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Horizontal gene transfer is an important driver of bacterial evolution, but genetic exchange in

the core genome of clonal species, including the major pathogen Staphylococcus aureus, is

incompletely understood. Here we reveal widespread homologous recombination in S. aureus

at the species level, in contrast to its near-complete absence between closely related strains.

We discover a patchwork of hotspots and coldspots at fine scales falling against a backdrop of

broad-scale trends in rate variation. Over megabases, homoplasy rates fluctuate 1.9-fold,

peaking towards the origin-of-replication. Over kilobases, we find core recombination

hotspots of up to 2.5-fold enrichment situated near fault lines in the genome associated with

mobile elements. The strongest hotspots include regions flanking conjugative transposon

ICE6013, the staphylococcal cassette chromosome (SCC) and genomic island nSaa. Mobile

element-driven core genome transfer represents an opportunity for adaptation and challenges

our understanding of the recombination landscape in predominantly clonal pathogens, with

important implications for genotype–phenotype mapping.
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B
acteria are fundamentally clonal, reproducing by binary
fission. The accessory genomes of bacteria are an important
source of evolutionary novelty that facilitate rapid adapta-

tion via horizontal gene transfer (HGT)1–3. Yet adaptation in the
core genome is also critical to long-term survival and short-term
response to new selection pressures: resistance to many
antibiotics is conferred by substitutions in highly conserved
core genes including gyrA and rpoB4–6. In the absence of
homologous recombination mediated by HGT, adaptation in the
core genome would be limited by the supply of new mutations
and clonal interference7. Evidence for core genome transfer
(CGT) has been reported in most studied bacteria8,9. However,
the presence of CGT in apparently untransformable bacteria,
among them major pathogens including Staphylococcus aureus,
remains a paradox, and the underlying mechanisms obscure10–12.

Here we address the question of the frequency, distribution
and local genomic context of HGT in the S. aureus core genome
by examining signatures of genetic exchange among strains
representative of species-level diversity, and we test whether
the extreme rarity of CGT reported between highly related
S. aureus strains13–18 applies species-wide. We discover a
patchwork of hotspots and coldspots in the core genome driven
by proximity to mobile elements against a backdrop of
broad-scale trends in recombination rate variation that peak
towards the origin-of-replication.

Results
Oxfordshire isolates encompass global S. aureus diversity.
S. aureus is a life-threatening hospital pathogen and major cause
of early mortality worldwide, but it is also a common constituent
of the human microbiome, colonizing the noses of around one in
three healthy adults19. Co-colonization rates among distinct
strains are around 7%, providing ample opportunity for genetic
exchange20. In 2009, we began a longitudinal carriage study of
more than 1,100 asymptomatic adults in Oxfordshire, England,
recruiting 360 nasal carriers for follow-up, in order to profile the
natural reservoir of S. aureus colonizing humans21–23.

We randomly selected 89 methicillin-sensitive S. aureus
(MSSA) and five methicillin-resistant S. aureus (MRSA) for
Illumina whole-genome sequencing, taking the first positive nasal
sample per carrier, and we resequenced MRSA252, an invasive
reference isolate from Oxford24,25 (Supplementary Fig. 1). We
compared these 95 genomes with 15 reference genomes
representing international strains (Australia, Japan, UK and
USA), animal-associated strains (bovine, ovine and poultry), and
historic strains (1943, 1952 and circa-1960)15,26–36. A phylogeny
based on 106,480 core biallelic polymorphisms (BiPs) shows the
overarching relationships among the 110 genomes (Fig. 1a). Most
isolates cluster into clonal complexes (CCs), differences between
which dominate the phylogeny. Means of 0.13 and 7.8 BiP
differences per kilobase were detected between samples of the
same and different CC, respectively. The Oxfordshire isolates
capture most of the species-level diversity. Hence, our collection
combines global diversity and locally defined sampling,
facilitating investigation of CGT throughout S. aureus.

