be correctly captured by the HNA ansatz (1).

To restrict the complexity of the asymptotic behaviour that can arise, and to
allow a full numerical analysis of our HNA method, we will focus our attention on
the following particular class of polygons.

Definition 31 Let C denote the class of all polygons Ω ⊂ R2 for which the fol-
lowing two conditions are satisfied:

(i) “Orthogonality”: Each external angle is either greater than π or equal to π/2.
(ii) “Visibility”: For each external angle equal to π/2, if Ω is rotated into the con-

figuration in Figure 2(a), then Ω is contained entirely in the region bounded
by the sides Γnc and Γ ′nc and the two dotted lines.

Γ ′nc

Γnc

Ω

(a)

NC

NC

C

C
Ω

(b) Star-like.

C

NC

NC

C

C

NC

NC

C

Ω

(c) Non-star-like.

Fig. 2 (a) Illustration of condition 2 in Definition 31; (b)-(c) examples of polygonal scatterers
in the class C, with convex (C) and nonconvex (NC) sides labelled.

For a polygon in the class C we define two types of side: if the external angles at
the endpoints of the side are both greater than π then we say that it is a “convex”
side; if one is equal to π/2 then we say that it is a “nonconvex” side; note that
nonconvex sides come in pairs. We say that a convex side is illuminated by the
incident wave if d · n < 0 on the side, and is in shadow if d · n ≥ 0.

In Figure 2(b)-(c) we show two examples of members of the class C, one star-
like and one non-star-like. Of course, C represents only a small subset of the set of
all nonconvex polygons; in §8 we provide detailed suggestions as to how the design
of our HNA approximation space, and our rigorous analysis, might be generalised
to polygons outside this class.

Our approach to tackling the issues of multiple reflections and partial illumina-
tion described above is to follow the spirit of high frequency asymptotic methods
such as the Geometrical Theory of Diffraction [7], and consider simple “canonical
problems” which encapsulate the behaviour in question. This is consistent with
the approach taken for the convex polygon case in [26,16], where the reflection
of the incident wave by the illuminated sides is treated by considering the canon-
ical problem of reflection by a half-plane (cf. [16, pp. 621-622]). For nonconvex
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P−
ω−

P+
ω+

Γc

Ω

x

sγ− γ+

H

Fig. 3 Geometry of a typical convex side Γc.

polygons in the class C, the canonical problem associated with multiple reflections
is that of scattering in a quarter-plane. The canonical problem associated with
partial illumination is that of diffraction by a wedge (equivalently, as we shall
see, diffraction by a knife edge). We shall now show how consideration of these
canonical problems allows us to choose V0 and ψm appropriately in (1) so that
Vm, m = 1, . . . ,M , are non-oscillatory.

3.1 Behaviour on convex sides

We first consider the behaviour on a typical convex side, which we denote Γc. As
illustrated in Figure 3, P± will denote the endpoints of Γc, and ω± ∈ (π, 2π) the
corresponding exterior angles. A point x on Γc is given in terms of the arc length
s measured from P+ by x(s) = P+ + (s/Lc)(P

− − P+) for s ∈ [0, Lc], where
Lc = |P− − P+| is the length of Γc. The analysis for convex polygons in [26,16]
carries over virtually verbatim to this case. Precisely, arguing as in [26, §3] gives:

Theorem 32 On a convex side Γc,

∂u

∂n
(x(s)) = Ψ(x(s)) + v+(s)eiks + v−(Lc − s)e−iks, (10)

for s ∈ [0, Lc], where

(i) Ψ := 2∂ui/∂n if Γc is illuminated and Ψ := 0 otherwise;
(ii) the functions v±(s) are analytic in the right half-plane Re [s] > 0; further,

for every k0 > 0 we have

|v±(s)| ≤

{
CM(u)k|ks|−δ

±
, 0 < |s| ≤ 1/k,

CM(u)k|ks|−1/2, |s| > 1/k,
Re [s] > 0, (11)

for k ≥ k0, where δ± := 1− π/ω± ∈ (0, 1/2),

M(u) := sup
x∈D
|u(x)|, (12)

and the constant C > 0 depends only on Ω and k0.

Proof Follows similar arguments to those used in [26,16]. We merely summarise
the key steps in the proof here, in order to motivate the arguments used in the
(more complicated) proof of the analogous result for the nonconvex sides (Theo-
rem 36 below). The key first step is to apply Green’s representation theorem in
the half plane H ⊂ D whose boundary extends Γc (cf. Figure 3). The Dirichlet
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Green’s function for H is known explicitly by the method of images in terms of
the fundamental solution Φk. This gives ∂u/∂n on Γc as a leading order term,
plus the sum of two integrals over the contours γ± of Figure 3. The integrand in
the integral over γ± contains u restricted to γ± as a factor, and the integrals over
γ+ and γ− correspond to the diffracted fields emanating from the corners P+ and
P−, respectively. This motivates extracting out as factors the respective phases
eiks and e−iks, leaving the factors v+(s) and v−(Lc − s) in (10). Finally, using
analyticity properties of the Hankel function that appears in the definition of Φk,
it can be shown that the functions v±(s) can be analytically continued into the
complex plane where they satisfy the bounds (11) (see [26, Theorem 3.2]).

Remark 33 The dependence of M(u) on the wavenumber k is not yet fully under-
stood. In [26, Theorem 4.3] it is shown that M(u) = O(k1/2 log1/2 k) as k → ∞,
uniformly with respect to the angle of incidence, when Ω is a star-like polygon.
However, it is plausible, and consistent with the numerical results in §7, that in
fact M(u) = O (1) as k →∞ in this case, and indeed for the whole class C.

Remark 34 The representation (10) can be interpreted in terms of high frequency
asymptotics as follows. The first term, Ψ (corresponding to V0 in (1)), is the
geometrical optics approximation to ∂u/∂n, representing the contribution of the
incident and reflected rays (where they are present). (Using this approximation
alone in the representation (5) gives the “physical optics” approximation of u in
D.) The second and third terms in (10) represent the combined contribution of all
the diffracted rays emanating from the corners P+ and P−, respectively (including
those multiply-diffracted rays which have travelled arbitrarily many times around
the boundary).

3.2 Behaviour on nonconvex sides

We now consider the typical behaviour on a nonconvex side, which we denote Γnc.
As illustrated in Figure 4(a), P and Q will denote the endpoints of Γnc, and R
and Q the endpoints of the adjoining nonconvex side, which we denote Γ ′nc. We
let Lnc and L′nc denote the lengths of Γnc and Γ ′nc, respectively, and we denote the
exterior angle at P by ω. A point x on Γnc is then given in terms of the arc length s
measured from Q by x(s) = Q+(s/Lnc)(P−Q) for s ∈ [0, Lnc]. We also introduce
local Cartesian coordinates x = (x1, x2) and polar coordinates (r, θ) (both with
the origin at R), as defined in Figure 4(a). We note that any nonconvex side can
be transformed to this configuration by a rotation and a reflection of Ω.

We expect the high frequency asymptotic behaviour of ∂u/∂n on Γnc to in-
volve: diffracted waves from the corners P and R; reflection by the side Γ ′nc; and,
depending on the direction of incidence, illumination (partial or otherwise). One
might expect the leading order behaviour on Γnc to be given by the canonical so-
lution for diffraction of ui by the infinite wedge formed by extending the two sides
emanating from R towards the bottom right of Figure 4(a). In fact, it is sufficient
to consider a simpler canonical solution, namely that for diffraction of ui by the
infinite knife edge formed by extending the side Γ ′nc towards the bottom of Figure
4(a), as illustrated in Figure 4(b). This is because, on Γnc, the difference between
these two canonical solutions is, in the high frequency regime (kr →∞), a circu-
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s

(a) Local coordinates on Γnc
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d
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x

r

θ

(b) Diffraction by a knife edge

Fig. 4 Geometry of a typical nonconvex side Γnc.

lar wave emanating from R of the form d(θ)eikr/
√
kr, where the angle-dependent

amplitude d(θ) varies slowly across the incident/reflected shadow boundaries [30].

Lemma 35 ([9, §8.2]) Let (r, θ) be polar coordinates with r ∈ [0,∞) and θ ∈
[0, 2π). Let ud denote the solution to the problem of diffraction of the plane wave
ui = eikx·d by the infinite knife edge {(r, 0) : r ∈ [0,∞)} with Dirichlet boundary
conditions. If θ = α is the direction from which the incident wave arrives (as in
Figure 4(b)), then

ud(r, θ, α) = E(r, θ − α)− E(r, θ + α),

where E(r, ψ) = e−ikr cosψFr(−
√

2kr cos(ψ/2)), and Fr is a Fresnel integral, de-

fined as the improper integral Fr(µ) = (e−iπ/4/
√
π)
∫∞
µ

eiz
2

dz. We note that

E(r, ψ) is 4π-periodic in ψ, and, by standard properties of Fr (cf. e.g. [1, §7]),

E(r, ψ) ∼

{
e−ikr cosψ + d̃(ψ) eikr√

kr

(
1 +O

(
1
kr

))
, ψ ∈ [(4n+ 1)π + δ, (4n+ 3)π − δ],

d̃(ψ) eikr√
kr

(
1 +O

(
1
kr

))
, ψ ∈ [(4n− 1)π + δ, (4n+ 1)π − δ],

as kr →∞, where d̃(ψ) = −eiπ/4/(2
√

2π cos (ψ/2)), n ∈ Z, 0 < δ < π is arbitrary
and the approximations hold uniformly in ψ in the stated intervals. The term
e−ikr cosψ represents a plane wave propagating from the direction ψ = 0, and

d̃(ψ) eikr√
kr

represents a circular wave emanating from r = 0 with directionality d̃(ψ).

The key result that we require for the design of our approximation space is the
following theorem, which we prove in §4.

