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Abstract Monte Carlo algorithms often aim to draw

from a distribution π by simulating a Markov chain

with transition kernel P such that π is invariant under

P . However, there are many situations for which it is

impractical or impossible to draw from the transition

kernel P . For instance, this is the case with massive

datasets, where is it prohibitively expensive to calcu-

late the likelihood and is also the case for intractable

likelihood models arising from, for example, Gibbs ran-

dom fields, such as those found in spatial statistics and

network analysis. A natural approach in these cases is

to replace P by an approximation P̂ . Using theory from

the stability of Markov chains we explore a variety of

situations where it is possible to quantify how ’close’ the

chain given by the transition kernel P̂ is to the chain

given by P . We apply these results to several examples
from spatial statistics and network analysis.
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1 Introduction

There is considerable interest in the analysis of sta-

tistical models with difficult to evaluate or intractable

likelihood functions. Such models occur in a diverse

range of contexts including spatial statistics, social net-

work analysis, statistical genetics, finance and so on.

The challenges posed by this class of models has led to

the development of important theoretical and method-

ological advances in statistics. For example, Geman and

Geman (1984) developed the Gibbs sampler to sample

from an Ising model for application in image analysis.

More recently, the area of approximate Bayesian com-

putation has emerged to deal with situations where the

likelihood is not available for evaluation, but where it is

possible to simulate from the likelihood function. This

area has generated much activity in the literature. See

Marin et al (2012) for a recent survey.

In many applications in statistics, well known theo-

retically efficient estimators are not available in practice

for computational reasons. For example:

1. large datasets: the sample size ` is too large. This sit-

uation is very common nowadays as huge databases

can be stored at no cost. For example: in genomics

the cost of sequencing has fallen by a factor of 105

in past decade and a half. This has led to the wide

availability of sequence data - the recently announced

Personal Genome Project UK aims to sequence 105

human genomes, each consisting of 3× 108 bases.

2. high-dimensional parameter spaces: the sample size

` might be reasonable, but the number of variables

p is too large. For example: data assimilation in nu-

merical weather prediction, in which the size of the

state space is typically 109.

3. intractable models: the likelihood / regression / clas-

sification function is not available in closed form
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and each evaluation is computationally demanding.

Common examples are: in the statistical modelling

of large numbers of linked objects, leading to the

intractable likelihood in graphical models, which is

the main focus of the applications in this paper.

A new point of view in statistics emerged to address

these challenging situations: to focus on the computa-

tional aspects first, by proposing a fast enough algo-

rithm to deal with the data. In some way, this mean

that we replace the traditional definition of an esti-

mator as a measurable function of the data by an al-

gorithm able to proceed with the data. However, this

does not mean that we should forget the theoretical

properties of this estimator: a study of its properties is

necessary. A typical example is Tibshirani’s LASSO es-

timator (Tibshirani 1996), it became successful as the

first estimator available in linear regression when p is

very large (> 106), only later, were conditions provided

to ensure its theoretical optimality. See Bühlmann and

Van de Geer (2011) for a survey. This idea to consider

the algorithm as the definition of an estimator is pushed

further in (Valiant 1984; Bottou and Bousquet 2011)

among others.

This situation also appears in Bayesian statistics;

while some Bayesian estimators can be efficiently ap-

proximated by MCMC methods such as the Metropolis-

Hastings algorithm, sometimes, this is not possible be-

cause the acceptance ratio in the algorithm cannot be

evaluated – indeed this is the focus of our paper. It is

intuitive to replace this ratio by an estimate or an ap-

proximation. Nicholls et al (2012), Andrieu and Roberts

(2009) and Liang and Jin (2011) considered this idea

for models with intractable likelihood. Both Bardenet

et al (2014) and Korattikara et al (2014) applied this

idea in the case where the sample size ` is too large to

prohibit many evaluations of the likelihood. One might

also view situations in which an approximating model

is used (such as approximate Bayesian computation) as

a special case of this general view, although such exam-

ples are not considered in this paper.

In this paper, we propose a general approach to

“noisy” or “inexact” MCMC algorithms. In Section 2,

we describe the main idea and provide a result, due to

Mitrophanov, that gives a theoretical justification of the

algorithm in many situations, based on the assumption

that the Markov chain which leaves the target distribu-

tion stationary is uniformly ergodic. We also provide an

extension of this result to the weaker case of geometric

ergodicity. Our results gives bounds on the distance,

with respect to the total variation norm, between an

“ideal” chain which leaves the target distribution in-

variant and a noisy chain which approximates the target

distribution. We then study the special cases of a noisy

version of the Exchange algorithm (Murray et al 2006),

and discretized Langevin Monte Carlo in Section 3. For

these noisy algorithms we prove that the total variation

distance decreases with the number of iterations, N , of

the randomisation step in the noisy algorithm, and find

a bound on this distance in terms of N . We study in

detail an application to intractable likelihood problems

in Section 4.

2 Noisy MCMC algorithms

In many practical situations, useful statistical estima-

tors can be written as

θ̂ =

∫
Θ

θπ(dθ)

for some probability distribution π. This is for example

the case in Bayesian statistics where π is the poste-

rior distribution of θ given the data, but estimators un-

der this form appear in other situations, e.g. the expo-

nentially weighted aggregate (Dalalyan and Tsybakov

2012). More generally, one might want to estimate func-

tionals of the form ∫
Θ

f(θ)π(dθ)

for some function f . A very popular approach in this

case is the family of MCMC algorithms. The idea is

simulate a Markov Chain (θn)n∈N with transition kernel

P such that π is invariant under P : πP = π. We then

use the approximation

1

N

N∑
n=1

f(θn) '
∫
Θ

f(θ)π(dθ). (1)

Of course, in order for such an approximation to be

useful, we need more than the requirement that πP =

π. A very useful property in this respect is so-called

uniform ergodicity for which it holds that

sup
θ0

‖δθ0Pn − π‖ ≤ Cρn,

for some C < ∞ and ρ < 1, where ‖ · ‖ is the to-

tal variation distance. Meyn and Tweedie (1993) detail

conditions on P to ensure uniform ergodicity, and show

theoretical results that ensure that (1) holds, in some

sense.

However, there are many situations where there is

a natural kernel P such that πP = π, but for which it

is not computationally feasible to draw θn+1 ∼ P (θn, ·)
for a fixed θn. For these cases a natural approach is

to replace P by an approximation P̂ so that when the

approximation is good we hope that P̂ is “close” to
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P in some sense. Of course, in general we will have

πP̂ 6= π, but we will show that it is nevertheless useful

to ask the question whether it is possible to produce a

Markov chain with an upper bound
∥∥∥δθ0 P̂n − π∥∥∥?

It turns out that a useful answer to this question

is given by the study of the stability of Markov chains.

There have been a long history of research on this topic,

we refer the reader to the monograph by Kartashov

(1996) and the references therein. Here, we will focus

on a more recent method due to Mitrophanov (2005). In

order to measure the distance between P and P̂ recall

the definition of the total variation measure between

two kernels:

‖P − P̂‖ := sup
θ∈Θ
‖δθP − δθP̂‖.

Theorem 21 (Corollary 3.1 page 1006 in Mitro-

phanov (2005))

Let us assume that

– (H1) the Markov chain with transition kernel P is

uniformly ergodic:

sup
θ0

‖δθ0Pn − π‖ ≤ Cρn

for some C <∞ and ρ < 1.

Then we have, for any n ∈ N, for any starting point θ0,

‖δθ0Pn − δθ0 P̂n‖ ≤
(
λ+

Cρλ

1− ρ

)
‖P − P̂‖

where λ =
⌈
log(1/C)
log(ρ)

⌉
.

This result serves as the basis for our paper. Practi-

cally, it says that the total variation distance between

two Markov chains each of which have the same initial

state, θ0, is less than or equal to a constant times the

total variation distance between the kernels P and P̂ .

It is interesting that this bound is independent of the

number of steps n of the Markov chain.

The main purpose of this article is to show that

there are many useful situations where this result can

provide approximate strategies with the guarantee of

theoretic convergence to the target distribution.

Note that, the uniform ergodicity supθ0 ‖δθ0P
n − π‖ ≤

Cρn is a strong assumption. In some situations of prac-

tical interest, it actually does not hold. In the case

where the original chain is only geometrically (non uni-

formly ergodic) the following result will prove useful.

