
An investigation into the impact of using 
various techniques to estimate Arctic 
surface air temperature anomalies 
Article 

Published Version 

Dodd, E. M. A., Merchant, C. J. ORCID: https://orcid.org/0000-
0003-4687-9850, Rayner, N. A. and Morice, C. P. (2015) An 
investigation into the impact of using various techniques to 
estimate Arctic surface air temperature anomalies. Journal of 
Climate, 28 (5). pp. 1743-1763. ISSN 1520-0442 doi: 
10.1175/JCLI-D-14-00250.1 Available at 
https://centaur.reading.ac.uk/37725/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .

To link to this article DOI: http://dx.doi.org/10.1175/JCLI-D-14-00250.1 

Publisher: American Meteorological Society 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


CentAUR 

Central Archive at the University of Reading 
Reading’s research outputs online



An Investigation into the Impact of using Various Techniques to Estimate
Arctic Surface Air Temperature Anomalies*

EMMA M. A. DODD AND CHRISTOPHER J. MERCHANT

Department of Meteorology, University of Reading, Reading, United Kingdom

NICK A. RAYNER AND COLIN P. MORICE

Met Office Hadley Centre, Exeter, United Kingdom

(Manuscript received 25 March 2014, in final form 19 September 2014)

ABSTRACT

Time series of global and regional mean surface air temperature (SAT) anomalies are a common metric

used to estimate recent climate change. Various techniques can be used to create these time series from

meteorological station data. The degree of difference arising from using five different techniques, based on

existing temperature anomaly dataset techniques, to estimateArctic SAT anomalies over land and sea ice was

investigated using reanalysis data as a test bed. Techniques that interpolated anomalies were found to result in

smaller errors than noninterpolating techniques relative to the reanalysis reference. Kriging techniques

provided the smallest errors in estimates of Arctic anomalies, and simple kriging was often the best kriging

method in this study, especially over sea ice. A linear interpolation technique had, on average, root-mean-

square errors (RMSEs) up to 0.55K larger than the two kriging techniques tested. Noninterpolating tech-

niques provided the least representative anomaly estimates. Nonetheless, they serve as useful checks for

confirming whether estimates from interpolating techniques are reasonable. The interaction of meteoro-

logical station coverage with estimation techniques between 1850 and 2011 was simulated using an ensemble

dataset comprising repeated individual years (1979–2011). All techniques were found to have larger RMSEs

for earlier station coverages. This supports calls for increased data sharing and data rescue, especially in

sparsely observed regions such as the Arctic.

1. Introduction

The Arctic is recognized as an important region in the

study of climate change because of expected and ob-

served changes in this region. Temperature changes are

predicted to be more rapid in the Arctic compared to

those predicted at lower latitudes as a result of climate

amplification processes (Serreze and Barry 2011). Arctic

average temperatures have already warmed more rap-

idly than those over the rest of the world (e.g., Bekryaev

et al. 2010; Serreze et al. 2009; Screen and Simmonds

2010). Many other changes associated with climate

change are also being recorded in the Arctic, including

reduced, thinner and younger sea ice cover; retreating

glaciers; increased ice sheet melt; thawing permafrost;

changes in precipitation; more frequent wildfires; and

shifting vegetation (ACIA 2005; Comiso et al. 2008;

Comiso 2012; Maslanik et al. 2007; Parkinson and

Comiso 2013). However, monitoring Arctic tempera-

ture change is challenging, particularly in areas covered

by sea ice for all or part of the year.

Time series of global and regional mean surface air

temperature (SAT) anomalies are one of the main

metrics used to estimate recent climate change. But, in

situ measurements of Arctic SATs are sparse, especially

early in the temperature record (Fig. 1), and the records

are often short. The sparseness of SAT data for the

Arctic is noted as an issue by many researchers as it

introduces uncertainty to the calculation of average

temperature changes in this region (e.g., Brohan et al.

2006; Cowtan and Way 2014; Jones et al. 2012; Parker
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et al. 2009; Pielke et al. 2007). Satellites provide con-

sistent, continuous, and detailed observations of the

radiometric temperature of ice and water surfaces in the

Arctic (Merchant et al. 2013). These radiometric surface

temperatures can be related to SATs and are available

for the last three decades. However, satellite tempera-

tures are not generally utilized at present for producing

datasets of SAT anomalies.

There are many different groups that generate datasets

of SAT anomalies using various techniques. These result

in time series of temperature changes that generally

produce similar trends in postindustrialization climate

change (see Fig. 2). There are many different techniques

and methods that can be used to quantify SAT changes

over the Arctic from sparse in situ measurements.

One technique that can be employed is to use avail-

able in situ temperature measurements exclusively. This

technique is used to create the Hadley Centre/Climatic

Research Unit (CRU) global temperature anomaly

dataset, version 4 (HadCRUT4; Morice et al. 2012),

which is produced by the Met Office Hadley Centre

from a combination of a land surface temperature

anomaly dataset produced by the Climatic Research

Unit of the University of East Anglia in conjunction

with the Met Office Hadley Centre (CRUTEM4; Jones

et al. 2012) and the Met Office Hadley Centre’s sea

surface temperature (SST) anomaly dataset, version 3

(HadSST3; Kennedy et al. 2011a,b). Since they do not

spatially infill data, any grid boxes that do not have

available in situ data are empty in these datasets for the

time periods in which SSTs or SATs are unavailable

(Morice et al. 2012). This means that large areas of the

Arctic are unrepresented in these datasets as both land

station records and SST records, especially in sea ice

regions, are temporally and spatially sparse even with

recent updates to the dataset (Kennedy et al. 2011a;

Morice et al. 2012).

Some datasets, such as the National Aeronautics and

Space Administration (NASA) Goddard Institute for

Space Studies (GISS) Surface Temperature Analysis,

also known as GISTEMP, interpolate and extrapolate

Arctic temperatures. GISTEMP is a combination of

linearly interpolated and extrapolated SAT data over

land and sea ice and the extended reconstructed sea

surface temperature dataset version 3b (ERSSTv3b),

which replaced the previous SST dataset in 2013, over

theocean (GISS2014;Hansen et al. 2010; Smith et al. 2008).

FIG. 1. The number of stations (a) reporting at least one temperature in each year and (b) reporting temperatures in all months of each

year, and (c) the percentage of grid cells with at least one station reporting within 1200km (fractional coverage).

FIG. 2. The annual Arctic SAT anomaly (K) over land relative to

1961–90 for several temperature anomaly datasets: GHCN-M

(Lawrimore et al. 2011), GISTEMP (Hansen et al. 2010), and

CRUTEM4 (Jones et al. 2012). The time series are produced from

the dataset grids using grid boxes north of 658N over land and

converted to be relative to 1961–90. The dataset versions used for

this figure are GHCN-M.3.2.2.20140729, GISTEMP (downloaded

on 29 Jul 2014), and CRUTEM4.2.0.0.
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SAT anomalies from the Global Historical Climato-

logy Network monthly temperature dataset, version 3

(GHCN-Mv3), along with some additional data, are

interpolated between stations and extrapolated up to

1200 km into regions with no measurements (Hansen

et al. 2010; Lawrimore et al. 2011). SAT anomalies are

produced for areas of sea ice by extrapolating SAT data

from nearby land stations into sea ice regions (Hansen

et al. 2010). Sea ice areas are therefore treated as if they

were land areas with a geographical area which changes

over time with sea ice extent.