Theorem 36 Suppose that Assumption 23 holds. Then, on a nonconvex side Γnc,

∂u

∂n
(x(s)) = Ψ(x(s)) + v+(Lnc + s)eiks + v−(Lnc − s)e−iks + v(s)eikr, (13)

for s ∈ [0, Lnc], where r = r(s) =
√
s2 + L′2nc and

(i) Ψ := 2∂ud/∂n if π/2 ≤ α ≤ 3π/2, and Ψ := 0 otherwise;
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(ii) the functions v±(s) are analytic in Re [s] > 0; further, for every k0 > 0 they
satisfy the bounds (11) for k ≥ k0, with δ± = 1− π/ω ∈ (0, 1/2) and C > 0
depending only on Ω and k0;

(iii) the function v(s) is analytic in the k-independent complex neighbourhood
Dε := {s ∈ C : dist(s, [0, Lnc]) < ε} of [0, Lnc], where

ε := L′nc/(32
√

2 ); (14)

further, where k1 and C1 are the constants from Assumption 22,

|v(s)| ≤ CC1k log1/2(2 + k), s ∈ Dε, k ≥ k1, (15)

where C > 0 depends only on Ω and k1.

Remark 37 The representation (13) can be interpreted in terms of high frequency
asymptotics as follows. The first term, Ψ , represents a uniform approximation
to the leading order high frequency behaviour of ∂u/∂n on Γnc, in the form of
a modified geometrical optics approximation; depending on the value of α, this
includes contributions from the incident wave (via E(r, θ− α)), and the reflection
of the incident wave in Γ ′nc (via E(r, θ + α)), with the jump discontinuties of the
geometrical optics approximation smoothed by the use of Fresnel integrals. The final
term represents the contribution due to diffracted rays emanating from the corner
R, and also compensates for use of the knife edge canonical solution in Ψ rather
than the wedge canonical solution (cf. the discussion before Lemma 35). The third
term represents the contribution due to diffracted rays emanating from the corner
P, and the second term represents the contribution due to “diffracted-reflected”
rays emanating from the corner P and being reflected at Q. These rays can be
thought of as emanating from a non-physical “image corner” P′ (cf. Figure 4(a)),
obtained by the reflection of P in Γ ′nc. (Hence, while the third term is singular at
P, the second term is not singular at either P or Q.)

4 Proof of Theorem 36

We begin by outlining the structure of the proof of Theorem 36. We adopt a
similar methodology to that used in the proof of the corresponding result for
convex sides, Theorem 32, although significant modifications and new ideas are
needed to deal with the nonconvex geometry. We begin (in Lemma 41) by applying
Green’s representation theorem in the quarter plane Q whose boundary extends
the sides Γnc and Γ ′nc, as illustrated in Figure 4(a). The Dirichlet Green’s function
for this domain is known explicitly (see (16)) by the method of images. (This simple
representation for the Green’s function simplifies the calculations throughout this
section; it is this which motivates the requirement in Definition 31 that the exterior
angles less than π are exactly π/2.) This gives ∂u/∂n on Γnc as a leading order
term, plus the sum of integrals over the contours γ and γ′ of Figure 4(a); these
integrals contain u restricted to γ or γ′ as a factor (see (22)).

We expect the integral over γ to correspond to the field diffracted at P, and
its subsequent reflection at Q. In fact, this integral can be analysed exactly as for
a convex side, and gives rise to the terms v+(Lnc + s)eiks and v−(Lnc− s)e−iks in
the representation (13). The analysis of the integral over γ′, which gives rise to the
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remaining terms in (13), corresponding to the field diffracted at R, is considerably
more complicated.

To analyse the integral over γ′ we split it further, using the fact that u = ui+us.
We consider the contribution from us in Lemma 43 (proved in §4.1), where we
extract the expected phase eikr and show that the remaining factor W s(s) can
be analytically continued into the complex plane. This is the most technical part
of the proof. First we substitute for us using the representation theorem (5),
which gives, after an application of Fubini’s theorem, the representation (26) as
an integral around Γ involving ∂u/∂n. The next task is to show that K(·, z) in the
integrand, given as the integral (27) along γ′, has an analytic continuation into
a (z- and k-independent) neighbourhood of [0, Lnc], and to bound K(·, z) in this
neighbourhood for z ∈ Γ (Lemma 45). To achieve this aim it is convenient first
to show that one can deform the contour of integration γ′ in (27) to a contour
on which the integrand decays exponentially, obtaining the representation (37).
To show these results we require auxiliary results, Lemmas 44, 46, and 47. In a
final step we bound W s(s) in the complex plane via the application (48) of the
Cauchy-Schwarz inequality, bounding ‖∂u/∂n‖L2(Γ ) using Assumption 22. (It is
precisely at this point where Assumption 22 is needed.)

We consider the contribution from ui in Lemma 42 (proved in §4.2), where we
apply a similar (but simpler) approach, making use of the tools developed in the
proof of Lemma 43. There is one complication: when α ∈ (π/2, 3π/2), in which case
Γnc is partially (or fully) illuminated by the incident wave, we first have to subtract
off the canonical solution ud from ui. The analysis is completed by applying Green’s
representation theorem for ud in the half-plane x1 < 0 (Proposition 48).

We thus begin our proof of Theorem 36 by deriving a representation formula
for u in the quarter-plane whose boundary contains the sides Γ ′nc and Γnc. Let γ :={

(x1,−L′nc) : x1 < −Lnc

}
and γ′ := {(0, x2) : x2 > 0} denote the extensions of

Γnc and Γ ′nc, respectively (see Figure 4(a)). Then ∂Q := γ ∪ Γnc ∪ Γ ′nc ∪ γ′ is
the boundary of the quarter-plane Q := {(x1, x2) : x1 < 0, x2 > −L′nc} whose
Dirichlet Green’s function is, by the method of images,

Gk(x,y) := Φk(x,y)− Φk(x,y∗)− Φk(x,y′) + Φk(x,y∗′), (16)

where ∗ and ′ are operations of reflection in the lines γ ∪ Γnc and Γ ′nc ∪ γ′, re-
spectively. For reference, the incident wave and its reflections in the extensions of
these lines (assuming a sound-soft boundary condition (4)) are given explicitly by

ui(x) = exp (ik(−x1 sinα+ x2 cosα)),

(ui)∗(x) = − exp (ik(−x1 sinα− (x2 + 2L′nc) cosα)),

(ui)′(x) = − exp (ik(x1 sinα+ x2 cosα)),

(ui)∗′(x) = exp (ik(x1 sinα− (x2 + 2L′nc) cosα)).

We also recall that n is the unit normal directed into D, i.e. into the interior of Q.

We then have the following representation formulae:

Lemma 41 (i)
us(x) =

∫
∂Q

∂Gk(x,y)

∂n(y)
us(y) ds(y), x ∈ Q; (17)
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(ii)
ui(x) = Ψ1(x) +

∫
∂Q

∂Gk(x,y)

∂n(y)
ui(y) ds(y), x ∈ Q, (18)

where, for π ≤ α ≤ 3π/2,

Ψ1(x) := ui(x) + (ui)∗(x) + (ui)′(x) + (ui)∗′(x)

= 4 exp(−ikL′nc cosα) sin (kx1 sinα) sin
(
k(x2 + L′nc) cosα

)
,

while Ψ1(x) := 0, otherwise;
(iii)

u(x) = Ψ1(x) +

∫
γ∪γ′

∂Gk(x,y)

∂n(y)
u(y) ds(y), x ∈ Q.

Proof (i) For R > 0 define QR := {y ∈ Q : |y| < R}, with boundary ∂QR. By
Green’s theorem and Green’s representation theorem [14, Theorems 2.19, 2.20],

us(x) =

∫
∂QR

(
∂Gk(x,y)

∂n(y)
us(y)−Gk(x,y)

∂us

∂n
(y)

)
ds(y), x ∈ QR, (19)

where the normal n is directed into the interior of QR. Then, since Gk(x,y) = 0
on ∂Q and both Gk(x, ·) and us satisfy the Sommerfeld radiation condition, (17)
is obtained from (19) by taking the limit R→∞ (see, e.g., [20, Theorem 3.3]).

(ii) ForR > 0 define xR := −Rd = R(sinα,− cosα), and uiR(x) := CRΦk(x,xR),
where CR := e−iπ/4

√
8πkRe−ikR. Note that, for fixed R, uiR(x) satisfies the Som-

merfeld radiation condition as |x| → ∞, but, for fixed x, uiR(x) → ui(x) as
R→∞. If α 6∈ [π, 3π/2], then uiR(x) is regular in Q, and, arguing as in part (i),

uiR(x) =

∫
∂Q

∂Gk(x,y)

∂n(y)
uiR(y) ds(y), x ∈ Q. (20)

If α ∈ (π, 3π/2), uiR(x) is singular at x = xR ∈ Q, and (20) must be modified to

uiR(x) = CRGk(x,xR) +

∫
∂Q

∂Gk(x,y)

∂n(y)
uiR(y) ds(y), x ∈ Q, x 6= xR. (21)

By the dominated convergence theorem, formula (18) is then obtained by letting
R→∞ in (20) and (21), since, for fixed x, CRGk(x,xR) tends to ui(x)+(ui)∗(x)+
(ui)′(x) + (ui)∗′(x) as R → ∞. The result for α = π and 3π/2 follows by taking
the limits α→ π and α→ 3π/2 in (18).

(iii) This is a trivial consequence of (i) and (ii) and the fact that u = 0 on Γ .