Theorem 22 (Theorem 1 page 186 in Ferré et al
(2013))

Consider a sequence of approximate kernels P̂N for N ∈
N. Assume that there is a function V (·) ≥ 1 which sat-

isfies the following:

– (H1’) the Markov chain with transition kernel P is

V -uniformly ergodic:

∀θ0, ‖δθ0Pn − π‖V ≤ Cρ
nV (θ0)

for some C <∞ and ρ < 1.

– ∃N0 ∈ N, 0 < δ < 1, L > 0,∀N ≥ N0,∫
V (θ)P̂N (θ0,dθ) ≤ δV (θ0) + L.

– ‖P̂N − P‖ −−−−→
N→∞

0.

Then there exists an N1 ∈ N such that any P̂N , for N ≥
N1, is geometrically ergodic with limiting distribution

πN and ‖πN − π‖ −−−−→
N→∞

0.

(We refer the reader to Meyn and Tweedie (1993) for

the definition of the ‖·‖V norm). Note that, in contrast

to the previous result, we don’t know explicitly the rate

of convergence of the distance between δθ0 P̂N −π when

N is fixed. However it is possible to get an estimate of

this rate (see Corollary 1 page 189 in Ferré et al (2013))

under stronger assumptions.

2.1 Noisy Metropolis-Hastings

The Metropolis-Hastings (M-H) algorithm, sequentially

draws candidate observations from a distribution, con-

ditional only upon the last observation, thus inducing

a Markov chain. The M-H algorithm is based upon the

observation that a Markov chain with transition density

P (θ, φ) and exhibiting detailed balance for π,

π(θ|y)P (θ, φ) = π(φ|y)P (φ, θ),

has stationary density, π(θ).

Algorithm 1 Metropolis-Hastings algorithm
for n = 0 to I do

Draw θ′ ∼ h(·|θn)

Set θn+1 = θ′ with probability min(1, α(θ′, θn))

where α(θ′, θn) =
π(θ′|y)h(θn|θ′)
π(θn|y)h(θ′|θn)

Otherwise, set θn+1 = θn.
end for

In some applications, it is not possible to compute the

ratio α(θ′, θ). In this case it seems reasonable to re-

place the ratio with an approximation or an estima-

tor. For example, one could draw y′ ∼ Fθ′(·) for some

suitable probability distribution Fθ′(·) and estimate the

ratio α by α̂(θ′, θ, y′). This gives the ‘noisy’ Metropolis-

Hastings algorithm in algorithm 2.
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Algorithm 2 Noisy Metropolis-Hastings algorithm
for n = 0 to I do

Draw θ′ ∼ h(·|θn)

Draw y′ ∼ Fθ′(·)

Set θn+1 = θ′ with probability min(1, α̂(θ′, θn, y′))

Otherwise, set θn+1 = θn.
end for

Note that α̂(θ′, θ, y′) can be thought of as a randomised

version of α(θ′, θ) and as we shall see from the conver-

gence result below, in order for this to yield a useful

approximation, we require that |α̂(θ′, θ, y′)−α(θ′, θ)| is
small. Here we let P̂ denote the transition kernel of the

Markov Chain resulting from Algorithm 2. Of course

there is no reason for π to be invariant under P̂ , how-

ever we show under certain conditions that using an ap-

proximate kernel will yield a Markov chain which will

approximate the true density. Moreover, we provide a

bound on the distance between the Markov chain which

targets π and the Markov chain resulting from P̂ .

2.1.1 Theoretical guarantees for Noisy

Metropolis-Hastings

We now provide an application of Theorem 21 to the

case of an approximation to the true transition kernel

arising from Algorithm 2.

Corollary 23 Let us assume that

– (H1) the Markov chain with transition kernel P is

uniformly ergodic holds,

– (H2) α̂(θ|θ′, y′) satisfies:

Ey′∼Fθ′ |α̂(θ, θ′, y′)− α(θ, θ′)| ≤ δ(θ, θ′). (2)

Then we have, for any n ∈ N, for any starting point θ0,

‖δθ0Pn−δθ0 P̂n‖ ≤
(
λ+

Cρλ

1− ρ

)
sup
θ

∫
dθ′h(θ′|θ)δ(θ, θ′),

where λ =
⌈
log(1/C)
log(ρ)

⌉
.

All the proofs are given in Section A. The proof of

Corollary 23 relies on the result by Mitrophanov (2005).

Note, for example, that when the upper bound (2) is

uniform, ie δ(θ, θ′) ≤ δ <∞, then we have that

‖δθ0Pn − δθ0 P̂n‖ ≤ δ
(
λ+

Cρλ

1− ρ

)
.

Obviously, we expect that α̂ is chosen in such a way

that δ � 1 and so in this case, ‖δθ0Pn − δθ0 P̂n‖ � 1

as a consequence. In which case, letting n→∞ yields

lim sup
n→∞

‖π − δθ0 P̂n‖ ≤ δ
(
λ+

Cρλ

1− ρ

)
.

Remark 21 Andrieu and Roberts (2009) derived a spe-

cial case of this result for a given approximation of

the acceptance ratio α using their pseudo-marginal ap-

proach. We explore this more in section 2.4.

Remark 22 Another approach, due to Nicholls et al

(2012), gives a lower bound on the first time such that

the chain produced by the Metropolis-Hastings algorithm

and its noisy version differ, based on a coupled Markov

Chains argument.

Remark 23 Note that a deterministic version of this

result also holds in situations where one could replace

α(θ′, θ) by a deterministic approximation α̂(θ′, θ).

We will show in the examples that follow in Section 3

that, when α̂ is well chosen, it can be quite easy to check

that Hypothesis (H2) holds. On the other hand, it is

typically challenging to check that Hypothesis (H1)

holds. A nice study of conditions for geometric ergod-

icity of P is provided by Meyn and Tweedie (1993) and

Roberts and Tweedie (1996b).

2.2 Noisy Langevin Monte Carlo

The Metropolis-Hastings algorithm can be slow to ex-

plore the posterior density, if the chain proposes small

steps it will require a large number of moves to explore

the full density. Conversely, if the chain proposes large

steps there is a higher chance of moves being rejected so

it will take a large amount of proposed moves to explore

the density fully. An alternative Monte Carlo method is

to use Stochastic Langevin Monte Carlo (Welling and

Teh 2011). The Langevin diffusion is defined by the

stochastic differential equation (SDE)

dθ(t) = ∇ log π(θ(t))dt/2 + db(t),

where db(T ) denotes a D-dimensional Brownian mo-

tion. In general, it is not possible to solve such an SDE,

and often a first order Euler discretization of the SDE

is used to give the discrete time approximation

Algorithm 3 Langevin algorithm
for n = 0 to I do

Set θn+1 = θn + Σ
2
∇ log π(θn) + η , η ∼ N(0, Σ),

end for

However convergence of the sequence {θn} to the

invariant distribution is not guaranteed for a finite step

size Σ due to the first-order integration error that is

introduced. It is clear that the Langevin algorithm pro-

duces a Markov chain and we let PΣ denote the cor-

responding transition kernel. Note that, we generally
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don’t have π(·|y)PΣ = π(·|y) nor δθ0PΣ → π(·|y), how-

ever, under some assumptions, δθ0PΣ → πΣ for some

πΣ close to π when Σ is small enough, we discuss this

in more detail below.

In practice, it is often the case that ∇ log π(θn) can-

not be computed. Here again, a natural idea is to re-

place ∇ log π(θn) by an approximation or an estimate

∇̂y′ log π(θn), possibly using a randomization step y′ ∼
Fθn . This yields what we term a noisy Langevin algo-

rithm.

Algorithm 4 Noisy Langevin algorithm
for n = 0 to I do

Draw yθn ∼ Fθn(·).

Set θn+1 = θn + Σ
2
∇̂yθn log π(θn|y) + Cη η ∼

N(0, Σ).
end for

Note that a similar algorithm has been proposed in

Welling and Teh (2011); Ahn et al (2012) in the con-

text of big data situations, where the gradient of the

logarithm of the target distribution is estimated using

mini-batches of the data.

We let P̂Σ denote the corresponding transition ker-

nel arising from Algorithm 4. We now prove that the

Stochastic gradient Langevin algorithm, (Algorithm 4),

will converge to the discrete-time Langevin diffusion

with transition kernel resulting from Algorithm 3.

