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Summary

Theca cells are essential for female reproduction being the source of androgens
that are precursors for follicular oestrogen synthesis and also signal through
androgen receptors (AR) in the ovary and elsewhere. Theca cells arise from
mesenchymal cells around the secondary follicle stage. Their recruitment,
proliferation and cytodifferentiation are influenced, directly or indirectly, by
paracrine signals from granulosa cells and oocyte although uncertainty remains
over which are the critically important signals at particular stages. In a reciprocal
manner, theca cells secrete factors that influence granulosa cell proliferation and
differentiation at different follicle stages. Differentiated theca interna cells
acquire responsiveness to luteinizing hormone (LH) and other endocrine signals
and express components of the steroidogenic machinery required for androgen
biosynthesis. They also express insulin-like peptide 3 (INSL3) and its receptor
(RXFP2), levels of which increase during bovine antral follicle development.
INSL3 signaling may play a role in promoting androgen biosynthesis since
knockdown of either INSL3 or its receptor (RXFPZ2) in bovine theca cells inhibits
androgen biosynthesis while exogenous INSL3 can raise androgen secretion.
Bone morphogenetic proteins (BMPs) of thecal or granulosal origin suppress
thecal production of both INSL3 and androgen. Inhibin, produced in greatest
amounts by granulosa cells of preovulatory follicles, reverses these BMP actions.
Thus, BMP-induced inhibition of thecal androgen production may be mediated
by reduced INSL3-RXFP2 signaling. Activins also inhibit androgen production in
an inhibin-reversible manner and recent evidence in sheep indicates that theca
cells synthesize and secrete activin, implying an autocrine role in suppressing
androgen biosynthesis in smaller follicles, akin to that envisaged for BMPs.

Introduction

Ovarian androgens play an essential role in female reproductive physiology
being obligatory substrates for ovarian oestrogen synthesis as well as having
direct androgen receptor (AR)-mediated actions in the ovary and elsewhere.
Indeed female mice lacking functional AR show defective follicle development
and premature ovarian failure (Shiina et al. 2006). Ovary- and adrenal-
derived androgens can also be aromatized to oestrogens by various peripheral
tissues including brain, bone and adipose tissue (Simpson 2003) reflecting
additional ‘non-reproductive’ roles.

Evidence that the mammalian ovary synthesises and secretes androgens
first emerged in the 1930s (Deanesly 1938). It was subsequently revealed that
theca interna cells of developing antral follicles are their principle source and
that the capacity of ovarian follicles to synthesise oestrogens depended on the
cooperation of theca interna and granulosa cells in accordance with the two-
gonadotrophin, two-cell theory (Ryan & Petro 1966, Fortune & Armstrong 1977).
This theory proposed that luteinizing hormone (LH) acts on theca interna cells to
promote biosynthesis of androgens (androstenedione, testosterone), which then
diffuse to neighbouring granulosa cells where the aromatase enzyme complex
converts them to oestrogens (oestrone, oestradiol), under the influence of follicle
stimulating hormone (FSH). Whilst the two-cell, two-gonadotrophin theory has
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stood the test of time remarkably well, it is increasingly evident that additional
endocrine signals and a multitude of locally-produced signals also contribute to
the regulation of thecal androgen production and granulosal oestrogen
production at successive stages of follicle development.

The physiological importance of theca-derived androgens cannot be
overstated since several key events in the female reproductive process (follicle
maturation, preparation of reproductive tract, generation of preovulatory LH
surge, ovulation, oestrus behaviour, libido) are reliant upon their timely
production. Unfortunately, disorders that affect thecal androgen biosynthesis,
such as polycystic ovarian syndrome (PCOS) in humans, are commonplace and
are associated with impaired fertility and other co-morbidities (Baptiste et al.
2010). Given the above, it is perhaps surprising that theca cells have not
commanded more attention by ovarian biologists over recent decades. Recent
PubMed searches yielded cumulative hits totalling 63,492, 13,918 and 3,658 for

the terms “oocyte”, “granulosa cell” and “theca cell” respectively, supporting this
perception.

The aim of this review is to provide an update of the literature on ovarian
theca cells and androgen production with an emphasis on studies involving
domestic ruminants. We will also discuss in more detail recent findings from our
own laboratory on the actions and interaction of bone morphogenetic proteins
(BMPs) and insulin-like peptide 3 (INSL3) on androgen production by bovine
theca cells. The reader will find much additional information on theca cells in
excellent review articles (Erickson et al. 1985, Magoffin 2005, Tajima et al. 2007,
Young & McNeilly 2010).