CGT is pervasive at the species level. To identify evidence for
CGT, we focused our attention on BiPs, reducing confounding
between signals of genetic exchange and repeat/back mutation.
We classified core BiPs as follows37–39: autapomorphic (37,898
sites), sites in which the less frequent allele was observed in only
one single genome; synapomorphic (34,218), sites compatible
with a single substitution across the phylogeny; and homoplasious
(34,364), sites requiring multiple substitutions across the tree.
Autapomorphies are uninformative concerning genetic exchange,

whereas synapomorphies are consistent with unique mutation
and homoplasies are consistent with homologous recombination,
subject to the caveat that we expect repeat/back mutation to have
contributed a modest number (circa 1,500).

We detected three classic signatures of homologous recombi-
nation39–41, the first being a large excess of homoplasies. We
identified 71,730 homoplasies (excess substitutions) across the
34,364 homoplasious BiPs. These homoplasies were particularly
concentrated in Group 2 S. aureus, where they outnumbered
synapomorphies more than threefold among some lineages
(Fig. 1a). No other systematic differences between phylogenetic
groups 1 and 2 have been identified42–44. Excess homoplasy was
far greater between CCs than within (Supplementary Fig. 2),
revealing that extremely low within-CC recombination rates do
not generalize to the species level. The relative substitution rate
due to recombination versus mutation (r/m) was estimated at
0.43 by LDhat45 and 0.83 (95% credible interval 0.67–1.1) by
ClonalFrame46, higher than previously thought9,14,42

(Supplementary Table 1). Second, we found support among
significant minorities of BiPs for alternate, phylogenetically
incongruent clades (Fig. 1b). Almost every alternate
configuration of Group 1 CCs was observed to have some
support. CC-239, an acknowledged CC-8/CC-30 recombinant47,
featured frequently among alternate groupings. Third, we
observed a rapid decay of linkage disequilibrium (LD) with
physical distance along the chromosome (Fig. 1c). Within 5 kb,
LD decayed to the moderate residual levels observed between
BiPs 1 Mb apart, this residual LD reflecting the strong structuring
of the population into CCs. The scale of decay was consistent with
mean DNA import lengths of 0.53 kb (LDhat) to 1.01 kb
(ClonalFrame). Taken together, these classic signatures
demonstrate frequent, widespread CGT during the long-term
evolution of S. aureus.

The signatures of recombination are interrelated: accordingly,
we observed a strong relationship between the number of
homoplasies—that ranged from 0 to 10—and the strength of
LD at core BiPs, having adjusted for allele frequency (Fig. 1d). We
identified a similar relationship for gene presence/absence in the
accessory genome, where the number of homoplasies ranged up
to 35, reflecting the substantially higher rates of HGT
(Supplementary Fig. 3). This relationship between homoplasy
and LD allowed us to narrow our focus onto homoplasy in
investigating genome-wide heterogeneity in CGT. We took as the
relative positions of core BiPs those in MRSA252, supported by
our observation that core gene synteny was conserved in all 110
genomes. This finding is helpful for investigating the influence of
local genomic context on CGT.

Genomic context predicts fine and broad-scale trends in CGT.
Core genome homoplasy rates varied substantially, revealing a
complex landscape of hot and cold regions (Fig. 2). The local
homoplasy rate ranged from 0.20 to 3.68 based on a smoothing
kernel with 1 kb bandwidth. We found a broad-scale trend
towards greater homoplasy near the origin-of-replication. Against
this trend, fine-scale variation manifesting as localized peaks of
elevated homoplasy were scattered across the genome. We iden-
tified the hottest peak around 1,350 kb, the integration site of the
ICE6013 conjugative transposon in the MRSA252 genome25,48.
Seven of the ten hottest regions were situated close to mobile
elements or their insertion sites, including SCC and genomic
island nSaa (Supplementary Table 2).