2.3 Towards theoretical guarantees for the noisy

Langevin algorithm

In this case, the approximation guarantees are not as

clear as they are for the noisy Metropolis-Hastings algo-

rithm. To begin, there are two levels of approximation:

– the transition kernel PΣ targets a distribution πΣ
that might be far away from π(·|y).

– Moreover, one does not simulate at each step from

PΣ but rather from P̂Σ .

The first point requires one to control the distance be-

tween πΣ and π(·|y). Such an analysis is possible. Here

we refer the reader to Proposition 1 in Dalalyan and

Tsybakov (2012) and also to Roberts and Roberts and

Stramer (2002) for different discretization schemes. It

is possible to control ‖P̂Σ−PΣ‖ as Lemma 1 illustrates.

Lemma 1

‖PΣ − P̂Σ‖ ≤
√
δ

2

where

δ = sup
θ

Eyθ∼Fθ

{
exp

[
1

2

∥∥∥∥∥Σ 1
2 (∇ log π(θ)

− ∇̂yθ log π(θ))

∥∥∥∥∥
2]
− 1

}
.

The paper by Roberts and Tweedie (1996a) contains a

complete study of the chain generated by PΣ . The prob-

lem is that it is not uniformly ergodic. So Theorem 21 is

not the appropriate tool in this situation. However, in

some situations, this chain is geometrically ergodic, and

in this instance we can use Theorem 22 instead (more-

over, note that Roberts and Tweedie (1996a) provide

the function V used in the Theorem). We provide an

example of such an application in Section 3 below.

2.4 Connection with the pseudo-marginal approach

There is a clear connection between this paper and

the pseudo-marginal approaches described in Beaumont

(2003) and Andrieu and Roberts (2009). In both cases

a noisy acceptance probability is considered, but in

pseudo-marginal approaches this is a consequence of

using an estimate of the desired target distribution at

each θ, rather than the true value. Before proceeding

further, we make precise some of the terminology used

in Beaumont (2003) and Andrieu and Roberts (2009).

These papers describe two alternative algorithms, the

“Monte Carlo within Metropolis” (MCWM) approach,

and “grouped independence MH” (GIMH). In both cases

an unbiased importance sampling estimator, π̂, is used

in place of the desired target π, however the overall

algorithms proceed slightly differently. The (i+ 1)th it-

eration of the MCWM algorithm is shown in algorithm

5.

Algorithm 5 MCWM
for n = 0 to I do

Draw θ′ ∼ h(.|θn).

Draw z′ ∼ G(.|θ′), z ∼ G(.|θ), where G is an impor-
tance proposal and z′ and z are random vectors of size N .

Calculate the acceptance probability, α(θn, θ′), where
π̂Nz and π̂Nz′ denote the importance sampling approxima-
tion to π based on auxiliary variables z and z′ respectively:

Set θn+1 = θ′ with probability min(1, α̂(θ′, θn)), where

α̂(θ′, θn) =
π̂Nz′ (θ

′)h(θn|θ′)
π̂Nz (θn)h(θ′|θn)

,

Otherwise, set θn+1 = θn.
end for
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GIMH differs from MCWM as follows. In MCWM

the estimate of the target in the denominator is re-

computed at every iteration of the MCMC, whereas

in GIMH it is reused from the previous iteration. The

property that is the focus of Andrieu and Roberts (2009)

is that GIMH actually has the desired target distribu-

tion π - this can be seen by viewing the algorithm as

an MCMC algorithm targeting an extended target dis-

tribution including the auxiliary variables. The same

argument holds when using any unbiased estimator of

the target. As regards our focus in this paper, GIMH

is something of a special case, and our framework has

more in common with MCWM. We note that despite

its exactness, there is no particular reason for estima-

tors from GIMH to be more statistically efficient than

those from MCWM.

For our framework to include MCWM as a spe-

cial case, we require that the distribution F (.|θ′) of

the auxiliary variables y′ that we use in order to find

α̂(θ′|θ, y′) also needs to depend on θ, so from here on

we use F (.|θ, θ′). For MCWM we have y′ = (z, z′), with

F (y′|θ, θ′) = G(z|θ)G(z′|θ′). We note that this addi-

tional dependence only requires minor alterations to

Corollary 23 and its proof. Corollary 23 and its proof

share some characteristics with the special case (An-

drieu and Roberts 2009) where they show that there

always exists an N such that an arbitrarily small accu-

racy can be achieved in the bound for the total variation

between the invariant distribution of MCWM (if it ex-

ists) and the true target. The arguments in this paper

are more general in the sense that the noisy acceptance

probability framework covers a larger set of situations

but also in that, as we see below, it is sometimes pos-

sible to obtain a rate of approximation in terms of N ,

which in our case is the number of auxiliary variables

used in the approximation.

3 Examples

3.1 Gibbs Random Fields

Gibbs random fields (or discrete Markov random fields)

are widely used to model complex dependency structure

jointly in graphical models in areas including spatial

statistics and network analysis. Let y = {y1, . . . , yM}
denote realised data defined on a set of nodes {1, . . . ,M}
of a graph, where each observed value yi takes values

from some finite state space. The likelihood of y given

a vector of parameters θ = (θ1, . . . , θm) is defined as

f(y|θ) ∝ exp(θT s(y)) := qθ(y), (3)

where s(y) = (s1(y), . . . , sm(y)) is a vector of statistics

which are sufficient for the likelihood. We will use the

notation S = supy∈Y ‖s(y)‖. The constant of propor-

tionality in (3),

Z(θ) =
∑
y∈Y

exp(θT s(y)),

depends on the parameters θ, and is a summation over

all possible realisation of the Gibbs random field. Clearly,

direct calculation of Z(θ) is intractable for all but triv-

ially small situations, since it involves O(kM ) calcula-

tions, where k is the number of possible states which

each node can take. The parameter of interest for the

Gibbs distribution is θ. Due to the intractability of the

normalising constant Z(θ), inference on θ is problem-

atic. Here and for the remainder of this article we focus

on the posterior distribution

π(θ|y) ∝ qθ(y)

Z(θ)
π(θ),

where π(θ) denotes the prior distribution for θ. For ex-

ample, a naive application of the Metropolis-Hastings

algorithm when proposing to move from θi to θ′ ∼
h(·|θi) results in the acceptance probability,

α(θ′, θ) = min

(
1,
qθ′(y)π(θ′)h(θ|θ′)
qθ(y)π(θ)h(θ′|θ)

× Z(θ)

Z(θ′)

)
, (4)

depending on the intractable ratio
Z(θ)

Z(θ′)
.

One method to overcome this computational bot-

tleneck is to use an approximation of the likelihood

f(y|θ). A composite likelihood approximation of the

true likelihood, consisting of a product of easily nor-

malised full-conditional distributions is most commonly

used. The most basic composite likelihood is the pseudo

likelihood (Besag 1974), which comprises the product

of full-conditional distributions of each yi,

f(y|θ) ≈
M∏
i=1

f(yi|y−i, θ).

However this approximation of the true likelihood can

give unreliable estimates of θ (Friel and Pettitt 2004),

(Friel et al 2009).

3.2 Exchange Algorithm

A more sophisticated approach is to use the Exchange

algorithm. Murray et al (2006) extended the work of

Møller et al (2006) to allow inference on doubly in-

tractable distributions using the exchange algorithm.

The algorithm samples from an augmented distribution

π(θ′, y′, θ|y) ∝ f(y|θ)π(θ)h(θ′|θ)f(y′|θ′)
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whose marginal distribution for θ is the posterior of

interest. Here the auxiliary distribution f(y′|θ′) is the

same likelihood model in which y is defined. By sam-

pling from this augmented distribution, the acceptance

formula simplifies, as can be seen in algorithm 6, where

the normalising constants arising from the likelihood

and auxiliary likelihood cancel. One difficulty of im-

Algorithm 6 Exchange algorithm
for n = 0 to I do

Draw θ′ ∼ h(·|θn).

Draw y′ ∼ f(·|θ′).

Set θn+1 = θ′ with probability min(1, α(θ′, θn, y′)),
where

α(θ′, θn, y′) =
qθ′(y)π(θ′)h(θn|θ′)qθn(y′)

qθn(y)π(θn)h(θ′|θn)qθ′(y′)
×

Z(θn)Z(θ′)

Z(θ′)Z(θn)
,

Otherwise, set θn+1 = θn.
end for

plementing the exchange algorithm is the requirement

to sample y′ ∼ f(.|θ′), perfect sampling (Propp and

Wilson 1996) is often possible for Markov random field

models. However when the exchange algorithm is used

with MRFs the resultant chains may not mix well. For

example, Caimo and Friel (2011) used adaptive direc-

tion sampling (Gilks et al 1994) to improve the mixing

of the exchange algorithm when used with ERGM mod-

els.

