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a b s t r a c t

Lumbricus terrestris earthworms produce calcium carbonate (CaCO3) granules with unknown phys-
iological function. To investigate carbon sequestration potential, the influence of temperature and
CO2 concentration ([CO2]) on CaCO3 production was investigated using three soils, five temperatures
(3e20 �C) and four atmospheric [CO2] (439e3793 ppm). Granule production rates differed between
soils, but could not be related to any soil characteristics measured. Production rates increased with
temperature, probably because of higher metabolic rate, and with soil CO2 concentration. Implica-
tions for carbon sequestration are discussed. CaCO3 production in earthworms is probably related to
pH regulation of blood and tissue fluid in the high CO2 environment of the soil.

� 2013 The Authors. Published by Elsevier Ltd. All rights reserved.
Many earthworm species produce calcium carbonate (CaCO3)
granules in specialised glands (Darwin, 1881; Canti and Piearce,
2003). These granules are mainly calcite, with small amounts of
amorphous calcium carbonate, vaterite and aragonite (Gago-
Duport et al., 2008; Lee et al., 2008; Fraser et al., 2011; Brinza
et al., 2013). Granule production is likely related to regulation of
pH and CO2 concentrations ([CO2]) in body fluids, or regulation of
Ca2þ and other potentially toxic cations (e.g. Dotterweich and
Franke, 1936; Robertson, 1936; Crang et al., 1968; Piearce, 1972;
Bal, 1977). Lumbricus terrestris is a major CaCO3-producing species
in temperate soils. Production rates range from 0.8 to 2.9 mg/
earthworm/day (Canti, 2007; Lambkin et al., 2011a; Versteegh
et al., 2013). With 1.9e61.8 individuals/m2 (Berry and Karlen,
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1993; Bernier and Ponge, 1998; Nuutinen et al., 2001; Briones
et al., 2008) this equates to precipitating 2e261 kg C/ha/yr, a
potentially significant contribution to carbon sequestration.

The aim of this study was to further elucidate the carbon
sequestration potential of earthworms, by investigating the in-
fluences of temperature, and atmospheric and soil [CO2] on CaCO3
production rates in L. terrestris. Hypotheses were: 1) granule pro-
duction increases with temperature due to increased metabolism,
and, 2) granule production increases with soil [CO2] due to
increased demand for removal of CO2 from blood and tissue fluids.

CaCO3 production rates in L. terrestris were studied in laboratory
experiments with a minimum of 6 replicates (individual earth-
worms) per treatment (Table 1). The experiments were designed to
investigate the origins of the C in the calcium carbonate (results to be
reported elsewhere) and so we selected soils based on the crops (C3
or C4) of the previous seasons. Three agricultural soils (all Typical
Argillic Brown Earths; Avery, 1980) were sampled in Berkshire, UK:
Hamble (SU 61968 70235, C3), Red Hill (SU 56060 80033, C4 > 10
years), and Winning Hand (SU 61213 69140, alternating C3/C4). Soils
were air-dried and sieved to 250 mm(Lambkin et al., 2011b), ensuring
soils were granule-free and facilitating granule recovery at the end of
the experiments. For each replicate, 300 g of soil were mixed with
demineralised water to 65% water holding capacity (BS ISO, 1998),
ts reserved.
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Table 1
Experimental design and granule production rates.

Soil WHCa (%) pHb Cac (wt%) Organic matterd (%) T (�C) [CO2]
treatment

Atmospheric [CO2]e

(ppm)
[CO2] in soil airf

(ppm)
Ng Average CaCO3

production rate
(mg/g earthworm/day)

Experiment 1
Hamble 33% 7.5 � 0.3 1.3 � 0.02 3.8 � 0.1 10 ND ND 18 0.27 � 0.07a

16 29 0.40 � 0.08b
20 17 0.49 � 0.10c

Red Hill 56% 7.1 � 0.1 0.6 � 0.02 7.4 � 0.1 10 18 0.37 � 0.06d
16 18 0.47 � 0.10e
20 16 0.63 � 0.11f

Winning hand 43% 7.4 � 0.2 0.9 � 0.02 5.6 � 0.0 3 6 0.21 � 0.07g
16 9 0.44 � 0.06b,e
18 6 0.56 � 0.13b,e

Experiment 2
Winning hand 43% 7.4 � 0.2 0.9 � 0.02 5.6 � 0.0 16 Low 439 � 79 1132 � 395A 6 0.49 � 0.07H

Ambient 469 � 43 891 � 134A 5h 0.40 � 0.08H
Medium 1590 � 81 1924 � 203B 6 0.47 � 0.13H
High 3793 � 161 3122 � 141C 5h 0.57 � 0.10H

ND ¼ not determined; different letters (lower case for experiment 1, upper case for experiment 2) indicate significant differences between treatments at p < 0.05.
a Water holding capacity.
b Measured following Great Britain Agricultural Development and Advisory Service (1986).
c Analysed with a handheld XRF.
d Measured as loss on ignition.
e Atmospheric [CO2] in the glove boxes stabilised after 2e5 days, the “ambient” treatment showed a diurnal cycle.
f [CO2] in soil air at the end of the experiment, average � 1s of 3 replicates is shown (remaining analyses failed).
g Number of replicates per treatment.
h One earthworm died in each of these treatments leaving only 5 replicates per treatments; all errors are given as �1s.

Fig. 1. The relationship between temperature and CaCO3 production by L. terrestris for
three different soils.
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then put in a zip-lock bag with 5 g air-dried horse manure rehy-
drated with 10 ml demineralised water and one adult earthworm.