As a consequence of Lemma 41(iii) we have that

∂u

∂n
(x) =

∂Ψ1

∂n
(x) +

∫
γ∪γ′

∂2Gk(x,y)

∂n(x)∂n(y)
u(y) ds(y), x ∈ Γnc. (22)

Theorem 36 follows from a careful analysis of the integral in (22). The terms
v+(Lnc + s)eiks and v−(Lnc − s)e−iks in the representation (13) arise from the
integral over γ. Indeed, noting that

∂2Gk(x,y)

∂n(x)∂n(y)
= 2

∂2Φk(x,y)

∂n(x)∂n(y)
− 2

∂2Φk(x,y′)

∂n(x)∂n(y)
, x ∈ Γnc, y ∈ γ,
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where y′ := (−y1, y2), we find that, for x ∈ Γnc,∫
γ

∂2Gk(x,y)

∂n(x)∂n(y)
u(y) ds(y) = 2

∫
γ

∂2Φk(x,y)

∂n(x)∂n(y)
u(y) ds(y)− 2

∫
γ̃

∂2Φk(x,y)

∂n(x)∂n(y)
u(y′) ds(y),

(23)

with γ̃ :=
{

(x1,−L′nc) : x1 > Lnc

}
. This expression is very similar to that encoun-

tered in the derivation of the regularity results on a convex side. Indeed, arguing
almost exactly as in [26, §3] (and see also [16, §3]), it can be shown from (23) that∫
γ

∂2Gk(x,y)

∂n(x)∂n(y)
u(y) ds(y) = v−(Lnc − s)e−iks + v+(Lnc + s)eiks, x(s) ∈ Γnc,

where v±(s) are analytic in Re [s] > 0, where they satisfy the bounds (11) with
δ± = 1− π/ω. This is the assertion in paragraph (ii) of Theorem 36.

We now consider the integral over γ′ in (22). Noting that

∂2Gk(x,y)

∂n(x)∂n(y)
= −4

∂2Φk(x,y)

∂x2∂y1
, x ∈ Γnc, y ∈ γ′,

and using the decomposition u = ui + us, we have, for x ∈ Γnc, that∫
γ′

∂2Gk(x,y)

∂n(x)∂n(y)
u(y) ds(y) = −4

∫
γ′

∂2Φk(x,y)

∂x2∂y1
ui(y) ds(y)− 4

∫
γ′

∂2Φk(x,y)

∂x2∂y1
us(y) ds(y).

(24)

The assertions in paragraphs (i) and (iii) of Theorem 36 then follow from (22),
(24) and Lemmas 42 and 43 below.

Lemma 42 For x = (−s,−L′nc) ∈ Γnc,

−4

∫
γ′

∂2Φk(x,y)

∂x2∂y1
ui(y) ds(y) = Ψ(x)− ∂Ψ1

∂n
(x) + eikrW i(s),

where W i(s) is analytic in Dε, with ε given by (14); further, for every k0 > 0,∣∣∣W i(s)
∣∣∣ ≤ Ck1/2, s ∈ Dε, k ≥ k0,

where C > 0 depends only on Ω and k0.

Lemma 43 If Assumption 22 holds, then, for x = (−s,−L′nc) ∈ Γnc,

−4

∫
γ′

∂2Φk(x,y)

∂x2∂y1
us(y) ds(y) = eikrW s(s),

where W s(s) is analytic in Dε, with ε given by (14); further,

|W s(s)| ≤ CC1k log1/2(2 + k), s ∈ Dε, k ≥ k1, (25)

where k1 and C1 are as in Assumption 22 and C > 0 depends only on Ω and k1.

We begin by proving Lemma 43. Some of the intermediate results derived in
this proof will be used again in the proof of Lemma 42.
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4.1 Proof of Lemma 43

For x = (−s,−L′nc) ∈ Γnc we have r = r(s) =
√
s2 + L′2nc. Thus, to prove

Lemma 43 we have to show that

W s(s) := −4 exp
(
−ik

√
s2 + L′2nc

) ∫
γ′

∂2Φk(x,y)

∂x2∂y1
us(y) ds(y)

is analytic in Dε, satisfying the bound (25). Substituting for us using (5), and
switching the order of integration, justified by Fubini’s theorem, gives

W s(s) =

∫
Γ

K(s, z)
∂u

∂n
(z) ds(z), (26)

where, for s ∈ R and z ∈ Γ ,

K(s, z) := 4 exp
(
−ik

√
s2 + L′2nc

) ∫ ∞
0

∂2Φk
(
(−s,−L′nc), (0, y2)

)
∂x2∂y1

Φk((0, y2), z) dy2,

(27)

and, by the recurrence and differentiation formulae for Hankel functions [1, §10.6],

Φk((0, y2), z) =
i

4
H

(1)
0

(
k
√
z21 + (y2 − z2)2

)
,

∂2Φk((−s,−L′nc), (0, y2))

∂x2∂y1
= − ik2s(L′nc + y2)

4 (s2 + (L′nc + y2)2)
H

(1)
2

(
k
√
s2 + (L′nc + y2)2

)
.

We recall that H
(1)
n (z) is analytic in |z| > 0, | arg(z)| < π. To derive bounds on

K(s, z) we need bounds on H∗n(z) := e−izH
(1)
n (z). From [1, §10.2(ii), §10.17.5] it

follows that, for some constant C > 0,

|H∗0 (z)| ≤ C|z|−1/2, |z| > 0, | arg(z)| ≤ π/2 (28)

and that, for every c > 0 there exists C > 0 such that

|H∗2 (z)| ≤ C|z|−1/2, |z| > c, | arg(z)| ≤ π/2. (29)

Note that, for s ∈ R and z ∈ Γ ,

K(s, z) =

∫ ∞
0

eikφ(s,y2,z)Sk(s, y2, z) dy2, (30)

where φ(s, y2, z) := χ(s, L′nc, y2)− χ(s, L′nc, 0) + χ(z1,−z2, y2) and

Sk(s, y2, z) := − k2s(L′nc + y2)

4(χ(s, L′nc, y2))2
H∗2 (kχ(s, L′nc, y2))H∗0 (kχ(z1,−z2, y2)),

with χ(a, b, c) :=
√
a2 + (b+ c)2. We now state some elementary properties of χ.
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Lemma 44 Let a, b ∈ R and c ∈ C, and let χ(a, b, c) :=
√
a2 + (b+ c)2, taking

the principal value square root. Then χ(a, b, c) is analytic in Re [c] > −b, with

Re [χ(a, b, c)] ≥ Re [c] + b > 0, (31)

Im [χ(a, b, c)] ≥ 0, if Im [c] ≥ 0. (32)

In particular, for b > 0 and t ≥ 0,

Re
[
χ(a, b, teiπ/4)

]
≥
√
a2 + b2 + t

2
, (33)

Im
[
χ(a, b, teiπ/4)

]
≥ bt√

2
√
a2 + b2

. (34)

Proof Write c = cr + ici where cr > −b, ci ∈ R. Then a2 + (b+ c)2 = ξ+ iη, where
ξ := a2 + (b+ cr)

2 − c2i , η := 2ci(b+ cr). If cr > −b then η 6= 0, unless ci = 0, in
which case ξ > 0. So χ(a, b, c) is analytic in Re [c] > −b with

Re [χ(a, b, c)] =

√
ξ + (ξ2 + η2)1/2

2
> 0, (35)

Im [χ(a, b, c)] = sgn(ci)

√
−ξ + (ξ2 + η2)1/2

2
, (36)

which gives (32). Writing 2Re [χ(a, b, c)]2 = 2(b + cr)
2 + µ1, where we define

µ1 :=
√

(a2 − c2i + (b+ cr)2)
2

+ 4c2i (b+ cr)2 + a2 − c2i − (b+ cr)
2, and noting that(

a2 − c2i + (b+ cr)
2
)2

+ 4c2i (b+ cr)
2 −

(
a2 − c2i − (b+ cr)

2
)2

= 4a2(b+ cr)
2 ≥ 0,

it follows that µ1 ≥ 0, and hence (31) holds.

When c = teiπ/4 with t ≥ 0, we have ξ = a2 + b2 +
√

2bt ≥ a2 + b2 and
η = t(

√
2b+ t) ≥ t2, and (33) follows from (35). Also, by (36),

2(a2 + b2) Im
[
χ(a, b, teiπ/4)

]2
= b2t2 + µ2,

where µ2 := −(b2t2 + (a2 + b2)ξ) + (a2 + b2)
√
ξ2 + η2. One can check that

(a2+b2)2(ξ2+η2)−(b2t2+(a2+b2)ξ)2 = t3a2
(

2
√

2 b(a2 + b2) + (a2 + 2b2)t
)
≥ 0,

from which we deduce that µ2 ≥ 0, from which (34) follows.

In order to prove Lemma 43 we must consider the analytic continuation of
K(s, z) into the complex s-plane. But before complexifying s it is helpful to modify
the representation (30) by deforming the contour of integration off the real line.
From (30) it follows from Cauchy’s theorem that, for s ∈ R and z ∈ Γ , where
f(w) := eikφ(s,w,z)Sk(s, w, z) and γ∗ := {w = teiπ/4 : t ≥ 0},

K(s, z) =

∫
γ∗
f(w) dw = eiπ/4

∫ ∞
0

eikφ(s,te
iπ/4,z)Sk(s, teiπ/4, z) dt. (37)
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This application of Cauchy’s theorem is valid since, by Lemma 44, f(w) is analytic
in Re [w] > 0; further, Im [φ(s, w, z)] ≥ 0, so that |eikφ(s,w,z)| ≤ 1, if Re [w] > 0
and Im [w] ≥ 0; moreover, the bounds (31), (28), and (29) imply that

Sk(s, w, z) = O
(
|w|−1/2

)
, as |w| → 0, Sk(s, w, z) = O

(
|w|−2

)
, as |w| → ∞,

uniformly in arg(w), for 0 ≤ arg(w) ≤ π/4.
Having established the validity of the representation (37) for s ∈ R, we now

show that this same formula represents the analytic continuation of K(s, z).

Lemma 45 For z ∈ Γ , K(s, z), defined by (37), is analytic as a function of s in
Dε, with ε given by (14). Further, for every k0 > 0,

|K(s, z)| ≤ Ck1/2ζ(z), s ∈ Dε, k ≥ k0, z ∈ Γ, (38)

where C > 0 depends only on Ω and k0, and

ζ(z) :=

{
1, 0 < k |z| < 1,

(k |z|)−1/2, k |z| ≥ 1.

The proof of Lemma 45 is based on the following two intermediate results.