Murray et al (2006) proposed the following inter-

pretation of the exchange algorithm. If we compare

the acceptance ratios in the M-H and Exchange algo-

rithm, the only difference is that the ratio of the nor-

malising constants in the M-H acceptance probability

Z(θ)/Z(θ′) is replaced by qθ(y
′)/qθ′(y

′) in the exchange

probability. This ratio of un-normalised likelihoods is in

fact an unbiased importance sampling estimator of the

ratio of normalising constants since it holds that

Ey′∼f(·|θ′)
(
qθ(y

′)

qθ′(y′)

)
=

Z(θ)

Z(θ′)
. (5)

A natural extension is therefore to use a better unbiased

estimator of Z(θ)/Z(θ′) at each step of the exchange al-

gorithm. At each step we could simulate a number of

auxiliary variables (y′1, ..., y
′
N ) from f(.|θ), then approx-

imate the ratio of normalising constants by

1

N

N∑
i=1

qθ(y
′
i)

qθ′(y′i)
≈ Z(θ)

Z(θ′)
. (6)

3.3 Noisy exchange algorithm

Algorithm 7 results from using an importance sampling

estimator of intractable ratio of normalising constants

following (6). We term this algorithm the noisy ex-

change algorithm. In particular, note that the accep-

tance ratio is replaced by an estimate α̂. Note further

that when N = 1 this will be equivalent to the exchange

algorithm, and when N →∞ this will be equivalent to

the standard Metropolis Hastings algorithm. Both of

these algorithms leave the target posterior invariant.

However when 1 < N < ∞ this algorithm is not guar-

anteed to sample from the posterior.

Algorithm 7 Noisy Exchange algorithm
for n = 0 to I do

Draw θ′ ∼ h(·|θn).

for i = 1 to N do
Draw y′i ∼ f(·|θ′).

end for
Define yθ′ = {y′1, . . . , y′N}

Set θn+1 = θ′ with probability min(1, α̂(θ′, θn, yθ′)),
where

α̂(θ′, θn, yθ′) =
qθ′(y)π(θ′)h(θn|θ′)
qθn(y)π(θn)h(θ′|θn)

1

N

N∑
i=1

qθn(y′i)

qθ′(y′i)
.

Otherwise, set θn+1 = θn.
end for

We will now show that under certain assumptions,

as N →∞ the noisy exchange exchange algorithm will

yield a Markov chain which will converge to the target

posterior density. To do so, we can apply Corollary 23.

First, we define some notation and assumptions that

will be used to prove this Lemma.

(A1) there is a constant cπ such that 1/cπ ≤ π(θ) ≤ cπ.

(A2) there is a constant ch such that 1/ch ≤ h(θ′|θ) ≤
ch.

(A3) for any θ and θ′ in Θ,

Vary′∼f(y′|θ′)

(
qθn(y′)

qθ′(y′)

)
< +∞.

Note that when (A1) or (A2) is satisfied, we nec-

essarily have that Θ is a bounded set, in this case,

we put T = supθ∈Θ ‖θ‖. This also means that 0 <

exp(−TS) ≤ qθ(y) ≤ exp(TS) for any θ and S, we

then put K := exp(TS). Also, note that this imme-

diately implies Assumption (A3) because in this case,

Vary′∼f(y′|θ′)(qθn(y′)/qθ′(y
′)) ≤ K2, so Assumption (A3)

is weaker than (A1) and than (A2).
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Lemma 2 Under (A3), α̂(θ′, θ, y′) satisfies (H2) in

Corollary 23 with

Ey′∼f(·|θ′) |α̂(θ, θ′, y′)− α(θ, θ′)| ≤ δ(θ, θ′)

=
1√
N

h(θ|θ′)π(θ′)qθ′(y)

h(θ′|θ)π(θ)qθ(y)

√
Vary′∼f(y′|θ′)

(
qθn(y′)

qθ′(y′)

)
.

Theorem 31 Under (A1) and (A2) then (H2) in

Corollary 23 is satisfied with

δ(θ, θ′) ≤ c2hc
2
πK4

√
N

,

and

sup
θ0∈Θ

‖δθ0Pn − δθ0 P̂n‖ ≤
C√
N

where C = C(cπ, ch,K) is explicitly known.

Note that Liang and Jin (2011) presents a simi-

lar algorithm to that above. However in contrast to

Lemma 2, the results in Liang and Jin (2011) do not

explicitly provide a rate of approximation with respect

to N . Lemma 2.2, page 9 in Liang and Jin (2011) only

states that there exists a N large enough to reach arbi-

trarily small accuracy ε > 0.

3.4 Noisy Langevin algorithm for Gibbs random fields

The discrete-time Langevin approximation (3) is un-

available for Gibbs random fields since the gradient of

the log posterior,∇ log π(θi|y) is analytically intractable,

in general. However Algorithm 4 can be used using a

Monte Carlo estimate of the gradient, as follows.

log π(θ|y) = θT s(y)− log z(θ) + log π(θ)− log π(y)

∇ log π(θ|y) = s(y)− z′(θ)

z(θ)
+∇ log π(θ)

= s(y)−
∑
s(y)[exp θT s(y)]∑

exp(θT s(y))
+∇ log π(θ)

= s(y)− Ey|θ[s(y)] +∇ log π(θ) (7)

In practice, Ey′∼fθ [s(y′)] is usually not known - an ex-

act evaluation of this quantity would require an eval-

uation of Z(θ). However, it is possible to estimate it

through Monte-Carlo simulations. If we simulate yθ =

(y′1, .., y
′
n) ∼ f(.|θ), then Ey|θ[s(y)] can be estimated us-

ing
∑n
i s(y

′
i)/n. This gives an estimate of the gradient

at θ from (7).

∇̂yθ log π(θ|y) = s(y)− 1

N

N∑
i

s(y′i) +∇ log π(θ).

Algorithm 8 Noisy discretized Langevin algorithm for

Gibbs random fields
for n = 0 to I do

for i = 1 to N do
Draw y′i ∼ f(·|θn).

end for
Define yθn = {y′1, . . . , y′N},

Calculate ∇̂yθn log π(θn|y) = ∇ log π(θn) + s(y) −
1
N

∑N
i=1 s(y

′
i).

Set

θn+1 = θn+
Σ

2
∇̂yθn log π(θn|y)+ηn, where ηn are i.i.d. N (0, Σ).

end for

In turn this yield the following noisy discretized Langevin

algorithm.

We remark that in this case, the bound in Lemma 1

can be evaluated.

Lemma 3 As soon as N > 4kS2‖Σ‖2, the δ in Lemma 1

is finite with

δ = exp

(
k log(N)

4S2‖Σ‖2N

)
− 1 +

4k
√
πS‖Σ‖
N

∼N→∞
k log

(
N
k

)
4S2‖Σ‖2N

(where ‖Σ‖ = sup{‖Σx‖, ‖x‖ = 1}).

We conclude by an application of Theorem 22 that

allows to assess the convergence of this scheme when

N →∞ when the parameter is real.

Theorem 32 Assume that Θ ∈ R and the prior is

Gaussian θ ∼ N (0, s2). Then, for Σ < s2, the dis-

cretized Langevin Markov Chain is geometrically er-

godic, with asymptotic distribution πΣ, and for N large

enough, the noisy version is geometrically ergodic, with

asymptotic distribution πΣ,N and

‖πΣ − πΣ,N‖ −−−−→
N→∞

0.

3.5 MALA-exchange

An approach to ensure that the Markov chain from

Algorithm 8 targets the true density, is to include an

accept/reject step at each iteration in this algorithm

using a Metropolis adjusted Langevin (MALA) correc-

tion. We adapt the Exchange algorithm using this pro-

posal, yielding Algorithm 9.