Formation of the theca layer
Recruitment of theca cells from ovarian stroma

It is generally accepted that theca cells are derived from mesenchymal
progenitor cells within the cortical stroma. There is some evidence in the mouse
that a definitive population(s) of thecal progenitor stem cells exists (Honda et al.
2007) although comparable studies are currently lacking in other species
including ruminants. Under the influence of presumptive signals emitted by
activated preantral follicles (i.e. primary and secondary stage), stromal
progenitor cells congregate around the follicular basal lamina and align to form
first one, and subsequently multiple layers of elongated cells surrounding the
follicle (Erickson et al. 1985, Orisaka et al. 2006b, Itami et al. 2011). Thecal
recruitment occurs independently of gonadotrophin action as the stromal
progenitor cells do not express LH receptors and the theca layer still forms in
FSH receptor-null mice (Kumar et al. 1997, Abel et al. 2000). Rather, evidence
suggests that soluble factor(s) secreted by the oocyte and/or granulosa cells of
activated follicles drive thecal recruitment (Magoffin 2002, Magoffin 2005,
Orisaka et al. 2006b, Itami et al. 2011). Whilst the identity of the key factor(s)
involved is still unknown, granulosa-derived kit ligand (KITLG) and hedgehog
proteins, and oocyte-derived GDF9 are prime candidates. Theca layers fail to
develop in the arrested follicles of GDF9-null mice (Elvin et al. 1999). GDF9 may
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act either directly on surrounding stromal (pre-theca) cells to upegulate KIT
expression or indirectly by modulation of KITLG and IGF1 production by
granulosa cells that, in turn, binds to their signaling receptors (KIT, IGFR) on pre-
theca cells (Nilsson & Skinner 2002). Like GDF9, oocyte-derived BMP15 has also
been shown to upregulate KITLG expression by granulosa cells (Otsuka &
Shimasaki 2002).

From the primary follicle stage in mice, granulosa cells begin to express
hedgehog proteins (Ihh, Dhh) that induce target gene expression (Ptchl, Gli1) in
surrounding mesenchymal stromal cells (i.e. pre-theca cells). This expression
pattern persists in the theca layer until the preovulatory stage, perhaps implying
arole in both theca cell recruitment and differentiation (Wijgerde et al. 2005).
Cultured bovine theca cells from antral follicles also respond to hedgehog
protein with upregulation of Gli1 expression, increased proliferation and
androgen production (Spicer et al. 2009). Other candidate theca recruitment
factors include VEGFA (Yang & Fortune 2006, Yang & Fortune 2007) from
granulosa cells and BMP15 and BMP6 from the oocyte. In addition, evidence
suggests that established theca cells also secrete paracrine factors that indirectly
influence surrounding stromal cells to ‘amplify’ recruitment including
transforming growth factor a (TGFA), basic fibroblast growth factor
(bFGF/FGF2), keratinocyte growth factor (KGF/FGF7), hepatocyte growth factor
(HGF), IGFs and androgens. Both KGF and HGF have been shown to increase
granulosal KITLG expression that, in turn, upregulates thecal FGF7and HGF
expression (Parrott & Skinner 1998) as well as stromal KIT expression and cell
proliferation (Parrott & Skinner 2000). Theca-derived androgens may also have
an amplifying role since androgen can upregulate KITLG expression by mouse
granulosa cells (Joyce et al. 1999) and promote the primary to secondary follicle
transition in bovine ovarian cortical strips (Yang & Fortune 2006, Yang &
Fortune 2007).