Kriging is another interpolating technique used to

produce temperature anomaly datasets. The Berkeley

Earth surface temperature dataset is an interpolated

dataset of SAT anomalies that uses temperature records

from many preexisting datasets and statistical tech-

niques to produce a globally complete estimate of tem-

perature anomalies over land and ocean areas (Berkeley

Earth 2014a; Rohde et al. 2013a,b; Muller et al. 2013;

Rohde et al. 2012). The Berkeley dataset method utilizes

all available data records over land; the other datasets

discussed here require records for which a reference

‘‘normal’’ can be produced to calculate temperature

anomalies. The interpolating technique of simple kriging

is used as part of the Berkeley method along with other

statistical techniques (Rohde et al. 2013a,b; Muller et al.

2013; Rohde et al. 2012). A recent update to the dataset

adds HadSST data to the Berkeley land-area dataset and

extrapolates SAT data from the land-area dataset over

sea ice to make the Berkeley dataset globally complete

(Berkeley Earth 2014a,b). The Berkeley dataset is

therefore spatially complete in the Arctic and sea ice

areas are treated as if they were land areas.

How effectively do these techniques reconstruct Arctic

SATs and Arctic SAT change? Previous studies have

compared different techniques used to reconstruct surface

temperatures at different temporal and spatial scales.

Kriging techniques were often found to produce good

estimates of surface temperatures. For example, Cowtan

and Way (2014) and Rohde (2013) found that kriging

techniques outperformed both the HadCRUT4 method

of estimation and linear interpolation in the style of

GISTEMP for global monthly mean surface temperature

anomalies. Hofstra et al. (2008) found that kriging in

combinationwith splines was themore effective technique

for interpolating temperature data at daily resolution for

European land areas. Other techniques have also been

used to interpolate surface temperatures, including angu-

lar distance weighting (e.g., New et al. 2000), regression-

based methods (e.g., Vicente-Serrano et al. 2003), splines

(e.g., Price et al. 2000), and optimal interpolation (e.g.,

Kaplan et al. 1998). However, despite the range of studies

comparing surface temperature estimation techniques

at different temporal and spatial scales, as well as in

various different areas, no previous study has specifically

looked at estimating surface temperatures in the Arctic.

The purpose of this work was therefore to investigate

the impact of using several different estimation tech-

niques to estimate Arctic SAT anomalies over land and

sea ice areas. Five estimation techniques are investigated

in this study, which are based on the techniques used

for existing temperature anomaly datasets, such as

CRUTEM4, GISTEMP, and Berkeley Earth, that as-

similate only in situ data sources. The degree of differ-

ence arising from using these different estimation

techniques to estimate Arctic SAT anomalies was ex-

plored using European Centre for Medium-Range

Weather Forecasts (ECMWF) Interim Re-Analysis

(ERA-Interim) data as a test bed. ERA-Interim has

been found to be consistent with independent observa-

tions of Arctic SATs and provides realistic estimates of

Arctic temperatures and temperature trends that out-

perform, or are comparable to, other currently available

reanalyses for all areas of the Arctic so far investigated

(Chung et al. 2013; Dee and Uppala 2009; Jakobson

et al. 2012; Lindsay et al. 2014; Lüpkes et al. 2010; Screen
and Simmonds 2011). Therefore ERA-Interim data

were identified as a suitable test bed for this study. Two

investigations were undertaken. First, the performance

of the estimation techniques for the time period for

which ERA-Interim is available (1979–2011) was in-

vestigated, hereafter referred to as the ‘‘recent decades’’

experiment. Second, the interaction of changing station

coverage with estimation techniques was investigated

using historical meteorological station coverages between

1850 and 2011, hereafter referred to as the ‘‘historical

coverage’’ experiment. The outline of this paper is as

follows. Section 2 describes the data and techniques

used in this study. Section 3 evaluates estimation tech-

nique performance in recent decades. Section 4 analyses

the effect of the historical coverage of meteorological

stations. The final section discusses the results and pro-

vides a summary and conclusions.

2. Data and techniques

The objective was to compare the accuracy of Arctic

SAT anomalies produced using five estimation tech-

niques: linear interpolation (LI), global ordinary kriging

(GOK), global simple kriging (GSK), a restricted finite

volume interpolation technique (the ‘‘binning’’ tech-

nique), and not interpolating (NI). A description of

these estimation techniques is given in section 2c.

The estimation techniques were applied to input

anomalies, which are monthly SAT anomalies from

ERA-Interim sampled at Arctic meteorological station

1 MARCH 2015 DODD ET AL . 1745



locations. In this study the Arctic was defined as north of

658N, which approximately matches the area northward

of the Arctic Circle while matching cleanly the grid cell

edges of many gridded datasets of relevance. Two in-

vestigations were undertaken in this study: one focusing

on estimation technique performance in recent decades,

and one looking at the effect of using historical cover-

age. The same input anomalies were used as an input for

both investigations with some slight modifications spe-

cific to each investigation.

The estimation techniques yield estimated anomalies—

that is, estimates of the ERA-Interim SAT anomaly at

several temporal resolutions and, excluding the binning

technique, for both investigations. Two types of anom-

aly were investigated: Arctic-average anomalies, which

are area-weighted averages of SAT anomalies across the

Arctic region, and spatially resolved anomalies, which

are complete fields of Arctic SAT anomalies. Tech-

niques that produced spatially resolved anomalies as

well as Arctic-average anomalies (LI, GOK, and GSK)

are described collectively as interpolating techniques.

The binning and NI techniques were used to produce

Arctic-average SAT anomalies only and are hereafter

collectively referred to as noninterpolating techniques.

The target areas for the interpolation were land areas

and areas of sea ice with a sea ice concentration of more

than 15%, these being the conventional areas not ad-

dressed by SST anomalies when creating surface tem-

perature datasets. The ‘‘truth’’ for the target area

against which the estimated anomalies were compared

was the SAT anomaly from ERA-Interim, described

hereafter as reference anomalies.

a. Reference anomalies

To compare the accuracy of Arctic SAT anomalies

produced using different estimation techniques, a refer-

ence dataset was produced; the truth to which the

anomalies produced by each estimation technique will

be compared. The reference for this study was the SAT

anomaly from ERA-Interim, produced using the

method described in this section.