We systematically tested the influence of distance from origin,
proximity to mobile elements and other local features on the
number of homoplasies using negative binomial regression. After
controlling for allele frequency, the first two of these were the
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most highly significant predictors (Table 1). Over megabase
scales, homoplasy rates varied 1.9-fold, decreasing steadily with
distance from origin before recovering slightly near the terminus
(Supplementary Figs 4 and 5). Over kilobase scales, homoplasy

was strongly associated with proximity to mobile elements. We
estimated 2.5-fold and 1.9-fold enrichments in homoplasy
surrounding the ICE6013 integration site in MRSA252 and
genomic island nSaa, respectively (Supplementary Table 3). In
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Figure 1 | Signatures of recombination in the S. aureus core genome. (a) Maximum likelihood phylogeny of 95 isolates from Oxfordshire, England and

15 reference isolates, based on 2,114,882 core invariant and biallelic sites. The reference genomes represent international strains (Australia: JKD6159;

Japan: Mu50, N315; UK: EMRSA15, MSSA476, TW20; USA: JH1, USA300), animal-associated strains (bovine: RF122; ovine: ED133; poultry: ED98, swine:

SO385), and historic strains (1943: NCTC 8325; 1952: Newman; 1960s: COL). Branches are colour coded by the proportion of homoplasious substitutions.

Isolates are labelled by ST or reference genome and colour coded by clonal complex. Group 1 and group 2 S. aureus, as previously defined42, are indicated.

(b) Alternative, phylogenetically incongruent, relationships among CCs supported by some core biallelic sites but not others. (c) Decay in LD with

increasing physical distance between pairs of core biallelic sites. LD is quantified by r2, the squared correlation coefficient. (d) Relationship between allele

frequency, LD and number of substitutions at core biallelic sites. Each circle represents all the biallelic sites sharing a particular phylogenetic pattern, with

the area proportional to the number of sites with that pattern. Circles are colour coded by the number of substitution events reconstructed along the

phylogeny by maximum likelihood at each site with that pattern. Black circles correspond to the sites consistent with a unique mutation on a single branch

of the phylogeny, while non-black circles represent homoplasious BiPs.
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total, 20 mobile elements predicted locally elevated homoplasy,
and five predicted reduced homoplasy. Reduced homoplasy was
further associated with amino-acid substitutions, transversions,
proximity to genes encoding translation machinery or signal
transduction proteins, and high diversity, GC-poor and core-
dense regions. Altogether, genomic context explained 44% of the
variance in homoplasy at the kilobase scale, demonstrating the
important modulatory effect of local features on CGT.

Hotspots of CGT are associated with ICE6013 and SCC. We
examined in detail the strongest hotspot, associated with a 40 kb
region spanning ICE6013 and a cluster of phage-like genes
between 1,345–1,385 kb in MRSA252, some 60 kb from the ter-
minus-of-replication. The elevated homoplasy rate was accom-
panied by a marked reduction in LD and excess of phylogenetic
incongruity between core BiPs spanning the region, suggesting a
history of recurrent recombination (Fig. 3). An alignment of 16
reference genomes revealed substantial variability in gene content.
MRSA252 alone contained conjugative machinery, while vestigial
elements in the other genomes variously encoded pseudogenized
phage head proteins, transposases and reverse transcriptase.
Flanking the region, the highly conserved glnA was the hottest
core gene (Supplementary Table 4). The rapid return to back-
ground levels of homoplasy within 5 kb demonstrated the

diminishing influence of the mobile element with increasing
physical distance.

Proximity to the origin-of-replication was strongly associated
with excess homoplasy, particularly in the 750 kb immediately
flanking the second strongest hotspot, found in SCC. The core
BiPs surrounding SCC showed hallmarks of recurrent CGT,
including low LD and phylogenetic incongruity (Fig. 4). In SCC,
exemplified by the SCCmec element that confers methicillin
resistance, gene content is extraordinarily variable. Homologous
recombination over extended distances has been reported in the
ori/SCC region: replacements of 244 kb in CC-34 (ref. 47) and
635 kb in CC-239 (ref. 31) span ori/SCC, the latter coinciding
closely with the B750 kb region of excess homoplasy that we
identified (Fig. 2). The newly found SCC-associated hotspot
represents the peak of this extended region of elevated homoplasy
associated with large chromosomal replacements, indicating that
mobile elements drive recurrrent CGT over scales ranging from
just several kilobases extending up to nearly 1 Mb.