Proliferation and differentiation of theca cells

After congregating around the basal lamina, theca cells proliferate and
differentiate into an inner theca interna and outer theca externa. Whilst the key
signals responsible are largely unknown, proliferation and cytodifferentiation
are presumably influenced by gradients of paracrine signaling molecules from
the centrally located granulosa/oocyte compartment (i.e. KITLG, GDF9, BMP15,
EGF, hedgehog proteins) in conjunction with endocrine signals (i.e. LH, insulin,
IGFs) diffusing from new capillary vessels forming close to the basal lamina.
Once established, theca cells may also secrete autocrine/paracrine factors that
promote further proliferation and differentiation, including IGFs (Barbieri et al.
1986, Magoffin & Weitsman 1994, Spicer et al. 2004), bFGF (Nilsson et al. 2001)
and androgens (Yang & Fortune 2006, Yang & Fortune 2007). Evidence in the
mouse suggests that a radial signaling gradient of hedgehog proteins emitted by
granulosa cells is involved in the differentiation of the more distantly located
theca cells into theca externa cells that show a smooth muscle-like phenotype
(Ren et al 2009). In contrast, theca interna cells acquire LH receptors and begin
to express components of the steroidogenic pathway (NR5A1, STAR, CYP11A1,
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HSD3B1, CYP17A1). Morphologically, theca interna cells display hallmark
features of steroidogenically-active cells, including abundant smooth
endoplasmic reticulum, numerous mitochondria with tubular cristae and lipid
vesicles that store cholesterol esters as precursor for the synthesis of steroid
hormones. As mentioned above, theca externa cells lack these features and have
a morphology more akin to smooth muscle cells, indicative of a more structural
or mechanical support role in the follicular unit. There is some evidence that
theca externa cells exhibit contractile behaviour around the time of ovulation
that may contribute to extrusion of the cumulus-oocyte and wound closure
around the margin of the corpus haemorrhagicum (Hunter 2003).

As secondary follicles progress towards the antral stage they acquire their
own vascular supply in the form of a sheath of capillaries coursing throughout
the theca layer; these capillaries are excluded by the basal lamina from the
avascular granulosal compartment, until follicle luteinisation (or atresia). A well-
developed thecal capillary bed is essential for bidirectional transfer of
substances to (e.g. gonadotrophins, nutrients) and from (e.g. steroids,
metabolites) the follicular unit. VEGF and other pro-angiogenic factors expressed
predominantly by granulosa cells play a prominent role in vascularization of the
theca interna (Fraser 2006, Fraser & Duncan 2009, Robinson et al. 2009).
Inhibition of VEGFA signaling leads to reduced proliferation of endothelial and
theca cells, compromises follicle development and blocks ovulation (Fraser
2006). Treatment of bovine cortical strips with VEGFA promotes primary to
secondary follicle transition (Yang & Fortune 2006, Yang & Fortune 2007).
Recent evidence in cattle indicates that theca-derived BMP4 and BMP7 may
contribute to thecal vascularization by upregulating VEGFA expression in
granulosa cells (Shimizu et al. 2012).

A brief life history of theca cells: from recruitment to luteal regression

It is clear that the capacity of stromal progenitor cells to differentiate into theca
cells persists throughout the reproductive lifespan of a female (i.e. until the
primordial follicle reserve is depleted). Whilst a theoretical possibility, we are
not aware of any evidence that failure of thecal recruitment ever becomes a
limiting factor in the supply of growing preantral follicles in females approaching
the end of their reproductive lifespan. The subsequent fate of established theca
cells (and their progeny) largely corresponds to the developmental trajectory of
the individual follicle, >99% of which are lost through atresia during the 4-6
months it takes for a primary follicle to reach the preovulatory stage in sheep,
cattle and humans (Lussier et al. 1994). Inadequate development and/or early
regression of the thecal vasculature is reportedly a common feature of atretic
follicles (Fraser 2006). A detailed discussion of follicle atresia in the bovine and
how this relates to changes in theca cells, granulosa cells and oocyte may be
found elsewhere (Rodgers & Irving-Rodgers 2010). Comprehensive reviews
focussing on follicle vascularization include Robinson et al (2009) and Fraser
and Duncan (2009).

Once follicles have acquired a well-developed capillary network it seems
reasonable to assume that their theca interna cells are exposed to pituitary LH



203
204
205
206
207
208
209
210

211
212
213
214
215
216
217
218
219
220
221

222
223

224
225
226
227
228
229
230
231
232
233
234

235
236
237
238
239
240
241
2472
243
244
245
246
247
248

pulses and other endocrine signals, regardless of the stage of follicle
development. However, androgen production remains at relatively low levels
during preantral and early antral follicle stages, only increasing markedly during
the mid- to late-antral stage. This implies the involvement of other, locally
produced signals that suppress androgen production at earlier follicle stages
whilst augmenting LH-dependent androgen production at later stages.
Intraovarian factors implicated in the regulation of androgen production are
discussed in more detail in the final section of this review.