The accept/reject step ensures that the distribution

targets the correct posterior density. If the stochastic

gradient ∇̂ approximates the true gradient well, then
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Algorithm 9 MALA-exchange
Initialise; set Σ,
for i = 1 to N do

Draw yi ∼ f(·|θ0).
end for
Define yθ0 = {y1, . . . , yN},
Calculate ∇̂yθ0 log π(θ0|y) = ∇ log π(θ0) + s(y) −
1
N

∑N
i=1 s(yi).

for n = 0 to I do
Draw θ′ = θn+Σ

2
∇̂yθn log π(θn|y)+η, η ∼ N(0, Σ).

for i = 1 to N do
Draw y′i ∼ f(·|θ′).

end for
Define yθ′ = {y′1, . . . , y′N}.

Calculate ∇̂yθ′ log π(θ′|y) = ∇ log π(θ′) + s(y) −
1
N

∑N
i=1 s(y

′
i).

Set θn+1 = θ′ and yθn+1
= yθ′ with probability

min(1, α(θ′, θn, yθn)),

where α(θ′, θn, yθn) =

qθ′(y)π(θ′)h(θn|θ′, yθ′)qθn(y′1)

qθn(y)π(θn)h(θ′|θn, yθn)qθ′(y′1)
,

and h(θn|θ′, yθ′) ∼ N
(
θ′ + Σ

2
∇̂yθ′ log π(θ′|y), Σ

)
.

Otherwise, set θn+1 = θn and yθn+1
= yθn .

end for

the proposal value at each iteration should be guided

towards areas of high density. This will allow the al-

gorithm to explore the posterior more efficiently when

compared with a random walk proposal.

3.6 Noisy MALA-exchange

In an approach identical to that in Section 3.3 one could

view the ratio qθi(y
′)/qθ′(y

′) in the acceptance ratio

from Algorithm 9 as an importance sampling estimator

of Z(θ′)/Z(θi). This suggests that one could replace

this ratio of un-normalised densities with a Monte Carlo

estimator using draws from f(y|θ′), as described in (6).

Here, we suggest that the draws used to estimate the log

gradient could serve this purpose. This yields the noisy

MALA-exchange algorithm which we outline below.

4 Experiments

We first demonstrate our algorithms on a simple single

parameter model, the Ising model and then apply our

methodology to some challenging models for the anal-

ysis of network data.

Algorithm 10 noisy MALA-exchange
Initialise; set Σ,
for i = 1 to N do

Draw yi ∼ f(·|θ0).
end for
Define yθ0 = {y1, . . . , yN},
Calculate ∇̂yθ0 log π(θ0|y) = ∇ log π(θ0) + s(y) −
1
N

∑N
i=1 s(yi).

for n = 0 to I do
Draw θ′ = θn+ Σ

2
∇̂yθn log π(θn|y) + η η ∼ N(0, Σ).

for i = 1 to N do
Draw y′i ∼ f(·|θ′).

end for
define yθ′ = {y′1, . . . , y′N}.

Calculate ∇̂yθ′ log π(θ′|y) = ∇ log π(θ′) + s(y) −
1
N

∑N
i=1 s(y

′
i).

Set θn+1 = θ′ and yθn+1
= yθ′ with probability

min(1, α̂(θ′, θn, yθn))

where α̂(θ′, θn, yθn) =

qθ′(y)π(θ′)h(θn|θ′, y′θn)

qθn(y)π(θn)h(θ′|θn, y′θn)

1

N

N∑
i=1

qθn(y′i)

qθ′(y′i)
,

and h(θn|θ′, yθ′) ∼ N
(
θ′ + Σ

2
∇̂yθ′ log π(θ′|y), Σ

)
.

Otherwise, set θn+1 = θn and yθn+1
= yθn .

end for

4.1 Ising study

The Ising model is defined on a rectangular lattice or

grid. It is used to model the spatial distribution of bi-

nary variables, taking values −1 and 1. The joint den-

sity of the Ising model can be written as

f(y|θ) =
1

Z(θ)
exp

θ
M∑
j=1

∑
i∼j

yiyj


where i ∼ j denotes that i and j are neighbours and

Z(θ) =
∑

y exp
{
θ
∑M
j=1

∑
i∼j yiyj

}
.

The normalising constant Z(θ) is rarely available ana-

lytically since this relies on taking the summation over

all different possible realisations of the lattice. For a

lattice with M nodes this equates to 2
M(M−1)

2 different

possible lattice formations.

For our study, we simulated 20 lattices of size 16×
16. This size of lattice is sufficiently small enough such

that the normalising constant Z(θ) can be calculated

exactly (36.5 minutes for each graph) using a recur-

sive forward-backward algorithm (Reeves and Pettitt

2004; Friel and Rue 2007), giving a gold standard with

which to compare the other algorithms. This is done

by calculating the exact density over a fine grid of θ

values, {θ1, . . . , θI} over the interval [−0.4, 0.8], which
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Fig. 1 Boxplot of the bias estimate of θ for 20 datasets cor-
responding to the exchange, importance sampling exchange,
Langevin and MALA algorithms.

cover the effective range of values that θ can take. We

normalise π(θi|y) by numerically integrating over the

un-normalised density.

π̂(y) =

I∑
i=2

(θi − θi−1)

2

[
qθi(y)

Z(θi)
π(θi) +

qθi−1
(y)

Z(θi−1)
π(θi−1)

]
,

(8)

yielding

π(θi|y) ≈ qθi(y)

Z(θi)

π(θi)

π̂(y)
.

Each of the algorithms was run for 30 seconds on

each of the 20 datasets, at each iteration the auxiliary

step to draw y′ was run for 1000 iterations. For each

of the noisy, Langevin and MALA exchange, an extra

N = 100 draws were taken during the auxiliary step to

use as the simulated graphs yθ′ .

Figure 1 shows the bias of the posterior means for each

of the algorithms. We see that both the noisy exchange

algorithm and the Langevin algorithm have a much

smaller bias when compared to the two exchange algo-

rithms. The two noisy algorithms perform better than

the two exact algorithms. This is due to the improved

mixing in the approximate algorithms, even though the

true distribution is only approximately targeted. There

is a trade off here between the bias and the efficiency.

As the step size decreases, both the efficiency and bias

decrease. The MALA-exchange appears better than the

exchange, this is due to the informed proposal used in

the MALA algorithm ∇̂ log π(θ|y). This informed pro-

posal means the MALA-exchange will target areas of

high probability in the posterior density, therefore in-

creasing the chances of accepting a move at each itera-

tion when compared to the standard exchange. Finally,

in Figure 2 we display the estimated posterior density

for each of the five algorithms together with the true
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Fig. 2 Estimated posterior densities corresponding to the ex-
act and noisy algorithms corresponding to one of the datasets
used in the Ising simulation study.

posterior density for one of the 20 datasets in the sim-

ulation study.

4.2 ERGM study

Here we explore how our algorithms may be applied to

the exponential random graph model (ERGM) (Robins

et al 2007) which is widely used in social network anal-

ysis. An ERGM is defined on a random adjacency ma-

trix Y of a graph on n nodes (or actors) and a set of

edges (dyadic relationships) {Yij : i = 1, . . . ,M ; j =

1, . . . ,M} where Yij = 1 if the pair (i, j) is connected

by an edge, and Yij = 0 otherwise. An edge connecting

a node to itself is not permitted so Yii = 0. The dyadic

variables maybe be undirected, whereby Yij = Yji for

each pair (i, j), or directed, whereby a directed edge

from node i to node j is not necessarily reciprocated.

The likelihood of an observed network y is modelled

in terms of a collection of sufficient statistics {s1(y), . . . , sm(y)},
each with corresponding parameter vector θ = {θ1, . . . , θm},

f(y|θ) =
qθ(y)

Z(θ)
=

exp {
∑m
l=1 θlsl(y)}
Z(θ)

.

For example, typical statistics include s1(y) =
∑
i<j yij

and s2(y) =
∑
i<j<k yikyjk which are, respectively, the

observed number of edges and two-stars, that is, the

number of configurations of pairs of edges which share

a common node. It is also possible to consider statistics

which count the number of triangle configurations, that

is, the number of configurations in which nodes i, j, k

are all connected to each other.

4.2.1 The Florentine Business dataset

Here, we consider a simple 16 node undirected graph:

the Florentine family business graph. This concerns the
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Fig. 3 Florentine family business.

business relations between some Florentine families in

around 1430. The network is displayed in Figure 3. We

propose to estimate the following 2-dimensional model.

f(y|θ) =
1

Z(θ)
exp (θ1s1(y) + θ2s2(y)) ,

where s1(y) is the number of edges in the graph and

s2(y) is the number of two-stars.

