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The orographic gravity wave drag produced in flow over an axisymmetric mountain

when both vertical wind shear and non-hydrostatic effects are important was calculated

using a semi-analytical two-layer linear model, including unidirectional or directional

constant wind shear in a layer near the surface, above which the wind is constant.

The drag behaviour is determined by partial wave reflection at the shear discontinuity,

wave absorption at critical levels (both of which exist in hydrostatic flow), and total

wave reflection at levels where the waves become evanescent (an intrinsically non-

hydrostatic effect), which produces resonant trapped lee wave modes. As a result of

constructive or destructive wave interference, the drag oscillates with the thickness of

the constant-shear layer and the Richardson number within it (Ri), generally decreasing

at low Ri and when the flow is strongly non-hydrostatic. Critical level absorption,

which increases with the angle spanned by the wind velocity in the constant-shear layer,

shields the surface from reflected waves, keeping the drag closer to its hydrostatic limit.

While, for the parameter range considered here, the drag seldom exceeds this limit,

a substantial drag fraction may be produced by trapped lee waves, particularly when

the flow is strongly non-hydrostatic, the lower layer is thick and Ri is relatively high. In

directionally sheared flows with Ri = O(1), the drag may be misaligned with the surface

wind in a direction opposite to the shear, a behaviour which is totally due to non-trapped

waves. The trapped lee wave drag, whose reaction force on the atmosphere is felt at low

levels, may therefore have a distinctly different direction from the drag associated with

vertically propagating waves, which acts on the atmosphere at higher levels.

Key Words: flow over orography; gravity wave drag; non-hydrostatic effects; trapped lee waves; directional wind shear;

critical levels; wave reflection; resonance
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1. Introduction

The parametrization of mountain waves in weather and climate

prediction models run at global scales remains a key scientific

issue at present (Stensrud,2009), and is expected to remain so

for the foreseeable future. Among the numerous processes that

occur at scales below the grid resolution in these models, but have

a substantial impact on the resolved flow, mountain wave drag

is thought to be especially relevant at horizontal scales of O(10

km), for typical values of the atmospheric parameters (Gill,1982).

This force is also important at larger scales, where mountain

waves become influenced by the rotation of the Earth, and at

smaller scales, where they are affected by non-hydrostatic effects

(Teixeira et al.,2008b).

Mountain waves influenced by rotation are already adequately

represented at the resolutions currently employed operationally

in meteorological models, but that is not the case with non-

hydrostatic mountain waves, which have typical horizontal

wavelengths of a few km (Wurtele et al.,1987; Keller,1994).

Linear theory suggests that the drag produced by such waves

becomes progressively less relevant as their horizontal scale

decreases, both because they are forced by relatively narrow,

and therefore relatively low mountains or hills, and because a

larger fraction of the waves becomes evanescent, being unable

to transport momentum. However, this latter assertion is based

on results from linear wave theory for flow with constant wind

and static stability (Gill,1982; Teixeira et al.,2008b), and it is

not obvious whether it holds for vertically sheared flows. Indeed,

previous studies have suggested that non-trivial interactions may

take place between different physical processes (for example,

wave nonlinearity and non-hydrostatic effects – see Durran

(1986), or nonlinearity and rotation – see Ólafsson and Bougeault

(1997)), leading to higher values of the drag than expected.

That possibility will be investigated in the present study for the

conjugated effects of vertical wind shear and non-hydrostaticity.

It has been shown recently that the drag produced by non-

hydrostatic mountain waves in atmospheres where the wind and

static stability vary vertically can receive a substantial contribution

from resonant trapped modes, which do not exist for constant

atmospheric parameters (Teixeira et al.,2013a,2013b). Whereas

vertically propagating waves have a continuous spectrum, and

decelerate the atmospheric flow at high elevations, trapped

lee waves have a discrete spectrum, for which the drag may

be calculated separately (Smith,1976), and they decelerate the

atmosphere at low levels. The piecewise-constant atmospheric

parameter profiles assumed by Teixeira et al. (2013a) and Teixeira

et al. (2013b) are representative to a certain degree of fast

variations in static stability or wind speed at a given height,

allowing an easy evaluation of trapped lee wave drag. But they

are realistic to a limited extent, since one of the most common

reasons for wave trapping is a continuous increase of the wind

speed with height (Grubišić and Stiperski,2009; Stiperski and

Grubišić,2011). In that situation, the dynamics of the trapped lee

waves is considerably more complicated, among other reasons

because the wave-trapping height is not unique, depending instead

on the wavenumber.

Despite the importance of vertical wind shear in, for example,

momentum deposition in the high atmosphere (which directly

leads to a deceleration of the large-scale flow) (Shutts and

Gadian,1999), expressions for the surface drag in gravity wave

parametrizations adopted in the most modern weather and climate

prediction models still neglect (for simplicity) both wind shear

and non-hydrostatic effects (Lott and Miller,1997; Kim and

Doyle,2005). However, the wave trapping mechanism mentioned

above conjugates these two effects. It is clear, then, that more

knowledge is necessary about non-hydrostatic mountain waves

with wind shear, particularly concerning the behaviour of the

associated drag force.

Corrections to the drag due to vertical wind shear for wind

profiles with a relatively slow variation have been derived by

Teixeira and Miranda (2006) using a WKB approximation, in an

analytical form easy to implement in drag parametrizations, but

only in hydrostatic conditions. The hydrostatic assumption allows

these corrections to be independent of the detailed orography

shape, as long as this is assumed to be axisymmetric (Teixeira

et al.,2004), 2D (Teixeira and Miranda,2004), or have an elliptical

horizontal cross-section (Teixeira and Miranda,2006).

There have been relatively few theoretical studies addressing

the drag produced by non-hydrostatic mountain waves, and fewer

still considering the additional effect of directional shear, dueThis article is protected by copyright. All rights reserved.
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to the complexity of the corresponding wave solutions. Wurtele

et al. (1987) and Keller (1994), for example, considered a

single-layer atmosphere where the wind increases linearly, or

a two-layer atmosphere where the wind increases linearly in

the lower layer and becomes constant in the upper layer, but

they limited their treatment to unidirectional shear flows and

did not focus on the drag. Shutts (1995), on the other hand,

considered a constant-shear flow with directional shear extending

indefinitely with height, but he only evaluated its impact on the

drag in the hydrostatic approximation. However, while flows with

directional shear are ubiquitous in the real atmosphere, shear

layers that extend indefinitely lead to unrealistically high winds

that artificially induce total wave trapping. Nevertheless, the

relevance of non-hydrostatic effects for drag parametrization will

continue to increase as the resolution of meteorological models

improves without being able to resolve the entire spectrum of

internal gravity waves.

For all these reasons, in the present study the joint effects

of vertical wind shear and non-hydrostaticity will be addressed

using an inviscid linear semi-analytical two-layer model where

the wind has constant unidirectional or directional shear in a

lower layer and constant velocity in the upper layer. This model,

which extends the calculations of Teixeira et al. (2008a) to non-

hydrostatic conditions, will be used to evaluate mountain wave

drag, focusing in particular on its partition between contributions

coming from vertically propagating waves and from trapped lee

waves.

Since, as far as we know, this is the first time the behaviour

of the drag produced by non-hydrostatic mountain waves in

directional shear flow is systematically investigated, nonlinear

effects will be neglected for simplicity. Durran (1986) showed

that nonlinearity enhances the amplitude of trapped lee waves by

a large factor when these are much shorter than the width of the

mountains that generate them, but his results were for 2D flow.

In the flows over an axisymmetric mountain to be addressed in the

present study, the effect of nonlinearity is likely to be considerably

weaker (cf. Miranda and James,1992; Miranda and Valente,1997),

due to directional wave dispersion (Teixeira et al.,2008a).