Monthly SAT anomalies were produced for each

ERA-Interim grid cell from 6-hourly resolution ERA-

Interim 2-m air temperature data between 1979 and

2011 relative to a 10-yr climatology (1990–99). A 10-yr

climatology was used instead of the conventional

30-yr climatology in order to simulate the use of a con-

ventional climatology in a longer dataset using ERA-

Interim data covering only 33 years. This was necessary

if the performance of the estimation techniques outside

of the climatology period was to be investigated. To

validate the reconstruction of spatially complete fields of

estimated anomalies at various temporal scales, the

spatially resolved monthly anomalies were used to cre-

ate annual anomalies for each calendar year and sea-

sonal anomalies for boreal winter [December–February

(DJF)], spring [March–May (MAM)], summer [June–

August (JJA)], and autumn [September–November

(SON)]. To validate the reconstruction of estimated

Arctic-average anomalies, area-weighted averages of

the monthly anomalies for the Arctic region were pro-

duced for each month using a cosine of latitude

weighting. Annual and seasonal Arctic-average anom-

alies were produced from the monthly Arctic-average

anomalies. These monthly, seasonal and annual Arctic

anomalies for each ERA-Interim grid cell and for the

Arctic area as awhole constitute our reference anomalies.

b. Input anomalies

Input anomalies is the term used in this study for

ERA-Interim data treated as if they were meteorologi-

cal station data. Using ERA-Interim data as input

anomalies instead of actual station measurements en-

ables us to isolate and evaluate the limitations of the

estimation techniques. The input anomalies were ERA-

Interim grid cell anomalies, sampled at Arctic meteo-

rological station locations.

The locations in latitude and longitude of all meteo-

rological stations in the CRUTEM4 databank were

obtained from the list of CRUTEM4 meteorological

stations in the International Surface Temperature Ini-

tiative (ISTI) stage 2 dataset (Thorne et al. 2011). The

CRUTEM4 dataset version used in this study was

4.1.1.0. Some of these stations are not included in the

gridded CRUTEM4 temperature anomaly dataset as

they are missing required information. Nonetheless, we

identified all land stations situated north of 538N that

provided information on Arctic temperatures necessary

for the interpolating techniques. Some of the land sta-

tions in the CRUTEM4 databank were located within

the sameERA-Interim grid cell. These duplicates would

have caused a problem for certain methods investigated

in this study such as kriging. Therefore, we identified all

stations that were duplicates at the ERA-Interim reso-

lution and merged the records. This creates a single

station record comprising the reporting record of all

stations located in the same grid cell. The location asso-

ciated with the merged stations is the latitude and longi-

tude of the first station listed. For visualization purposes,

the locations of the identified, nonduplicated stations are

shown in Fig. 3. Monthly anomalies from the ERA-

Interim grid cell containing each identified meteorologi-

cal station were extracted from the reference dataset.

These station anomaly time series were masked and used

to create input anomaly datasets for estimating anomalies

in recent decades and using historical coverages.
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1) RECENT DECADES

Not every station identified from the CRUTEM4

databank for use in creating the input datasets reported

a temperature in every year or month between 1979 and

2011. This is due to stations being moved, added, and

discontinued; problems with instrumentation; and reports

that are not communicated in real time. To account for

this, information onwhich stations report in each year and

month between 1979 and 2011 was extracted from the

CRUTEM4 databank and the input dataset was masked

accordingly. There was no required minimum number of

reports. The locations of all stations that contributed to

the input dataset for investigating the performance of the

various techniques in recent decades (stations listed as

reporting between 1979 and 2011) are shown in Fig. 3.

2) HISTORICAL COVERAGE

As ERA-Interim data are only available back to 1979

it was not possible to investigate the effect of using

historical coverage to estimate Arctic SAT anomalies

before 1979 using ERA-Interim data contemporary with

the meteorological station coverage. Instead we apply

each year’s historical station coverage (1850–2011) to

the estimation of Arctic anomalies for all years of the

ERA-Interim period (1979–2011). For each year’s his-

torical coverage this gives an ensemble of 33 results

(ensemble members) whose statistical properties can be

investigated. Each ensemble member comprises a set of

repeated instances of each 12-month year between 1979

and 2011, therefore each ensemble member is 162 times

12 months long, with the anomalies from the same

12 months repeated throughout. Information on which

input stations reported in each year and month between

1850 and 2011 was extracted from the CRUTEM4 data-

bank. The locations of all stations that contributed to

the input dataset for investigating the effect of using

historical coverage are shown in Fig. 3.

c. Estimation techniques

1) LINEAR INTERPOLATION

LI (also known as kernel smoothing using a conical

filter) is used to combine input data and estimate SAT

anomalies over land and sea ice at unsampled points

in the GISTEMP dataset (Hansen et al. 2010). The

FIG. 3. The locations of allmeteorological stations in theCRUTEM4databank.Differentmarkers

are used to show the locations of the meteorological stations depending on whether they are above

538N or above 658N and whether or not they report a single temperature between 1979 and 2011.
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anomaly at each GISTEMP grid cell is a weighted av-

erage of the input anomalies within a certain radius. The

LI technique used in this study and described below was

based on the GISTEMP technique.

The anomaly estimated at each grid cell is a weighted

average of the input anomalies within a 1200-km radius

of that grid cell. The weight w decreases linearly from

unity for input anomalies located at the grid cell being

analyzed (distance d between the input anomaly and the

grid point being analyzed is 0 km) to zero for input

anomalies located more than or equal to the radius away

(1200 km) [Eq. (1)]. This weighting method and the

1200-km radius is the same as used for GISTEMP:

w5 12
d

Radius
, when d#Radius. (1)

2) KRIGING

Kriging refers to a set of geostatistical methods of

interpolation that interpolate variables using a given

covariance or semivariance structure (Cressie 1990).

The variance structure is often determined from avail-

able observations of the variable. Two forms of kriging

were investigated in this study: global ordinary kriging

and global simple kriging. The differences between the

two kriging methods applied in this study are described

in this section. A full description of the equations and

variables used for both kriging methods is available in

the appendix. A summary of the approach detailed in

the appendix is as follows:

d A semivariance function was determined from the

input anomalies. This function prescribed the weight-

ing for this interpolation; stations up to 3585.9 km

away can contribute to the kriged anomaly and the

station weighting halves at about 1200 km.
d The semivariance function was used to construct

a semivariance matrix between the input anomalies

as well as a vector of semivariances between the input

anomalies and the grid cell to be analyzed.
d Covariances were calculated from the semivariance

matrix and semivariance vector.
d A vector of optimal weights was produced by solving

the system of linear equations.
d An estimate of the anomaly at each ERA-Interim grid

cell was given by the dot product of the vector of

optimal weights and the input anomalies.

(i) Global ordinary kriging

The first kriging method investigated is GOK.

‘‘Ordinary’’ kriging assumes stationarity of the mean of

the variable, where the mean is unknown a priori. The

unknown mean is determined during interpolation by

constraining the optimal weights so that they sum to 1.

‘‘Global’’ refers to the fact that one single covariance

function is used for all grid cells. In this study the same

covariance function is also used for all months and years

to be interpolated.

(ii) Global simple kriging

GSK is similar to GOK, but with the assumption that

the mean of the variable is known rather than unknown.

This means that the weights are not required to sum to 1

and they are calculated without this constraint. The

mean of the variable is instead added to the dot product

of the vector of optimal weights and the input observa-

tions to produce an estimate of the variable.