In Experiment 1 two soils were studied (Hamble and Red Hill)
and each bag was placed in a constant temperature room at 10, 16,
or 20 �C in darkness. During a later experiment, the Winning Hand
soil was used at 16 �C as well as two additional temperatures, 3 and
18 �C, using the same methods.

In Experiment 2, earthwormswere kept in open bags of soilwith a
mesh cover at 16 �C in glove boxes with a continuous 15 cm3/min
throughflowofairwithdifferent [CO2]. [CO2]of210,550and700ppm
were chosen to reflect the earlyHolocene, projectedmid 21st century
and end 21st century, respectively (IPCC, 2007). A fourth set of rep-
licates was kept in ambient laboratory conditions. The mass of indi-
vidual soil and earthworm-bearing containers wasmeasured twice a
week, and demineralised water added up to the original weight to
compensate for evaporation. As it proved impossible to maintain the
initially chosen [CO2] in the glove boxes, beakers containing NaOH
pellets or 46/48% NaOH solution were put in two of them to lower
[CO2], creating three different treatments, hereafter called “low”,
“medium” and “high” (the fourth being ambient conditions in the
laboratory). Atmospheric [CO2] and temperature were measured
every 10 minwith an Extech SD800 datalogger. Soil air was sampled
by placing a section of silicone tubing with a bung in each end in the
bags of soil at thebeginningof theexperiment. Airwasextracted from
the tube using a syringe immediately at the end of the experiment
(adapted from Clark et al., 2001).

For both experiments earthworms were acclimatised for three
weeks, and then transferred to identical treatment bags containing
the same type and mass of soil and manure at the same tempera-
ture and atmospheric [CO2]. After 28 days earthworms were
removed and the soil wet-sieved to 500 mm to retrieve granules,
which were air-dried and weighed. In Experiment 2, soil gas was
sampled and analysed for [CO2] using a Thermo Fisher GC Box
connected to a Delta Plus mass spectrometer.

Over both experiments, granule production ranged from 0.49 to
3.64 mg/individual/day, which equates to the sequestration of 1e
329 kg C/y/ha.
Granule production rate differs significantly between the Red
Hill soil and the other two (ANOVA: F¼ 19.404; p< 0.001; n¼ 137).
This does not appear to be related to any of the soil characteristics
measured (Table 1).

At higher temperatures earthworms produced more CaCO3
(Fig. 1). The increase of CaCO3 production rate with temperature
can be explained by an increase in metabolism as expected for
ectothermic animals.

In experiment 2, soil [CO2] was measured on 3 replicates per
treatment. The remaining [CO2] analyses failed. Over these 12 rep-
licates higher atmospheric [CO2] resulted in higher soil [CO2]
([CO2]soil¼ 0.63 [CO2]atmospheric þ 773; R2 ¼ 0.93; p< 0.001; n¼ 12);
soil pH showed no relationship to either atmospheric or soil [CO2].

A comparison of average CaCO3 production rates reveals no
significant differences between the different CO2 levels in Experi-
ment 2. A regression analysis however, shows a weak relationship



y = 5.9·10-5 x + 0.38
R² = 0.21; p = 0.032; n = 22
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Fig. 2. Granule production rates per replicate, plotted against average soil [CO2]. CaCO3

production by L. terrestris increases with soil [CO2] following the relationship
[CO2]soil ¼ 5.9 $ 10�5 CaCO3 (mg/g earthworm/day) þ 0.38 (R2 ¼ 0.21; p ¼ 0.032;
n ¼ 22) consistent with increased [CO2] causing more HCO�

3 being removed from
earthworm tissues by granule production.
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with higher soil [CO2] resulting in higher CaCO3 production rates
(Fig. 2; p ¼ 0.032; R2 ¼ 0.21).

There is on-going debate as to whether earthworms increase
soil greenhouse-gas emissions or carbon sequestration and the
timescale and nature of experiments required to determine this
(Lubbers et al., 2013; Zhang et al., 2013). Our study shows that it
is likely that at higher temperatures and atmospheric [CO2],
earthworm CaCO3 production will increase. As granules can
survive in soils for >300,000 years (own data), the potential
sequestration of C in the form of CaCO3 is on a longer-timescale
than e.g. roots and soil organic matter. More studies are needed
to elucidate the C sequestration potential of earthworms under
field conditions.

Our results of increased granule production under elevated
CO2 support the interpretation that granule production buffers
earthworm tissue HCO�

3 , which would otherwise increase due to
higher [CO2]. This is consistent with the findings of Kühle (1980)
who observed increased incorporation of 14C-labelled CO2 in
calciferous gland tissue at 5.0% CO2 compared to 0.2% CO2,
although granule production was not recorded. Voigt (1933)
carried out experiments at far higher [CO2] > 14% and recorded
reduced granule production. At this extreme level of CO2, HCO�

3
may have been retained in tissues/fluids to buffer potential pH
changes. The work of Kaestner (1967) and the negative rela-
tionship between pH and granule production observed by
Lambkin et al. (2011b) support this interpretation. The restricted
pH range of the soils used in this study may have prevented this
relationship from being apparent here. Thus it appears that
granule production can increase or decrease depending on
whether HCO�

3 is potentially in excess or is required for pH
buffering of tissues. However, more research is needed to
establish how CaCO3 production rates vary under a wider range
of soil [CO2], including measurements of earthworm tissue fluid
[CO2] concentrations and pH under different soil [CO2] regimes.
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