Lemma 46 For t ≥ 0 and z ∈ Γ , φ(s, teiπ/4, z) is analytic as a function of s in
Dε, with ε given by (14). Further,

Im
[
φ(s, teiπ/4, z)

]
≥ L′nct

2
√

2
√
L′2nc + L2

nc

, s ∈ Dε, t ≥ 0, z ∈ Γ. (39)

Proof Suppose t ≥ 0 and z ∈ Γ . For s0 ∈ [0, Lnc],

Im
[
φ(s0, te

iπ/4, z)
]

= Im
[
χ(s0, L

′
nc, te

iπ/4)
]

+ Im
[
χ(z1,−z2, teiπ/4)

]
≥ L′nct√

2
√
s20 + L′2nc

,

(40)

by (34) and (32), applied to χ(s0, L
′
nc, te

iπ/4) and χ(z1,−z2, teiπ/4), respectively.
We next note that, for s ∈ C,

φ(s, teiπ/4, z) =
A

B(s)
+ χ(z1,−z2, teiπ/4),

where A := teiπ/4(2L′nc + teiπ/4) and B(s) := χ(s, L′nc, te
iπ/4)+χ(s, L′nc, 0). Thus,

for s0 ∈ [0, Lnc] and |s− s0| < ε,

|φ(s, teiπ/4, z)− φ(s0, te
iπ/4, z)| = |A| |B(s)−B(s0)|

|B(s0)| |B(s)| ≤ |A| |B(s)−B(s0)|
|B(s0)| ||B(s0)| − |B(s)−B(s0)|| .

(41)

Now |A| ≤ t(2L′nc + t), and, by (31),

|B(s0)| ≥ Re [B(s0)] ≥ L′nc +
t√
2

+
√
s20 + L′2nc.
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Also, Re
[
χ(s, L′nc, te

iπ/4)
]
> 0 for s ∈ Dε, since ε < L′nc so that Re

[
s2 + (L′nc + teiπ/4)2

]
≥

−Im [s]2 + L′2nc > 0. Thus, using (33),∣∣∣χ(s, L′nc, te
iπ/4)− χ(s0, L

′
nc, te

iπ/4)
∣∣∣ =

|s− s0| |s+ s0|∣∣χ(s, L′nc, teiπ/4) + χ(s0, L′nc, teiπ/4)
∣∣

≤ ε(2s0 + ε)

Re
[
χ(s0, L′nc, teiπ/4)

]
≤ 4ε(s0 + L′nc)√

s20 + L′2nc
≤ 4
√

2ε. (42)

This implies that |B(s)−B(s0)| ≤ 8
√

2 ε. Inserting these bounds into (41) gives

|φ(s, teiπ/4, z)− φ(s0, te
iπ/4, z)| ≤ 8

√
2 tε(2L′nc + t)(

2L′nc + t/
√

2
) (
L′nc +

√
s20 + L′2nc − 8

√
2ε
)

≤ L′nct

2
√

2
√
s20 + L′2nc

, (43)

on using (14). The result (39) follows by combining (40) and (43).

Lemma 47 For t ≥ 0 and z ∈ Γ , Sk(s, teiπ/4, z) is analytic as a function of s in
Dε, with ε given by (14). Further, for every k0 > 0,

|Sk(s, teiπ/4, z)| ≤ Ck(L′nc + t)(|z|+ t)−1/2, s ∈ Dε, (44)

for t ≥ 0, z ∈ Γ , and k ≥ k0, where C > 0 depends only on Ω and k0.

Proof Suppose t ≥ 0 and z ∈ Γ . By (31) and (33) we have, for s0 ∈ [0, Lnc],

Re
[
χ(s0, L

′
nc, te

iπ/4)
]
≥ L′nc, Re

[
χ(z1,−z2, teiπ/4)

]
≥ |z|+ t

2
. (45)

Combining (45) with (42) and recalling (14) gives

Re
[
χ(s, L′nc, te

iπ/4)
]
≥ 7L′nc

8
, s ∈ Dε. (46)

Thus Sk(s, teiπ/4, z) is analytic in Dε, and applying (28) and (29) gives (44).

We are now ready to prove Lemma 45.

Proof (Proof of Lemma 45) The analyticity of K(s, z) follows immediately from
that of φ(s, teiπ/4, z) and Sk(s, teiπ/4, z), and the fact that the integral (37) con-
verges uniformly for s ∈ Dε in view of the bounds in Lemmas 46 and 47 (see, e.g.,
[36, §1.88, §4.4]). Further, by Lemmas 46 and 47 we have, for s ∈ Dε, that

|K(s, z)| ≤ CkL′−5/2
nc (L′nc + Lnc)

∫ ∞
0

L′nc + t

(|z|+ t)1/2
exp

[
− kL′nct

2
√

2
√
L′2nc + L2

nc

]
dt.

(47)
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The integral in (47) is bounded above by∫ ∞
0

L′nc + t

t1/2
exp

[
− kL′nct

2
√

2
√
L′2nc + L2

nc

]
dt ≤ Ck−1/2,

for k ≥ k0, for some C > 0 depending only on L′nc, Lnc and k0. For k|z| > 1 a
sharper upper bound is

|z|−1/2

∫ ∞
0

(L′nc + t) exp

[
− kL′nct

2
√

2
√
L′2nc + L2

nc

]
dt ≤ Ck−1|z|−1/2.

Combining these two results gives (38).

We can now complete the proof of Lemma 43. Applying the Cauchy-Schwarz
inequality to (26), and recalling Assumption 22, we estimate

|W s(s)| ≤ ‖K(s, ·)‖L2(Γ )

∥∥∥∥∂u∂n

∥∥∥∥
L2(Γ )

≤ C1k ‖K(s, ·)‖L2(Γ ) , k ≥ k1. (48)

It therefore remains to bound ‖K(s, ·)‖L2(Γ ). But, by (38), this just requires a
bound on ‖ζ‖L2(Γ ). Let Γ ∗ denote any one of the sides of Γ . Then it is clear that,

if Γ ∗ is not one of the sides of Γ adjacent to R, then
∫
Γ ∗

(ζ(z))2 ds ≤ Ck−1, for
k ≥ k0. On the other hand, if Γ ∗ has length L∗ and is adjacent to R, then∫

Γ ∗
(ζ(z))2 ds ≤ C

∫ 1/k

0

ds+ Ck−1

∫ L∗

1/k

t−1 dt ≤ Ck−1 log(2 + k).

Thus ‖ζ‖L2(Γ ) ≤ Ck−1/2 log1/2(2 + k), so that, by (38),

‖K(s, ·)‖L2(Γ ) ≤ C log1/2(2 + k). (49)

Finally, combining (48) and (49) proves (25), completing the proof of Lemma 43.

4.2 Proof of Lemma 42

Suppose first that α 6∈ (π/2, 3π/2), in which case both Ψ and Ψ1 are zero. Then,
since ui(y) = eiky2 cosα for y ∈ γ′, we have

−4

∫
γ′

∂2Φk(x,y)

∂x2∂y1
ui(y) ds(y) = eikrW i(s),

where

W i(s) =

∫ ∞
0

eik$(s,y2,α)Tk(s, y2) dy2, (50)

$(s, y2, α) := χ(s, L′nc, y2)− χ(s, L′nc, 0) + y2 cosα,

Tk(s, y2) :=
ik2s(L′nc + y2)

[χ(s, L′nc, y2)]2
H∗2 (kχ(s, L′nc, y2)).
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We deform the contour of integration in (50) to γ∗ = {teiπ/4 : t ≥ 0}, as in (37).
Then, arguing as in the proofs of Lemmas 46 and 47, we find that $(s, teiπ/4, α)
and T (s, teiπ/4) are analytic as functions of s in Dε, with ε given by (14). Further,
since cosα ≥ 0, it follows from the calculations in the proof of Lemma 46 that

Im
[
$(s, teiπ/4, α)

]
≥ L′nct

2
√

2
√
L′2nc + L2

nc

, s ∈ Dε, t ≥ 0, (51)

while, from (46) and (29), it follows that, for all k0 > 0,

|Tk(s, teiπ/4)| ≤ Ck3/2(L′nc + t),

if s ∈ Dε, t ≥ 0, and k ≥ k0, where C > 0 depends only on Ω and k0. Thus

|W i(s)| ≤
∫ ∞
0

e−kIm[$(s,teiπ/4,α)]|Tk(s, teiπ/4)|dt ≤ Ck1/2. (52)

If α ∈ (π/2, 3π/2), however, (51) no longer holds (since cosα < 0). In this case
we write ui = ud + (ui − ud), and note that, by Lemma 35, for y ∈ γ′,

ui(y)− ud(y) = 2eiky2h
(√

2ky2 sin (α/2)
)
,

where h(w) := e−iw2

Fr(w). The function h(w) is entire, and is uniformly bounded
in the sector arg[w] ∈ [−π/2, π] (this follows from the asymptotic behaviour of the

complementary error function [1, §7.12(i)], and that h(w) = 1
2e−iw2

erfc(e−iπ/4w)).

Hence a similar argument to that leading to (52), but applied to ui − ud rather
than to ui, shows that

−4

∫
γ′

∂2Φk(x,y)

∂x2∂y1
(ui(y)− ud(y)) ds(y) = eikrW i(s), (53)

withW i(s) analytic inDε, satisfying (52) with$(s, teiπ/4, α) replaced by$(s, teiπ/4, 0)

and Tk(s, teiπ/4) replaced by 2Tk(s, teiπ/4)h
(√

2kt sin (α/2) eiπ/8
)

; in particular,

|W i(s)| ≤ Ck1/2 for k ≥ k0 and s ∈ Dε, where C depends only on k0 and Ω. The
next result deals with the remaining term, 4

∫
γ′

(∂2Φk(x,y)/∂x2∂y1)ud(y) ds(y).

Proposition 48

ud(x) = Ψ2(x)− 2

∫
γ′

∂Φk(x,y)

∂y1
ud(y) ds(y), x1 < 0, (54)

where

Ψ2(x) :=

{
0, 0 ≤ α ≤ π,
ui(x) + (ui)′(x) = −2ieikx2 cosα sin (kx1 sinα), π < α < 2π.
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Proof Suppose first that 0 ≤ α ≤ π/2. Let k temporarily have a positive imaginary
part. Then it is straightforward to show that ud is uniformly bounded in the half-
plane x1 < 0, and hence (54) follows from [12, Theorem 3.1] for Im [k] > 0, and
for k > 0 by taking the limit as Im [k]→ 0 [12, Theorem 3.2].