Discussion
In summary, we found evidence of widespread homologous
recombination in the core genome of S. aureus. Half of all
informative sites were homoplasious, in contrast to the near-
complete absence of homoplasy reported in whole-genome
studies of highly related strains13–18. Strains of S. aureus are
young relative to the species, with 60-fold less diversity within
versus between CCs. Our results demonstrate a dramatically
increased impact of recombination at the species versus the strain
level49, indicating that the strong barriers to transformation in S.
aureus do not prevent CGT over the long term. Cumulatively,
rare events such as the transient emergence of hyperrecombinant
lineages50,51, or low-level activation of transformation by cryptic
gene expression programs52, could contribute to this
phenomenon. We discovered broad- and fine-scale trends in
homoplasy across the core genome. Similar observations of
megabase-scale trends towards increased homoplasy near the
origin-of-replication in Escherichia coli were hypothesized to arise
from greater DNA copy number near the origin during
exponential growth, providing more substrate for homologous
recombination53. In S. aureus, the overlap between regions of
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Table 1 | Predictors of homoplasy rates.

Predictor � log10(P-value)

BiP allele frequency 5051
Distance from origin 245
Proximity to mobile elements 96
BiP type (synonymous, non-synonymous, and so on) 52
Local genetic diversity 33
Local GC content 26
COG category of nearby genes 10
BiP identity (A-C, A-G, etc.) 9
Local core density 6

Significance (� log10 P-value) was calculated by systematically dropping each predictor group
from the full negative binomial regression model.
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elevated homoplasy and previously reported large chromosomal
replacements lead us to believe that broad-scale trends in
homoplasy are attributable to macro-recombination, most
likely mobile element driven31,47. At fine scales, we discovered
hotspots of CGT associated with proximity to mobile elements,
including twofold enrichments within 1 kb of ICE6013 and SCC
integration sites, suggesting a causal role for mobile elements in
generating hotspots. The size of transferred material, estimated at
500–1,000 bp, provisionally suggests different mechanisms at fine
versus broad scales.

Besides the possibility of cryptic transformation52, generalized
phage transduction and conjugative transfer represent candidate
mechanisms for CGT, because they can transfer core material via
accidentally mispackaged DNA, cargo genes or through imprecise
excision12. Conjugative transposons have been shown to mobilize
chromosomal DNA in Enterococcus faecalis54, Vibrio cholerae55,
Bacteroides thetaiotaomicron56, Streptococcus agalactiae57 and
Clostridium difficile58. Our finding that the core region
immediately flanking the conjugative transposon ICE6013 in
MRSA252 is recombinationally active supports the proposition
that ICE6013 could drive CGT via a mechanism similar to
TnGBS2 activity in Streptococcus agalactiae48. Like ICE6013,
TnGBS2 integrates via a transposase rather than a site-specific
recombinase, and TnGBS2 can mobilize chromosomal DNA
through an Hfr-type mechanism that is capable of generating
large chromosomal replacements, both in cis and in trans57,59.
This raises the possibility that ICE6013 could in fact be involved
in broad-scale as well as fine-scale CGT.

Detecting genetic exchange in the core genome is important
to understanding and monitoring the evolution of bacterial
pathogens in response to selection pressures such as changing
antibiotic usage. The discovery of a previously unknown
landscape of hotspots in the core genome of a predominantly
clonal bacterium casts new light on the prospects for
genome-wide association studies, because unexpected levels of
recombination improve the chances of finely mapping important
phenotypes including virulence to specific loci in these important
pathogens.