The Berkeley dataset is produced using a method that

includes a simple kriging technique. In the Berkeley

method the temperature anomaly field over land is

conceptualized as the sum of the global mean land

temperature over time, the climate at each location, and

a ‘‘weather’’ field for each location over time (Rohde

et al. 2012, 2013a). Simple kriging is applied to the

weather field using a global correlation function instead

of a covariance function (Rohde et al. 2012, 2013a). The

correlation function is assumed to be a good approxi-

mation for the covariance function as long as the vari-

ance changes slowly with time (Rohde et al. 2012,

2013a). This study also uses a method of simple kriging

with a global variance function. However, GSK in this

study interpolates the temperature anomalies rather

than a weather field and uses the same global covariance

function as GOK rather than a correlation function. A

mean of 0 was assumed for GSK as the anomaly ob-

servations were expected to have this mean value.

3) NONINTERPOLATING TECHNIQUES

Noninterpolating techniques were the final techniques

applied in this study. In this study ‘‘noninterpolation’’

techniques are those that do not produce spatially com-

plete fields of data. The Met Office Hadley Centre and

Climatic Research Unit of the University of East Anglia

datasets such as CRUTEM4,HadCRUT4, andHadSST3

use noninterpolating techniques. In this study two non-

interpolating techniques were explored. Comparing the

results from these two techniques allows us to explore

the impact of spreading information through the use of

58 grid boxes.

(i) The binning technique

The first technique, the binning technique, is similar to

the technique used by the CRUTEM4 dataset. The input

anomalies were gridded to the 58 3 58 grid used for

CRUTEM4, instead of the ERA-Interim grid used by all

other estimation techniques in this study, so that each grid

1748 JOURNAL OF CL IMATE VOLUME 28



box anomaly is a simple average of all available station

anomaly values within that grid box (Jones et al. 2012).

(ii) Not interpolating

In the second technique, NI, input anomalies were

treated as estimated anomalies and analyzed without

modification.

d. Estimated anomalies

The estimation techniques used in this study yield

estimates of ERA-Interim monthly Arctic SAT anom-

alies when applied to the input anomalies. All estima-

tion techniques used in this study produced estimated

monthly anomalies gridded to the ERA-Interim grid,

except for the binning technique. These monthly anom-

alies were used to produce estimates of spatially resolved

Arctic anomalies and Arctic-average anomalies at

monthly, seasonal, and annual time scales for both re-

cent decades and historical coverages.

The estimated monthly anomalies from all inter-

polating techniques were masked using information on

monthly average sea ice concentration from ERA-

Interim. Only anomalies from Arctic land areas and

areas of sea ice with a sea ice concentration of more

than 15% were retained as the target areas for this

study. Estimated monthly, seasonal, and annual Arctic-

average anomalies were produced by area-weighting the

estimated anomalies at these time scales using a cosine

of latitude weighting. These estimated monthly, sea-

sonal, and annual spatially resolved Arctic anomalies

and Arctic-average anomalies were compared to the

reference anomalies.

e. Comparison of estimated anomalies to reference
anomalies

To investigate the performance of our chosen esti-

mation techniques for both recent decades and historical

coverages the estimated anomalies were compared to

the reference anomalies. Errors were calculated for es-

timates of both spatially resolved and Arctic-average

anomalies by subtracting the relevant reference anom-

alies from the estimated anomalies. These errors were

assessed at monthly, seasonal, and annual time scales.

Two error metrics were calculated: the root-mean-

square error (RMSE) and compound relative error

(CRE). RMSE is a metric that measures the absolute

error. CRE measures the relative error (i.e., the error

variance as a fraction of the expected variance) [Eq. (2)].

The estimated anomalies are represented by e, r desig-

nates the reference anomalies, and r is the mean of the

reference anomalies. CRE is a unitless metric where 0 is

the best result and higher numbers represent a higher

relative error:

CRE5

�
n

i51

(ei 2 ri)
2

�
n

i51

(ri 2 r)2
. (2)

Some additional metrics which measure the absolute

error were also calculated, but were found to be ex-

tremely similar to the RMSE and are therefore not

reported here. This similarity between metrics shows

that there are few outliers in the errors and that the

errors are of a similar magnitude.

3. The performance of estimation techniques in
recent decades

The performance of all estimation techniques, both

interpolating and noninterpolating, in recent decades

was investigated for the reconstruction of Arctic-

average anomalies. Only interpolating techniques were

investigated in terms of spatially resolved anomalies in

recent decades. Their performance was analyzed by

comparing the estimated anomalies to the reference

anomalies.

a. Arctic-average anomalies

To investigate the performance of estimation tech-

niques for estimating Arctic-average anomalies in re-

cent decades, time series of estimated and reference

anomalies, as well as the errors in the estimated anom-

alies, were produced and examined.

The time series for annual anomalies are shown in

Fig. 4. NI was the least accurate technique for annual

Arctic-average anomalies. NI produced estimated an-

nual anomalies with errors of up to nearly 1K, whereas

the errors for all other estimation techniques were below

0.60K. Interpolating techniques were more accurate

than noninterpolating techniques; their errors were be-

low 0.30K. The errors produced by the different in-

terpolating techniques were very similar to each other.

Figure 5 shows the estimation errors for monthly Arctic-

average anomalies. One representative month is shown

for each season. The relative performance of the tech-

niques formonthly anomalies was the same as for annual

anomalies. Interpolating techniques weremore accurate

than noninterpolating techniques, with errors generally

below 1K, and the errors produced by the different in-

terpolating techniques were very similar to each other.

NI produced monthly anomalies with the largest errors;

up to nearly 4K in some months.

The errors in estimated monthly Arctic-average

anomalies were found to have a seasonal variation; er-

rors were largest in winter and smallest in the summer

(Fig. 5). This seasonality arises from seasonality in

1 MARCH 2015 DODD ET AL . 1749



Arctic temperatures. Figure 6 is a box-and-whisker plot

of monthly area-weighted Arctic SATs over land and

sea ice areas from ERA-Interim. As shown in Fig. 6,

Arctic SATs are smaller in magnitude and have less

variability in the summer compared to winter months. In

summer the SAT over sea ice varies around the freezing

point, as a result of latent heat effects from melting sea

ice (Przybylak 2003). SATs over sea ice are therefore

smaller in magnitude and variability in the summer than

in the winter, when their variability is more dependent

on the atmospheric circulation than on insolation and

latent heat effects. SATs over land areas also show less

variability and are smaller in magnitude in the summer

so the same seasonal pattern is observed over land

(Przybylak 2003). This seasonality in Arctic SATs leads

to seasonality in the anomalies produced from these

temperatures, and therefore also in the size of the errors

in the estimated anomalies.

The performance of estimation techniques in recent

decades was further investigated by producing a Taylor

diagram from the errors in estimated annual and

monthly Arctic-average anomalies (Fig. 7). Taylor dia-

grams are a way of graphically summarizing how well

estimated variables match a reference dataset. The

Taylor diagram confirms the results mentioned above

for estimated Arctic-average anomalies. In addition it

shows that kriging techniques were slightly more accu-

rate for the majority of the Taylor diagram metrics

compared to LI. However, as noted previously, the dif-

ferences between the interpolating techniques were

small. For example, the cross correlation for annual

anomalies produced by both kriging techniques com-

pared to the reference was 0.996 while for LI the cross

correlation was 0.991. Kriging techniques were there-

fore slightly more accurate than LI in general for Arctic-

average anomalies and GSK was the most accurate

technique. However, none of the interpolating tech-

niques were notably more accurate than the others. This

agrees with the findings of similar studies (Cowtan and

Way 2014; Rohde 2013).