Before we could run the algorithms, certain param-

eters had to be tuned. We used a flat prior N(0, 100) in

all of the algorithms. The Langevin, MALA exchange

and noisy MALA exchange algorithms all depend on a

stepsize matrix Σ. This matrix determines the scale of

proposal values for each of the parameters. This matrix

should be set up so that proposed values for θ accom-

modate the different scales of the posterior density of θ.

In order to have good mixing in the algorithms we chose

a Σ which relates to the shape of the posterior density.

Our approach was to aim to relate Σ to the covariance

of the posterior density. To do this, we equated Σ to an

estimate of the inverse of the second derivative of the

log posterior at the maximum a posteriori estimate θ∗.

As the true value of the MAP is unknown, we used a

Robbins-Monro algorithm (Robbins and Monro 1951)

to estimate this. The Robbins-Monro algorithm takes

steps in the direction of the slope of the distribution. It

is very similar to Algorithm 8 except without the added

noise and follows the stochastic process

θn+1 = θn + εn∇̂yθn log π(θn|y),

where

N∑
i=0

εn <∞ and

N∑
i=0

ε2n <∞.

The values of ε decrease over time and once the dif-

ference between successive values of this process is less

than a specified tolerance level, the algorithm is deemed

to have converged to the MAP. The second derivative of

the log posterior is derived by differentiating (7) yield-

ing

∇2 log π(θ∗|y) = Covy∗|θ∗(s(y
∗)) +∇2 log π(θ∗) (9)

In turn, Covy∗|θ∗(s(y
∗)) from (9) can be estimated us-

ing Monte Carlo based on draws from the likelihood

f(y|θ∗). We used the inverse of the estimate of the sec-

ond derivative of the log posterior as an estimate for the

curvature of our log posterior distribution. The matrix

Σ we used was this estimate of the curvature multiplied

by a scalar. We multiply by a scalar to achieve differ-

ent acceptance rates for the algorithms. This is similar

to choosing a variance for the proposal in a standard

Metropolis-Hastings algorithm. If too small a value is

chosen for the scalar, the algorithm will propose small

steps and take a long time to fully explore the posterior

distribution. If too large a value is chosen for the scalar,

the chain will inefficiently explore the target distribu-

tion. A number of pilot runs were made to find a value

for the scalar which gave the desired acceptance rates

for each of the algorithms. The MALA exchange and

Noisy MALA exchange algorithms were tuned to have

an acceptance rate of approximately 25% and a similar

Σ matrix was used in the noisy Langevin algorithm.

If the second derivative matrix is singular, a problem

can arise, in that is impossible to calculate the inverse

of the matrix. Further information on singular matri-

ces can be found in numerical linear algebra literature,

such as Golub and Loan (1996).

The algorithms were time normalised, each using

30 seconds of CPU time. An extra N = 50 graphs

were simulated for the noisy exchange, noisy Langevin,
MALA exchange and noisy MALA exchange algorithms.

The auxiliary step to draw y′ was run for 1000 iterations

followed by an extra 200 iterations thinned by a factor

of 4 yielding N = 50 graphs. To compare the results

to a “ground truth”, the BERGM algorithm of Caimo

and Friel (2011) was run for an large number of itera-

tions equating to 2 hours of CPU time. This algorithm

involves a population MCMC algorithm and uses the

current state of the population to help make informed

proposals for the chains within the population.

Table 1 shows the posterior means and standard

deviations for the various algorithms. Figures 4 and 5

shows the chains, densities and autocorrelation plots.

In Table 1 we see that the noisy exchange algorithm

had improved mean estimates when compared to the

exchange algorithm. The MALA exchange and Noisy

MALA exchange algorithms both had better mean es-

timates than the noisy Langevin algorithm, although in

all cases the posterior standard deviation was underes-

timated.
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Table 1 Posterior means and standard deviations.

Edge 2-star
Method Mean SD Mean SD

BERGM -2.675 0.647 0.188 0.155
Exchange -2.573 0.568 0.146 0.133
Noisy Exchange -2.686 0.526 0.167 0.122
Noisy Langevin -2.281 0.513 0.081 0.119
MALA Exchange -2.518 0.62 0.136 0.128
Noisy MALA -2.584 0.498 0.144 0.113
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Fig. 4 Chains, density plot and ACF plot for the edge statis-
tic.

The ACF plots in Figures 4 and 5 show how all

of the noisy algorithms displayed better mixing when

compared to the exchange algorithm. The density plots

show that all of the algorithms with the exception of the

noisy Langevin estimated the mode of the true density

well but they underestimated the standard deviation.

The noisy Langevin performed poorly. A problem

of Langevin diffusion as pointed out in Girolami and

Calderhead (2011) is that convergence to the invariant

distribution is no longer guaranteed for finite step size

owing to the first-order integration error that is intro-

duced. This discrepancy is corrected by the Metropolis

step in the MALA exchange and noisy MALA exchange

but not in the Langevin algorithm. Since our Noisy

Langevin algorithm approximates Langevin diffusion

we are approximating an approximation. There are two

levels of approximations which leaves more room for

error.

4.2.2 The Molecule dataset

The Molecule dataset is a 20 node graph, shown in Fig-

ure 6. We consider a four parameter model which in-

cludes the number of edges in the graph, the number of

two-stars, the number of three-stars and the number of
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Fig. 5 Chains, density plot and ACF plot for the 2-star
statistic.

Fig. 6 Molecule network

triangles.

f(y|θ) =
1

Z(θ)
exp (θ1s1(y) + θ2s2(y) + θ3s3(y) + θ4s4(y))

The Σ parameter was chosen in a similar fashion to the

Florentine business example. The Robbins-Monro algo-

rithm was run for 20,000 iterations to find an estimate

of the MAP, 4,000 graphs were then simulated at the

estimated MAP and these were used to calculate an

estimate of the second derivative using Equation (9).

The matrix Σ was the inverse of this estimate was cal-

culated multiplied by a scalar. The scalar was chosen as

a value which achieved the desired acceptance rate, a

number of pilot runs were used to get a reasonable value

for the scalar. This was carried out for both the MALA

exchange and noisy MALA exchange and a similar Σ

matrix was used for the noisy Langevin algorithm. The

ERGM model for the molecule data is more challenging

than the model for the Florentine data due to the extra

two parameters.

The BERGM algorithm of Caimo and Friel (2011)

was again used as a “ground truth”. This algorithm

was run for a large number of iterations equating to
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Table 2 Posterior means and standard deviations.

Edge 2-star
Method Mean SD Mean SD

BERGM 2.647 2.754 -1.069 0.953
Exchange 1.889 2.142 -0.797 0.744
Noisy Exch 1.927 2.444 -0.757 0.823
Noisy Lang 1.679 3.65 -0.509 1.429
MALA Exch 2.391 2.095 -0.938 0.795
Noisy MALA Exch 2.731 2.749 -1.054 0.886

3-Star Triangle
Method Mean SD Mean SD

BERGM -0.021 0.483 1.787 0.646
Exchange -0.138 0.385 1.593 0.519
Noisy Exch -0.176 0.422 1.543 0.53
Noisy Lang -0.466 0.787 1.633 0.573
MALA Exch -0.113 0.451 1.454 0.598
Noisy MALA Exch -0.041 0.417 1.519 0.492

4 hours of CPU time. This gave us accurate estimates

against which to compare the various algorithms. The

five algorithms were each run for 100 seconds of CPU

time. Table 2 shows the posterior mean and standard

deviations of each of the four parameters for each of

the algorithms. The results for the Molecule dataset

model are similar to the Florentine business dataset

model. In Table 2 we see that the noisy exchange al-

gorithm improved on the standard exchange algorithm.

The MALA exchange improved on noisy Langevin and

the Noisy MALA improved on the MALA exchange.

Figure 7 and Figure 8 show the densities and the

autocorrelation plots of the algorithms. The autocorre-

lation plots show that the noisy algorithms had less

correlation than the exchange algorithm. The densi-

ties show that again the algorithms, when run on the

Molecule model, performed in the same manner as the

Florentine model. The algorithms with the exception

of the noisy Langevin algorithm estimated the mode

well but underestimated the standard deviation. The

noisy Langevin algorithm did not estimate the mean or

standard deviations well.