Boundary layer effects are also neglected here, to achieve a

cleaner model setup that is manageable mathematically and easier

to interpret physically. In reality, some overlap between the impact

of trapped lee wave drag and of turbulent boundary layer drag is

expected, since both forces act at low levels. In very general terms,

boundary layers are known to lower the amplitude of mountain

waves and thus the drag associated with them (Ólafsson and

Bougeault,1996; Jiang et al.,2008), but more complex interactions

may take place (Lott,2007).

The remainder of this paper is organized as follows. Section

2 provides a description of the semi-analytical model adopted to

tackle this problem, as well as its verification against numerical

simulations of trapped lee waves. The contribution of trapped lee

waves to the drag is also analyzed for flow over a 2D ridge. In

Section 3 the main results are presented, focusing on the drag

behaviour in flow over an axisymmetric mountain (the canonical

type of orography usually chosen for illustrating the 3D effects

occurring in flows with directional shear). Finally, in Section 4

the main findings of this study are summarized.

2. Semi-analytical model

We consider a two-layer linear model of atmospheric flow over a

3D axisymmetric mountain. In the lower layer, the background

wind has constant unidirectional or directional shear, whereas

the wind magnitude and direction become constant in the upper

layer. The mountain width may be varied, allowing to control the

intensity of non-hydrostatic effects. Wave reflections, which may

generate resonant wave modes, may either be partial at the shear

discontinuity existing at the interface between the two layers,

or total at the levels where the waves change from vertically

propagating to evanescent (an intrinsically non-hydrostatic effect).

This model extends those of Wurtele et al. (1987) and Keller

(1994) (which did not consider directional wind shear), that of

Shutts (1995) (which considered a constant-shear layer extending

indefinitely), and that of Teixeira et al. (2008a) (which assumed

hydrostatic flow). Clearly, considering an infinite shear layer, as

done by Shutts (1995), although allowing interesting insights,

is unrealistic in an unbounded atmosphere, even in hydrostatic

conditions (as shown by Teixeira et al. (2008a)). But it becomes

especially so when non-hydrostatic effects are taken into account,

because then all vertically propagating waves launched by the

orography, if they are not absorbed by critical levels, become

This article is protected by copyright. All rights reserved.
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evanescent (and therefore trapped) at some height (Wurtele

et al.,1987;Keller,1994).

2.1. Analytical solutions

Stationary flow over an isolated mountain is considered, so

both the terrain elevation h(x, y) and all flow perturbations

associated with the mountain waves (including the vertical

velocity perturbation w and pressure perturbation p) can be

expressed as Fourier integrals (Lin,2007)

w(x) =

Z ∞

−∞

Z ∞

−∞
ŵ(k1, k2, z)eik·xdk1dk2, (1)

p(x) =

Z ∞

−∞

Z ∞

−∞
p̂(k1, k2, z)eik·xdk1dk2, (2)

h(x, y) =

Z ∞

−∞

Z ∞

−∞
ĥ(k1, k2)e

ik·xdk1dk2, (3)

where the hat denotes Fourier transform, x = (x, y, z) and k =

(k1, k2) is the horizontal wavenumber vector.

Under the assumptions of inviscid, non-rotating flow and low-

amplitude waves, the equations of motion with the Boussinesq

approximation may be combined, and the wave motion is

described by the Taylor-Goldstein equation (Nappo,2012), which

is written in terms of the Fourier transform of the vertical velocity

ŵ,

ŵ′′ +


N2k2

12

(U · k)2
− U′′ · k

U · k − k2
12

ff
ŵ = 0, (4)

where U(z) = (U, V ) is the background wind vector, the

magnitude of the horizontal wavenumber is k12 = (k2
1 + k2

2)1/2

and the primes denote differentiation with respect to height, z.

Note that, to a first approximation, non-Boussinesq effects may

still be taken into account using (4), provided that w is viewed as a

vertical velocity scaled by density, in which case the ‘real’ vertical

velocity is given by (ρ0/ρ)1/2w (where ρ(z) is the reference

density at a given level and ρ0 its value at the surface) (see Shutts

and Gadian,1999). As we are considering stationary flow, the

phase velocity c is automatically set to zero and dropped from (4).

Please refer to equation (A1) in Appendix A for a non-stationary

version.

It will be assumed that both layers in the model have the

same Brunt-Väisälä frequency, N . The constant shear of the wind

profile in the lower layer is described by the shear vector α =

(α1, α2), while in the upper layer the shear is zero, namely

U(z) =

8><>: (U0 + α1z, α2z) for 0 < z < H

(U0 + α1H, α2H) for z > H,
(5)

where U0 is the surface wind and H is the height of the lower

layer. In (5), the background wind at the surface is aligned with

x (without any loss of generality due to the axisymmetry of the

orography to be considered). A set of scenarios with different

shear directions are presented in Section 3. Because the wind

always either varies linearly or is constant, the curvature terms

in (4) vanish. So, in the lower layer, z ∈ (0, H), that equation

becomes

ŵ′′ +

»
N2k2

12

{U0k1 + (α · k)z}2
− k2

12

–
ŵ = 0. (6)

The height of critical levels, which by definition are levels where

U(zc) · k = 0 and where (4) becomes singular, can be written for

the wind profile (5) as zc = −U0k1/(α · k). Note that, in general

(i.e. unless α is aligned in the x−direction), zc depends on the

orientation angle of k. Critical levels only have an impact on

the waves, and hence on the drag, when they are located within

the atmosphere, zc > 0, i.e. when U0k1 and α · k have opposite

signs. On the other hand, turning points, where the coefficient

between square brackets in (6) changes sign, and the waves shift

from vertically propagating to evanescent or vice-versa, occur

for the wind profile (5) at the height z = (±N − U0k1)/(α · k).

Clearly, this height is always a function of the wavenumber, even

if the flow is unidirectional (α2 = 0). While it defines the level

at which waves of a given wavenumber will be trapped, it does

not guarantee that those waves will be resonant, which will only

happen if an additional condition is fulfilled. This dependence

of the trapping height on the wavenumber is one of the aspects

in which the present model (as those of Wurtele et al. (1987),

Keller (1994) and Shutts (1995)) differs from the simpler models

of Scorer (1949) and Teixeira et al. (2013a), where the trapping

height is fixed at a single level by a discontinuity in the Scorer

parameter.

The Richardson number of the background flow in the lower

layer is by definition Ri = N2/|α|2, but a modified Richardson

This article is protected by copyright. All rights reserved.
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number may be written R̃i = N2k2

12/(α · k)2, which is obtained

from Ri by replacing α with its projection along k. Clearly,

R̃i ≥ Ri, and this definition has the advantage that (6) may be

expressed in a similar form as for 2D mountain waves:

ŵ′′ +


R̃i

(z − zc)2
− k2

12

ff
ŵ = 0. (7)

The above linear second-order differential equation can be

transformed into a modified Bessel equation of pure complex

order (Booker and Bretherton,1967). For z > zc, solutions to (7)

corresponding to upward and downward propagating wave energy

can be written in terms of the modified Bessel function I,

ŵ↑(ξ) =
p

ξIi(sgn)µ(k12ξ), (8)

ŵ↓(ξ) =
p

ξI−i(sgn)µ(k12ξ), (9)

where ξ = z − zc > 0, µ =
p

R̃i− 0.25, ↑↓ denotes the direction

of wave energy propagation and sgn = sign(U′(zc) · k) =

sign(α · k). The extension of this pair of solutions across the

critical level is simple by using the properties of the Bessel I

function and introducing a small imaginary phase speed. The

general result , for z < zc (ξ < 0) , is

ŵ↑(ξ) = −i(sgn)eπµ
p
|ξ|Ii(sgn)µ(k12|ξ|), (10)

ŵ↓(ξ) = −i(sgn)e−πµ
p
|ξ|I−i(sgn)µ(k12|ξ|). (11)

A detailed justification for the above solutions is presented in

Appendix A. Shutts (1995) performed a similar extension of his

wave solution across the critical level but the factor i, which

corresponds to a phase shift, was missing in his final expression

(between his Eqs. (32) and (33)). Equations (10)-(11) correspond

to waves whose energy propagates in the vertical direction

sufficiently near to their critical levels (where the flow is perfectly

hydrostatic, and hence no evanescent waves exist), but become

evanescent at the turning points where the coefficient between

brackets in (7) becomes negative, as explained before.