Methods
Isolate collection and sequencing. We surveyed asymptomatic nasal carriage
in 1,123 adults attending general practices in Oxfordshire, England, 2009–2010
(refs 21–23). Informed consent was obtained from all participants, and ethical
approval for the study was obtained from the Oxfordshire B Oxfordshire Research
Ethics Committee (reference number 08/H0605/102). We selected a single colony
for sequencing from the first positive nasal swab sampled from 94 carriers. Each
nasal swab culture had been prepared and stored in glycerol. We incubated an
inoculum of the glycerol stock on SASelect agar (Bio-Rad) overnight at 37 �C, then
picked a single colony, streaked it onto Columbia blood agar and incubated it
overnight at 37 �C, using a previously described protocol21. We grew one colony
each from 89 randomly chosen MSSA carriers and five MRSA carriers, plus the
clonal complex (CC)-30 reference isolate MRSA252 (ref. 25). Our sampling
represents an enrichment of MRSA isolates compared with the overall frequency of
2.5% in the carriage study. For validation, we sequenced twice DNA extracted from
eight of the colonies including MRSA252 by splitting the eight DNA extracts into
two equal portions. In total, 103 genomes were sequenced at the Wellcome Trust
Centre for Human Genetics, Oxford, using a combination of Illumina GAIIx and
HiSeq 2000 with 96-fold multiplexing, paired-end reads of length of 99 or 101 bp
each, insert sizes of 200 bp and mean depth 179 reads.
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Genome mapping and base calling. We used Stampy60 with no BWA
premapping and an expected substitution rate of 0.01 to map each genome against
the MRSA252 reference. A mean of 95.6% of reads mapped to MRSA252. We
called bases using the SAMtools v0.1.18 mpileup command61 with options ‘-E -M0
-Q30 -q30 -o40 -e20 -h100 -m2 -F0.002 -g -D –S’ and the bcftools v0.1.17-dev view
command with options ‘-c -g -b -A -L -t0.001 -i-1 -p0.5 –Pfull’. We masked calls
that failed to meet the following criteria: at least five reads, at least one read in each
direction, homozygous under a diploid model, at least 75% of reads supporting the
call. Repetitive regions, defined by BLASTing the reference genome against itself
and comprising 5.9% of the genome, were also masked. Following filtering, the
mean proportion of the reference genome that we called by mapping was 86.4%.
Out of 40,429,898 bases called independently across eight pairs of replicate
genomes, there were no discrepancies.

Pan genome. We constructed a database of the S. aureus pan genome from the
coding sequence annotations of 16 Sanger-sequenced reference genomes. Coding
sequences were appended sequentially to the database in the following order:
MRSA252 (Genbank accession number BX571856.1), MSSA476 (BX571857.1),
COL (CP000046.1), NCTC 8325 (CP000253.1), Mu50 (BA000017.4), N315
(BA000018.3), USA300_FPR3757 (CP000255.1), JH1 (CP000736.1), Newman
(AP009351.1), TW20 (FN433596.1), S0385 (AM990992.1), JKD6159
(CP002114.2), RF122 (AJ938182.1), ED133 (CP001996.1), ED98 (CP001781.1),
EMRSA15 (HE681097.1)15,25–36. Coding sequences that exhibited homology to
other sequences already in the database, defined as 50% or greater identity in a
tblastx query, were not added but noted as homologues.

Genome assembly. We used Velvet62 to assemble reads into contigs de novo for
each newly sequenced genome, with hash length chosen to optimize n50, yielding
an average of 130.5 contigs per genome. We determined the presence or absence of
the genes in the pan genome via a tblastx query with minimum 70% identity
threshold. We identified the S. aureus core genome from the coding sequences that
were present in all 94 carriage and 16 reference genomes.

Synteny of the core genome. We assessed the synteny of the core genome by
searching for anomalies in the expected ordering and orientation of successive core
genes within contigs obtained from the Velvet assemblies of the 103 Illumina-
sequenced genomes. Out of circa 200,000 pairs of successive core genes, we found
116 anomalies. Detailed inspection of mate pairs revealed that all were Velvet
misassemblies. We also confirmed the conservation of core gene order and
orientation in the 16 Sanger-sequenced reference genomes49.

Identification of core BiPs. We defined core sites to be the 2,114,882 positions
that mapped to MRSA252 and were unambiguously called in all 103 Illumina-
sequenced genomes. Among those, we identified 106,480 core BiPs, 3,368 core
triallelic polymorphisms and 66 core tetrallelic polymorphisms. We also identified
71,255, 4,012 and 125 non-core biallelic, triallelic and tetrallelic polymorphisms,
respectively.