5 Conclusion

The results in this paper give bounds on the total vari-

ation between a Markov chain with the desired target

distribution, and the Markov chain of a noisy MCMC

algorithm. An important question for future work con-

cerns the statistical efficiency of estimators given by

ergodic averages of the chain output. This is a key

question since the use of noisy MCMC will usually be

motivated by the inefficiency of a standard alternative

algorithm. This inefficiency may be: statistical, where

the standard algorithm is only capable of exploring the
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Fig. 7 Density plots of the 4 parameters for the molecule
example.
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Fig. 8 ACF plots for the 4 parameters for the molecule ex-
ample.

parameter space slowly (as can be the case for the stan-

dard exchange algorithm); or, computational, where a

single iteration of the standard algorithm is too com-

putationally expensive for the method to be practi-

cally useful (as is the case for large data sets, examined

by Korattikara et al (2014)). If we introduce a noisy

MCMC algorithm to overcome the inefficiency, usu-

ally the rationale is that the combined statistical and

computational efficiency is sufficiently improved to out-

weigh the effect of any bias that is introduced. To study

this theoretically we need to investigate the asymptotic
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variance of estimators from noisy MCMC algorithms.

Andrieu and Vihola (2012) have examined this ques-

tion for pseudo-marginal algorithms of the GIMH type,

and have shown the asymptotic variance for pseudo-

marginal algorithms is always larger than for the corre-

sponding “ideal” algorithm. One might expect a simi-

lar result to hold for noisy MCMC algorithms, in which

case the effect of this additional variance on top of the

aforementioned bias should be a consideration when

employing noisy MCMC.

In this paper our convergence results depend on

the ergodicity of the ideal non-noisy chain. In the case

where this chain is uniformly ergodic, we are able to

provide explict rates of convergence with N , the num-

ber of randomisation steps in the noisy algorithm. Of

course, the assumption of uniform ergodicity is strong

and difficult to prove, in general. However, we have also

provided results where we relax this assumption to the

less restrictive case of geometric ergodicity. Here we

prove convergence to the target distribution, although

we are not able to provide an explicit convergence rate

with N . This will be a focus for future research.
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A Proofs

Proof of Corollary 23. We apply Theorem 21. First, note that
we have

P (θ, dθ′) = δθ(dθ′)

[
1−

∫
dt h(t|θ) min (1, α(θ, t))

]
+ h(θ′|θ) min (1, α(θ, θ′))

and

P̂ (θ, dθ′) = δθ(dθ′)

[
1

−
∫∫

dt dy′ h(t|θ)Ft(y′) min (1, α̂(θ, t, y′))

]

+

∫
dy′Fθ′(y

′)
[
h(θ′|θ) min (1, α̂(θ, θ′, y′))

]
.

So we can write

(P − P̂ )(θ, dθ′)

= δθ(dθ′)

∫∫
dt dy′ h(t|θ)Ft(y′)

[
min (1, α̂(θ, t, y′))

−min (1, α(θ, t))
]

+

∫
dy′ Fθ′(y

′)
[
h(θ′|θ) min (1, α(θ, θ′))

− h(θ′|θ) min (1, α̂(θ, θ′, y′))
]

and, finally,

‖P − P̂‖ =
1

2
sup
θ

∫
|P − P̂ |(θ, dθ′)

=
1

2
sup
θ

{∣∣∣∣∣
∫∫

dt dy′ h(t|θ)Ft(y′)
[
min (1, α̂(θ, t, y′))

−min (1, α(θ, t))
]∣∣∣∣∣

+

∣∣∣∣∣
∫∫

dy′ dθ′ Fθ′(y
′)

[
h(θ′|θ) min (1, α(θ, θ′))

− h(θ′|θ) min (1, α̂(θ, θ′, y′))

]∣∣∣∣∣
}

= sup
θ

{∣∣∣∣∣
∫∫

dt dy′ h(t|θ)Ft(y′)
[
min (1, α̂(θ, t, y′))−min (1, α(θ, t))

]∣∣∣∣∣
}

≤ sup
θ

∫∫
dy′ dθ′Fθ′(y

′)h(θ′|θ)
∣∣∣min (1, α(θ, θ′))

−min (1, α̂(θ, θ′, y′))
∣∣∣

= sup
θ

∫
dθ′ h(θ′|θ)

∫
dy′ Fθ′(y

′)
∣∣∣min(1, α(θ, θ′))

−min(1, α̂(θ, θ′, y′))
∣∣∣
≤ sup

θ

∫
dθ′ h(θ′|θ)δ(θ, θ′). �

Proof of Lemma 1. We still use Theorem 21, note that

‖PΣ − P̂Σ‖ =
1

2
sup
θ

∫ ∣∣∣∣∣ 1√
2π|Σ|

exp

[
−
‖Σ−

1

2 (θ′ − θ − Σ
2
∇ log π(θ))‖2

2

]
−

1√
2π|Σ|

exp

[
−
‖Σ−

1

2 (θ′ − θ − Σ
2
∇̂y′ log π(θ))‖2

2

]∣∣∣∣∣dθ′ Fθ(dy′)

=
1

2
sup
θ

∫∫
1
√

2π
exp

[
−
‖t‖2

2

] ∣∣∣∣∣1
− exp

[
‖t‖2

2

−
‖t+ Σ

1
2

2
(∇ log π(θ)− ∇̂y′ log π(θ))‖2

2

]∣∣∣∣∣dt Fθ(dy′)

=
1

2
sup
θ

∫∫
1
√

2π
exp

[
−
‖t‖2

2

] ∣∣∣∣∣1
− exp

[
tTΣ

1

2 (∇ log π(θ)− ∇̂y′ log π(θ))

2

−
1

8
‖Σ

1

2 (∇ log π(θ)− ∇̂y
′
log π(θ))‖2

]∣∣∣∣∣dt Fθ(dy′).

Now, note that

∫
1
√

2π
exp

[
−
‖t‖2

2

] ∣∣∣∣∣1−exp

[
tTΣ

1

2 (∇ log π(θ)− ∇̂y′ log π(θ))

2

−
1

8
‖Σ

1

2 (∇ log π(θ)− ∇̂y
′
log π(θ))‖2

]∣∣∣∣∣dt
= E

∣∣∣∣∣1 − exp

(
aTX −

‖a‖2

2

)∣∣∣∣∣
where X ∼ N (0, I) and a = Σ

1

2 [∇ log π(θ)− ∇̂y′ log π(θ)]/2.
Then:

E

∣∣∣∣∣1− exp

(
aTX −

‖a‖2

2

)∣∣∣∣∣
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= exp

(
−
‖a‖2

2

)
E

∣∣∣∣∣exp
(
aTX

)
− exp

(
‖a‖2

2

)∣∣∣∣∣
= exp

(
−
‖a‖2

2

)
E

∣∣∣∣∣exp
(
aTX

)
− E

[
exp

(
aTX

)]∣∣∣∣∣
≤ exp

(
−
‖a‖2

2

)√
Var[exp (aTX)]

= exp

(
−
‖a‖2

2

)√
E [exp (2aTX)]− E [exp (aTX)]2

= exp

(
−
‖a‖2

2

)√
exp(2‖a‖2)− exp(‖a‖2)

=
√

exp(‖a‖2)− 1.

So finally,

‖PΣ − P̂Σ‖

≤
1

2
sup
θ

∫
Fθ(dy′)√√√√exp

[
‖Σ

1

2 (∇ log π(θ)− ∇̂y′ log π(θ))‖2

4

]
− 1

≤
1

2

√
sup
θ

∫
Fθ(dy′)

exp

[
‖Σ

1

2 (∇ log π(θ)− ∇̂y′ log π(θ))‖2

4

]
− 1

≤
√
δ. �

Proof of Lemma 2. We only have to check that

Ey′∼Fθ′ |α̂(θ, θ′, y′)− α(θ, θ′)|

≤
∫

dy′ f(y′|θ′)
∣∣∣α(θ, θ′)− α̂(θ, θ′, y′)

∣∣∣
=
h(θ|θ′)π(θ′)qθ′(y)

h(θ′|θ)π(θ)qθ(y)

× Ey′
1
,...,y′

N
∼f(·|θ′)

∣∣∣∣∣ 1

N

N∑
i=1

qθ(y′i)

qθ′(y′i)
−
Z(θ)

Z(θ′)

∣∣∣∣∣
≤

1
√
N

h(θ|θ′)π(θ′)qθ′(y)

h(θ′|θ)π(θ)qθ(y)

√
Vary′

1
∼f(y′

1
|θ′)

(
qθn(y′1)

qθ′(y′1)

)
. �

Proof of Theorem 31. Under the assumptions of Theorem
31, note that (4) leads to

α(θn, θ
′) =

π(θ′)qθ′(y)Z(θn)

π(θn)qθn(y)Z(θ′)

h(θn|θ′)
h(θ′|θn)

≥
1

c2πc
2
hK4

. (10)

Let us consider any measurable subset B of Θ and θ ∈ Θ. We
have

P (θ,B) =

∫
B

δθ(dθ′)

[
1−

∫
dt h(t|θ) min (1, α(θ, t))

]
+

∫
B

dθ′ h(θ′|θ) min (1, α(θ, θ′))

≥
∫
B

dθ′ h(θ′|θ) min (1, α(θ, θ′))

≥
1

c2πc
2
hK4

∫
B

dθ′ h(θ′|θ) thanks to (10)

≥
1

c2πc
3
hK4

∫
B

dθ′.