The sizes of the errors produced by the interpolating

techniques were fairly consistent in recent decades.

However, after 2005 the errors for LI increased slightly

while the errors for kriging techniques remained rela-

tively constant as observed in Fig. 4. One possible ex-

planation for this decrease in technique performance is

the impact of the changes that have been seen in the

seasonal cycle of Arctic sea ice cover, sea ice extent and

heat fluxes since 2005 as a result of rapid ice loss events

(Stroeve et al. 2012). But as both of the interpolation

FIG. 4. (left) Time series of annual Arctic-average anomalies between 1979 and 2011 produced using each esti-

mation technique investigated in this study and from reference anomalies. (right) The errors in estimated anomalies

relative to the reference anomalies.
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techniques investigated here use fixed variance func-

tions for all grid cells and for all time steps, the changes

inArctic sea ice areas resulting from rapid ice loss events

would not explain the relative change in performance of

LI compared to the kriging techniques. Therefore it is

more likely that the reduction in accuracy of LI after

2005 is due to the impact on this technique of a decrease

in the number of input station records as illustrated in

Fig. 1. LI may be more sensitive to reductions in tem-

perature record coverage than kriging techniques. This

is explored more fully in section 4b.

To summarize, the interpolating techniques used in

this study provided a more accurate estimate of Arctic-

average anomalies than noninterpolating techniques.

Kriging techniques were found to provide slightly more

accurate estimates than LI and GSK was the most ac-

curate. However, the choice of technique did not make

a meaningful difference to the accuracy of the results,

especially for annual anomalies.

b. Spatially resolved anomalies

To investigate the performance of interpolating

techniques for reconstructing spatially resolved anom-

alies in recent decades the RMSE andCRE for each grid

cell in the Arctic was mapped and examined. Figure 8

shows the mapped RMSE and CRE for estimated an-

nual anomalies. All interpolating techniques investi-

gated produced estimates of annual anomalies with

RMSEs below 2K for more than 99% of grid cells. For

monthly anomalies (not shown), RMSEswere below 2K

for 47%–99% of grid cells depending on the month of

the year; on average 83%of grid cells hadRMSEs below

2K. Therefore all interpolating techniques investigated

produced estimates of monthly and annual anomalies

that were, for the majority of grid cells, within 2K of the

reference. The area-weighted average of the RMSE and

CRE across the Arctic was calculated for estimated

FIG. 5. Time series of the errors in estimatedmonthlyArctic-average anomalies relative to the reference anomalies between 1979 and 2011

for each estimation technique investigated in this study. One representative month for each season is shown.

FIG. 6. A box-and-whisker plot of the range, median, and lower

and upper quartiles of monthly area-weighted Arctic SAT aver-

aged over land and sea ice from ERA-Interim between 1979 and

2011. A reference line is included at 273.13K.
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annual and monthly anomalies using a cosine of latitude

weighting. Figure 9 shows the monthly and annual area-

weighted averages for RMSE and CRE. All inter-

polating techniques produced estimated anomalies that

were, on average, within 2K of the ERA-Interim ref-

erence as shown in Fig. 9. The area-weighted averages of

the metrics were found to contain a seasonal variation;

RMSEs were larger in winter than for other seasons and

smallest in summer. This seasonality was also observed

for errors in Arctic-average anomalies in recent decades

and is explained in section 3a. CRE, which measures

relative error, however, had a seasonal pattern opposite

to that of the RMSE; while the absolute errors are

smallest in the summer, the relative error is very small for

most months and largest in the summer. Consequently,

despite the low absolute error for estimated anomalies in

summer, there is lower confidence in these anomalies

compared to other months as the error is large compared

to the size of the anomaly being estimated. This implies

that monthly or seasonally varying covariances may be

beneficial for interpolating Arctic anomalies.

On average LI was found to produce the poorest re-

sults for all metrics for both annual and monthly

anomalies. The larger errors associated with LI can be

seen in Fig. 9. The annual and monthly anomaly error

metrics for LI were up to 0.15 and 0.77K larger re-

spectively than for kriging techniques. The larger errors

in anomalies estimated using LI can also be seen for the

majority of grid cells in the maps of RMSE and CRE in

Fig. 8. Kriging techniques therefore produced estimated

anomalies closer to the reference than LI.

The kriging methods investigated were equally good

at estimating anomalies on average. The difference be-

tween the monthly and annual error metrics for the two

kriging methods was, for their area-weighted averages,

less than 0.10K. In addition, at the grid cell scale, GSK

errors were, for the majority of grid cells in the Arctic,

within 0.10K of GOK errors (Fig. 8). However, when

the maps of RMSE and CRE in Fig. 8 were compared

for the krigingmethods over sea ice areas only, GSKwas

found to provide a slightly more accurate estimate of

anomalies over sea ice areas than GOK. This is due to

the choice of a representative mean for GSK, which

influenced the anomalies produced in the Arctic for

regions, such as areas of sea ice, where no observations

of SAT were available.

When estimating spatially resolved Arctic anomalies

the choice of interpolationmethodwas found to influence

the accuracy of the estimated results, unlike for Arctic-

average anomalies where the choice of interpolation

method did not make a large difference to the results.

This suggests that the errors in different subregions of the

Arctic cancel each other out for Arctic-average anoma-

lies estimated using interpolation techniques. Comparing

the errors spatially avoids this cancellation of errors and

therefore emphasizes differences in the performance of

the interpolation techniques.

4. The effect of historical meteorological station
coverage on SAT indices

The second objective of this study was to investigate

the interaction of historical station coverage with several

techniques used for estimating anomalies. The impact of

changing station coverage was simulated by creating an

ensemble dataset of input anomalies using ERA-

Interim data masked according to station coverage be-

tween 1850 and 2011. Each ensemblemember comprises

a set of repeated instances of one 12-month year from

the period 1979–2011, masked according to the station

coverage between 1850 and 2011. In other words, each

ensemble member is 162 times 12 months long, with the

anomalies from the same 12 months repeated through-

out, masked according to the station coverage in each

month of successive years from 1850 to 2011. The per-

formance of the estimation techniques and the effect of

historical coverage was analyzed by comparing the

FIG. 7. A Taylor diagram comparing estimated Arctic-average

monthly and annual anomalies produced by each estimation

technique investigated in this study to the reference anomalies.

Each symbol plotted represents a month of the year or the annual

value. Cross correlation is shown by the angle with respect to the x

axis. The standard deviations (normalized with respect to the ref-

erence standard deviation) can be read from the y axis. The RMSE

(K) of the estimated anomalies is proportional to the distance to

the point on the x axis identified as REF (shown by the concentric

circles marked 0.25 to 1). The values for July estimated by not

interpolating and the binning technique are off the scale of this

diagram.
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estimated anomalies for each ensemble member to the

corresponding reference anomalies. This gives an in-

dication of the error statistics of each estimation tech-

nique based on the simulation.