Phylogenetic reconstruction. We characterized the evolutionary relationships
between genomes by building a maximum likelihood tree using PhyML (version
3.0)63 assuming a single substitution rate under the HKY85 model and employing a
combination of NNI and SPR moves in the search (options -b 0 -v 0 -c 1 -s BEST).
We intentionally fitted a model without rate heterogeneity to ensure substitutions
at different sites contributed equally to branch lengths. The maximum likelihood
tree topology was robust to fitting a more complex GTR model with a proportion
of invariant sites and gamma rate heterogeneity with four classes (options -m GTR
-b 0 -v e -c 4 -s BEST). We analysed core BiPs and core invariant sites, with all
non-core sites taken as invariant and identical to MRSA252. The PhyML tree was
consistent with, but more fully resolved than, the 50% consensus tree constructed
by ClonalFrame46 using the same data.

Expected number of homoplasies caused by repeat/back mutation. We esti-
mated the number of homoplasious BiPs that would be expected due to repeat or
back mutation even in the absence of homologous recombination in two ways. (i)
Using the substitution rate estimated by PhyML, we calculated the number of sites
expected to experience two substitutions, offset by the probability that the second
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mutation did not generate a third allele, giving 1,480 homplasious BiPs.
(ii) Taking the observed number of triallelic sites, we calculated the expected
number of sites that would also have experienced two substitutions, but the second
mutation did not generate a third allele, giving 1,684 homoplasious BiPs.

Recombination rate estimation. We estimated recombination rate parameters,
including the relative substitution rate due to recombination versus mutation (r/m)
using LDhat45 and ClonalFrame46. In the ClonalFrame analysis, we ran 20,000
iterations of burn-in and 20,000 iterations of sampling, under default priors, and
analysing 50% of SNPs to improve computation time. In the LDhat analysis, we
maximized the composite likelihood over a grid of values of g and �t(which we refer
to as rt and t, respectively), focusing on the ranges 0–1.2 and 400–800, respectively
following a wider initial search. We did not use ClonalFrame more widely because
we observed that it did not detect recombination at a large proportion of sites
where homoplasies were present.

Detecting homoplasy. We estimated the number of substitution events at every
core site across the PhyML tree using maximum likelihood ancestral state recon-
struction64. For calculating homoplasy rates per branch of the PhyML tree, we
downweighted each potential homoplasy by the probability that it was, in fact, the
original mutation at that site. For this purpose, we considered each substitution at a
site equally likely to have been the original mutation, rather than a homoplasy.
A limitation of approaches such as ours that exploit homoplasy or genome
mosaicism to detect recombination is that they rely on sampling descendants of
both the recipient and donor lineage. An alternative method, but which also
exploits this signal, has recently been developed65.

Smoothed estimates of local homoplasy rate. We calculated a smoothed esti-
mate of the homoplasy rate on an equally spaced grid of points every 50 bp
throughout the reference genome as

l̂i ¼
X

j

wijRj=
X

j

wij; ð1Þ

where Rj is the number of excess substitution events (that is, homoplasies) detected
at informative BiP j, the summation being over all synapomorphic and homo-
plasious BiPs, and

wij ¼ exp � dij

�� ��=1000
� �

ð2Þ

is the weighting function, designed to detect variation at the kilobase scale, where
dij is the physical distance between the positions of grid point i and BiP j in
MRSA252. We calculated the standard error similarly as
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ŝ2
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Regions with significantly increased or reduced recombination relative to the
genome-wide average, �R, were ranked via a Z-score, defined at position i as

Zi ¼ l̂i � �R
� �

=s:e: l̂i

� �
: ð5Þ

The behaviour of this smoothed estimate is such that the homoplasy rate (and s.e.
and Z-score) at each point i draws on information from all BiPs, but downweights
the influence of BiPs as physical distance between the positions of grid point i and
BiP j increase. The strength of the weighting changes exponentially with physical
distance between grid point i and BiP j. The influence of the 1 kb scale is such
that if BiPs were evenly spaced every 30 bp, the total weight of BiPs within 1 and
6 kb, respectively would be 0.40 and 0.95. However, in regions where BiP density is
low, more distant BiPs can contribute substantially. Smoothed homoplasy rates
and LD plots for the entire genome, annotated by gene, are provided in
Supplementary Data 1 and 2.