For π/2 < α ≤ π this argument fails, since if k has a positive imaginary
part, |ud(x)| grows exponentially as x2 → ∞ for any fixed x1 < 0. However, the
argument does provide a proof that (54) holds (with Ψ2 = 0) with ud replaced by
ud − ui, which is uniformly bounded in x1 < 0. Also, the analysis of [12, p. 193]
shows that (54) holds (with Ψ2 = 0) with ud replaced by the plane wave ui. Adding
together these two results proves (54).

The above two paragraphs prove (54) for the case 0 ≤ α ≤ π when Ψ2 = 0. For
π < α < 2π, the above arguments allow us to prove (54) (with Ψ2 = 0) with ud

replaced by ũd, the solution to the knife edge scattering problem of Figure 4(b)
corresponding to the incident direction 2π−α ∈ (0, π). Since ũd = ud−ui− (ui)′,
and in particular ũd = ud on γ′, this implies that

ud(x)− ui(x)− (ui)′(x) = −2

∫
γ′

∂Φk(x,y)

∂y1
ud(y) ds(y), x1 < 0,

i.e. that (54) holds for π < α < 2π.

For α ∈ (π/2, 3π/2) we have 2∂Ψ2/∂n = ∂Ψ1/∂n on Γnc, and so it follows from
Proposition 48 that, for x ∈ Γnc,

−4

∫
γ′

∂2Φk(x,y)

∂x2∂y1
ud(y) ds(y) = 2

∂ud

∂n
(x)− ∂Ψ1

∂n
(x).

Recalling (53), this completes the proof of Lemma 42, and hence of Theorem 36.

5 hp Approximation Space and Approximation Results

We now design an hp approximation space for the numerical solution of (6), based
on the regularity results provided by Theorems 32 and 36. Rather than approxi-
mating ∂u/∂n itself (as in conventional methods), we will approximate

ϕ(x) :=
1

k

(
∂u

∂n
(x)− Ψ(x)

)
, x ∈ Γ, (55)

which represents the difference between ∂u/∂n and the known leading order high
frequency behaviour Ψ (cf. Remarks 34 and 37), scaled by 1/k so that ϕ is nondi-
mensional. This leading order behaviour is as defined in Theorems 32 and 36.
Thus, on a convex side, Ψ := 2∂ui/∂n if the side is illuminated and Ψ := 0 oth-
erwise. On a nonconvex side, Ψ := 2ui(R)∂ud/∂n if π/2 ≤ α ≤ 3π/2, and Ψ := 0
otherwise; here ud is defined as in Lemma 35 in terms of the local variables r, θ, α
of Figure 4(a) (as remarked previously, any nonconvex side can be transformed to
the configuration in Figure 4(a) by a suitable rotation and reflection of Ω). The
factor ui(R) is a phase shift arising because the origin of the global coordinates x
may not be located at the point R, as was assumed in Theorem 36.

Furthermore, instead of approximating ϕ directly by conventional piecewise
polynomials, on each side of the polygon we use the appropriate representation (10)
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or (13), with the non-oscillatory coefficients v± and v replaced by piecewise poly-
nomial approximations supported on overlapping meshes, graded towards corner
singularities (where these are present). Before detailing the approximation space,
we introduce some notation.

Definition 51 Given −∞ < a < b <∞ and an integer p ≥ 0, let Pp(a, b) denote
the space of polynomials on (a, b) of degree ≤ p. Given A > 0 and an integer
n ≥ 1 we denote by Gn(0, A) = {x0, x1, . . . , xn} the geometric mesh on [0, A] with
n layers, whose meshpoints xi are defined by

x0 := 0, xi := σn−iA, i = 1, 2, . . . , n,

where 0 < σ < 1 is a fixed grading parameter. We denote by Pp,n(0, A) the space
of piecewise polynomials on Gn(0, A) with degree ≤ p, i.e.

Pp,n(0, A) :=
{
ρ : [0, A]→ C : ρ|(xi−1,xi) ∈ Pp(xi−1, xi), i = 1, . . . , n

}
.

A smaller σ represents a more severe grading. While σ = (
√

2 − 1)2 ≈ 0.17 is in
some sense an optimal choice, e.g., [32, p.96], it is common practice to slightly
“overrefine” by taking σ = 0.15; we use this value in the computations in §7.

For simplicity we use the same polynomial degree p and the same number of
layers n in each graded mesh in our approximation space. We also assume that

n ≥ cp, (56)

for some fixed constant c > 0.
On a convex side Γc, we recall from (10) that

ϕ(x(s)) =
1

k

(
v+(s)eiks + v−(Lc − s)e−iks

)
, s ∈ [0, Lc],

where the coefficients v+(s) and v−(Lc − s) are singular at s = 0 and s = Lc,
respectively. To approximate ϕ on Γc we approximate v+(s) ≈ ρ+(s) and v−(Lc−
s) ≈ ρ−(Lc − s), for some ρ± ∈ Pp,n(0, Lc).

On a nonconvex side Γc, we recall from (13) that

ϕ(x(s)) =
1

k

(
v+(Lnc + s)eiks + v−(Lnc − s)e−iks + v(s)eikr

)
, s ∈ [0, Lnc].

The coefficient v−(Lc − s) is singular at s = Lnc, but the coefficients v+(Lnc + s)
and v(s) are both analytic in a neighbourhood of [0, Lnc] and can be approximated
by single polynomials supported on the whole side. To approximate ϕ on Γnc we
therefore approximate v−(Lnc − s) ≈ ρ−(Lnc − s) for some ρ− ∈ Pp,n(0, Lnc),
and approximate v+(s) ≈ ρ+(s) and v(s) ≈ ρ(s) for some ρ+, ρ ∈ Pp(0, Lnc). An
illustration of the resulting meshes is given in Figure 5.

The above construction amounts to constraining the approximation to ϕ to lie
in a particular finite-dimensional approximation space VN,k ⊂ L2(Γ ), of dimension
N (the total number of degrees of freedom), given by

N = (p+ 1)(2nnc + (n+ 2)nnc), (57)

where nc and nnc denote the number of convex and nonconvex sides, respectively.
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v+(s)

v−(Lc − s)

s

(a) Convex side Γc

s

v+(Lnc + s)

v−(Lnc − s)

v(s)

(b) Nonconvex side Γnc

Fig. 5 Illustration of the overlapping meshes.

For a < b and r > b− a, let

Ea,b,r := {w ∈ C : |w − a|+ |w − b| < r} , (58)

the interior of an ellipse with foci {a, b}. Our best approximation estimates are
based on the following standard result, which follows from [35, Theorem 2.1.1].

Lemma 52 If the function g is analytic and bounded in Ea,b,r, for some a, b, r ∈ R
with a < b and r > b− a, then

inf
v′∈Pp(a,b)

∥∥g − v′∥∥
L∞(a,b)

≤ 2

ρ− 1
ρ−p ‖g‖L∞(Ea,b,r) ,

where ρ = (r +
√
r2 − (b− a)2)/(b− a) > 1.

Lemma 52 implies the following best approximation results for the two non-
singular terms in the representation on a nonconvex side.

Theorem 53 Suppose that Assumption 22 holds. Then, for every k0 > 0, for the
approximation of v+(Lnc + s) on a nonconvex side Γnc we have

inf
v′∈Pp(0,Lnc)

‖v+(Lnc + ·)− v′‖L2(0,Lnc) ≤ CM(u)k1/2e−pτ , k ≥ k0,

where τ = log (2 +
√

3) and C > 0 depends only on Ω and k0.

Proof By Theorem 36, v+(s) is analytic in Re [s] > 0 where it satisfies the bound
(11). Thus g(s) := v+(Lnc + s) is analytic in Re [s] > −Lnc, in particular analytic
and bounded in Re [s] > −Lnc/2, which contains the ellipse E0,Lnc,r with r = 2Lnc.
Thus combining Lemma 52 with (11) gives

inf
v′∈Pp(0,Lnc)

‖v+(Lnc + ·)− v′‖L∞(0,Lnc) ≤ CM(u)k1/2ρ−p,

with ρ = 2 +
√

3, from which the result follows.

Theorem 54 Suppose that Assumption 22 holds. Then, for the approximation of
v(s) on a nonconvex side Γnc, we have

inf
v′∈Pp(0,Lnc)

∥∥v − v′∥∥
L2(0,Lnc)

≤ CC1k log1/2(2 + k)e−pτ , k ≥ k1,

where τ = log (
√

1 + (2ε/Lnc)2 + 2ε/Lnc), ε is given by (14), k1 > 0 and C1 > 0
are as in Assumption 22, and C > 0 depends only on Ω and k1.
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Proof By Theorem 36, v(s) is analytic and bounded in Dε ⊃ E0,Lnc,ε. The result
follows by combining Lemma 52 with (15).

The remaining terms all have singularities associated with corner singularities
requiring geometric mesh refinement. Let

δ∗ := 1− π/ωmin ∈ (0, 1/2), (59)

where ωmin denotes the smallest of the exterior angles of the polygon that are
larger than π. Arguing as in [26, §5] one can use Lemma 52 to prove:

Theorem 55 (cf. [26, Theorem 5.4]) If (56) holds, then, for every k0 > 0, for
the approximation of v+(s) and v−(Lc − s) on a convex side Γc we have

inf
v′∈Pp,n(0,Lc)

‖v± − v′‖L2(0,Lc) ≤ CM(u)k1−δ∗ e−pτ , k ≥ k0,

where τ > 0 depends only on σ, the corner angles at the ends of Γc, and c (the
constant in (56)), and C > 0 only on Ω and k0. If also Assumption 22 holds, then
the same estimate holds for the approximation of v−(Lnc−s) on a nonconvex side
Γnc, except that Lc is replaced by Lnc in the above formula, and τ depends now on
σ, c, and the exterior angle ω in Figure 4(a).

We now combine these results into a single estimate for the best approximation
error associated with the approximation of ϕ ∈ L2(Γ ) by an element of VN,k. From
(10), (13), (55), Theorems 53, 54, and 55, and the definition of the approximation
space VN,k, the following result follows:

Theorem 56 Suppose that Assumption 22 and (56) hold. Then, where k1, C1,
and c are the constants in those assumptions, we have

inf
v′∈VN,k

∥∥ϕ− v′∥∥
L2(Γ )

≤ C(M(u)k−δ∗ + log1/2(2 + k)) e−pτ , k ≥ k1, (60)

where C > 0 depends only on C1, Ω and k1, and τ > 0 only on c, σ, and Ω.

6 Galerkin Method

Having designed a HNA approximation space VN,k which can efficiently approx-
imate ϕ, we select an element of VN,k by applying the Galerkin method to the
integral equation (6), rewritten with ϕ defined by (55) as the unknown. That is,
we seek ϕN ∈ VN,k ⊂ L2 (Γ ) such that

〈AϕN , v〉L2(Γ ) =
1

k
〈f −AΨ, v〉L2(Γ ) , for all v ∈ VN,k. (61)

If Assumption 23 holds (cf. the discussion at the end of §2), then existence and
uniqueness of the Galerkin solution ϕN is guaranteed by the Lax-Milgram lemma.
Moreover, Céa’s lemma (e.g., [14, Lemma 6.9]) gives the quasi-optimality estimate

‖ϕ− ϕN‖L2(Γ ) ≤
C0k

1/2

C2
inf

v′∈VN,k
‖ϕ− v‖L2(Γ ) , k ≥ k2, (62)

where C2 and k2 are the constants from Assumption 23, and C0 is the constant
from Lemma 21 in the case that k0 = k2. Combined with Theorem 56, this gives:
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Theorem 61 Suppose that Assumption 23 and (56) hold. Then, where k2, C2,
and c are the constants in those assumptions, we have

‖ϕ− ϕN‖L2(Γ ) ≤ Ck
1/2(M(u)k−δ∗ + log1/2(2 + k)) e−pτ , k ≥ k2, (63)

where C > 0 depends only on C2, Ω and k2, and τ > 0 only on c, σ, and Ω.

An approximation uN to the solution u of the BVP can be found by inserting
the approximation ∂u/∂n ≈ Ψ + kϕN into the formula (5), i.e.

uN (x) := ui(x)−
∫
Γ

Φk(x,y) (Ψ(y) + kϕN (y)) ds(y), x ∈ D.

Arguing as in the proof of [26, Theorem 6.3], noting that M(u) = ‖u‖L∞(D) ≥ 1

(since |u(x)| ∼ |ui(x)| = 1 as |x| → ∞), we deduce:

Theorem 62 Under the assumptions of Theorem 61 we have

‖u− uN‖L∞(D)

‖u‖L∞(D)

≤ Ck log(2 + k) e−pτ , k ≥ k2, (64)

where C > 0 depends only on C2, Ω and k2, and τ > 0 only on c, σ, and Ω.

An object of interest in applications is the far field pattern of the scattered
field. An asymptotic expansion of the representation (5) reveals that (cf. [19])

us(x) ∼ eiπ/4

2
√

2π

eikr√
kr
F (x̂), as r := |x| → ∞, (65)

where x̂ := x/|x| ∈ S1, the unit circle, and

F (x̂) := −
∫
Γ

e−ikx̂·y ∂u

∂n
(y) ds(y), x̂ ∈ S1. (66)

An approximation FN to the far field pattern F can be found by inserting the
approximation ∂u/∂n ≈ Ψ + kϕN into the formula (66), i.e.

FN (x̂) := −
∫
Γ

e−ikx̂·y (Ψ(y) + kϕN (y)) ds(y), x̂ ∈ S1. (67)

The proof of the following estimate follows precisely that of [26, Theorem 6.4].

Theorem 63 Under the assumptions of Theorem 61 we have

‖F − FN‖L∞(S1) ≤ Ck
3/2(M(u)k−δ∗ + log1/2(2 + k)) e−pτ , k ≥ k2, (68)

where C > 0 depends only on C2, Ω and k2, and τ > 0 only on c, σ, and Ω.

The above results hold for all polygons Ω in the class C of Definition 31,
provided that Assumption 23 holds. But, as remarked in §2, if Ω is star-like and
A = Ak, then Assumption 23 holds for every k2 > 0. Furthermore, in this case it
has been shown in [26, Theorem 4.3] (and see Remark 33) that

M(u) ≤ Ck1/2 log1/2 (2 + k), k ≥ k2, (69)

where C depends only on k2 and Ω. Thus the above results have the following
corollary which requires no coercivity assumption.
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Corollary 64 Suppose that Ω is a star-like member of the class C. Suppose also
that we choose A = Ak, the star-combined potential operator defined in (8), and
that we choose n so that (56) holds. Then, for any k2 > 0, for k ≥ k2 we have

‖ϕ− ϕN‖L2(Γ ) ≤ Ck
1−δ∗ log1/2(2 + k) e−pτ , (70)

‖u− uN‖L∞(D)

‖u‖L∞(D)

≤ Ck log(2 + k) e−pτ , (71)

‖F − FN‖L∞(S1) ≤ Ck
2−δ∗ log1/2(2 + k) e−pτ , (72)

where C > 0 depends only on Ω and k2, and τ > 0 depends only on c, σ, and Ω.

Remark 65 As remarked at the end of §2, it is reasonable, based on the numerical
evidence in [6], to conjecture that Assumption 23 holds for every k2 > 0 also for
A = Ak,k, for all members of the class C (not necessarily star-like). Thus we
conjecture that (70)–(72) hold also for A = Ak,k, for all members of the class C.

Remark 66 The algebraically k-dependent prefactors in the error estimates of
this section can be absorbed into the exponentially decaying factors by allowing p
to grow modestly with increasing k. We illustrate this in the case of (71). If

p ≥ log (k log(2 + k))

c0
,

for some 0 < c0 < τ , then (71) can be replaced by

‖u− uN‖L∞(D)

‖u‖L∞(D)

≤ Ce−pκ, k ≥ k2, (73)

where κ = τ − c0, and both C and κ are independent of k. Since the number
of degrees of freedom, N , is given by (57), and it is sufficient to increase n in
proportion to p for (73) to hold, it follows from (73) that, to maintain a fixed
accuracy, we need only increase N in proportion to (log(k log k))2 as k →∞.

7 Numerical Results

We present numerical computations of the Galerkin approximation ϕN defined by
(61), using the standard combined-potential formulation, A = Ak,k, given by (7),
for a particular star-like scatterer in the class C. In contrast to the choice A = Ak,
the star-combined operator given by (8), for which Corollory 64 holds, we do not
have a complete theory for A = Ak,k in the sense that, while Theorems 61–63
apply, Assumption 23 has not been shown to hold for obstacles in the class C for
A = Ak,k. One point of the computations in this section is to provide evidence for
the conjecture in Remark 65 that (70)–(72) hold also for A = Ak,k.

The scatterer we consider is shown in Figure 2(b). Its nonconvex sides have
length 2π and its convex sides length 4π, so the total length of the boundary is 12π,
which is 6k wavelengths since the wavelength λ = 2π/k. We consider two different
incident directions α, measured anticlockwise from the downwards vertical (as in
Figure 4):
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(a) α = 5π/3, k = 10 (b) α = 5π/3, k = 160

Fig. 6 Boundary solution for α = 5π/3, with k = 10 and k = 160.

1. α = 5π/4, as shown in Figure 1(a); in this case, multiply-reflected rays are
present in the asymptotic solution.

2. α = 5π/3, as shown in Figure 1(b); in this case, one of the nonconvex sides is
partially illuminated.

The scatterers, the incident directions, the corresponding total fields for k = 10,
and a circle of radius 3π on which we compute the total field for the purpose
of calculating errors (see Figure 9 below) are plotted in Figure 1. In all of our
experiments we take n = 2(p + 1). From (57), the total number of degrees of
freedom is then N = 12p2 + 28p+ 16. In our experiments the oscillatory integrals
appearing in our (N -dimensional) linear system (arising from (61)) were computed
using standard quadrature, but we remark that for a more efficient implementation
one should use oscillatory quadrature routines of the general type described in
[14, §4] - see [37, §4] for more details in this particular context. We evaluate the
Fresnel integral Fr appearing in the leading order behaviour Ψ on nonconvex sides
(cf. Lemma 35 and Theorem 36), and hence in the integrals on the right hand side
of (61), efficiently and accurately using the method of [2].

We will demonstrate exponential decay of ‖ϕ− ϕN‖L2(Γ ) as p increases, for

fixed k, as predicted by (63). More significantly, we will also see that, as k in-
creases with p fixed, ‖ϕ− ϕN‖L2(Γ ) actually decreases, suggesting that we can
maintain accuracy as k → ∞ with a fixed number of degrees of freedom, and
that the bound (70) is not sharp. Similarly, we will see that the relative error,
‖ϕ− ϕN‖L2(Γ ) / ‖ϕ‖L2(Γ ), grows only very slowly as k increases with N fixed. We
will also compute the solution in the domain and the far field pattern, making
comparison with the error estimates (71) and (72).

Since N depends only on p, and the values of p are more intuitively meaningful,
we introduce the additional notation ψp(s) := ϕN (s). We begin in Figure 6 by
plotting |ψ7(s)| (sampled at 100,000 evenly spaced points on the boundary) for
α = 5π/3 and k = 10 and 160. The corner between the two nonconvex sides is at
s/(2π) = 1; the corners between convex and nonconvex sides are at s/(2π) = 2
and s/(2π) = 0 (equivalently, by periodicity, s/(2π) = 6), and the corner between
the two convex sides is at s/(2π) = 4. There is a singularity in the solution ϕ



High frequency scattering by nonconvex obstacles 29

(a) α = 5π/4 - relative L2 errors (b) α = 5π/4 - relative L1 errors

(c) α = 5π/3 - relative L2 errors (d) α = 5π/3 - relative L1 errors

Fig. 7 Relative L2 and L1 errors in boundary solution.

at all corners except the one between the nonconvex sides, where ϕ = 0. These
singularities are evident in Figure 6 as is the increased oscillation for larger k. (The
apparent shaded region is an artefact of very high oscillation.)