For recent decades the performance of all estimation

techniques was investigated for the reconstruction of

Arctic-average anomalies. The performance of inter-

polating techniques only was investigated for anomaly

pattern reconstructions. The results in section 3 showed

that NI was the least representative technique compared

to the reference anomalies for estimating Arctic-average

anomalies. As a result, in this section only the perfor-

mance of the other four techniques is described.

a. Relative performance of estimation techniques

1) ARCTIC-AVERAGE ANOMALIES

The interaction of changing historical station coverage

with the chosen estimation techniques was investigated

for Arctic-average anomalies by comparing the esti-

mated annual and seasonal Arctic-average anomalies

for each ensemble member to the corresponding refer-

ence anomalies. This produced ensemble datasets of

errors where each ensemble member had an error value

for each year or season of historical coverage. An ex-

ample of an ensemble dataset of errors is shown

graphically in Fig. 10. The RMSE and CRE across en-

semble members for each year of historical coverage are

shown in Fig. 11.

When using historical coverages, conclusions about

the relative performance of the techniques for Arctic-

average anomalies were very similar to those for recent

decades. Interpolating methods generally provided

a more accurate estimate of Arctic-average anomalies

than noninterpolating methods. For historical cover-

ages before 1930 the RMSE and CRE were generally

smallest for kriging methods; kriging error metrics were

smaller than those for LI for between 62% and 92% of

coverage years before 1930. The errors for kriging

methods also changed less during this time period

and exhibited less interannual variability. GSK was

comparable to GOK and often produced anomaly

FIG. 8. The RMSE and CRE between spatially resolved annual Arctic anomalies estimated using the investigated interpolating

techniques and reference anomalies in recent decades (1979–2011). CRE is a unitless metric where 0 is the best result and higher numbers

represent a higher relative error.
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estimates which were more representative (Fig. 11).

However, after 1930 (and particularly between 1930 and

1950), LI was more likely than kriging methods to pro-

duce more accurate estimates of anomalies; seasonal

and annual metrics were smaller for 89% of coverage

years on average. Coincident with this was a rapid in-

crease in station coverage between 1930 and 1950 as

shown in Fig. 1. The LI technique used in this study was

therefore more sensitive to reductions in station coverage

than the kriging techniques. This fits with the results de-

tailed in section 3a. Nevertheless, the errors for the tech-

niques are, for the majority of years, within 0.20K of each

other and LI is not substantially better than the kriging

techniques in this time period, especially after 1950.

So, for Arctic-average anomalies estimated using

historical coverages the results are similar to those for

recent decades. Errors are generally smallest for kriging

methods and GSK often produced the smallest errors of

the two kriging methods.

2) SPATIALLY RESOLVED ANOMALIES

The interaction of historical coverage with inter-

polating techniques was also investigated for spatially

resolved anomalies. A field of RMSE was calculated

from spatially resolved errors for each year of historical

coverage across all ensemble members. The area-

weighted average RMSE was then calculated for each

year of historical coverage and the results are shown in

Fig. 12.

For spatially resolved anomalies estimated using his-

torical coverages the results are again very similar to

those for recent decades. For most months and coverage

years kriging techniques were more likely to produce

spatially resolved anomalies with greater accuracy than

LI. Errors produced by kriging techniques were smaller

for 62%–91% of coverage years after 1890, on average

by 0.2–0.4K. For coverages before 1890, LI was slightly

more likely to produce estimated anomalies with greater

accuracy than the kriging techniques, except in summer.

However, for most months the errors are only about

0.20K smaller and LI is therefore not notably better

than kriging techniques in this time period, except

for autumn anomalies. Neither kriging technique was

substantially better in terms of estimating spatially re-

solved anomalies on average. But when maps of the

RMSE were examined, the performance of the kriging

FIG. 9. The area-weighted average of the RMSE and CRE between estimated spatially resolved Arctic anomalies

(estimated using the investigated interpolating techniques) and reference anomalies in recent decades (1979–2011):

(left) monthly anomalies and (right) annual anomalies. CRE is a unitless metric where 0 is the best result and higher

numbers represent a higher relative error.
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techniques was not constant in time. For coverages prior

to 1910, GOK often produced slightly more accurate

estimates of anomalies for sea ice areas than GSK as

illustrated in Fig. 13. After this GSK was more repre-

sentative of SATs over Arctic sea ice.

In conclusion, kriging techniques produced the

smallest errors, in general, for spatially resolved sea-

sonal and annual anomalies when using historical sta-

tion coverages between 1850 and 2011. Neither kriging

technique was substantially better in terms of estimating

spatially resolved anomalies on average.

b. The interaction of historical coverage with
estimation techniques

All techniques, regardless of their relative perfor-

mance, were found to have larger values of RMSE and

CRE for earlier historical coverages. For Arctic-average

anomalies (Fig. 11) the largest error metric values oc-

curred before 1890. After this they decreased until about

1950 when the smallest values were reached and the

values remained relatively constant. Using pre-1950

historical coverages caused larger errors and a greater

uncertainty, as measured by the spread of the errors

across the ensemble members; errors can be up to 2K

larger for earlier historical coverages. This effect was

observed for all four of the estimation techniques in-

vestigated forArctic-average anomalies. In addition, the

errors were more variable prior to 1950, which shows

that the historical coverage impacted both the magnitude

and interannual variability of the errors. For spatially

resolved anomalies (Fig. 12) the temporal evolution of

error metrics was very similar to the temporal evolu-

tion seen in Arctic-average anomaly estimations. The

largest metric values occurred in earlier historical

coverage years and decreased until about 1950 before

reaching their smallest values. Errors in anomaly

patterns can be up to 2.5 K larger on average for

coverages before 1950 as well as showing more in-

terannual variability.

The interaction of historical coverages prior to 1950

with interpolating techniques given example (1979–

2011) anomaly fields resulted in larger errors and

a greater uncertainty in the estimated anomalies. This

was observed for both Arctic-average and spatially

resolved anomalies and for all techniques. Therefore,

there were no substantial changes in the relative per-

formance of the estimation techniques when historical

coverages were used but the general performance of

the techniques did change. This shows that reductions

in station coverage have an impact on all estimation

techniques investigated. As the number of stations

observing decreases the observing network is in-

creasingly likely to miss the key features of weather

patterns. This will introduce larger errors and un-

certainties into anomalies estimated from sparse data

coverage.

5. Discussion

In this study the choice of technique used to estimate

Arctic SAT anomalies over land and sea ice areas was

found to have an effect on the accuracy of the estimated

anomalies produced. For Arctic-average anomalies, in

both recent decades and for historical coverages, it was

found that interpolating methods were most represen-

tative of the ERA-Interim reference. This is a result of

the sparseness of temperature data in the Arctic, par-

ticularly over sea ice. Sparse sampling of a region

means that large areas are unrepresented when non-

interpolating techniques are used to estimate anomalies.

This introduces uncertainty to the calculation of global

and regional average temperature changes, especially if

the unrepresented areas are likely to be warming at

a faster (or slower) rate than sampled regions, such as in

the Arctic. Therefore, as long as an interpolation tech-

nique provides a reasonable estimate of the anomalies in

unsampled areas of the Arctic it will provide a more

representative estimate of the Arctic-average anomaly.