Annotation of mobile elements. To identify the positions of mobile elements
across the genomes, we used two approaches. Using blastn, we first collated
sequences of known S. aureus mobile elements of different type (genomic island,
integrated plasmid, prophage, SAPI, SCC, transposon) and searched for similar
sequences in all the Oxfordshire isolates, attempting to allocate the type where
possible66,67. We recorded the positions of flanking core BiPs for each. The
accession numbers of the sequences used in blastn are given in Supplementary
Table 5, along with the element-specific thresholds. Different approaches were
taken for different elements: phages and SaPIs were located by blasting for
integrase genes; SCC by blasting for genes in the ccr and mec complexes;
transposons and plasmids by blasting for the whole element. We established
thresholds by training the blastn queries on the published reference sequences, and
the resequenced MRSA252 replicates. Lower thresholds were required when

blasting for whole elements, which were often split across contigs, in comparison
with the thresholds required when blasting for single genes.

We also developed an alternate method that exploits variable core BiP distance
(VCBD)—that is, variability in the distance between adjacent core BiPs—to detect
evidence of ancestral mobile activity. We identified the positions of core BiPs
among the Velvet contigs by aligning them to the MRSA252 reference genome
using the Mauve contig mover68. We calculated the variance in inter-BiP distance
between adjacent BiPs on the same Velvet contig (or closed chromosome in the
case of reference genomes) and divided by the mean distance between adjacent
BiPs on the same contig to obtain a standardized variance. Applying as a threshold
a standardized variance of 400 or above, we found 47 out of 65 known mobile
elements, and 36 other regions of mobile activity (Supplementary Fig. 6). We
manually curated all BLAST and VCBD hits to obtain a final set of 70 non-
overlapping, annotated mobile elements (Supplementary Table 6).

Regression analysis. To investigate the role of local genomic context in recom-
bination rate heterogeneity, we analysed the number of homoplasies at informative
BiPs using a negative binomial regression via the glm.nb command in the R
statistical package69. We used the negative binomial regression because it can
account for non-independence in the genome through the overdispersion
parameter y. We investigated the following covariates; at the individual BiP level:
minor allele frequency, identity of major and minor alleles, mutation type
(intergenic, synonymous, non-synonymous, read-through or nonsense), distance
from the origin; as 1 kb moving averages: core region density, core region diversity,
GC content; as 1 kb overlapping windows: the presence of genes in the MRSA252
reference genome encoding proteins (broken down by COG category70) and RNA
(ribosomal RNA, transfer RNA or miscellaneous), and the presence of mobile
elements identified as above (genomic island, integrated plasmid, prophage, SAPI,
SCC, transposon and unclassified). We defined core region density as the local
proportion of sites defined as core, which we identified above. We defined core
region diversity to be the local proportion of core sites exhibiting a pairwise
nucleotide difference, taken as a mean over all pairs of genomes. We assessed
significance by dropping covariates or groups of covariates from the model,
keeping the y parameter fixed. We measured final goodness-of-fit by calculating R2,
the squared correlation between mean observed and expected number of
recombination events in non-overlapping 1 kb intervals. Details of all core BiPs,
observed and predicted homoplasy and the predictors used for regression are
provided in Supplementary Data 3.

Poisson test. To rank individual genes for evidence of increased or reduced
recombination irrespective of genomic context, we performed gene-by-gene
Poisson tests for a significant difference in the number of recombination events at
core BiPs compared with the genome-wide average, �R, using the poisson.test
command in R.

Robustness to phylogenetic uncertainty. To test for robustness to uncertainty in
the phylogeny, we conducted 100 bootstrap replicates as follows: we resampled the
core invariant and biallelic sites and reconstructed the phylogeny using PhyML
(options -b 100 -v 0 -c 1 -s BEST). We re-estimated the number of substitution
events and homoplasies per site using maximum likelihood ancestral state recon-
struction. We recalculated a smoothed estimate of genome-wide variation in
homoplasy rate, and we re-fitted the negative binomial regression model to
investigate the role of local genomic context on homoplasy rate variation.
Supplementary Fig. 7 shows the robustness of the results to this procedure.
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