In Figure 7 we plot the relative L2 and L1 errors against p, for the two angles
of incidence, for three values of k. We take the “exact” reference solutions to be
those computed with p = 7, as plotted in Figure 6 for the case α = 5π/3. The L2

and L1 norms are computed by high-order composite Gaussian quadrature on a
mesh graded towards the corner singularities; experimental evidence suggests that
these calculations are accurate to at least two significant figures.

Figure 7 shows the exponential decay as p increases that is predicted for the L2

error by (63). A key question is how the accuracy depends on k; we see that in all
four plots in Figure 7 the relative errors increase only very mildly as k increases. To
investigate this further, in Table 1 we show results for the two angles of incidence
for p = 4 (and hence N = 320), for a range of k. We tabulate L2 errors, relative L2

and L1 errors, and also N/(L/λ), the average number of degrees of freedom per
wavelength. As k increases, the relative errors increase very slowly, the absolute L2

error actually decreases, while the average number of degrees of freedom per wave-
length decreases in proportion to k−1. We also tabulate log2(error(2k)/error(k)),
where error(k) refers to the absolute L2 error for a particular value of k. This is
an estimate of the order of convergence, µ, on a hypothesis that error(k) ∼ kµ as
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Table 1 L2 and L1 errors for each example, fixed p = 4 (and hence N = 320), various k, with
N/(L/λ) the average number of degrees of freedom per wavelength along the boundary.

α k N
L/λ

‖ψ7 − ψ4‖L2(Γ ) µ
‖ψ7−ψ4‖L2(Γ )

‖ψ7‖L2(Γ )

‖ψ7−ψ4‖L1(Γ )

‖ψ7‖L1(Γ )
COND

5π/4 5 10.67 8.37×10−1 -0.35 3.90×10−1 1.03×10−2 3.36×105

10 5.33 6.55×10−1 -0.19 4.04×10−1 1.43×10−2 1.87×102

20 2.67 5.72×10−1 -0.29 4.24×10−1 1.69×10−2 1.34×102

40 1.33 4.68×10−1 -0.91 4.47×10−1 1.85×10−2 1.73×102

80 0.67 2.48×10−1 -0.20 4.39×10−1 1.91×10−2 2.30×102

160 0.33 2.16×10−1 4.62×10−1 2.09×10−2 3.03×102

5π/3 5 10.67 8.64×10−1 -0.46 4.05×10−1 1.17×10−2 3.36×105

10 5.33 6.30×10−1 -0.54 4.18×10−1 1.60×10−2 1.87×102

20 2.67 4.32×10−1 -0.46 4.27×10−1 1.80×10−2 1.34×102

40 1.33 3.15×10−1 -0.46 4.40×10−1 1.80×10−2 1.73×102

80 0.67 2.30×10−1 -0.45 4.54×10−1 1.88×10−2 2.30×102

160 0.33 1.69×10−1 4.69×10−1 1.92×10−2 3.03×102

k → ∞. Since, for this scatterer, δ∗ ≈ 0.4350, a value µ ≈ 0.5650 is the largest
consistent with the bound (70). In fact, we see values in the range (−0.91,−0.19),
suggestive that the bound (70) overestimates the error growth as k increases. In
part this overestimate may be due to using the bound (69) to get (70); as noted
in Remark 33 we conjecture that in fact M(u) = O (1) as k →∞.

In the final column of Table 1 we also show the condition number (COND)
of the N -dimensional linear system arising from (61). For fixed p = 4, the con-
dition number increases slowly as k increases, for k ≥ 10. The condition number
is significantly larger for k = 5. We investigate the dependence of the condition
number on both k and p further in Figure 8. For fixed k, the condition number

Fig. 8 Condition number of the N -dimensional linear system arising from (61).
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grows slowly (approximately with O(log2 p)) as p increases, for p < p0, before
growing approximately exponentially with respect to p for p > p0, where the value
of p0 appears to increase as k increases; indeed, it appears from Figure 8 that, for
k = 5, 10, 20, the value of p0 corresponds to the point at which our discretisation
is equivalent to approximately 5–7 degrees of freedom per wavelength (recalling
that N = 12p2 + 28p+ 16 and the boundary is 6k wavelengths long). For k = 5, as
p increases beyond p = 5 (representing approximately 15 degrees of freedom per
wavelength) this exponential growth appears to tail off. Our observations suggest
that achieving very high accuracies at low frequencies might require the develop-
ment of a suitable preconditioning strategy, but we leave this for future work.

We now return to Figure 7 where we see that the L2 errors, while decreasing
exponentially as p increases, are large in absolute value. Errors of a similar mag-
nitude are seen in the corresponding convex case [26]. There it is noted that the
L2 errors blow up as the largest exterior angle, ωmax, approaches 2π, this because
‖ϕ‖L2(Γ ) itself blows up in the same limit (this can be seen from the bound (11)

which is sharp in the limit s → 0). Thus large L2 errors are inevitable for ωmax

close to 2π. One “solution” is to measure errors in a more appropriate norm: in
particular this blow up is not seen in the L1 norm and, indeed, the relative L1

errors in Figure 7 are 20–40 times smaller than the corresponding L2 errors (note
the different scales in (b) and (d) compared to (a) and (c)).

We now turn our attention to the approximation of u(x), x ∈ D, and of the far
field pattern F (often the quantities of real interest in scattering problems). As is
common for linear functionals of the solution on the boundary, the errors in u(x)
and F (x̂) are, in general, much smaller than the relative errors in ϕ. To investigate
the accuracy of uN (x), we compute the error in this solution on a circle of radius
3π surrounding the scatterer, as illustrated in Figure 1. To allow easy comparison
between different discretizations, noting again that for each example N depends
only on p, we denote the solution on this circle (with a slight abuse of notation)
by up(t) := uN (x(t)), t ∈ [0, 2π], where t = 0 corresponds to the direction from
which ui is incident, and x(t) is a point at angular distance t around the circle.

In Figure 9 we plot for each example the relative maximum error on the circle,

maxt∈[0,2π] |u7(t)− up(t)|
maxt∈[0,2π] |u7(t)| ,

computed over 30,000 evenly spaced points in [0, 2π], for k = 10, 40, and 160. The
exponential decay as p increases predicted by Theorem 62 is clear. Moreover, for
fixed p ≥ 2, the relative maximum error decreases as k increases; this is better
than the mild growth with k of the bound (71). These relative errors are much
smaller than those on the boundary in Figure 7.

Finally, we compute our approximation (67) to the far field pattern. Again, with
a slight abuse of notation, we define Fp(t) := FN (x̂(t)), t ∈ [0, 2π], where t = 0
corresponds to the direction from which ui is incident and x̂(t) is a point at angular
distance t around the unit circle. Plots of |F7(t)| (the magnitude of the far field
pattern computed with our finest discretization), for k = 10 and 160 and the two
incident directions, are shown in Figure 10. In Figure 11 we plot approximations
to ‖F7 − Fp‖L∞(S1) for k = 10, 40, and 160, for the two incident directions. To
approximate the L∞ norm, we compute F7 and Fp at 30,000 evenly spaced points
on the unit circle. The exponential decay as p increases predicted by Theorem 63
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(a) α = 5π/4 (b) α = 5π/3

Fig. 9 Relative maximum errors on the circle of Figure 1.

(a) α = 5π/4, k = 10 (b) α = 5π/4, k = 160

(c) α = 5π/3, k = 10 (d) α = 5π/3, k = 160

Fig. 10 Far field patterns, |F7(t)| ≈ |F (t)|, k = 10 and k = 160.
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(a) α = 5π/4 (b) α = 5π/3

Fig. 11 Absolute maximum errors ‖F7 − Fp‖L∞(0,2π) in the far field pattern.

is clear. For fixed p, the error does not grow significantly as k increases, indicating
that the mild k-dependence of the bound (72) may not be optimal. The errors are
comparable in magnitude for each incidence angle, suggesting that our algorithm
copes equally well with cases of multiple reflection and partial illumination.

In summary, our numerical examples demonstrate that the predicted exponen-
tial convergence of our hp scheme is achieved in practice. Moreover, for a fixed
number of degrees of freedom, the accuracy of our numerical solution appears to
deteriorate only very slowly (or not at all) as the wavenumber k increases. The p-
and k-dependence of our results appears to mimic closely that of the comparable
results for the convex polygon in [26]. The k-explicit error bounds in Corollary 64
predict at worst mild growth in errors as k increases, which can be controlled by a
logarithmic growth in the degrees of freedom N , as discussed in Remark 66. The
numerical results support the conjecture that this mild growth is pessimistic; the
estimates in Corollary 64 are not quite sharp in their k-dependence. We suspect
this is due to lack of sharpness in k-dependence of the estimate (69) for M(u), of
our best approximation estimate (60), and of the quasi-optimality estimate (62).

8 Discussion - extension to more general nonconvex polygons

In this section we discuss the possibility of extending our algorithm and analysis to
more general nonconvex polygons not in the class C of Definition 31. We provide
suggestions, informed by high frequency asymptotics, as to how the conditions
of Definition 31 might be relaxed, and what effect this would have on our HNA
approximation space and the accompanying analysis.

We first make the rather trivial remark that we expect the “visibility” condition
(ii) of Definition 31 can be relaxed, without any change to our approximation space,
to the following slightly weaker condition, illustrated in Figure 12(a).

Condition (ii)′: For each neighbouring pair {Γnc, Γ
′
nc} of nonconvex sides, let P

and Q denote the endpoints of Γnc, and let Q and R denote those of Γ ′nc. Then
Ω \ {P,R} must lie entirely on one side of the line (shown as dashed in Figure
12(a)) through P and R.
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Γnc

Γ ′nc

α

Ω

d

R

Q

P

(a)

Γnc
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Ω

φQ

d

R

Q

P

(b)

Fig. 12 Generalising the conditions of Definition 31. The whole of Ω \{P,R} must lie on one
side of the (dashed) line through P and R.