The aforementioned sparse sampling of Arctic temper-

atures also explains the more accurate results from the

binning technique compared to the NI technique. In

gridding the anomalies to a larger 58 grid there is some

FIG. 10. The error in annual Arctic-average anomalies estimated

by linearly interpolating each year of ERA-Interim anomalies (1979–

2011, each year is shown by one line) masked using historical station

coverages (1850–2011). (Similar graphs for all estimation techniques

and seasons are provided in the supplemental material.)
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spatial infilling of anomalies, leading to a slightly more

representative estimate of Arctic-average anomalies.

Of the interpolating techniques investigated,

kriging techniques provided the smallest errors

in estimates of Arctic anomalies overall. GSK was

often the most accurate kriging method. This was

observed for Arctic-average anomalies in both re-

cent decades and for historical station coverages.

Nonetheless, the choice of interpolating technique

did not make a substantial difference to the accuracy

FIG. 11. The RMSE (K) and CRE across ensemble members (each year of ERA-Interim anomalies 1979–2011) in each historical

coverage year for estimated seasonal and annual Arctic-average anomalies. CRE is a unitless metric where 0 is the best result and higher

numbers represent a higher relative error.
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of the results, especially for annual anomalies.

Kriging techniques also produced the most repre-

sentative estimates of spatially resolved anomalies.

For both investigations the kriging techniques pro-

duced anomalies that were, on average, equally good

estimates. GSK was generally more representative

over sea ice regions. However, SAT anomalies over

sea ice were slightly better estimated by GOK prior

to about 1910 in the historical coverage investi-

gation. Yet GOK is not notably better and, as the

impact of changing station coverage on estimation

techniques was investigated using an ensemble

dataset of example (1979–2011) anomaly fields, the

results should be regarded with caution.

LI was the least representative of the interpolation

techniques, both for Arctic-average anomalies and

spatially resolved anomalies. This is a result of both

the sparseness of temperature data in the Arctic

as well as the characteristics of the LI technique.

First, the radius used for LI, which is based on the

GISTEMP technique, is smaller than the radius for

the kriging techniques, which was identified from the

variance of the input data. Some areas of the Arctic

Ocean are at the extreme limits of the extrapolation

radius and, as a result, the interpolation is influenced

heavily by a very small number of stations distant

from the location being estimated which increases

the error in the estimated anomalies. Second, in

sparsely observed regions where the distance to the

nearest station is large, kriging techniques relax to-

ward a prior value, here either 0 or the mean of the

variable. This effectively bounds the maximum

weight of an individual station and leads to a

smoother interpolation in regions which are poorly

observed. LI, however, does not relax toward a prior

value and this increases the influence of a small

FIG. 12. The area-weighted RMSE (K) for spatially resolved Arctic anomalies across ensemble members (each year of ERA-Interim

anomalies 1979–2011) produced by the investigated interpolating techniques.
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number of stations on the interpolation. Therefore

both the sparseness of temperature data and the

features of the LI technique cause the LI technique

to be less representative than kriging techniques for

Arctic SAT anomalies.

Of the kriging techniques investigated in this study,

results from GSK were the most representative of the

reference anomaly fields. The difference between the

kriging techniques is in the prior value they relax to.

GOK relaxes to the best linear unbiased estimator of

the mean of the variable whereas for GSK the mean is

defined a priori. Therefore GOK should be a more

robust choice of technique as the results are not de-

pendent on the choice of a representative mean.

There are a few possible explanations for the superior

performance of GSK compared to GOK. If the cen-

tral Arctic is sufficiently isolated from the weather in

the rest of the Arctic, which informs the estimated

mean for GOK, then the a priori mean chosen for

GSK may be a better fit than the calculated GOK

mean. Related to this, the input anomalies include

stations down to 538N. This includes regions that are

showing a cooling signal during a similar time period

to the Arctic warming (e.g., Cohen et al. 2012). This

could also affect the estimated GOK mean and lead

to the GSK mean being more representative. The

better accuracy of GSK over GOK could also be

a feature of the relatively short time period and

FIG. 13. The mapped RMSE (K) across an ensemble of 33 different years of ERA-Interim data (1979–2011) for

spatially resolved annual Arctic anomalies produced usingGOK andGSK for two example historical coverage years:

(top) 1901 and (bottom) 1939.
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climatology period used in this study. A mean of

0 might be a good approximation for the 33 years of

data and 10-yr climatology used in this study but may

be less representative for a longer time period, in

which case GOK or the use of a slowly changing

climatology as the prior might provide better anom-

aly estimates. GSK provides a better estimate of

Arctic anomalies in this study but GOK may be

a better choice of kriging technique in general as it is

not dependent on the choice of a representative, and,

in this study, constant, mean.

NI was the least representative technique compared

to the reference for Arctic-average anomalies in both

investigations. However, anomaly estimates from

noninterpolating techniques are still helpful; they serve

as useful checks for confirming whether estimates from

interpolating techniques are reasonable. Also, using

different techniques to estimate anomalies allows us to

look at structural uncertainty in estimates of climate

change. Furthermore, it must be noted that, while

kriging techniques were found to provide more accu-

rate estimates of Arctic anomalies in general, the

choice of an estimation technique to apply to Arctic

SAT anomalies will depend on the time period in-

vestigated, whether anomaly patterns or Arctic-

average anomalies are being studied, and which area

of the Arctic is to be researched. For example, if

a study’s objective were to estimate spatially resolved

Arctic SAT anomalies over sea ice in recent decades,

the results of this study suggest that GSK should be

applied. If land area anomalies were to be estimated

instead then the results of this study suggest that either

kriging technique would be equally accurate. Also the

parameters, or variograms in the case of kriging, cho-

sen for each technique will have an impact on its esti-

mation; as part of this study LI with a larger radius of

3585.9km (informed by the kriging semivariogram) was

investigated and found to produce anomaly estimates

with much larger errors.

All techniques, regardless of their relative perfor-

mance, were found to have larger values of RMSE and

CRE for earlier historical station coverages. The in-

teraction of historical coverage with all estimation

techniques leads to larger errors and a greater un-

certainty in the anomalies produced. This was observed

for both Arctic-average and spatially resolved anom-

alies. Sparser observing networks of temperature data

are more likely to miss key features of weather patterns

and will therefore introduce larger errors and un-

certainties into anomalies estimated from sparse data

coverage. These results were produced using an en-

semble dataset that simulates the interaction of mete-

orological station coverage with estimation techniques.

This means that these results only indicate the error

statistics of each estimation technique based on the

simulation, not real-world errors in estimation. The

extrapolation of the conclusions of this simulation to

real-world errors in Arctic climate change estimates

would depend on the assumption that 1979–2011 tem-

perature anomaly patterns, a period during which

changes to Arctic temperatures and sea ice variables

are known to have been rapid, are representative of

1850–1979 temperature anomaly patterns. In addition,

interannual meteorological variability is not included

in each ensemble, which consists of the anomalies from

the same 12 months repeated throughout. Interannual

meteorological variability may mask the coverage bias

impact. Using a longer time period of temperature

anomaly patterns, especially ones outside the rapid

changes of the past few decades, with more ensembles

would provide a more robust investigation of this sub-

ject. Nonetheless, the results do tell us to be cautious

when using such estimation techniques in extremely

data-sparse regions, such as the Arctic. They also sup-

port efforts to increase data sharing and data rescue,

such as ISTI, the international Atmospheric Circulation

Reconstructions over the Earth (ACRE) initiative, and

the Canadian historical data typing project, to increase

the coverage of temperature records, particularly in the

Arctic (Allan et al. 2011; Thorne et al. 2011; Slonosky

2014).