A drawback of employing this pair of solutions is that they

both exhibit exponential growth when they enter the evanescent

region, which is not practical for numerical calculations. This

problem can be avoided by expressing the solutions instead
in terms of the modified Bessel function Kiµ and the related

function Liµ introduced by Wurtele et al. (1987), both of

imaginary order, where Kiµ is pure exponentially decaying and

Liµ is exponentially growing beyond the turning points delimiting

evanescent regions. This pair of solutions has been employed by

Wurtele et al. (1987) and Keller (1994) in treatments that included

non-Boussinesq effects, which was important for filtering out

long waves and their associated resonant modes in the single

layer-model of Wurtele et al. (1987). However, in the two-layer

model adopted here, the upper layer already prevents those long-

wave resonances by allowing the propagation of long waves, so

non-Boussinesq effects (beyond those that can be accommodated

by using the density scaling mentioned above) are excluded for

simplicity. Kiµ and Liµ are both real functions for real arguments,

and physically correspond to the interference between upward and

downward propagating waves. The relation between these two sets

of solutions is relegated to Appendix A, where it is shown that an

alternative form for (8)-(9) and (10)-(11) using Kiµ and Liµ is:

ŵ↑(ξ) =

8>><>>:
√

ξ


Liµ(k12ξ)− i(sgn)Kiµ(k12ξ)

ff
z > zc

−i(sgn)eπµ
p
|ξ|


Liµ(k12|ξ|)− i(sgn)Kiµ(k12|ξ|)
ff

z < zc

(12)

ŵ↓(ξ) =

8>><>>:
√

ξ


Liµ(k12ξ) + i(sgn)Kiµ(k12ξ)

ff
z > zc

−i(sgn)e−πµ
p
|ξ|


Liµ(k12|ξ|) + i(sgn)Kiµ(k12|ξ|)
ff

z < zc.
(13)

This article is protected by copyright. All rights reserved.
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2.2. Two-layer atmosphere

In the two-layer model introduced above, the correct wave

solution in the lower layer is a linear combination of the solutions

described previously, satisfying certain boundary conditions. For

the upper layer, the wind profile is constant, which allows the

following exact solution

ŵ(z > H) = C exp (imz), (14)

where C is some complex coefficient, and the vertical

wavenumber m is defined as follows

m =

8><>:
k12
√

N2−(UH ·k)2
UH ·k if N2k2

12
(UH ·k)2 − k2

12 > 0

i

r
k2
12 −

N2k2
12

(UH ·k)2 if N2k2
12

(UH ·k)2 − k2
12 < 0

, (15)

where UH = (UH , VH) = U(z = H) is the wind vector in the

upper layer. This definition of m satisfies the far-field radiation

boundary condition (Teixeira et al.,2004) or the boundedness

condition as z → +∞, depending on whether the wave is

propagating or evanescent. As a result, the complete solution in

the entire atmosphere is

ŵ =

8><>: Aŵ↑ + Bŵ↓ for 0 < z < H

C exp (imz) for z > H,
(16)

where A and B are also complex coefficients.

Three constraints are required to solve for these three

unknowns. By denoting the wind velocity in the lower layer as

U1(z), the free-slip or zero-normal-flow boundary condition can

be written as

w(z = 0) = U1(z = 0) · ∇Hh(x), (17)

where ∇H = (∂/∂x, ∂/∂y) is the horizontal gradient operator.

Taking the Fourier transform of (17) and using also (16), the

boundary condition for ŵ at the surface is

Aŵ↑(0) + Bŵ↓(0) = i(U1(0) · k)ĥ(k). (18)
The continuity of the vertical velocity at the interface between the

two layers can be expressed as

Aŵ↑(H) + Bŵ↓(H)− CeimH = 0. (19)

Finally, the continuity of pressure at the same interface implies

A
n

(U′
1(H) · k)ŵ↑(H)− (U1(H) · k)(ŵ↑)′(H)

o
+ B

n
(U′

1(H) · k)ŵ↓(H)− (U1(H) · k)(ŵ↓)′(H)
o

+ C
“

UH · k
”
im eimH = 0. (20)

This last condition makes use of the relation between the pressure

and the vertical velocity,

p̂ = i
ρ0

k2
12

{(U′ · k)ŵ − (U · k)ŵ′}. (21)

which can be obtained by taking the horizontal divergence

of the momentum equations and applying the Fourier

transform (Teixeira et al.,2004). The three unknown

coefficients A, B and C can then be obtained using

Cramer’s rule, which yields the following expressions:

A = iĥ(U1(0) · k)
1

ŵ↑0 − γŵ↓0
, B = −iĥ(U1(0) · k)

γ

ŵ↑0 − γŵ↓0
, (22a)

C = iĥ(U1(0) · k)
ΓH

n
(ŵ↑H)′ŵ↓H − (ŵ↓H)′ŵ↑H

o
e−imH

ŵ↑0

n
ŵ↓H(ΓH im + Γ′H)− (ŵ↓H)′ΓH

o
− ŵ↓0

n
ŵ↑H(ΓH im + Γ′H)− (ŵ↑H)′ΓH

o , (22b)

This article is protected by copyright. All rights reserved.
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where

γ =
ŵ↑H(ΓH im + Γ′H)− (ŵ↑H)′ΓH

ŵ↓H(ΓH im + Γ′H)− (ŵ↓H)′ΓH

, Γ(z) = U1(z) · k, (23)

and the subscripts 0 or H of ŵ↑↓ and Γ mean that those functions

are evaluated at the heights z = 0 or z = H , respectively.

2.3. Drag calculation

The formal definition of surface drag gives this force as the

integral of the pressure gradient force over the orography (Teixeira

et al.,2004),

D =

Z ∞

−∞

Z ∞

−∞
p(z = 0)∇Hh(x, y)dxdy. (24)

Using (2) and (3), (24) can be expressed alternatively as

D = 4π2i

Z ∞

−∞

Z ∞

−∞
kp̂(z = 0)ĥ(k1, k2)dk1dk2, (25)

where the overbar denotes complex-conjugate (Teixeira

et al.,2004). This definition is convenient, since the wave

solutions obtained in Fourier space can be used directly in the

drag calculation, which reduces the computational cost and

improves the accuracy of the result. In Section 3, all surface drag

values will be normalized by the drag D0, valid for hydrostatic

flow with infinite Ri (i.e. a constant wind profile),

D0 = 4π3ρ0N |U0|
Z ∞

0
k2
12|ĥ|2dk12. (26)

where U0 = U1(0).

While the solutions to the mountain wave problem in Fourier

space are analytical, being expressed in terms of Bessel functions

(as was shown above), the fields of flow perturbations in

physical space and the drag must be calculated numerically.

The challenging aspect of these calculations is that (unlike

in hydrostatic conditions) the wave spectrum contains both a

continuous part and a discrete part (corresponding to resonant

trapped modes). More details about these calculations are

provided below.

(a)

x (km)

y 
(k

m
)

 

 

−20 0 20 40 60 80 100 120
−30
−20
−10

0
10
20
30

(b)

Figure 1. Density-scaled vertical velocity at a height z = 2.5 km (a) from the
present model, and (b) from the numerical simulations of Broutman et al. (2003)
(reproduced from their Figure 6). The contour interval is 0.02 m s−1, positive
values are shaded and the zero contour is omitted for clear visualization. Note
that sponge layers were applied beyond x = 80 km and above z = 35 km in the
simulations of Broutman et al. (2003).