This weakened assumption is still sufficient to ensure that only three corners
of Ω are visible at any point of Γ ; it also ensures that any shadow boundaries
associated with diffraction at P and R of waves scattered from other parts of Γ
do not intersect Γnc or Γ ′nc, respectively. We believe it should also be possible to
extend our rigorous analysis to this case; in particular we expect that Theorem 56,
for example, should still hold. However, a proof of this would require modification
and generalisation of the results in Lemmas 44–47, which we have yet to achieve.

Next we consider relaxing the “orthogonality” condition (i) of Definition 31,
which stipulates that neighbouring nonconvex sides must meet at right-angles. We
expect this condition can be relaxed completely to allow the angle φQ between
Γnc and Γ ′nc to be any angle between 0 and π, with condition (ii) of Definition 31
replaced by condition (ii)′ above, with the more general geometry illustrated in
Figure 12(b). However, to return similar performance and accuracy for the same
number of degrees of freedom we would, to cope with this extension, need to make
significant changes to our HNA approximation space on Γnc, as we now explain. In
general, the complexity of the approximation space (in particular the number of
terms required in the ansatz (1)) will need to increase as the angle φQ decreases,
in order to capture the increasing number of multiple reflections that can occur
between the two sides Γnc and Γ ′nc. The form of the approximation space will also
differ depending on whether or not π/φQ is an integer.

We first consider the case where φQ = π/m for some integer m ≥ 2. (In this
case, we note that the method of images provides a simple closed form Green’s
function for the relevant canonical problem of scattering in a sector of angle φQ.)
Informed by the case m = 2 (cf. in particular the discussion in Remark 37), we
would define our (known) “leading order” behaviour (i.e. the generalisation of
the first term Ψ in (13)) to be two times the normal derivative of a modified
geometrical optics approximation to ∂u/∂n on Γnc, which would be a sum of m
terms corresponding to the incident wave and the m−1 higher order reflections of it
in the sides Γnc and Γ ′nc, with Fresnel integrals used to deal with shadow boundary
effects. According to the principles of the Geometrical Theory of Diffraction (see,
e.g., [7]), the remainder of the field on Γnc should then comprise diffracted waves
emanating from P and R, and the (multiple) reflections of these waves in the
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Γnc

Γ ′nc

π/3
π/3

π/3

R

P
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P′

R′

(a) φQ = π/3

Γnc

Γ ′nc

φQ
φQ

φQP

R

Q

P′

R′

(b) φQ ∈ (π/3, π/2)

Fig. 13 Identifying phases of diffracted-reflected waves using the method of images.

sides Γnc and Γ ′nc (we shall call such waves “diffracted-reflected”). To determine
the phases associated with each of the diffracted-reflected waves, we appeal to the
method of images, thinking of each diffracted-reflected wave as emanating from a
certain “image corner”, obtained by an appropriate series of reflections of either
P or R in the lines Γnc and Γ ′nc. Recalling from the case m = 2 the interpretation
in Remark 37 of the second term in (13) as originating from the image corner P′

shown in Figure 4(a), we can rewrite the second, third and fourth terms on the
right hand side of (13) as

vPeikrP + vReikrR + vP′e
ikrP′ , (74)

where, for an observation point x ∈ Γnc, we define rP := ‖x−P‖ etc. Recall that
the amplitude vP is approximated on a mesh geometrically graded towards P, and
vR and vP′ are approximated by single polynomials supported on the whole side
Γnc. The situation for the case m = 3 is illustrated in Figure 13(a). Here there
are two image corners to consider: P′, the reflection of P in Γ ′nc (corresponding
to diffracted waves emanating from P and being reflected onto Γnc by Γ ′nc), and
R′, the reflection of R, first in Γnc, then in Γ ′nc (corresponding to diffracted waves
emanating from R and being reflected onto Γnc via first Γnc then Γ ′nc). In the case
m = 3 our HNA ansatz for ∂u/∂n on Γnc would then comprise the three-term
leading order behaviour mentioned above, plus the sum

vPeikrP + vReikrR + vP′e
ikrP′ + vR′e

ikrR′ , (75)

where the amplitudes vP, vR, vP′ and vR′ are to be approximated numerically.
As in the case m = 2, we expect vP to have a singularity at P, and therefore
propose to approximate it on a mesh geometrically graded towards P (as per the
middle mesh in Figure 5). We expect vR to be slowly-varying on Γnc, and pro-
pose to approximate it by a single polynomial supported on the whole of Γnc;
we also expect that the same approximation strategy should work for the ampli-
tudes vP′ and vR′ associated with the diffracted-reflected waves, provided that
the shadow boundaries generated by the reflection processes involved do not in-
tersect Γnc. A sufficient condition to ensure that such intersection does not occur
is that max(φR, φP) < π/2, where the angles φR and φP are defined as in Figure
12(b). When this condition fails it would be necessary to modify the approxi-
mation strategy for vP′ and vR′ to deal with possible rapid variation across the
shadow boundaries. One approach to this could be to premultiply vP′ and vR′
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by appropriate special functions/canonical solutions such as Fresnel integrals or
generalised Fresnel integrals (cf. [7, §5.10]); another could be to approximate vP′

and vR′ on meshes geometrically graded towards the relevant shadow boundaries.
For φQ = π/m, m > 3, the above remarks generalise in a straightfoward

way: to capture the diffracted-reflected fields one must add to the leading order
behaviour a generalisation of the sum (74) consisting of m + 1 terms, with the
final term in (74) replaced by a sum of m − 1 terms associated with the first
m− 1 image corners encountered when moving clockwise around Q, starting from
R, in angular increments of φQ. Provided that max(φR, φP) < π/2, each of the
associated amplitudes would be approximated by a single polynomial supported
on the whole side Γnc. (By symmetry, the image corners encountered when moving
anti-clockwise around Q need not be considered, since these produce waves which
have the same phases on Γnc as the clockwise image corners.)

When φQ ∈ (π/m, π/(m− 1)) for some integer m ≥ 2, the situation is a little
more complicated. (In this case, we note that the method of images no longer
provides an exact Green’s function for scattering in a sector of angle φQ; the
Green’s function now has a component corresponding to diffraction from the reen-
trant corner.) Provided that max(φR, φP) < π/2, we would, as usual, base our
(known) leading order behaviour on a modified geometrical optics approximation,
with shadow boundary effects dealt with using Fresnel integrals. This would again
involve a sum of m terms corresponding to the incident wave and its m− 1 higher
order reflections; but geometrical considerations imply that the highest order re-
flected wave in the geometrical optics approximation is non-zero on Γnc over a
reduced range of incidence directions compared to the other reflected waves.

To illustrate this, it is simplest to consider the case m = 2, so that φQ ∈
(π/2, π). In this case we would take our leading order behaviour to be two times
the normal derivative of the sum{

E(r, θ − α), α ∈ [π/2, π + φQ],

0, otherwise
+

{
E(r, θ + α), α ∈ [π/2, 2π − φQ],

0, otherwise
(76)

where E(r, ψ) is defined as in Lemma 35. Note that the term corresponding to
the incident wave (E(r, θ − α)) is non-zero for α up to π + φQ, whereas the term
corresponding to the reflected wave (E(r, θ + α)) is non-zero only for α up to
2π − φQ, because the reflected rays do not strike Γnc for α ∈ [2π − φQ, π + φQ).

To determine the phases present in the remainder of the field, and obtain an
ansatz similar to (74) or (75), one can again appeal to the method of images, as
illustrated for the case m = 3 in Figure 13(b). But we need to make two changes
compared to the case φQ = π/m. First, we need only consider the first m−2 image
corners encountered when moving clockwise around Q, starting from R, in angular
increments of φQ, because the (m − 1)th image corner is no longer “visible” on
Γnc. (So in the case m = 2 we should remove the term vP′e

ikrP′ from the ansatz
(74); in the case m = 3 we should remove the term vR′e

ikrR′ from (75)). Second,
we need to add a term vQeikrQ , corresponding to diffraction from the reentrant
corner Q. The amplitude vQ will have a derivative singularity at Q (in contrast to
the case φQ = π/m when the solution is smooth at Q), and we therefore propose
to approximate it on a geometric mesh graded towards Q.

To summarize, we have sketched how to modify our HNA approximation space
for the numerical approximation of the solution of the Dirichlet scattering problem
for polygons in the following class (which contains our original class C):
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Definition 81 (The class C′) A polygon Ω ⊂ R2 is a member of the class C′ if,
relative to each corner Q at which the exterior angle φQ is smaller than π, the
following two conditions hold (where P, Q, R, φR and φP are as in Figure 12(b)):

(i) The whole of Ω \ {P,R} lies on one side of the line through P and R;
(ii) max(φR, φP) < π/2.

We believe that with the modifications described above, one should observe the
same qualitative performance of our BEM to that for the class C (i.e. exponential
decay in error with increasing polynomial degree and only logarithmic growth
in number of degrees of freedom to maintain accuracy as k increases). We leave
experimental verification of this for future work. At present our rigorous best
approximation analysis holds only for the case φQ = π/2. But it seems plausible
that, with significant further work, our analysis could be generalised, at least to
the case φQ = π/m, where m ≥ 3 an integer, because of the existence of a simple
closed form Green’s function for scattering in a sector of angle π/m (this was a
key ingredient in our analysis for the case φQ = π/2). However, we anticipate that
extending the analysis to general φQ would be considerably more challenging.

Further generalisation to polygons outside the class C′ would require more sig-
nificant modifications to our HNA approximation space. In particular, when more
than three corners of the polygon are visible from one side of the polygon, the
multiple scattering effects are in general considerably more complicated. However,
as remarked in §1, algorithms developed for determining the high frequency be-
haviour in the case of scattering by multiple smooth convex scatterers (e.g. [24,
22,23,3]) may be helpful as a source of ideas for how to deal with the interactions
between distant parts of the scatterer which are visible to each other. We note
also the recent work [25] on the design of HNA approximation spaces for trans-
mission problems, which exhibit similar multiple scattering phenomena to those
encountered here. However, we leave further discussion to future work.
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