In addition to acknowledging the limitations of the

above results for historical coverages, it must also be

noted that, as a result of using reanalysis data, the

uncertainties and noise associated with actual data are

not present in this study’s test data. Reanalysis data

can, however, contain biases, uncertainties, and errors

and some of these issues may be present in the ERA-

Interim data used in this study (Dee et al. 2011; Inoue

et al. 2009; Jakobson et al. 2012; Liu et al. 2008;

Thorne and Vose 2010). Furthermore, although ERA-

Interim provides realistic estimates of Arctic tem-

peratures and temperature trends for areas of the

Arctic studied thus far (Chung et al. 2013; Dee and

Uppala 2009; Jakobson et al. 2012; Lindsay et al. 2014;

Lüpkes et al. 2010; Screen and Simmonds 2011), it is

not necessarily a good representation of Arctic SATs

in other, uninvestigated, areas. Moreover, the purpose

of this work was to investigate the impact of using

certain estimation techniques, related to current

temperature anomaly datasets, to estimate tempera-

tures over Arctic land and sea ice areas. Investigating

other estimation techniques, which may produce more

accurate reconstructions, and the estimation of tem-

peratures over other Arctic areas were beyond the

scope of this study. Before conclusions are drawn
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about the performance of estimation techniques, and

the effects of changing station coverage, for Arctic

temperatures and temperature changes in the real

world further work is needed. The gap between the

reanalysis and the reality in terms of the results pre-

sented here should be assessed; parametric, observa-

tional, and structural uncertainty should be further

investigated; the impact of using monthly or seasonal

covariance values should be examined; and the re-

construction of anomalies in areas of open ocean in

the Arctic, as well as marginal ice zones, should be

studied.

6. Conclusions

In this study it was found that the technique chosen

to estimate Arctic SAT anomalies over land and sea

ice had an impact on the accuracy of the estimated

anomalies produced in our ERA-Interim test bed.

This was observed for both recent decades and when

using historical station coverages. Interpolation

techniques produced the most accurate estimates of

anomalies compared to the ERA-Interim reference

data. Kriging techniques provided the smallest errors

in estimates of Arctic anomalies and simple kriging

was often the best kriging method in this study, es-

pecially over sea ice. Noninterpolating techniques

provided the least representative anomaly estimates.

However, estimates of anomalies from these tech-

niques are still beneficial as they are useful checks for

confirming whether estimates from interpolating

techniques are reasonable. The interaction of mete-

orological station coverage between 1850 and 2011

with estimation techniques was simulated using an

ensemble dataset comprising repeated individual

years (1979–2011). All techniques, regardless of their

relative performance, were found to have larger

values of RMSE and CRE for earlier historical cov-

erages. Reduced station coverage introduced larger

errors and uncertainties into anomalies estimated

from this sparser data coverage. This supports calls

for increased data sharing and rescue, especially in

sparsely observed regions such as the Arctic.
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APPENDIX

Kriging

Kriging is used to estimate the value of a variable at an

unsampled point where the covariance or semivariance

function as a function of distance is known. This ap-

pendix describes the equations and variables used for

both kriging methods in this study.

The value of the variable of interest t at an unsampled

coordinate xo is estimated using a linear combination of

observed values of t at coordinates xi for i 5 1, . . . , n

[calculated using Eq. (A1)], where w is a vector con-

taining the optimal weightsw(xi) for each observation of

variable t at coordinates xi for i 5 1, . . . , n, and t is

a vector containing the observations of variable t at co-

ordinates xi for i 5 1, . . . , n:

t̂(xo)5w � t , (A1)

where

w5

2
66664
w(x1)

..

.

w(xn)

f

3
77775 and t5

2
66664
t(x1)

..

.

t(xn)

f

3
77775 .

The optimal weights in vector w are calculated using

Eq. (A2). In that equation, A is a matrix of the expected

covariance between each pair of observations of vari-

able t at coordinates xi for i5 1, . . . , n so that a(xi, xn) is

the expected covariance between t(xi) and t(xn); B is

a matrix of the expected covariance between observa-

tions of variable t at coordinates xi for i 5 1, . . . , n and

the output point xo so that b(xo, xn) is the expected co-

variance between t(xo) and t(xn):

w5A21B . (A2)

Two methods of kriging were investigated in this

study: global ordinary kriging and global simple kriging.

The optimal weights in vector w were calculated slightly

differently depending on the method of kriging used.

For ordinary kriging, where the mean is unknown

a priori, the mean is calculated during interpolation by

constraining the optimal weights so that they sum to 1.

Therefore, for ordinary kriging the optimal weights in

vector w are calculated using Eq. (A2) with the vectors

and matrices shown below. Here f is a Lagrange mul-

tiplier required for solving the equations.
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2
6666664

w(x1)

..

.

w(xn)

f

3
7777775
5

2
6666664

a(x1, x1) . . . a(x1, xn) 1

..

.
⋱ ..

.
1

a(xn, x1) . . . a(xn, xn) 1

1 1 1 0

3
7777775

21

3

2
6666664

b(xo, x1)

..

.

b(xo, xn)

1

3
7777775
.

For simple kriging, which assumes that the mean is

known a priori, the optimal weights do not need to be

constrained to sum to 1. Instead themean is added to the

dot product of the vector of optimal weights w and the

vector t of the observations of variable t to produce an

estimate of t(xo). Note that, because of the use of a mean

of 0 for global simple kriging in this study, the same

equation [Eq. (A1)] is used for both kriging methods.

Therefore the optimal weights in vectorw are calculated

using Eq. (A2) with the vectors and matrices shown

below:

2
664
w(x1)

..

.

w(xn)

3
7755

2
664
a(x1, x1) . . . a(x1, xn)

..

.
⋱ ..

.

a(xn, x1) . . . a(xn, xn)

3
775
212

664
b(xo, x1)

..

.

b(xo, xn)

3
775 .

The expected covariance is calculated using a model

function, which approximates the covariance as a func-

tion of distance, determined from available observations

as follows. An experimental semivariogram was pro-

duced by calculating the semivariance from the average

difference between each pair of this study’s input anom-

alies separated by binned distances; 25-km bins were

used. The experimental semivariogramwas plotted and it

was determined that a spherical model would provide

the best model fit to the experimental semivariogram.

The model function is given in Eq. (A3) with fitted pa-

rameter values of 0 for s, 7.6418 for y, and 3585.9 for �.

Also, d is the distance in kilometers and g(d) is the

model semivariance at distance d,

g(d)5

8><
>:

s1 y

"
3

2

�
d

�

�
2

1

2

�
d

�

�3
#

for 0, d, �

s1 y for d$ �

.

(A3)

This model function fitted to the semivariogram was

used to calculate the expected covariances in this study

by calculating the expected semivariances first and then

calculating the expected covariances from the expected

semivariances. The expected covariances were then

used in Eq. (A2) to calculate the weights required for

kriging.
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