This proves that Θ is a small set for the Lebesgue measure
(multiplied by constant 1/c2πc

3
hK4) on Θ. According to Theo-

rem 16.0.2 page 394 in Meyn and Tweedie (1993), this proves
that:

sup
θ
‖δθP − π(·|y)‖ ≤ Cρn

where

C = 2 and ρ = 1−
1

c3πc
3
hK4

(note that, by definition, K, cπ, ch > 1 so we necessarily have
0 < ρ < 1). So, Condition (H1) in Lemma 23 is satisfied.

Moreover,

δ(θ, θ′) =
h(θ|θ′)π(θ′)qθ′(y)

h(θ′|θ)π(θ)qθ(y)

√
Vary′∼f(y′|θ′)

(
qθn(y′)

qθ′(y′)

)

≤ c2hc2π
qθ′(y)

qθ(y)

√
Ey′∼f(y′|θ′)

[(
qθn(y′)

qθ′(y′)

)2]
≤ c2hc2πK4.

So, Condition (H2) in Lemma 23 is satisfied. We can apply
this lemma and to give

sup
θ0∈Θ

‖δθ0P
n − δθ0 P̂

n‖ ≤
C
√
N

with

C = c2πc
2
hK4

(
λ+

Cρλ

1− ρ

)
with λ =

⌈
log(1/C)

log(ρ)

⌉
. �

Proof of Lemma 3. Note that

∇ log π(θ)− ∇̂x
′

=
1

N

N∑
i=1

s(y′i)− Ey′∼fθ [s(y
′)].

So we have to find an upper bound, uniformly over θ, for

D := Ey′∼Fθn

{
exp

[
σ2

2

∥∥∥∥∥Σ 1

2

(
1

N

N∑
i=1

s(y′i)

− Ey′∼fθ [s(y
′)]

)∥∥∥∥∥
2]
− 1

}
.

Let us put

V := 1
N

∑N
i=1 V

(i) := 1
N

∑N
i=1Σ

1

2 {s(y′i) − Ey′∼fθ [s(y′)]}
and denote Vj (j = 1, . . . , k) the coordinates of V , and V

(i)
j

(j = 1, . . . , k) the coordinates of V (i). We have

D = E

exp

1

2

k∑
j=1

V 2
j

− 1


= E

exp

 1

k

k∑
j=1

k

2
V 2
j

− 1


≤

1

k

k∑
j=1

E
{

exp

[
k

2
V 2
j

]
− 1

}
.

Now, remark that Vj = 1
N

∑N
i=1 V

(i)
j with −S‖Σ‖ ≤ V ij ≤

S‖Σ‖ so, Hoeffding’s inequality ensures, for any t ≥ 0,

P
(∣∣∣√NVj∣∣∣ ≥ t) ≤ 2 exp

[
−

t2

2S2‖Σ‖2
.

]
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As a consequence, for any τ > 0,

E exp

[
k

2
V 2
j

]
= E exp

[
k

2N

(√
NVj

)2]
= E exp

[
k

2N

(√
NVj

)2
1|
√
NVj|≤τ

]
+ E exp

[
k

2N

(√
NVj

)2
1|
√
NVj|>τ

]
= exp

(
kτ2

2N

)
+

∫ ∞
τ

exp

(
k

2N
x2
)
P
(∣∣∣√NVj∣∣∣ ≥ x)dx

≤ exp

(
kτ2

2N

)
+ 2

∫ ∞
τ

exp

[(
k

2N
−

1

2S2‖Σ‖2

)
x2
]

dx

= exp

(
kτ2

2N

)
+ 2

√
2π

1
S2‖Σ‖2 −

2k
N

× P

|N | > τ

√
1

1
S2‖Σ‖2 −

2kσ2

N


≤ exp

(
kτ2

2N

)

+ 2

√
2π

1
S2‖Σ‖2 −

2k
N

exp

− τ2(
2

S2‖Σ‖2 −
4k
N

)


≤ exp

(
kτ2

2N

)
+ 2

√
2π

1
S2‖Σ‖2 −

2k
N

exp

[
−
τ2S2‖Σ‖2

2

]

where N ∼ N (0, 1). Now, we assume that N > 4kS2‖Σ‖2.
This leads to 1

S2‖Σ‖2 −
2k
N

> 1
2S2‖Σ‖2 . This simplifies the

bound to

E exp

[
k

2
V 2
j

]
≤ exp

(
kτ2

2N

)
+ 4
√
πS‖Σ‖ exp

[
−
τ2S2‖Σ‖2

2

]
.

Finally, we put τ =
√

log(N/k)/(2S2‖Σ‖2) to get

E exp

[
k

2
V 2
j

]
≤ exp

(
k log

(
N
k

)
4S2‖Σ‖2N

)
+

4k
√
πS‖Σ‖
N

.

It follows that

D ≤ exp

(
k log(N)

4S2‖Σ‖2N

)
− 1 +

4k
√
πS‖Σ‖
N

.

This ends the proof. �
Proof of Lemma 32. We just check all the conditions of The-
orem 22. First, from Lemma 3, we know that ‖PΣ − P̂Σ | ≤√
δ/2→ 0 when N →∞. Then, we have to find the function

V . Note that here:

∇ log π(θ|y) = ∇ log π(θ) + s(y)− Ey|θ[s(y)]

= −
θ

s2
+ s(y)− Ey|θ[s(y)]

� −
θ

s2
.

Then, according to Theorem 3.1 page 352 in Roberts and
Tweedie (1996a) (and its proof), we know that for Σ < s2,
for some positive numbers a and b, for V (θ) = aθ when θ ≥ 0
and V (θ) = −bθ for θ < 0, there is a 0 < δ < 1, β > 0 and an
inverval I with∫

V (θ)PΣ(θ0, dθ) ≤ δV (θ0) + L1I(θ0),

and so PΣ is geometrically ergodic with function V . We cal-
culate∫
V (θ)P̂Σ(θ0, dθ)

= Ey′
[

1
√

2πΣ

∫
R
V (θ) exp

−
(
θ − θ0 − Σ

2
∇̂y′ log π(θ0|y)

)
2Σ

dθ

]

= Ey′
[

1
√

2πΣ

∫
R
V

[
θ +

Σ

2
(∇̂y

′
log π(θ0|y)−∇ log π(θ0|y))

]

exp

(
−
(
θ − θ0 − Σ

2
∇ log π(θ0|y)

)
2Σ

)
dθ

]

=
1

√
2πΣ

∫
R
Ey′

{
V

[
θ +

Σ

2
(∇̂y

′
log π(θ0|y)−∇ log π(θ0|y))

]
− V (θ)

}
exp

(
−
(
θ − θ0 − Σ

2
∇ log π(θ0|y)

)
2Σ

)
dθ +

∫
V (θ)PΣ(θ0, dθ)

and:

Ey′
{
V

[
θ +

Σ

2
(∇̂y

′
log π(θ0|y)−∇ log π(θ0|y))

]
− V (θ)

}

≤ max(a, b)Ey′

∣∣∣∣∣ 1

N

N∑
i=1

{E[s(y′i)]− s(y′i)}

∣∣∣∣∣
≤ 2Smax(a, b).

So,∫
V (θ)P̂Σ(θ0, dθ) ≤

∫
V (θ)PΣ(θ0, dθ) + 2Smax(a, b)

≤ δV (θ0) + [L+ 2Smax(a, b)].

So all the assumptions of Theorem 22 are satisfied, and we
can conclude that ‖πΣ − πΣ,N‖ −−−−−→

N→∞
0. �


