

Theca cells and the regulation of ovarian androgen production

Book or Report Section

Accepted Version

Knight, P. ORCID: https://orcid.org/0000-0003-0300-1554 and Glister, C. (2014) Theca cells and the regulation of ovarian androgen production. In: Juengel, J. L., Miyamoto, A., Price, C., Reynolds, L. P., Smith, M. F. and Webb, R. (eds.) Reproduction in Domestic Ruminants. Bioscientifica Proceedings, VIII. Context, Ashby de la Zouche, pp. 295-310. ISBN 9781899043637 doi: https://doi.org/10.1530/biosciprocs.8.021 Available at https://centaur.reading.ac.uk/37786/

It is advisable to refer to the publisher's version if you intend to cite from the work. See <u>Guidance on citing</u>.

To link to this article DOI: http://dx.doi.org/10.1530/biosciprocs.8.021

Publisher: Context

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the <u>End User Agreement</u>.

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

Reading's research outputs online

1	
2	Theca cells and the regulation of ovarian
3	androgen production
4	
5	Phil G Knight* and Claire Glister
6	
7	School of Biological Sciences,
8	Hopkins Building,
9	University of Reading,
10	Reading, RG6 6UB, UK
11	
12	
13	*corresponding author
14	p.g.knight@reading.ac.uk
15	tel: +44 118 378 8017
16	Fax: +44 118 378 6642
17	
18	

19 Running title: Theca cells and androgen production

20 Summary

21 Theca cells are essential for female reproduction being the source of androgens 22 that are precursors for follicular oestrogen synthesis and also signal through 23 androgen receptors (AR) in the ovary and elsewhere. Theca cells arise from 24 mesenchymal cells around the secondary follicle stage. Their recruitment, 25 proliferation and cytodifferentiation are influenced, directly or indirectly, by 26 paracrine signals from granulosa cells and oocyte although uncertainty remains 27 over which are the critically important signals at particular stages. In a reciprocal 28 manner, theca cells secrete factors that influence granulosa cell proliferation and 29 differentiation at different follicle stages. Differentiated theca interna cells 30 acquire responsiveness to luteinizing hormone (LH) and other endocrine signals 31 and express components of the steroidogenic machinery required for androgen 32 biosynthesis. They also express insulin-like peptide 3 (INSL3) and its receptor 33 (*RXFP2*), levels of which increase during bovine antral follicle development. 34 INSL3 signaling may play a role in promoting androgen biosynthesis since 35 knockdown of either INSL3 or its receptor (RXFP2) in bovine theca cells inhibits 36 androgen biosynthesis while exogenous INSL3 can raise androgen secretion. 37 Bone morphogenetic proteins (BMPs) of thecal or granulosal origin suppress 38 thecal production of both INSL3 and androgen. Inhibin, produced in greatest 39 amounts by granulosa cells of preovulatory follicles, reverses these BMP actions. 40 Thus, BMP-induced inhibition of thecal androgen production may be mediated 41 by reduced INSL3-RXFP2 signaling. Activins also inhibit androgen production in 42 an inhibin-reversible manner and recent evidence in sheep indicates that theca 43 cells synthesize and secrete activin, implying an autocrine role in suppressing 44 androgen biosynthesis in smaller follicles, akin to that envisaged for BMPs.

45

46 Introduction

47 Ovarian androgens play an essential role in female reproductive physiology 48 being obligatory substrates for ovarian oestrogen synthesis as well as having 49 direct androgen receptor (AR)-mediated actions in the ovary and elsewhere. 50 Indeed female mice lacking functional AR show defective follicle development 51 and premature ovarian failure (Shiina et al. 2006). Ovary- and adrenal-52 derived androgens can also be aromatized to oestrogens by various peripheral 53 tissues including brain, bone and adipose tissue (Simpson 2003) reflecting 54 additional 'non-reproductive' roles.

55 Evidence that the mammalian ovary synthesises and secretes androgens 56 first emerged in the 1930s (Deanesly 1938). It was subsequently revealed that theca interna cells of developing antral follicles are their principle source and 57 58 that the capacity of ovarian follicles to synthesise oestrogens depended on the 59 cooperation of theca interna and granulosa cells in accordance with the two-60 gonadotrophin, two-cell theory (Ryan & Petro 1966, Fortune & Armstrong 1977). 61 This theory proposed that luteinizing hormone (LH) acts on theca interna cells to promote biosynthesis of androgens (androstenedione, testosterone), which then 62 63 diffuse to neighbouring granulosa cells where the aromatase enzyme complex 64 converts them to oestrogens (oestrone, oestradiol), under the influence of follicle 65 stimulating hormone (FSH). Whilst the two-cell, two-gonadotrophin theory has

stood the test of time remarkably well, it is increasingly evident that additional
endocrine signals and a multitude of locally-produced signals also contribute to
the regulation of thecal androgen production and granulosal oestrogen

69 production at successive stages of follicle development.

70 The physiological importance of theca-derived androgens cannot be 71 overstated since several key events in the female reproductive process (follicle 72 maturation, preparation of reproductive tract, generation of preovulatory LH 73 surge, ovulation, oestrus behaviour, libido) are reliant upon their timely 74 production. Unfortunately, disorders that affect thecal androgen biosynthesis, 75 such as polycystic ovarian syndrome (PCOS) in humans, are commonplace and 76 are associated with impaired fertility and other co-morbidities (Baptiste et al. 77 2010). Given the above, it is perhaps surprising that theca cells have not 78 commanded more attention by ovarian biologists over recent decades. Recent 79 PubMed searches vielded cumulative hits totalling 63,492, 13,918 and 3,658 for 80 the terms "oocyte", "granulosa cell" and "theca cell" respectively, supporting this 81 perception.

82 The aim of this review is to provide an update of the literature on ovarian 83 theca cells and androgen production with an emphasis on studies involving 84 domestic ruminants. We will also discuss in more detail recent findings from our 85 own laboratory on the actions and interaction of bone morphogenetic proteins 86 (BMPs) and insulin-like peptide 3 (INSL3) on androgen production by bovine 87 theca cells. The reader will find much additional information on theca cells in 88 excellent review articles (Erickson et al. 1985, Magoffin 2005, Tajima et al. 2007, 89 Young & McNeilly 2010).

90

91 **Formation of the theca layer**

92 Recruitment of theca cells from ovarian stroma

93 It is generally accepted that theca cells are derived from mesenchymal 94 progenitor cells within the cortical stroma. There is some evidence in the mouse 95 that a definitive population(s) of thecal progenitor stem cells exists (Honda et al. 96 2007) although comparable studies are currently lacking in other species 97 including ruminants. Under the influence of presumptive signals emitted by 98 activated preantral follicles (i.e. primary and secondary stage), stromal 99 progenitor cells congregate around the follicular basal lamina and align to form first one, and subsequently multiple layers of elongated cells surrounding the 100 101 follicle (Erickson et al. 1985, Orisaka et al. 2006b, Itami et al. 2011). Thecal 102 recruitment occurs independently of gonadotrophin action as the stromal 103 progenitor cells do not express LH receptors and the theca layer still forms in FSH receptor-null mice (Kumar et al. 1997, Abel et al. 2000). Rather, evidence 104 105 suggests that soluble factor(s) secreted by the oocyte and/or granulosa cells of activated follicles drive thecal recruitment (Magoffin 2002, Magoffin 2005, 106 107 Orisaka *et al.* 2006b, Itami *et al.* 2011). Whilst the identity of the key factor(s) 108 involved is still unknown, granulosa-derived kit ligand (KITLG) and hedgehog 109 proteins, and oocyte-derived GDF9 are prime candidates. Theca layers fail to 110 develop in the arrested follicles of GDF9-null mice (Elvin et al. 1999). GDF9 may

act either directly on surrounding stromal (pre-theca) cells to upegulate *KIT*expression or indirectly by modulation of KITLG and IGF1 production by
granulosa cells that, in turn, binds to their signaling receptors (KIT, IGFR) on pretheca cells (Nilsson & Skinner 2002). Like GDF9, oocyte-derived BMP15 has also
been shown to upregulate *KITLG* expression by granulosa cells (Otsuka &
Shimasaki 2002).

117 From the primary follicle stage in mice, granulosa cells begin to express 118 hedgehog proteins (*Ihh*, *Dhh*) that induce target gene expression (*Ptch1*, *Gli1*) in 119 surrounding mesenchymal stromal cells (i.e. pre-theca cells). This expression 120 pattern persists in the theca layer until the preovulatory stage, perhaps implying 121 a role in both theca cell recruitment and differentiation (Wijgerde *et al.* 2005). 122 Cultured bovine theca cells from antral follicles also respond to hedgehog 123 protein with upregulation of *Gli1* expression, increased proliferation and androgen production (Spicer *et al.* 2009). Other candidate theca recruitment 124 125 factors include VEGFA (Yang & Fortune 2006, Yang & Fortune 2007) from 126 granulosa cells and BMP15 and BMP6 from the oocyte. In addition, evidence 127 suggests that established theca cells also secrete paracrine factors that indirectly 128 influence surrounding stromal cells to 'amplify' recruitment including 129 transforming growth factor a (TGFA), basic fibroblast growth factor 130 (bFGF/FGF2), keratinocyte growth factor (KGF/FGF7), hepatocyte growth factor (HGF), IGFs and androgens. Both KGF and HGF have been shown to increase 131 132 granulosal *KITLG* expression that, in turn, upregulates thecal FGF7 and *HGF* 133 expression (Parrott & Skinner 1998) as well as stromal *KIT* expression and cell 134 proliferation (Parrott & Skinner 2000). Theca-derived androgens may also have 135 an amplifying role since androgen can upregulate *KITLG* expression by mouse 136 granulosa cells (Joyce et al. 1999) and promote the primary to secondary follicle 137 transition in bovine ovarian cortical strips (Yang & Fortune 2006, Yang & 138 Fortune 2007).

139

140 Proliferation and differentiation of theca cells

141 After congregating around the basal lamina, theca cells proliferate and 142 differentiate into an inner theca interna and outer theca externa. Whilst the key 143 signals responsible are largely unknown, proliferation and cytodifferentiation 144 are presumably influenced by gradients of paracrine signaling molecules from 145 the centrally located granulosa/oocyte compartment (i.e. KITLG, GDF9, BMP15, 146 EGF, hedgehog proteins) in conjunction with endocrine signals (i.e. LH, insulin, 147 IGFs) diffusing from new capillary vessels forming close to the basal lamina. Once established, theca cells may also secrete autocrine/paracrine factors that 148 149 promote further proliferation and differentiation, including IGFs (Barbieri *et al.* 1986, Magoffin & Weitsman 1994, Spicer et al. 2004), bFGF (Nilsson et al. 2001) 150 151 and androgens (Yang & Fortune 2006, Yang & Fortune 2007). Evidence in the 152 mouse suggests that a radial signaling gradient of hedgehog proteins emitted by 153 granulosa cells is involved in the differentiation of the more distantly located 154 theca cells into theca externa cells that show a smooth muscle-like phenotype 155 (Ren et al. 2009). In contrast, theca interna cells acquire LH receptors and begin 156 to express components of the steroidogenic pathway (NR5A1, STAR, CYP11A1,

157 *HSD3B1, CYP17A1*). Morphologically, theca interna cells display hallmark 158 features of steroidogenically-active cells, including abundant smooth 159 endoplasmic reticulum, numerous mitochondria with tubular cristae and lipid 160 vesicles that store cholesterol esters as precursor for the synthesis of steroid 161 hormones. As mentioned above, theca externa cells lack these features and have 162 a morphology more akin to smooth muscle cells, indicative of a more structural 163 or mechanical support role in the follicular unit. There is some evidence that 164 theca externa cells exhibit contractile behaviour around the time of ovulation 165 that may contribute to extrusion of the cumulus-oocyte and wound closure 166 around the margin of the corpus haemorrhagicum (Hunter 2003).

167 As secondary follicles progress towards the antral stage they acquire their 168 own vascular supply in the form of a sheath of capillaries coursing throughout 169 the theca layer; these capillaries are excluded by the basal lamina from the avascular granulosal compartment, until follicle luteinisation (or atresia). A well-170 171 developed thecal capillary bed is essential for bidirectional transfer of 172 substances to (e.g. gonadotrophins, nutrients) and from (e.g. steroids, 173 metabolites) the follicular unit. VEGF and other pro-angiogenic factors expressed 174 predominantly by granulosa cells play a prominent role in vascularization of the 175 theca interna (Fraser 2006, Fraser & Duncan 2009, Robinson et al. 2009). 176 Inhibition of VEGFA signaling leads to reduced proliferation of endothelial and 177 theca cells, compromises follicle development and blocks ovulation (Fraser 178 2006). Treatment of bovine cortical strips with VEGFA promotes primary to 179 secondary follicle transition (Yang & Fortune 2006, Yang & Fortune 2007). 180 Recent evidence in cattle indicates that theca-derived BMP4 and BMP7 may 181 contribute to thecal vascularization by upregulating VEGFA expression in

182 granulosa cells (Shimizu *et al.* 2012).

183

184 A brief life history of theca cells: from recruitment to luteal regression

It is clear that the capacity of stromal progenitor cells to differentiate into theca 185 186 cells persists throughout the reproductive lifespan of a female (i.e. until the primordial follicle reserve is depleted). Whilst a theoretical possibility, we are 187 188 not aware of any evidence that failure of thecal recruitment ever becomes a 189 limiting factor in the supply of growing preantral follicles in females approaching the end of their reproductive lifespan. The subsequent fate of established theca 190 191 cells (and their progeny) largely corresponds to the developmental trajectory of 192 the individual follicle, >99% of which are lost through atresia during the 4-6 months it takes for a primary follicle to reach the preovulatory stage in sheep, 193 cattle and humans (Lussier et al. 1994). Inadequate development and/or early 194 195 regression of the thecal vasculature is reportedly a common feature of atretic 196 follicles (Fraser 2006). A detailed discussion of follicle atresia in the bovine and 197 how this relates to changes in theca cells, granulosa cells and oocyte may be 198 found elsewhere (Rodgers & Irving-Rodgers 2010). Comprehensive reviews 199 focussing on follicle vascularization include Robinson et al (2009) and Fraser 200 and Duncan (2009).

201Once follicles have acquired a well-developed capillary network it seems202reasonable to assume that their theca interna cells are exposed to pituitary LH

- 203 pulses and other endocrine signals, regardless of the stage of follicle
- 204 development. However, androgen production remains at relatively low levels
- 205 during preantral and early antral follicle stages, only increasing markedly during
- the mid- to late-antral stage. This implies the involvement of other, locally
- 207 produced signals that suppress androgen production at earlier follicle stages
- 208 whilst augmenting LH-dependent androgen production at later stages.
- 209 Intraovarian factors implicated in the regulation of androgen production are
- 210 discussed in more detail in the final section of this review.
- 211 For selected bovine antral follicles that achieve dominance around the 212 time of luteal regression, exposure to the ovulation-inducing LH surge initiates 213 luteinisation of both theca and granulosa cells, characterised by an abrupt loss of 214 thecal CYP17A1 expression and androgen-synthesizing capacity, and granulosal 215 *CYP19A1* expression and oestrogen-synthesizing capacity (Voss & Fortune 1993). Instead, the proximal components of the steroidogenic pathways of both cell 216 217 types are upregulated (i.e. STAR, CYP11A1, HSD3B1) and predominantly used for 218 the synthesis of progesterone as theca cells transform into 'small' luteal cells and 219 granulosa cells become 'large' luteal cells of the newly formed corpus luteum. 220 Both 'small' and 'large' luteal cells actively secrete progesterone until corpus
- luteum regression (Berisha & Schams 2005, Miyamoto *et al.* 2010).
- 222

223 Paracrine effects of theca interna cells on granulosa cells and oocyte

- In addition to supplying androgens to granulosa cells as substrates for
 aromatization to oestrogens, theca cells express an array of paracrine signaling
 molecules shown to influence the proliferation and differentiated function of
 granulosa cells at different stages of follicle development (Orisaka *et al.* 2006a).
 Prominent amongst these are androgens themselves that have been shown to act
 via AR to promote follicle development (Vendola *et al.* 1999, Shiina *et al.* 2006,
 Yang & Fortune 2006), upregulate *FSHR* and *CYP19A1* expression (Luo &
- Wiltbank 2006) and FSH-induced oestrogen production (Hillier & De Zwart 1981,
 Harlow *et al.* 1986, Weil *et al.* 1999). Thus, thecal androgens play a vital role in
 promoting granulosal *CYP19A1* expression/aromatase activity as well as
- 234 providing substrate for the enzyme.
- 235 Many non-steroidal factors secreted by theca cells have likewise been 236 shown to modify granulosa cell proliferation and/or function in ruminants and 237 other species (Fig. 1). For example, in vitro studies on bovine/ovine follicles 238 show that theca-derived KGF (FGF7) and HGF promote granulosa cell 239 proliferation (Parrott et al. 1994, Parrott & Skinner 1998), TGFB1 down-240 regulates FSH-induced CYP19A1 expression and oestradiol secretion (Ouellette et al. 2005, Zheng et al. 2008), IGF1 enhances cell proliferation and oestradiol 241 242 secretion (Gutierrez et al. 1997, Glister et al. 2001, Monget et al. 2002), BMP4, BMP6 and BMP7 enhance basal and IGF-induced oestradiol secretion (Monget et 243 al. 2002. Glister et al. 2004. Campbell et al. 2006). In contrast. FGF10 inhibits 244 245 oestradiol secretion (Buratini et al. 2007) while FGF18 inhibits FSHR expression and steroidogenesis and promotes cell death (Portela *et al.* 2010). Since thecal 246 247 expression of *FGF18* mRNA and FGF18 protein in follicular fluid were higher in 248 subordinate than in dominant follicles, it was suggested that theca-derived

- FGF18 might be an important atretogenic factor in bovine follicles (Portela *et al.*
- 250 2010). It should be cautioned that expression of many of the above proteins is
- 251 not exclusive to theca cells and so the observed effects of purified/recombinant
- proteins on granulosa cells is not necessarily indicative of theca-granulosainteraction.
- 254

255 Thecal steroidogenesis and factors modulating androgen secretion

256 Endocrine factors

257 In response to pulses of GnRH from the hypothalamus, pituitary gonadotrophs 258 secrete LH pulses that, in turn, promote transient increases in ovarian output of 259 androgens and oestrogens (Baird & McNeilly 1981, Campbell et al. 1990). The 260 frequency and amplitude of LH pulses are modulated by both extrinsic (e.g. 261 photoperiod, socio-sexual cues) and intrinsic (e.g steroid feedback) influences 262 (Martin 1984) and vary according to the stage of the reproductive cycle. LH 263 plays a major role in promoting androgen production by theca interna cells, 264 particularly those of antral follicles with a well-developed vascular system. It 265 does so by upregulating the expression of several key genes involved in the steroidogenic pathway that converts cholesterol into androgen, including STAR, 266 CYP11A1 and CYP17A1. As would be anticipated from this, treatment of cows 267 268 with a GnRH antagonist (acyline) to block pulsatile LH secretion inhibited thecal STAR and CYP17A1 mRNA levels and reduced androgen production (Luo et al. 269 270 2011).

271 Thecal androgen production is also enhanced by insulin, as revealed by in 272 vitro studies on theca cells from several species including cattle and sheep and 273 human (Spicer & Echternkamp 1995, Campbell et al. 1998, Franks et al. 1999). 274 This has given rise to the theory that raised insulin levels in women with insulin 275 resistance could be a contributory factor in the aetiology of polycystic ovarian 276 syndrome, a condition usually associated with ovarian androgen excess and 277 arrested antral follicle development (Baptiste et al. 2010). Like insulin, IGF1 can 278 also stimulate thecal androgen production (Velazquez et al. 2008) while the 279 adipokines leptin (Spicer 2001) and adiponectin (Lagaly et al. 2008) have been 280 shown to inhibit thecal androgen production by cultured bovine theca cells.

281 Intra-ovarian factors

282 In concert with LH and other endocrine factors, numerous locally-produced

growth factors have been implicated as intra-ovarian regulators of thecal

androgen production. These include KITLG (Parrott & Skinner 1997), IGFs
(Campbell *et al.* 1998, Spicer *et al.* 2004), bFGF/FGF2 (Hurwitz *et al.* 1990,

(Campbell *et al.* 1998, Spicer *et al.* 2004), bFGF/FGF2 (Hurwitz *et al.* 1990,
Scaramuzzi & Downing 1995), FGF9 (Schreiber *et al.* 2012), EGF (Scaramuzzi &

287 Downing 1995, Campbell *et al.* 1998), TGFA (Roberts & Skinner 1991, Campbell

- *et al.* 1994) TNFA (Spicer 1998), interleukins (Hurwitz *et al.* 1991) and multiple
- 289 TGFβ superfamily members (reviews: (Woodruff & Mather 1995, Shimasaki *et al.*
- 290 2004, Knight & Glister 2006) (Fig. 2).

291 Theca cells express a full complement of receptors and intracellular signal 292 transduction components for TGFβ superfamily members and are responsive to 293 multiple ligands including TGFB, activins, BMP2, BMP4, BMP6, BMP7 and AMH, 294 all of which are expressed at the intrafollicular level and have been shown to 295 attenuate basal and/or LH-induced androgen production in several species 296 including rat, human, cattle and sheep (Brankin *et al.* 2005, Glister *et al.* 2005, 297 Campbell *et al.* 2006, Glister *et al.* 2010, Glister *et al.* 2011, Campbell *et al.* 2012, 298 Young et al. 2012, Young & McNeilly 2012). The suppressive effect of activin-A is 299 antagonised by follistatin and inhibin (Wrathall & Knight 1995, Young et al. 2012. 300 Young & McNeilly 2012). Activin-B also suppresses and rogen production by sheep theca cells to a similar extent as activin-A, and the effects of both are 301 302 effectively reversed by inhibin-A (Young et al. 2012).

303 In addition to blocking activin signaling, inhibin-A was shown to 304 antagonise the suppressive effects of BMP2, 4, 6 and 7 on bovine theca cells (Glister et al. 2010). This was accompanied by a reversal of a marked BMP-305 306 induced decline in expression of CYP17A1 and, to a lesser extent, LHCGR, STAR, 307 CYP11A1 and HSD3B1 expression. In sheep theca cells, the inhibitory effect of 308 activin-A on androgen production was associated with a decline in STAR and 309 HSD3B1 expression while CYP17A1 expression was unaffected (Young & 310 McNeilly 2012). However, co-treatment with inhibin-A to reverse the activin-311 induced suppression of thecal androgen production, led to an increase in 312 expression of CYP17A1 and HSD3B1. Furthermore, treatment with inhibin alone 313 raised *CYP17A1* expression and androgen production indicating that sheep theca 314 cells produce an endogenous ligand whose action is opposed by inhibin. The 315 finding that follistatin treatment alone also raised androgen secretion indicates 316 that activin is the endogenous ligand produced by sheep theca cells (Young & 317 McNeilly 2012). Indeed, the same group reported expression of *INHBA* and 318 *INHBB* mRNAs in the theca layer of sheep antral follicles (Young *et al.* 2012). In 319 contrast, whilst studies in the authors' laboratory have also documented 320 expression of *INHBA* and *INHBB* mRNAs in bovine theca layers (Glister et al. 321 2010), we found no stimulatory effect of follistatin treatment on androgen 322 secretion by isolated theca interna cells (Glister & Knight, unpublished data). 323 Therefore, we interpret the ability of inhibin alone to raise androgen production 324 as being due to antagonism of endogenous BMPs, that are also expressed by 325 theca cells (Glister et al. 2010).

326 It was recently reported that AMH also exerts a suppressive effect on LH-327 induced androgen production by cultured sheep theca cells (Campbell *et al.* 328 2012). Moreover, AMH immunoreactivity in granulosa cells declined during 329 follicle development and was inversely associated with aromatase 330 immunoreactivity. The study also found that active immunization of sheep 331 against AMH was associated with raised intrafollicular androgen concentrations 332 in small antral follicles, supporting a physiological role for granulosa-derived 333 AMH as an additional paracrine factor that can suppress thecal androgen 334 production.

Taken together, the above evidence indicates that multiple intra-follicular TGFβ
 family members including activins, BMPs and AMH negatively regulate basal and
 LH-induced androgen production. In contrast, inhibins, follistatin and likely

338 several BMP binding proteins (e.g. chordin, gremlin, noggin) secreted by 339 granulosa cells (Glister *et al.* 2011) oppose these signals and upregulate 340 androgen production. Granulosal production of inhibin and follistatin, as well as 341 thecal expression of the inhibin co-receptor, betaglycan (Glister *et al.* 2010), 342 increases in growing preovulatory follicles and, by counteracting activin/BMP 343 signaling on theca cells, this would serve to enhance the ability of theca cells to 344 deliver sufficient androgen to granulosa cells for aromatization to oestrogen. It 345 should be noted that recent evidence in sheep (Young et al. 2012) and cattle 346 (Glister et al. 2010) indicates that theca cells also express mRNAs for 347 inhibin/activin subunits. This raises the possibility that theca cells, as well as 348 granulosa cells, secrete functional inhibin/activin proteins that contribute to the 349 regulation of thecal androgen production and other intrafollicular events. 350 Further work is needed to investigate this aspect of intrafollicular regulation.

In vitro studies on bovine (Roberts & Skinner 1990, Wrathall & Knight 351 352 1995) and human (Gilling-Smith et al. 1997) theca cells have shown that 353 oestradiol itself, at physiological concentrations (i.e. similar to peak 354 concentrations in antral fluid) can upregulate thecal androgen production. This 355 indicates that an additional intra-follicular positive feedback loop operates to 356 ensure an adequate supply of androgen for conversion to oestrogen in the late 357 follicular phase. A recent study in rats also provided evidence that, in addition to 358 inhibin, another FSH-dependent paracrine factor from granulosa cells 359 (oestradiol?) was capable of upregulating thecal CYP17A1 expression (Hoang et 360 al. 2013).

With regard to potential regulatory roles of oocyte-derive factors on 361 362 thecal androgen production, GDF9 was found to enhance forskolin-stimulated androgen production by rat theca-interstitial cells (Solovyeva et al. 2000) while 363 364 GDF9-induced upregulation of androgen secretion and CYP17A1 expression in rat preantral follicles was blocked by intra-oocyte injection of GDF9 antisense 365 366 nucleotide (Orisaka et al. 2009). However, other studies showed that GDF9 inhibits forskolin-induced androgen production by human theca cells 367 368 (Yamamoto et al. 2002) and both LH- and IGF1-induced androgen production by bovine theca cells (Spicer et al. 2008). Whether these discordant findings reflect 369 370 species differences, or differences in experimental methodology is not known at 371 this time. Nonetheless, the likelihood is that oocyte-derived factors do exert 372 direct regulatory actions on surrounding theca cells, as well as on granulosa cells.

373

Evidence for interactions between BMP and insulin-like peptide 3 (INSL3) signaling in regulating theca androgen production

376 As mentioned above studies in the authors' laboratory using bovine theca cells in 377 primary culture showed that bone morphogenetic proteins (BMPs) are powerful 378 suppressors of thecal androgen production and that granulosa-derived inhibin 379 can antagonise this effect of BMPs and raise androgen production (Glister et al. 380 2005, Glister et al. 2010). Likewise, several BMP-binding proteins (gremlin, 381 noggin) can reverse the inhibitory effect of BMPs (Fig. 3), and multiple BMP-382 binding proteins are expressed in the bovine ovary, particularly by granulosa 383 cells (Glister *et al.* 2011). In a subsequent microarray study (Glister *et al.* 2013)

384 we showed that BMP treatment down-regulates expression of several hundred 385 genes in theca cells including multiple components of the steroidogenic pathway 386 leading to androgen biosynthesis, most prominently CYP17A1 but also NR5A1, 387 STAR, CYP11A1 and HSD3B1. Intriguingly, thecal expression of insulin-like 388 peptide 3 (INSL3) was profoundly suppressed by BMP treatment and this 389 prompted a series of experiments that revealed a hitherto unknown functional 390 link between BMP and INSL3 pathways in the regulation of ovarian androgen 391 production (Glister et al. 2013, Satchell et al. 2013). INSL3 was initially identified 392 as a testicular product, but it has become evident that the ovary also synthesizes 393 substantial amounts of INSL3 (review: (Ivell & Anand-Ivell 2011). In the bovine 394 ovary, both *INSL3* and its cognate receptor (*RXFP2*) are predominantly expressed 395 by theca cells and expression levels of both increase during antral follicle 396 development (Satchell et al. 2013). In rat preantral follicles expression of RXFP2 397 was also detected in oocytes and INSL3 was shown to upregulate *GDF*9 398 expression, follicle growth and androgen production (Xue *et al.* 2014). Using 399 cultured bovine theca cells, RNAi-mediated knockdown of either *INSL3* or its 400 receptor *RXFP2* was shown to suppress androgen production (**Fig. 4**) whereas 401 exogenous synthetic human INSL3 promoted a modest increase in androgen production (Glister et al. 2013). During the synchronized bovine oestrous cycle 402 403 plasma INSL3 levels increase during the preovulatory period and then decline 404 after the LH surge, paralleling the changes in plasma oestradiol (Satchell et al. 405 2013) (Fig. 5). This suggests that the peak in circulating INSL3 reflects the output of theca cells of the dominant ovulatory follicle and that the subsequent fall in 406 INSL3 after the LH surge reflects diminished thecal output associated with 407 408 follicle luteinisation. In support of this, in vitro culture of theca cells with a 409 luteinizing concentration of LH promoted a marked decline in INSL3 mRNA 410 expression and INSL3 secretion accompanied by an upregulation of STAR and 411 CYP11A1 expression and progesterone secretion (Satchell et al. 2013).

Collectively, these findings revealed the importance of another 412 413 intraovarian growth factor, INSL3, for maintaining androgen production by 414 ovarian theca cells and showed that the suppressive action of BMPs on androgen 415 production is intimately linked to their inhibition of INSL3 signaling. On the basis 416 of these findings we propose that a functional deficit in thecal BMP signaling 417 promotes excess thecal INSL3-RXFP2 signaling and that this could be a 418 contributory factor in ovarian androgen excess disorders such as PCOS. Indeed, 419 circulating INSL3 levels are raised in women with PCOS (Gambineri et al. 2011, 420 Anand-Ivell et al. 2013). Conversely, a functional excess of thecal BMP signaling 421 could contribute to androgen insufficiency by reducing INSL3-RXFP2 signaling. 422 Both situations compromise normal follicle development and lead to subfertility 423 or infertility in animals and human. Moreover, the extra-ovarian actions of 424 androgens, either acting directly or after peripheral conversion to oestrogens, 425 will be perturbed by over- or under-secretion of ovarian androgen.

426

427 Concluding Remarks

In summary, theca interna cells have an indispensible role in the ovary, not onlycontributing to preantral and antral follicle development mediated by androgen

430 receptor interaction, but also in the timely provision of androgen substrate

- 431 required for granulosal oestrogen biosynthesis, particularly in the final
- 432 preovulatory stage of follicle development. It has become apparent that theca
- 433 cells are closely regulated by an array of intra-ovarian factors that operate in
- 434 concert with LH and other endocrine signals to modulate follicular androgen
- biosynthesis. Intra-ovarian BMPs and the INSL3-RXFP2 system are recent
- additions to this list and, based on findings from the authors' laboratory, a
 schematic model depicting their proposed involvement is presented in Fig. 6.
- 438 Dysregulation of ovarian androgen production is a likely consequence of
- 439 perturbations in one or more of these local signaling mechanisms at any stage of
- follicle development. Recognising that most of the experimental evidence thus
- far has arisen from in vitro studies, the challenge remains to define which are the
- 442 most important local signaling mechanisms in terms of physiological regulation
- 443 in the whole animal context.

444

445 Acknowledgements

- 446 The authors acknowledge the financial support of the Biotechnology and 447 Biological Sciences Bessarch Council UK
- 447 Biological Sciences Research Council, UK.
- 448

449

- 450 **References**
- 451

452	Abel MH, Wootton AN, Wilkins V, Huhtaniemi I, Knight PG & Charlton HM
453	2000 The effect of a null mutation in the follicle-stimulating hormone
454	receptor gene on mouse reproduction. <i>Endocrinology</i> 141 1795-1803.

- Anand-Ivell R, Tremellen K, Dai Y, Heng K, Yoshida M, Knight PG, Hale GE &
 Ivell R 2013 Circulating insulin-like factor 3 (INSL3) in healthy and
 infertile women. *Human Reproduction* 28 3093-3102.
- Baird DT & McNeilly AS 1981 Gonadotrophic control of follicular development
 and function during the oestrous cycle of the ewe. *Journal of Reproduction and Fertility Supplement* 30 119-133.
- 461 Baptiste CG, Battista MC, Trottier A & Baillargeon JP 2010 Insulin and
 462 hyperandrogenism in women with polycystic ovary syndrome. *Journal of* 463 Steroid Biochemistry and Molecular Biology 122 42-52.
- Barbieri RL, Makris A, Randall RW, Daniels G, Kistner RW & Ryan KJ 1986
 Insulin stimulates androgen accumulation in incubations of ovarian
 stroma obtained from women with hyperandrogenism. *Journal of Clinical Endocrinology and Metabolism* 62 904-910.

468 Berisha B & Schams D 2005 Ovarian function in ruminants. Domestic Animal 469 Endocrinology 29 305-317.

470	Brankin V, Quinn RL, Webb R & Hunter MG 2005 Evidence for a functional
471	bone morphogenetic protein (BMP) system in the porcine ovary. Domestic
472	Animal Endocrinology 28 367-379.
473	Buratini J, Jr., Pinto MG, Castilho AC, Amorim RL, Giometti IC, Portela VM,
474	Nicola ES & Price CA 2007 Expression and function of fibroblast growth
475	factor 10 and its receptor, fibroblast growth factor receptor 2B, in bovine
476	follicles. <i>Biology of Reproduction</i> 77 743-750.
477	Campbell BK, Mann GE, McNeilly AS & Baird DT 1990 The pattern of ovarian
478	inhibin, estradiol, and androstenedione secretion during the estrous cycle
479	of the ewe. <i>Endocrinology</i> 127 227-235.
480	Campbell BK, Gordon BM & Scaramuzzi RJ 1994 The effect of ovarian arterial
481	infusion of transforming growth factor alpha on ovarian follicle
482	populations and ovarian hormone secretion in ewes with an
483	autotransplanted ovary. <i>Journal of Endocrinol</i> ogy 143 13-24.
484	Campbell BK, Baird DT & Webb R 1998 Effects of dose of LH on androgen
485	production and luteinization of ovine theca cells cultured in a serum-free
486	system. Journal of Reproduction and Fertility 112 69-77.
487	Campbell BK, Souza CJ, Skinner AJ, Webb R & Baird DT 2006 Enhanced
488	response of granulosa and theca cells from sheep carriers of the FecB
489	mutation in vitro to gonadotropins and bone morphogenic protein-2, -4,
490	and -6. <i>Endocrinology</i> 147 1608-1620.
491	Campbell BK, Clinton M & Webb R 2012 The role of anti-Mullerian hormone
492	(AMH) during follicle development in a monovulatory species (sheep).
493	Endocrinology 153 4533-4543. Deanesly R 1938 The Androgenic Activity
494 405	of Ovarian Grafts in Castrated Male Rats. <i>Proceedings of the Royal Society</i>
495	of London Series B Biological Sciences 126 122-135.
496 497	Elvin JA, Clark AT, Wang P, Wolfman NM & Matzuk MM 1999 Paracrine actions of growth differentiation factor-9 in the mammalian ovary.
497 498	8
498 499	<i>Molecular Endocrinology</i> 13 1035-1048. Erickson GF, Magoffin DA, Dyer CA & Hofeditz C 1985 The ovarian androgen
500	producing cells: a review of structure/function relationships. <i>Endocrine</i>
500	Reviews 6 371-399.
501	Fortune JE & Armstrong DT 1977 Androgen production by theca and granulosa
502	isolated from proestrous rat follicles. <i>Endocrinology</i> 100 1341-1347.
503	Franks S, Gilling-Smith C, Watson H & Willis D 1999 Insulin action in the
505	normal and polycystic ovary. <i>Endocrinol Metab Clin North Am</i> 28 361-378.
506	Fraser HM 2006 Regulation of the ovarian follicular vasculature. <i>Reproductive</i>
507	Biology and Endocrinology 4 18.
508	Fraser HM & Duncan WC 2009 SRB Reproduction, Fertility and Development
509	Award Lecture 2008. Regulation and manipulation of angiogenesis in the
510	ovary and endometrium. <i>Reproduction Fertility and Development</i> 21 377-
511	392.
512	Gambineri A, Patton L, Prontera O, Fanelli F, Ciampaglia W, Cognigni GE,
513	Pagotto U & Pasquali R 2011 Basal insulin-like factor 3 levels predict
514	functional ovarian hyperandrogenism in the polycystic ovary syndrome.
515	Journal of Endocrinological Investigation 34 685-691.
516	Gilling-Smith C, Willis DS & Franks S 1997 Oestradiol feedback stimulation of
517	androgen biosynthesis by human theca cells. <i>Hum Reprod</i> 12 1621-1628.

518	Glister C, Tannetta DS, Groome NP & Knight PG 2001 Interactions between
519	follicle-stimulating hormone and growth factors in modulating secretion
520	of steroids and inhibin-related peptides by nonluteinized bovine
521	granulosa cells. <i>Biology of Reproduction</i> 65 1020-1028.
522	Glister C, Kemp CF & Knight PG 2004 Bone morphogenetic protein (BMP)
523	ligands and receptors in bovine ovarian follicle cells: actions of BMP-4, -6
524	and -7 on granulosa cells and differential modulation of Smad-1
525	phosphorylation by follistatin. <i>Reproduction</i> 127 239-254.
526	Glister C, Richards SL & Knight PG 2005 Bone morphogenetic proteins (BMP) -
527	4, -6, and -7 potently suppress basal and luteinizing hormone-induced
528	androgen production by bovine theca interna cells in primary culture:
529	could ovarian hyperandrogenic dysfunction be caused by a defect in
530	thecal BMP signaling? <i>Endocrinology</i> 146 1883-1892.
531	Glister C, Satchell L & Knight PG 2010 Changes in expression of bone
532	morphogenetic proteins (BMPs), their receptors and inhibin co-receptor
533	betaglycan during bovine antral follicle development: inhibin can
534	antagonize the suppressive effect of BMPs on thecal androgen production.
535	Reproduction 140 699-712.
536	Glister C, Satchell L & Knight PG 2011 Granulosal and thecal expression of
537	bone morphogenetic protein- and activin-binding protein mRNA
538	transcripts during bovine follicle development and factors modulating
539	their expression in vitro. <i>Reproduction</i> 142 581-591.
540	Glister C, Satchell L, Bathgate RA, Wade JD, Dai Y, Ivell R, Anand-Ivell R,
541	Rodgers RJ & Knight PG 2013 Functional link between bone
542	morphogenetic proteins and insulin-like peptide 3 signaling in
543	modulating ovarian androgen production. Proceedings of the National
544	Academy of Sciences of the USA 110 E1426-1435.
545	Gutierrez CG, Campbell BK & Webb R 1997 Development of a long-term
546	bovine granulosa cell culture system: induction and maintenance of
547	estradiol production, response to follicle-stimulating hormone, and
548	morphological characteristics. <i>Biology of Reproduction</i> 56 608-616.
549	Harlow CR, Hillier SG & Hodges JK 1986 Androgen modulation of follicle-
550	stimulating hormone-induced granulosa cell steroidogenesis in the
551	primate ovary. <i>Endocrinology</i> 119 1403-1405.
552	Hillier SG & De Zwart FA 1981 Evidence that granulosa cell aromatase
553	induction/activation by follicle-stimulating hormone is an androgen
554	receptor-regulated process in-vitro. <i>Endocrinology</i> 109 1303-1305.
555	Hoang YD, McTavish KJ, Chang RJ & Shimasaki S 2013 Paracrine regulation of
556	theca androgen production by granulosa cells in the ovary. <i>Fertility and</i>
557	Sterility 100 561-567.
558	Honda A, Hirose M, Hara K, Matoba S, Inoue K, Miki H, Hiura H, Kanatsu-
559	Shinohara M, Kanai Y, Kono T, Shinohara T & Ogura A 2007 Isolation,
560	characterization, and in vitro and in vivo differentiation of putative thecal
561	stem cells. Proceedings of the National Academy of Sciences of the USA 104
562	12389-12394.
563	Hunter RF 2003 <i>Physiology of the Graafian Follicle and Ovulation</i> . Cambridge:
564	Cambridge University Press.

565	Hurwitz A, Hernandez ER, Resnick CE, Packman JN, Payne DW & Adashi EY
566	1990 Basic fibroblast growth factor inhibits gonadotropin-supported
567	ovarian androgen biosynthesis: mechanism(s) and site(s) of action.
568	Endocrinology 126 3089-3095.
569	Hurwitz A, Payne DW, Packman JN, Andreani CL, Resnick CE, Hernandez ER
570	& Adashi EY 1991 Cytokine-mediated regulation of ovarian function:
571	interleukin-1 inhibits gonadotropin-induced androgen biosynthesis.
572	Endocrinology 129 1250-1256.
573	Itami S, Yasuda K, Yoshida Y, Matsui C, Hashiura S, Sakai A & Tamotsu S
574	2011 Co-culturing of follicles with interstitial cells in collagen gel
575	reproduce follicular development accompanied with theca cell layer
576	formation. <i>Reproductive Biology and Endocrinol</i> ogy 9 159.
577	Ivell R & Anand-Ivell R 2011 Biological role and clinical significance of insulin-
578	like peptide 3. Current Opinion in Endocrinology Diabetes and Obesity 18
579	210-216.
580	Joyce IM, Pendola FL, Wigglesworth K & Eppig JJ 1999 Oocyte regulation of kit
581	ligand expression in mouse ovarian follicles. <i>Developmental Biology</i> 214
582	342-353.
583	Knight PG & Glister C 2006 TGF-beta superfamily members and ovarian follicle
584	development. <i>Reproduction</i> 132 191-206.
585	Kumar TR, Wang Y, Lu N & Matzuk MM 1997 Follicle stimulating hormone is
586	required for ovarian follicle maturation but not male fertility. <i>Nature</i>
587	<i>Genetics</i> 15 201-204.
588	Lagaly DV, Aad PY, Grado-Ahuir JA, Hulsey LB & Spicer LJ 2008 Role of
589	adiponectin in regulating ovarian theca and granulosa cell function.
590	Molecular and Cellular Endocrinology 284 38-45.
591	Luo W, Gumen A, Haughian JM & Wiltbank MC 2011 The role of luteinizing
592	hormone in regulating gene expression during selection of a dominant
593	follicle in cattle. <i>Biology of Reprod</i> uction 84 369-378.
594	Luo W & Wiltbank MC 2006 Distinct regulation by steroids of messenger RNAs
595	for FSHR and CYP19A1 in bovine granulosa cells. <i>Biology of Reproduction</i>
596	75 217-225.
597	Lussier JG, Matton P, Guilbault LA, Grasso F, Mapletoft RJ & Carruthers TD
598	1994 Ovarian follicular development and endocrine responses in
599	follicular-fluid-treated and hemi-ovariectomized heifers. <i>Journal of</i>
600	Reproduction and Fertility 102 95-105.
601	Magoffin DA & Weitsman SR 1994 Insulin-like growth factor-I regulation of
602	luteinizing hormone (LH) receptor messenger ribonucleic acid expression
603	and LH-stimulated signal transduction in rat ovarian theca-interstitial
604	cells. Biology of Reproduction 51 766-775.
605	Magoffin DA 2002 The ovarian androgen-producing cells: a 2001 perspective.
606	Reviews of Endocrine and Metabolic Disorders 3 47-53.
607	Magoffin DA 2005 Ovarian theca cell. <i>International Journal of Biochemistry and</i>
608	<i>Cell Biology</i> 37 1344-1349.
609 610	Martin GB 1984 Factors affecting the secretion of luteinizing hormone in the
610 611	ewe. Biological Reviews 59 1-87. Miyamoto A. Shirasuna K. Shimizu T. Bollwoin H. & Schams D. 2010
	Miyamoto A, Shirasuna K, Shimizu T, Bollwein H & Schams D 2010
612	Regulation of corpus luteum development and maintenance: specific roles

613	of angiogenesis and action of prostaglandin F2alpha. Society for
614	Reproduction and Fertility Supplement 67 289-304.
615	Monget P, Fabre S, Mulsant P, Lecerf F, Elsen JM, Mazerbourg S, Pisselet C &
616	Monniaux D 2002 Regulation of ovarian folliculogenesis by IGF and BMP
617	system in domestic animals. <i>Domest Animal Endocrinology</i> 23 139-154.
618	Nilsson E, Parrott JA & Skinner MK 2001 Basic fibroblast growth factor
619	induces primordial follicle development and initiates folliculogenesis.
620	Mloecular and Cellular Endocrinology 175 123-130.
621	Nilsson EE & Skinner MK 2002 Growth and differentiation factor-9 stimulates
622	progression of early primary but not primordial rat ovarian follicle
623	development. Biology of Reproduction 67 1018-1024.
624	Orisaka M, Jiang JY, Orisaka S, Kotsuji F & Tsang BK 2009 Growth
625	differentiation factor 9 promotes rat preantral follicle growth by up-
626	regulating follicular androgen biosynthesis. <i>Endocrinology</i> 150 2740-
627	2748.
628	Orisaka M, Mizutani T, Tajima K, Orisaka S, Shukunami K, Miyamoto K &
629	Kotsuji F 2006a Effects of ovarian theca cells on granulosa cell
630	differentiation during gonadotropin-independent follicular growth in
631	cattle. Molecular Reproduction and Development 73 737-744.
632	Orisaka M, Tajima K, Mizutani T, Miyamoto K, Tsang BK, Fukuda S, Yoshida
633	Y & Kotsuji F 2006b Granulosa cells promote differentiation of cortical
634	stromal cells into theca cells in the bovine ovary. <i>Biology of Reproduction</i>
635	75 734-740.
636	Otsuka F & Shimasaki S 2002 A negative feedback system between oocyte bone
637	morphogenetic protein 15 and granulosa cell kit ligand: its role in
638	regulating granulosa cell mitosis. Proceedings of the National Academy of
639	Sciences of the USA 99 8060-8065.
037	
640	Ouellette Y, Price CA & Carriere PD 2005 Follicular fluid concentration of
641	transforming growth factor-beta1 is negatively correlated with estradiol
642	and follicle size at the early stage of development of the first-wave cohort
643	of bovine ovarian follicles. <i>Domestic Animal Endocrinology</i> 29 623-633.
644	Parrott JA, Vigne JL, Chu BZ & Skinner MK 1994 Mesenchymal-epithelial
645	interactions in the ovarian follicle involve keratinocyte and hepatocyte
646	growth factor production by thecal cells and their action on granulosa
647	cells. Endocrinology 135 569-575.
648	Parrott JA & Skinner MK 1997 Direct actions of kit-ligand on theca cell growth
649	and differentiation during follicle development. <i>Endocrinology</i> 138 3819-
650	3827.
651	Parrott JA & Skinner MK 1998 Thecal cell-granulosa cell interactions involve a
652	positive feedback loop among keratinocyte growth factor, hepatocyte
653	growth factor, and Kit ligand during ovarian follicular development.
654	Endocrinology 139 2240-2245.
655	Parrott JA & Skinner MK 2000 Kit ligand actions on ovarian stromal cells:
656	effects on theca cell recruitment and steroid production. <i>Molecular</i>
657	Reproduction and Development 55 55-64.
658	Portela VM, Machado M, Buratini J, Jr., Zamberlam G, Amorim RL, Goncalves
659	Portera vM , Machado M, Buratini J, Jr., Zamberran G, Amorini KL, Goncarves P & Price CA 2010 Expression and function of fibroblast growth factor 18
660	in the ovarian follicle in cattle. <i>Biology of Reproduction</i> 83 339-346.
000	m the ovarian foncte in cathe. <i>Diology of Kept buuchon</i> 03 537-540.

661	Ren Y, Cowan RG, Harman RM & Quirk SM 2009 Dominant activation of the
662	hedgehog signaling pathway in the ovary alters theca development and
663	prevents ovulation. <i>Molecular Endocrinology</i> 23 711-723.
664	Roberts AJ & Skinner MK 1990 Mesenchymal-epithelial cell interactions in the
665	ovary: estrogen-induced theca cell steroidogenesis. Molecular and Cellular
666	Endocrinology 72 R1-5.
667	Roberts AJ & Skinner MK 1991 Transforming growth factor-alpha and -beta
668	differentially regulate growth and steroidogenesis of bovine thecal cells
669	during antral follicle development. <i>Endocrinology</i> 129 2041-2048.
670	Robinson RS, Woad KJ, Hammond AJ, Laird M, Hunter MG & Mann GE 2009
671	Angiogenesis and vascular function in the ovary. <i>Reproduction</i> 138 869-
672	881.
673	Rodgers RJ & Irving-Rodgers HF 2010 Morphological classification of bovine
674	ovarian follicles. <i>Reproduction</i> 139 309-318.
675	Ryan KJ & Petro Z 1966 Steroid biosynthesis by human ovarian granulosa and
676	thecal cells. <i>Journal of Clinical Endocrinology and Metabolism</i> 26 46-52.
677	Satchell L, Glister C, Bleach EC, Glencross RG, Bicknell AB, Dai Y, Anand-Ivell
678	R, Ivell R & Knight PG 2013 Ovarian expression of insulin-like peptide 3
679	(INSL3) and its receptor (RXFP2) during development of bovine antral
680	follicles and corpora lutea and measurement of circulating INSL3 levels
681	during synchronized estrous cycles. <i>Endocrinology</i> 154 1897-1906.
682	Scaramuzzi RJ & Downing JA 1995 The in vivo effects of fibroblast growth
683	factor and epidermal growth factor on the secretion of oestradiol,
684	androstenedione and progesterone by the autotransplanted ovary in the
685	ewe. Journal of Endocrinology 146 301-311.
686	Schreiber NB, Totty ML & Spicer LJ 2012 Expression and effect of fibroblast
687	growth factor 9 in bovine theca cells. <i>Journal of Endocrinology</i> 215 167-
688	175.
689	Shiina H, Matsumoto T, Sato T, Igarashi K, Miyamoto J, Takemasa S, Sakari
690	M, Takada I, Nakamura T, Metzger D, Chambon P, Kanno J,
691	Yoshikawa H & Kato S 2006 Premature ovarian failure in androgen
692	receptor-deficient mice. Proceedings of the National Academy of Sciences of
693	<i>the USA</i> 103 224-229.
694	Shimasaki S, Moore RK, Otsuka F & Erickson GF 2004 The bone
695	morphogenetic protein system in mammalian reproduction. <i>Endocrine</i>
696	<i>Rev</i> 25 72-101.
697	Shimizu T, Magata F, Abe Y & Miyamoto A 2012 Bone morphogenetic protein 4
698	(BMP-4) and BMP-7 induce vascular endothelial growth factor expression
699	in bovine granulosa cells. Animal Science Journal 83 663-667.
700	Simpson ER 2003 Sources of estrogen and their importance. <i>Journal of Steroid</i>
701	Biochemistry and Molecular Biology 86 225-230.
702	Solovyeva EV, Hayashi M, Margi K, Barkats C, Klein C, Amsterdam A, Hsueh
703	AJ & Tsafriri A 2000 Growth differentiation factor-9 stimulates rat theca-
704	interstitial cell androgen biosynthesis. <i>Biology of Reproduction</i> 63 1214-
705	1218.
706	Spicer LJ 1998 Tumor necrosis factor-alpha (TNF-alpha) inhibits
707	steroidogenesis of bovine ovarian granulosa and thecal cells in vitro.
708	Involvement of TNF-alpha receptors. <i>Endocrine</i> 8 109-115.

709	Spicer LJ 2001 Leptin: a possible metabolic signal affecting reproduction.
710	Domestic Animal Endocrinology 21 251-270.
711	Spicer LJ & Echternkamp SE 1995 The ovarian insulin and insulin-like growth
712	factor system with an emphasis on domestic animals. Domestic Animal
713	Endocrinology 12 223-245.
714	Spicer LJ, Voge JL & Allen DT 2004 Insulin-like growth factor-II stimulates
715	steroidogenesis in cultured bovine thecal cells. Molecular and Cellular
716	Endocrinology 227 1-7.
717	Spicer LJ, Aad PY, Allen DT, Mazerbourg S, Payne AH & Hsueh AJ 2008
718	Growth differentiation factor 9 (GDF9) stimulates proliferation and
719	inhibits steroidogenesis by bovine theca cells: influence of follicle size on
720	responses to GDF9. <i>Biology of Reproduction</i> 78 243-253.
721	Spicer LJ, Sudo S, Aad PY, Wang LS, Chun SY, Ben-Shlomo I, Klein C & Hsueh
722	AJ 2009 The hedgehog-patched signaling pathway and function in the
723	mammalian ovary: a novel role for hedgehog proteins in stimulating
724	proliferation and steroidogenesis of theca cells. <i>Reproduction</i> 138 329-
725	339.
726	Tajima K, Orisaka M, Mori T & Kotsuji F 2007 Ovarian theca cells in follicular
727	function. <i>Reproduction and Biomedicine Online</i> 15 591-609.
728	Velazquez MA, Spicer LJ & Wathes DC 2008 The role of endocrine insulin-like
729	growth factor-I (IGF-I) in female bovine reproduction. Domestic Animal
730	Endocrinology 35 325-342.
731	Vendola K, Zhou J, Wang J, Famuyiwa OA, Bievre M & Bondy CA 1999
732	Androgens promote oocyte insulin-like growth factor I expression and
733	initiation of follicle development in the primate ovary. <i>Biology ofReprod</i>
734	uction 61 353-357.
735	Voss AK & Fortune JE 1993 Levels of messenger ribonucleic acid for
736	cytochrome P450 17 alpha-hydroxylase and P450 aromatase in
737	preovulatory bovine follicles decrease after the luteinizing hormone surge.
738	Endocrinology 132 2239-2245.
739	Weil S, Vendola K, Zhou J & Bondy CA 1999 Androgen and follicle-stimulating
740	hormone interactions in primate ovarian follicle development. Journal of
741	Clinical Endocrinology and Metabolism 84 2951-2956.
742	Wijgerde M, Ooms M, Hoogerbrugge JW & Grootegoed JA 2005 Hedgehog
743	signaling in mouse ovary: Indian hedgehog and desert hedgehog from
744	granulosa cells induce target gene expression in developing theca cells.
745	Endocrinology 146 3558-3566.
746	Woodruff TK & Mather JP 1995 Inhibin, activin and the female reproductive
747	axis. Annual Reviews of Physiology 57 219-244.
748	Wrathall JH & Knight PG 1995 Effects of inhibin-related peptides and oestradiol
749	on androstenedione and progesterone secretion by bovine theca cells in
750	vitro. Journal of Endocrinology 145 491-500.
751	Xue K, Kim JY, Liu JY & Tsang BK 2014 Insulin-like 3-Induced Rat Preantral
752	Follicular Growth Is Mediated by Growth Differentiation Factor 9.
753	<i>Endocrinology</i> 155 156-167.
754	Yamamoto N, Christenson LK, McAllister JM & Strauss JF, 3rd 2002 Growth
755	differentiation factor-9 inhibits 3'5'-adenosine monophosphate-
756	stimulated steroidogenesis in human granulosa and theca cells. <i>Journal of</i>
757	Clinical Endocrinology and Metabolism 87 2849-2856.

758	Yang MY & Fortune JE 2006 Testosterone stimulates the primary to secondary
759	follicle transition in bovine follicles in vitro. <i>Biology of Reproduction</i> 75
760	924-932.
761	Yang MY & Fortune JE 2007 Vascular endothelial growth factor stimulates the
762	primary to secondary follicle transition in bovine follicles in vitro.
763	Molecular Reproduction and Development 74 1095-1104.
764	Young JM & McNeilly AS 2010 Theca: the forgotten cell of the ovarian follicle.
765	<i>Reproduction</i> 140 489-504.
766	Young JM, Henderson S, Souza C, Ludlow H, Groome N & McNeilly AS 2012
767	Activin B is produced early in antral follicular development and
768	suppresses thecal androgen production. <i>Reproduction</i> 143 637-650.
769	Young JM & McNeilly AS 2012 Inhibin removes the inhibitory effects of activin
770	on steroid enzyme expression and androgen production by normal
771	ovarian thecal cells. <i>Journal of Molecular Endocrinology</i> 48 49-60.
772	Zheng X, Price CA, Tremblay Y, Lussier JG & Carriere PD 2008 Role of
773	transforming growth factor-beta1 in gene expression and activity of
774	estradiol and progesterone-generating enzymes in FSH-stimulated bovine
775	granulosa cells. <i>Reproduction</i> 136 447-457.

777

778 Figure Legends

Fig. 1 Theca cells are recruited from cortical stromal cells and proliferate and 779 differentiate under the influence of paracrine factors secreted by the granulosa 780 781 cells and/or oocyte of activated follicles. Differentiated theca interna cells are 782 responsive to LH and other endocrine and intra-ovarian factors. In turn, they 783 secrete factors (steroids and proteins) that exert autocrine/paracrine effects on 784 theca cells and paracrine effects on granulosa cells. They also deliver androgens 785 to granulosa cells as substrate for oestrogen synthesis. Abbreviations: AMH, anti-786 mullerian hormone; BMP, bone morphogenetic protein; IGF, inslulin-like growth factor; INSL3, insulin-like peptide 3; GDF, growth and differentiation factor; HGF, 787 788 hepatocyte growth factor; HH proteins, hedgehog proteins; KITL, kit ligand (stem 789 cell factor); TGF, transforming growth factor. Black arrows indicate paracrine 790 effects while orange arrows indicate autocrine effects. Grey arrows and grey 791 dashed arrows indicate endocrine effects.

792

793 Fig. 2 Systemic and intra-ovarian factors shown to modulate thecal androgen 794 production *in vitro*. So far, only a minority of these factors (highlighted in bold) 795 has been shown to modulate ovarian androgen production in vivo (evidenced by 796 experiments involving direct administration, immunoneutralization, 797 spontaneous mutations or targeted deletions of ligand/receptor genes). More in 798 vivo studies are required to strengthen the physiological relevance of in vitro 799 observations relating to local autocrine/paracrine interactions. However, such 800 experiments are challenging, not least due to multiple sites of action and complex hypothalamic-pituitary-ovarian feedback interactions operating in vivo. 801 Superscript letters indicate the main source(s) of each factor: e, endocrine; g, 802

granulosa; m, macrophage; o, oocyte; t, theca. For other abbreviations see Fig. 1legend.

805

Fig. 3 The BMP-binding proteins gremlin and noggin are expressed in bovine
antral follicles and can selectively antagonize BMP-induced suppression of
androstenedione secretion by bovine theca cells *in vitro*. Note that gremlin also
raises 'basal' androstenedione secretion in the absence of BMP treatment,
suggesting neutralization of an endogenous ligand, likely BMP4. (Glister, Satchell

811 & Knight, unpublished data)

812

- **Fig. 4** RNAi knockdown of INSL3 or its receptor (RXFP2) in cultured bovine
- 814 theca cells reduces CYP17A1 expression and androstenedione secretion
- 815 indicating that INSL3 signaling is required for maintaining androgen synthesis.
- 816 Values are means ± SEM (n=4 independent cultures). **P<0.01 versus control.
- 817 (redrawn from Glister et al 2013)

818

- 819 **Fig. 5** Changes in mean (±SEM) plasma concentrations of progesterone,
- 820 oestradiol-17β and INSL3 during PG-synchronized oestrous cycles in heifers.
- 821 Samples are aligned to the time of PG administration (day 0) indicated by the
- arrow. Statistical analysis was performed by repeated measures ANOVA.
- 823 (replotted from Satchell et al 2013)

824

825 Fig. 6 Putative model of BMP-INSL3 pathway interaction in the regulation of thecal androgen production. According to the model (a) both INSL3 and its 826 827 cognate receptor RXFP2 are primarily expressed by theca cells (TC); (b) 828 expression of INSL3 and RXFP2 increase during antral follicle development and 829 decline after the preovulatory LH surge; (c) INSL3-RXFP2 signalling is required 830 to sustain TC androgen production since knockdown of either suppresses 831 CYP17A1 expression and androgen production; (d) in a feed forward manner 832 androgens positively regulate INSL3-RXFP2 signaling since pharmacological 833 blockade of androgen synthesis reduces INSL3 and RXFP2 expression; (e) BMPs 834 from granulosa cells (GC) and/or TC suppress INSL3 expression and this is accompanied by a loss of their androgen-synthesizing capacity; (f) BMP 835 836 signalling, in turn, is negatively regulated by GC-derived inhibin and extracellular 837 BMP-binding proteins; (g) diminished BMP signalling could contribute to raised 838 INSL3 and androgen production in conditions such as polycystic ovarian 839 syndrome in humans.

840

Fig. 3

Fig. 6

Fig. 5