2.4. Accuracy of the model: a three-dimensional example

An example is given next to illustrate how well the present model

captures the resonant wave modes. The mean wind assumed in

this example has a unidirectional forward shear aligned in the

x−direction. There is no critical level within the atmosphere, so a

pronounced trapped lee wave pattern is expected to occur. The

wind profile and surface elevation in the two-layer model are

defined as,

(U, V ) = (U0 + α1z, 0) for z < H, (27)

(U, V ) = (UH , 0) = (U0 + α1H, 0) for z ≥ H, (28)

h(x, y) =
h0

{1 + (x/a)2 + (y/a)2}3/2
, (29)

where h0 and a are, respectively, the height and half-width of the

axisymmetric bell-shaped mountain defined by (29). Broutman

et al. (2003) carried out numerical simulations using a similar

orography and wind profile, but with an unbounded shear layer,

and a sponge layer above z = 35 km. In order to compare the

present model with their results, the following parameters are

adopted:

U0 = 10m s−1, α1 = 0.0025 s−1, H = 28 km, (30)

a = 2.5 km, h0 = 100m, N = 0.01 s−1. (31)

This article is protected by copyright. All rights reserved.
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It can be shown from (30)-(31) that UH = 80m s−1 and Ri =

N2/α2
1 = 16. Although UH is perhaps unrealistically high, it

should be kept in mind that we aim here to study the theoretical

properties of the flow, rather than reproduce a real atmospheric

situation, so the thickness of the lower layer is designed to be large

enough for the two models to be comparable.

Figure 1(a) shows the density-scaled vertical velocity field

w(x, y) at a height z = 2.5 km from the present model, and Figure

1(b) shows similar results from the numerical simulations of

Broutman et al. (2003) (reproduced from their Figure 6, bottom).

The trapped lee wave pattern is very clear, and the two results are

in very good agreement, with only small differences at the core

of the maxima and minima near the obstacle. These differences

are likely due to the different number of layers employed in

the two models: in the two-layer model wave reflection (even if

weak) may occur at z = H , while in the single-layer numerical

simulations of Broutman et al. (2003) any upward propagating

waves should be absorbed by the sponge layer existing above

z = 35 km. Additionally, numerical integration errors in either

model could also be a contributing factor. Further downstream

of the obstacle, the discrepancies between the two models first

become larger, and then suddenly overwhelming, which is clearly

due to the sponge layer used beyond x = 80 km in the numerical

simulations of Broutman et al. (2003).

In Figure 1, the trapped lee wave train downstream of the

mountain results from singularities at the resonant wavenumbers

in the wave solution. This poses challenges in the numerical

integration used to obtain the pressure field or the drag. In

all calculations in this paper, a weak dissipation is introduced

through addition of a small imaginary wavenumber ikδ to the

solutions, with δ = 0.001. This leads to a very slight decay of

the wave perturbations downstream of the mountain, limiting the

extent of the trapped lee wave train. Through this procedure,

singularities are smoothed, and numerical integration in the

wavenumber domain can be performed more easily. Note that,

since the dissipation magnitude is proportional to the magnitude

of the wavenumber, for trapped lee waves with wavelength O(10

km) (as observed in Figure 1), the magnitude of the dominant

imaginary wavenumber is 2πδ/104 ≈ 6× 10−7m−1, which gives

an e-folding distance for the flow decay of 1.5× 103 km. This

is high enough to render the flow pattern within the domain of

interest indistinguishable from its inviscid counterpart. To make

the integration over all wavenumbers more accurate, an adaptive

grid spacing for k is adopted, which is refined near the resonant

wavenumbers, to ensure that errors in numerical integration do not

exceed a specified bound.

2.5. The drag contribution from resonant wave modes

As seen in the preceding section, an important feature of non-

hydrostatic effects is the ability to create resonant wave modes,

which correspond to long trains of trapped lee waves. Since

this study focuses on the calculation of the surface drag, the

contribution of trapped lee waves to this force is of great

importance. This aspect can be understood most easily by

examining the surface pressure field created by 2D trapped lee

waves in a single-layer atmosphere.

By using 1D versions of (2) and (21), and adopting an

alternative but equivalent form for the first of these equations to

facilitate the discussion, the surface pressure perturbation may be

calculated as

p0(x) = 2ρ0Re
»Z ∞

0

i

k1
(U ′

0ŵ0 − U0ŵ′0)e
ik1xdk1

–
, (32)

where the subscripts 0 of p0 and ŵ0 denote their evaluation at

z = 0. The above equation uses the one-sided Fourier transform,

which is valid for real quantities such as p(x, z). Note that, in this

form, only positive wavenumbers are involved in the integration.

Suppose that ŵ(k1, z) can be expressed as Fφ̂(k1, z) for some

constant F and function φ̂. In order to satisfy the lower boundary

condition ŵ0(k1) = iĥ(k1)U0k1, F = iĥU0k1/φ̂(k1, z = 0) is

required, except at wavenumbers k1 = kj for which φ̂0(kj) ≡

φ̂(kj , z = 0) = 0. This corresponds to resonant wave modes

where singularities exist. At the resonant wavenumber kj , F could

be non-zero even for zero topographic forcing, ĥ = 0. Following
This article is protected by copyright. All rights reserved.
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this reasoning, (32) can be rewritten as

p0(x) = 2ρ0Re

"Z ∞

0

"
−U ′

0U0ĥ + U2
0

φ̂′0(k1)

φ̂0(k1)
ĥ

#
eik1xdk1

#

= I1 + I2, (33)

where I1 = −2ρ0U ′
0U0 Re

»Z ∞

0
ĥeik1xdk1

–
,

I2 = 2ρ0U2
0 Re

"Z ∞

0
ĥ

φ̂′0(k1)

φ̂0(k1)
eik1xdk1

#
.

The first integral I1 is proportional to the mountain profile

h(x), and hence gives no contribution to the drag. Following the

pioneering study of Scorer (1949) (see also Sawyer (1960) and

Mitchell et al. (1990)), the second integral I2 can be split into two

terms, which may be evaluated using contour integration,

I2 =

8>>>>>>>>>>><>>>>>>>>>>>:

2ρ0U2
0 Re

 Z
C1

ĥ
φ̂′0(k1)

φ̂0(k1)
eik1xdk1

!
for x > 0

+2πi
P

j Lj

2ρ0U2
0 Re

 Z
C2

ĥ
φ̂′0(k1)

φ̂0(k1)
eik1xdk1

!
for x < 0.

(34)

The two integration paths C1 and C2, as illustrated in Figure 2,

are designed to make the integrals decay to zero far away from the

mountain, and Lj is the residue at the pole corresponding to the

resonance wavenumber kj ,

Lj = 2iρ0U2
0 ĥ(kj) sin(kjx)

φ̂′(kj , z = 0)

∂φ̂
∂k1

(kj , z = 0)
. (35)

   

 

  

 

𝐶1 

for
 
𝑥 > 
0 

for  𝑥     
 for 𝑥 > 0 

  

for  𝑥     
 for 𝑥 > 0 

𝐶2 

for
 
𝑥 > 
0 

   

   

   

Figure 2. Integration paths C1 and C2 used in the contour integrals of (34), in
complex wavenumber space, where k1 = kR + ikI . Adapted from Scorer (1949).

The surface pressure perturbation can then be divided into two

parts: the near-field pressure and the far-field pressure. The near-

field pressure receives contributions from the integral I1, plus

the complex contour integral I2, while the far-field pressure only

receives contributions from resonant wave modes.

If we assume that the surface elevation corresponds to a

2D bell-shaped mountain, i.e. h(x) = h0/{1 + (x/a)2}, then its

Fourier transform is simply ĥ(k1) = (h0a/2) exp(−a|k1|). If the

mean wind has a linear forward shear that extends indefinitely (so

that zc < 0), then the wave solution satisfying the boundedness

condition must be φ̂ =
√

z − zcKiµ(k1(z − zc)), in agreement

with the treatment of Wurtele et al. (1987). By substituting this

expression into (35), the contribution of the residues to the far-

field surface pressure is found to be

p0(x � a) = −2πρ0U2
0 h0a

|zc|
X

j

e−akj kj sin(kjx), (36)

which can also be derived using Eq. (7) of Wurtele et al. (1987).

Although the above expression is for the far-field pressure (or the

pressure due to resonant trapped lee wave modes), its contribution

is in fact valid for all x > 0, as shown by (34). Note also from (36)

that for each resonant wave mode j, the coefficient multiplying

the sine function is always negative (since only positive values of

kj are considered). Therefore, the resonant pressure components

always deepen further the low pressure existing on the lee side

of the orography. Hence, from the definition of drag (24), the

contribution of resonant trapped lee wave modes to the surface

drag must be positive. This is consistent with the findings of

Teixeira et al. (2013a,2013b) for atmospheres with a simpler

structure.

Another relevant result is that under the assumption of a wind

profile with forward shear extending indefinitely, the near-field

pressure does not give a contribution to the surface drag, i.e.

in addition to I1, the complex contour integral I2 excluding the

singularity is symmetric with respect to the mountain. This is

demonstrated in Appendix B. Consequently, it can be concluded

that if there is no leakage of gravity waves to the upper atmosphere

(i.e. all the waves are reflected back to the surface), the pressure

due to non-resonant wave modes gives no contribution to the drag.

This result (which is consistent with the findings of Bretherton

This article is protected by copyright. All rights reserved.
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Figure 3. Flow over a 2D mountain ridge of width a = 2.5 km and height h0 =
500 m using a two-layer model that approximates a single-layer atmosphere. N =
0.01 s−1 for both layers, U0 = 10 m s−1, and the height of the lower layer is
H = 16 km with UH = 90 m s−1, implying Ri = 4. (a) Density-scaled vertical
velocity w(x, z) (contour spacing 0.25 m s−1); (b) surface pressure perturbation
(normalized by ρ0NU0h0) and its components (see legend).

(1969)) might not seem surprising, given that the drag is only

produced by waves that are able to propagate energy away from

the mountain and, for such a wind profile, all those waves

correspond to resonant trapped modes. But one must keep in mind

that the orography would also be able, in principle, to launch

waves with a continuous range of wavenumbers that can only

propagate near the surface. However, those waves cancel out

through destructive interference.

Figure 3 shows an example of flow over a 2D mountain ridge

produced by the two-layer model adopted here, in a situation that

tries to approximate a single-layer atmosphere. The wind has a

forward shear α1 = 5× 10−3 s−1, the surface wind speed is U0 =

10m s−1 and the lower layer thickness is H = 16 km. Under

these conditions, the wind speed at the top of the lower layer

is high (UH = 90m s−1), preventing leakage to the upper layer

of all but the lowest wavenumbers (Na/UH = 0.28) and causing

only weak wave reflection at z = H (Ri = 4 in the lower layer).

This is confirmed in Figure 3(a) by the fact that the tops of the

trapped lee wave cells are located near the top of the lower layer

(denoted by the horizontal dashed line), and the wave activity

in the upper layer (both associated with the propagation of long

waves and extension of trapped lee waves into the upper layer)

is weak. Therefore, the lower layer appears to be thick enough

to contain most of the significant wave energy, and the two-layer

model can approximate a single-layer model. Additionally, for

these parameter values, only one resonant wave mode is produced,

as is clearly shown by the regular shape of the cells of upward and

downward motion in the w field on the lee side of the mountain

(Figure 3(a)). The associated surface pressure is plotted in Figure

3(b), together with its near-field and resonant components. Note

that the density-scaled vertical velocity w presented in Figure 3(a)

can differ by a large factor from the ‘true’ vertical velocity at high

levels, for example, at z = 20 km, this factor is (ρ0/ρ)1/2 ≈ 3.7

according to the US Standard Atmosphere (1976).

As downstream distance from the mountain increases in

Figure 3(b), the surface pressure disturbance swiftly converges

to the resonant surface pressure predicted by (36). Moreover,

by subtracting the resonant pressure contribution from the total

surface pressure perturbation, we obtain an approximate form for

the near-field pressure, which is seen to be almost symmetric with

respect to the mountain (see the dashed line near x & 0 and solid

line near x . 0 in Figure 3(b)). The contribution of the near-field

pressure to the surface drag is in this case quite small, and most

of the drag is due to the resonant mode. The small departure is

due to the fact that the shear does not really extend indefinitely,

so some weak wave reflection at z = H and some leakage of

gravity waves to the upper layer are allowed to take place (a low-

amplitude gravity wave with a long wavelength is visible in Figure

3(a) propagating at z > H).

3. Results and Discussion

In the linear approximation, the two-layer atmosphere introduced

previously can be fully described by four non-dimensional

parameters, namely: the direction of shear, which may be

quantified by α2/α1; the ratio of the wind magnitude in the upper

layer to that at the surface |UH |/|U0|; the Richardson number Ri

in the lower layer; and the non-dimensional width of the mountainThis article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
based on the surface wind â = Na/|U0|. Table 1 shows values of

these parameters for the cases illustrated next.

Following Teixeira et al. (2008a), in this investigation five

qualitatively different wind profiles with distinct types of shear

are studied, which are represented schematically in Figure 4 and

listed in Table 1.
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Figure 4. Schematic diagram representing wind profiles with different shear angles.
Only orientations are relevant, and magnitudes of vectors are not drawn to scale (e.g.
Lin4(I) and Lin8(I) are represented by similar arrows). The solid arrow denotes the
surface wind, while the dotted arrows denote the shear vectors. The mean wind at
the top of the lower layer (and within the upper layer) is denoted by dash-dotted
arrows.

3.1. Unidirectional shear - Lin4(I), Lin8(I) and Lin(V)

For the wind profiles with unidirectional shear, Lin4(I), Lin8(I)

and Lin(V) (Figures 5-7), both the surface wind and the vertical

shear are along the x−direction, so the wind velocity is symmetric

with respect to the x−axis and the drag along y is always zero.

In cases Lin4(I) and Lin8(I) there is forward shear, so there is

no critical level within the atmosphere. This is favourable for the

occurrence of resonant wave modes and enables the generation of

trapped lee waves. Lin(V), on the other hand, has backward shear,

where the mean wind decreases to zero at a certain height. This

height is usually called a total critical level (Broad,1995), since

it is fixed for all wavenumber vectors k. As will be seen, trapped

resonant modes are barely possible in this case due to the filtering

effect of the critical level.

In the hydrostatic limit, oscillatory behaviour of the surface

drag as a function of Ri is observed for cases Lin4(I) and Lin8(I)

(Figures 5,6(a)), but not for case Lin(V) (Figure 7). The reasons

for this discrepancy were addressed by Teixeira et al. (2008a) and

will be revisited next. This oscillation pattern depends on the value

of |UH |/|U0|, which in the present cases reduces to |UH/U0|.

In Figures 5-7, the behaviour of the drag for |UH/U0| = 4, 8
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Figure 5. (a) Normalized drag Dx/D0 as a function of Ri−1 and (b) fractional
trapped lee wave drag contribution DxL/Dx as a function of Ri, both for the wind
profile Lin4(I). Curves for different values of â are labelled with different symbols,
and the dashed line corresponds to the hydrostatic limit (see legend). The symbol
positions do not correspond to the data points.

agrees well with the exact solutions derived by Teixeira et al.

(2008a). It should be pointed out that these exact solutions, which

were derived in the hydrostatic limit, are expressed in a closed

analytical form, whereas the non-hydrostatic solutions used in

the present study involve the evaluation of Bessel functions and

numerical integration (as explained in Section 2.4).

As non-hydrostatic effects become dominant (i.e. for â =

8, 4, 2, 1.5), the most obvious change is a significant reduction

in the overall drag magnitude, but especially so at low Ri. This

is mainly caused by two reasons. Firstly, as â decreases the

wave spectrum excited by the mountain becomes progressively

dominated by large wavenumbers k12 (short waves), for which

ŵ is evanescent already at the surface. This reduces the fraction

of vertically propagating mountain waves, decreasing the drag

magnitude. This effect occurs for all wind profiles. Secondly,

partial wave reflections at the shear discontinuity existing at

the interface separating the two layers (z = H), or total wave

reflections due to waves that are not evanescent near the surface

c© 2014 Royal Meteorological Society Prepared using qjrms4.cls
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Table 1. Parameters used in the two-layer model

Case N(s−1) U0(m s−1) Figure numbers â = Na/|U0| tan−1(
α2
α1

)
|UH |
|U0|

Lin4(I), Lin8(I) 0.01 (10, 0) 5, 6 Hydro, 8, 4, 2, 1.5 0 4, 8
Lin(II) 0.01 (10, 0) 8 (a), 9 (a, b), 10 (a, b) Hydro, 8, 4, 2, 1.5 π/4 4
Lin(III) 0.01 (10, 0) 8 (b), 9 (c, d), 10 (c, d) Hydro, 8, 4, 2, 1.5 π/2 4
Lin(IV) 0.01 (10, 0) 8 (c), 9 (e, f) Hydro, 8, 4, 2, 1.5 3π/4 4
Lin(V) 0.01 (10, 0) 7 Hydro, 8, 4, 2, 1.5 π 4
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Figure 6. (a),(b): similar to Figure 5, but for the wind profile Lin8(I); (c) normalized
surface pressure p(z = 0)/(ρ0NU0h0) for the same flow with â = 2 and Ri =
0.5. The contour spacing is 0.06, with the zero contour omitted for clarity.
Shaded contours: positive values. The circle centred at (0,0) denotes 0.5h0 surface
elevation.

but become so as the wind speed increases in the lower layer (an

essentially non-hydrostatic effect), may also cause a reduction in

the drag magnitude through destructive wave interference. These

effects are much less significant for Lin(V), since the presence of

the total critical level in this wind profile filters a large portion of

the waves, reducing the impact of reflected waves at the surface

(Teixeira et al.,2008a). This happens both because the wind

speed decreases with height below the critical level, suppressing

resonant trapped modes in that region, and because above the

critical level trapped modes, as well as waves reflected at the

shear discontinuity, are partially absorbed by the critical level

as they propagate downwards. As a result, the drag reduction as

â decreases is more significant for Lin4(I) or Lin8(I) than for

Lin(V), even when Ri is very large. This is shown by the fact

that the drag magnitudes for â = 2 and 1.5, for example, in cases

Lin4(I) (Figure 5(a)) and Lin(V) (Figure 7) (which both assume

|UH/U0| = 4) do not approach the same limits as Ri →∞ (these

are approximately 0.6 and 0.4 in the first case, but 0.73 and 0.6 in

the second).

0 0.5 1 1.5 2 2.5 3 3.5 40

0.2

0.4

0.6

0.8

1

Ri−1

D x/D
0

Hydrostatic
a = 8
a = 4
a = 2
a = 1.5

Figure 7. Similar to Figure 5(a), but for the wind profile Lin(V). The trapped lee
wave drag contribution is not shown, as it is insignificant in this case.

Another important difference can be seen in the drag variation

for small values of â when Ri is low: in cases Lin4(I) and

Lin8(I), the drag magnitude decreases to a small value and then

becomes constant as Ri−1 increases, while in case Lin(V) it

increases slightly and then decreases gradually. The decrease in

drag magnitude in Lin4(I) and Lin8(I) probably happens because

the number of resonant wave modes in the lower layer is reduced

when Ri decreases, as mentioned by Keller (1994). This is

consistent with the behaviour of the drag specifically associatedThis article is protected by copyright. All rights reserved.
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with trapped lee waves, displayed in Figures 5-6(b) (the trapped

lee wave drag in case Lin(V) is lower than 0.06, so it was

omitted). Indeed, when Ri decreases below 2 (in Figure 5(b)) or

1 (in Figure 6(b)), the resonant modes are weak, and so is their

contribution to the drag. As a result, for these values of Ri the

drag is mainly associated with the near-field pressure, which gives

only a small contribution to it, for reasons explained in Section

2.5. This is especially so when the lower atmospheric layer is

thick (i.e. |UH/U0| is large). Then, most of the waves become

evanescent and are totally reflected before they reach z = H

(because Na/|UH |, which is a measure of non-hydrostatic effects

at that level, is low), so the near field pressure is quite symmetric

with respect to the mountain (see Figure 6(c)). As shown in

Figure 6(a), the drag magnitude for the case where |UH/U0| = 8

decreases to an even smaller value than when |UH/U0| = 4 if

â = 2 or 1.5 and Ri is low. The trapped lee wave train shown

in the surface pressure field of Figure 6(c) is consistent with this

picture, being very weak and decaying over a short distance to the

lee side of the mountain. And the pressure perturbation is indeed

dominated by an approximately symmetric near-field component.

3.2. Directional shear - Lin(II), Lin(III) and Lin(IV)

In the interest of brevity, results will only be presented for the

wind profiles Lin(II), Lin(III) and Lin(IV) for |UH |/|U0| = 4.

The way in which the results are affected for other values of

this parameter, for example |UH |/|U0| = 8, is essentially the

same as illustrated in the preceding section for Lin8(I). The

directional shear in these wind profiles produces a critical layer

in the atmosphere, within which every level is the critical level

for a certain wavenumber vector k in the wave spectrum. The

wider the angle the mean wind spans, the larger the fraction of

wavenumber vectors that will be filtered by these critical levels,

making resonant modes and trapped lee waves less likely to occur,

for reasons that were explained in the preceding section. Among

these three cases, Lin(II) has the smallest wind rotation angle,

while this angle is largest for Lin(IV). As shown by the surface

pressure fields displayed in Figure 8, the trapped lee wave pattern

in cases Lin(II) and Lin(III) is stronger, as would be expected from

the above reasoning, while for Lin(IV) it is substantially weaker

and becomes harder to detect far downstream of the mountain.
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Figure 8. Fields of the normalized surface pressure p(z = 0)/(ρ0U0Nh0) for
(a) Lin(II) with â = 2 and Ri = 2; (b) Lin(III) with â = 1.5 and Ri = 2; (c)
Lin(IV) with â = 2 and Ri = 2. The contour spacing is 0.03, and the zero contour
is omitted for clarity. Shaded contours: positive values. The circle centred at (0,0)
denotes 0.5h0 surface elevation.

The drag variation in these three cases is essentially a mixture

of that for cases Lin4(I) and Lin(V) (Figure 9). In the hydrostatic

limit, the oscillating drag behaviour with Ri is more pronounced

for Lin(II), less so for Lin(III), and becomes weak for Lin(IV).

This agrees with the exact hydrostatic calculations of Teixeira

et al. (2008a), and is consistent with the arguments used to

interpret cases Lin4(I) and Lin(V) above. In the non-hydrostatic

limit, when Ri is large, the magnitude of Dx/D0 for â = 2 or 1.5

gradually increases from case Lin(II) to Lin(IV), because Lin(II)

exhibits more characteristics of Lin4(I) regarding critical level
This article is protected by copyright. All rights reserved.
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Figure 9. Normalized drag as a function of Ri−1. (a),(c),(e): Dx/D0; (b),(d),(f): Dy/D0; (a),(b): Lin(II); (c),(d): Lin(III); (e),(f): Lin(IV). Curves for different values
of â are labelled with different symbols (see legend). The symbol positions do not correspond to the data points.

filtering, while Lin(IV) is closer to Lin(V). This transition is more

obvious by looking at the drag variation when both â and Ri

are small. As Ri decreases, the magnitude of Dx/D0 for Lin(II)

decreases more rapidly than for Lin(III); while in Lin(IV), that

magnitude increases before decreasing, as in Lin(V).

An important difference from the cases with unidirectional

shear is the fact that the y−component of the drag, Dy/D0, is

now non-zero. Since all wind profiles considered here rotate anti-

clockwise with height, Dy/D0 would be expected to become

positive as Ri decreases. However, except for Lin(IV), Dy/D0

becomes instead negative, except in very limited ranges of Ri,

and more so when non-hydrostatic effects become stronger, as

shown in Figure 9(b),(d),(f). This misalignment of the drag

with the surface wind in the direction opposite to the shear

was also observed in the hydrostatic calculations of Teixeira

et al. (2008a), being attributed to interference between upward-

propagating and downward-propagating waves reflected at z =

H . In non-hydrostatic conditions, it would be interesting to
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Figure 10. Normalized trapped lee wave drag. (a),(c): DxL/Dx; (b),(d): DyL/D0 and Dy/D0; (a),(b): Lin(II); (c),(d): Lin(III). Curves for different values of â are
labelled with different symbols (see legend). The symbol positions do not correspond to the data points.

know whether trapped lee waves give any contribution to this

phenomenon.

Figure 10 shows the fraction of the drag in the x− direction

that is due to trapped lee waves for Lin(II) and Lin(III), and the

normalized y−component of the total drag and of the trapped lee

wave drag, both as function of Ri. In Figure 10(a),(c) it can be

seen that the fraction of Dx attributable to trapped lee waves can

be substantial, particularly for Lin(II), especially at high values

of Ri, and low values of â. This is consistent with what was

previously found for cases Lin4(I) and Lin8(I). Figure 10(b),(d)

shows that the y component of the trapped lee wave drag is always

positive (consistent with the orientation of the trapped lee wave

patterns in Figure 8(a),(b)), so the negative drag contribution must

come totally from the waves partially reflected at z = H (as in the

hydrostatic case).

Figure 11 shows the angle made with the x−direction by the

total surface drag for cases Lin(II) and Lin(III), for â = 2 and 1.5.

The misalignment of the drag with the surface wind is significant

in both Lin(II) and Lin(III) (corresponding to an angle as large

as −38o for â = 1.5 in Figure 11(a)). For such misalignment

to occur, the angle spanned by the wind turning between z = 0

and z = H must not be too large, so that the filtering effect

of critical levels is weak enough to allow reflected waves to

have a substantial impact at the surface (cf. Figure 11(b)). The

negative drag component in the y direction can be understood

by going back to Figure 8(b), where it can be seen that the high

pressure region on the left-hand (upstream) side of the mountain

is connected with the nearest high pressure region on the lee side

and wraps up in a clockwise-rotated pattern with the low pressure

on the right-hand (downstream) side. This feature is not as clear in

Figure 8(a), and cannot be seen in Figure 8(c), where the pressure

perturbation is more symmetric about the x axis, and thus the y

component of the drag is much weaker (in agreement with Figure

9(f)).

4. Concluding remarks

A semi-analytical two-layer model of non-hydrostatic vertically

sheared flow over a 3D axisymmetric mountain has been
This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
(a)

0 1 2 3 4−40

−35

−30

−25

−20

−15

−10

−5

0

Ri−1

ta
n−

1 (D
y/D

x)

 

 

a = 2
a = 1.5

(b)

0 1 2 3 4−40

−35

−30

−25

−20

−15

−10

−5

0

Ri−1

ta
n−

1 (D
y/D

x)

 

 

a = 2
a = 1.5

Figure 11. Misalignment angle of the total drag as a function of Ri−1: (a)
tan−1(Dy/Dx) for Lin(II), (b) tan−1(Dy/Dx) for Lin(III). Curves for different
values of â are labelled with different symbols (see legend). The symbol positions
do not correspond to the data points.

developed, to assess the impact of non-hydrostatic effects and

resonant trapped lee wave modes on the surface drag exerted by

mountain waves. The model, which is based on linear theory and

developed in spectral space, handles both the continuous spectrum

of the waves that propagate upward to infinity in the upper layer

and the discrete spectrum of waves trapped in the lower constant-

shear layer. The surface pressure field and drag were calculated

in conditions ranging from hydrostatic (addressed previously by

Teixeira et al. (2008a)) to strongly non-hydrostatic.

The model was first verified by comparing its predicted vertical

velocity perturbation in a situation dominated by 3D trapped

lee waves against numerical simulations of the same situation

produced by previous authors (Broutman et al.,2003). The surface

drag contribution from resonant wave modes was then analyzed

in a 2D framework. It was found that trapped lee waves always

provide a positive contribution to the surface drag by deepening

the low pressure anomaly on the lee side of the mountain (in

agreement with the findings of Teixeira et al. (2013a) and Teixeira

et al. (2013b) for simpler atmospheres). For a model with a single,

constant-shear layer extending indefinitely, the near-field pressure

was shown to be symmetric about the mountain and to have no

impact on the drag, which then only receives contributions from

the resonant trapped lee wave modes.

Wind profiles with five different shear directions were studied,

among which Lin4(I), Lin8(I) and Lin(V) are unidirectional,

while Lin(II), Lin(III) and Lin(IV) have directional shear. The

drag variation with the Richardson number in the hydrostatic

limit agrees well with the results of previous exact calculations

by Teixeira et al. (2008a), lending credence to the numerical

approach employed here. As the flow becomes more non-

hydrostatic, the generation of the shortest waves by the mountain

is inhibited, and the shear in the wind profile also causes total

wave reflection in the lower atmospheric layer in addition to the

partial wave reflections that take place at the interface between

the two layers. Both reasons can lead, through destructive wave

interference, to a strong reduction in the surface drag (as large

as 30-50% for high Ri and about 50-75% for low Ri). The

drag associated with trapped lee wave modes seems unable to

compensate for this decrease, unlike in Teixeira et al. (2013a) and

Teixeira et al. (2013b).

For the flows with unidirectional shear, the drag reduction is

considerably stronger for forward shear than for the backward

shear, since the presence of a total critical level in the latter case

prevents the reflected waves from reaching the surface. The drag

reduction is then mainly caused by the direct effect of shear on

the wave structure (Grubišić and Smolarkiewicz,1997), or by the

existence of waves that are already evanescent at the surface. In

flows with forward shear, the drag reduction is also enhanced

by destructive interference with downward propagating, totally or

partially reflected waves.

As the Richardson number drops below 1, trapped lee wave

modes become weak or absent, so contributions to the drag

come essentially from the near-field pressure. By increasing the

thickness of the lower layer (i.e. increasing |UH |/|U0|), leakage

of gravity waves into the upper layer is reduced, leading to an

increasingly symmetric surface pressure distribution, and hence

a low drag value. For the directionally sheared flows considered

here, the larger the angle spanned by the wind vector, the larger

the fraction of the gravity waves that are filtered by critical levels,
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reducing the strength of partially reflected and trapped lee waves.

Hence as one shifts from Lin(II) to Lin(III) and Lin(IV), the drag

behaviour begins by resembling that of Lin4(I) to finally resemble

more closely Lin(V).

A striking result obtained in directionally sheared flows is that

the drag may have a misalignment with the surface wind in the

direction opposite to that of the shear by an angle as large as 38o.

This effect was noted by Teixeira et al. (2008a) for hydrostatic

conditions, but it becomes stronger as the flow becomes more non-

hydrostatic, being presumaby attributable to interference caused

by reflected waves. The effect appears to be totally due to non-

trapped waves, since trapped lee waves always counteract it by

contributing to the drag roughly along the direction of the shear

vector.

While the present results do not suggest a substantial total drag

enhancement due to non-hydroastatic effects, at least in the linear

wave regime, they corroborate the idea that a large fraction of the

drag may be produced by trapped lee waves. This corresponds

to a reaction force that is exerted on the lower atmosphere,

sometimes with a direction quite different to that of the drag

associated with vertically propagating waves (as was seen above).

A representation of this currently-neglected effect in orographic

drag parametrizations seems therefore necessary.
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Appendix A. Solutions corresponding to upward and

downward propagating waves using Bessel functions

In order to justify the form taken by the wave solutions (8)-(11)

and (12)-(13), we present here a generalization to 3D flow of

the approach developed by Booker and Bretherton (1967) (see

also Grubišić and Smolarkiewicz,1997). It is useful to depart

from the hydrostatic limit and then extend the results to non-

hydrostatic conditions. A hydrostatic non-stationary version of the

Talyor-Goldstein equation for a constant-shear flow can be written

(Booker and Bretherton,1967)

ŵ′′ +

»
N2k2

12

{(c− U) · k}2

–
ŵ = 0, (A1)

where the non-zero phase velocity c takes the form c = cr + ici,

with its imaginary part ci assumed to be small. In the vicinity of

the critical level, the background wind U may be expanded as

U(z) = cr + U′(zc)(z − zc) +
1

2
U′′(zc)(z − zc)

2 + ... (A2)

Substituting (A2) into (A1), we have

ŵ′′ +

„
N2k2

12

[{ici − U′
c(z − zc)} · k]2

«
ŵ = 0, (A3)

(where U′
c = U′(zc)), because all higher derivatives of U are zero.

By dividing the numerator and denominator of the fraction by

(U′
c · k)2, we obtain

ŵ′′ +

264 R̃in
(z − zc)− ici·k

U′c·k

o2

375 ŵ = 0. (A4)

Here, we assume that ci · k > 0, that is, the dissipation is always

along the chosen horizontal wavenumber vector k. By using a

Frobenius expansion, the solution to (A4) is found to be

ŵ(z − zc) = D1

„
z − zc − i

ci · k
U′

c · k

«λ+

+

D2

„
z − zc − i

ci · k
U′

c · k

«λ−

, (A5)

where D1 and D2 are complex coefficients, and λ± = 1/2± iµ.

If U′
c · k > 0, then as |ci| → 0, for z < zc we have

z − zc = −|z − zc| = e−iπ|z − zc|. (A6)

Therefore,

(z − zc)
λ± = e−iπλ± |z − zc|λ±

= −i
p
|z − zc|e±πµ(|z − zc|)±iµ. (A7)
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Similarly, if U′

c · k < 0, we have instead

(z − zc)
λ± = eiπλ± |z − zc|λ±

= i
p
|z − zc|e∓πµ(|z − zc|)±iµ. (A8)

Booker and Bretherton (1967) showed, by investigating the

vertical energy fluxes, that solutions with the factor eπµ below

the critical level are associated with upward energy propagation,

while those with the factor e−πµ are associated with downward

energy propagation (as seems intuitive). Therefore, in the vicinity

of the critical level, the upward-propagating wave solution can be

written

ŵ↑(z > zc) ∝ |z − zc|λ(sgn) (A9)

ŵ↑(z < zc) ∝ −(sgn)ieπµ|z − zc|λ(sgn) , (A10)

where sgn = sign(U′
c · k). Similarly, the downward-propagating

wave solution takes the form

ŵ↓(z > zc) ∝ |z − zc|λ(−sgn) (A11)

ŵ↓(z < zc) ∝ −(sgn)ie−πµ|z − zc|λ(−sgn) . (A12)

For non-hydrostatic conditions, the solution for z > zc can be

expressed in terms of Bessel I functions of imaginary order iµ as
√

z − zcI±iµ(k12(z − zc)). Near the origin (i.e. for z ≈ zc), this

solution exhibits the following asymptotic behaviour

√
z − zcI±iµ(k12(z − zc)) ∝ (z − zc)

λ± , (A13)

which is consistent with the fact that the flow is hydrostatic near

critical levels. The Bessel I function also has the property that

Iiµ(k12ξ) = Iiµ(k12|ξ|) exp(±πµ) (A14)

for negative ξ and positive k12 (Abramowitz and Stegun (1972),

Eq. (9.6.30)). This, together with the fact that the non-hydrostatic

solution asymptotically approaches the hydrostatic solution near

the critical level, allows us to express the upward-propagating

wave solution in the following form

ŵ↑(z > zc) ∝
p

ξIi(sgn)µ(k12ξ) (A15)

ŵ↑(z < zc) ∝ −i(sgn)eπµ
p
|ξ|Ii(sgn)µ(k12|ξ|), (A16)

while the downward-propagating solution is written as

ŵ↓(z > zc) ∝
p

ξI−i(sgn)µ(k12ξ) (A17)

ŵ↓(z < zc) ∝ −i(sgn)e−πµ
p
|ξ|I−i(sgn)µ(k12|ξ|). (A18)

Other solution forms using the Bessel K function and the

associated function L have been employed by Wurtele et al.

(1987), because they are more appropriate for computational

purposes, as they are purely exponentially decaying or growing.

(Note that, unlike in a constant-wind atmosphere, for the present

linear wind profile, upward/downward-propagating solutions

do not reduce to exponentially decaying/growing solutions,

respectively, when the waves become evanescent). By using the

relations

Liµ(x) =
π

2

Iiµ(x) + I−iµ(x)

sinh(µπ)
(A19)

Kiµ(x) =
iπ

2

Iiµ(x)− I−iµ(x)

sinh(µπ)
, (A20)

where x is real, a definition of the Bessel I function in terms of

the K and L functions may be obtained, as follows:

I±i(sgn)µ(k12ξ) ∝
`
Liµ(k12ξ)∓ i(sgn)Kiµ(k12ξ)

´
. (A21)

Using this relation, the final form for the solutions expressed by

(12) and (13) may be reached.

Appendix B. Symmetry of the near-field pressure

perturbation with respect to the mountain

We aim to show here that when it is assumed that the wind profile

has a forward shear extending indefinitely, the near-field pressure

perturbation is symmetric with respect to the mountain, and hence

does not contribute to the surface drag.

Note that the contours of integration C1 and C2 displayed in

Figure 2 can be arbitrarily chosen, as long as they lie on both sides

of the complex plane. For convenience, C2 will be chosen to be
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the complex conjugate of C1, i.e. C2 = C1. If the solution φ̂ (see

(34)) satisfies the following two properties

φ̂(k1, z) = φ̂(k1, z) and φ̂′(k1, z) = φ̂′(k1, z), (B1)

then for x < 0 (i.e. x = −|x|), we have

Re

 Z
C2

φ̂′(k1, z = 0)

φ̂(k1, z = 0)
eik1x−ak1dk1

!
(B2)

= Re

 Z
C1

φ̂′(k1, z = 0)

φ̂(k1, z = 0)
eik1x−ak1dk1

!

= Re

0@Z
C1

 
φ̂′(k1, z = 0)

φ̂(k1, z = 0)

!
e−ik1|x|−ak1dk1

1A
= Re

 Z
C1

φ̂′(k1, z = 0)

φ̂(k1, z = 0)
eik1|x|−ak1dk1

!

= Re

 Z
C1

φ̂′(k1, z = 0)

φ̂(k1, z = 0)
eik1|x|−ak1dk1

!
. (B3)

This shows that performing the integration along the path C2

for some x < 0 is equivalent to performing it along C1 for |x|.

Hence, if leakage of gravity waves to the upper atmosphere is

impossible, then the pressure caused by non-resonant wave modes

is symmetric with respect to the mountain, which means the

corresponding contribution to the surface drag is zero. The last

step in (B3) uses the fact that

Re
„Z

C
f(z)

«
= Re

„Z
C

f(z)

«
(B4)

for any complex contour C and smooth complex function f(z).

For forward shear extending indefinitely, the physical solution

satisfying the boundedness condition uses the Bessel K function,
√

z − zcKiµ(k1(z − zc)). It turns out that this expression indeed

satisfies the two conditions expressed by (B1). However, if

leakage of gravity waves to the upper atmosphere is possible

(as happens in a two-layer model), then φ̂ is not simply
√

z − zcKiµ(k1(z − zc)), but contains an additional imaginary

part, i.e. φ̂ =
√

z − zc(ÃKiµ(k1(z − zc)) + B̃Liµ(k1(z − zc))),

where Ã and B̃ are non-zero complex constants. Then, φ̂ does

not satisfy (B1) and the near-field pressure will not be symmetric.
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