For selected bovine antral follicles that achieve dominance around the
time of luteal regression, exposure to the ovulation-inducing LH surge initiates
luteinisation of both theca and granulosa cells, characterised by an abrupt loss of
thecal CYP17A1 expression and androgen-synthesizing capacity, and granulosal
CYP19A1 expression and oestrogen-synthesizing capacity (Voss & Fortune 1993).
Instead, the proximal components of the steroidogenic pathways of both cell
types are upregulated (i.e. STAR, CYP11A1, HSD3B1) and predominantly used for
the synthesis of progesterone as theca cells transform into ‘small’ luteal cells and
granulosa cells become ‘large’ luteal cells of the newly formed corpus luteum.
Both ‘small’ and ‘large’ luteal cells actively secrete progesterone until corpus
luteum regression (Berisha & Schams 2005, Miyamoto et al. 2010).

Paracrine effects of theca interna cells on granulosa cells and oocyte

In addition to supplying androgens to granulosa cells as substrates for
aromatization to oestrogens, theca cells express an array of paracrine signaling
molecules shown to influence the proliferation and differentiated function of
granulosa cells at different stages of follicle development (Orisaka et al. 2006a).
Prominent amongst these are androgens themselves that have been shown to act
via AR to promote follicle development (Vendola et al. 1999, Shiina et al. 2006,
Yang & Fortune 2006), upregulate FSHR and CYP19A1 expression (Luo &
Wiltbank 2006) and FSH-induced oestrogen production (Hillier & De Zwart 1981,
Harlow et al. 1986, Weil et al. 1999). Thus, thecal androgens play a vital role in
promoting granulosal CYP19A1 expression/aromatase activity as well as
providing substrate for the enzyme.

Many non-steroidal factors secreted by theca cells have likewise been
shown to modify granulosa cell proliferation and/or function in ruminants and
other species (Fig. 1). For example, in vitro studies on bovine/ovine follicles
show that theca-derived KGF (FGF7) and HGF promote granulosa cell
proliferation (Parrott et al. 1994, Parrott & Skinner 1998), TGFB1 down-
regulates FSH-induced CYP19A1 expression and oestradiol secretion (Ouellette
et al. 2005, Zheng et al. 2008), IGF1 enhances cell proliferation and oestradiol
secretion (Gutierrez et al. 1997, Glister et al. 2001, Monget et al. 2002), BMP4,
BMP6 and BMP7 enhance basal and IGF-induced oestradiol secretion (Monget et
al. 2002, Glister et al. 2004, Campbell et al. 2006). In contrast, FGF10 inhibits
oestradiol secretion (Buratini et al. 2007) while FGF18 inhibits FSHR expression
and steroidogenesis and promotes cell death (Portela et al. 2010). Since thecal
expression of FGF18 mRNA and FGF18 protein in follicular fluid were higher in
subordinate than in dominant follicles, it was suggested that theca-derived
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FGF18 might be an important atretogenic factor in bovine follicles (Portela et al.
2010). It should be cautioned that expression of many of the above proteins is
not exclusive to theca cells and so the observed effects of purified/recombinant
proteins on granulosa cells is not necessarily indicative of theca-granulosa
interaction.

Thecal steroidogenesis and factors modulating androgen secretion
Endocrine factors

In response to pulses of GnRH from the hypothalamus, pituitary gonadotrophs
secrete LH pulses that, in turn, promote transient increases in ovarian output of
androgens and oestrogens (Baird & McNeilly 1981, Campbell et al. 1990). The
frequency and amplitude of LH pulses are modulated by both extrinsic (e.g.
photoperiod, socio-sexual cues) and intrinsic (e.g steroid feedback) influences
(Martin 1984) and vary according to the stage of the reproductive cycle. LH
plays a major role in promoting androgen production by theca interna cells,
particularly those of antral follicles with a well-developed vascular system. It
does so by upregulating the expression of several key genes involved in the
steroidogenic pathway that converts cholesterol into androgen, including STAR,
CYP11A1 and CYP17A1. As would be anticipated from this, treatment of cows
with a GnRH antagonist (acyline) to block pulsatile LH secretion inhibited thecal
STAR and CYP17A1 mRNA levels and reduced androgen production (Luo et al.
2011).

Thecal androgen production is also enhanced by insulin, as revealed by in
vitro studies on theca cells from several species including cattle and sheep and
human (Spicer & Echternkamp 1995, Campbell et al. 1998, Franks et al. 1999).
This has given rise to the theory that raised insulin levels in women with insulin
resistance could be a contributory factor in the aetiology of polycystic ovarian
syndrome, a condition usually associated with ovarian androgen excess and
arrested antral follicle development (Baptiste et al. 2010). Like insulin, IGF1 can
also stimulate thecal androgen production (Velazquez et al. 2008) while the
adipokines leptin (Spicer 2001) and adiponectin (Lagaly et al. 2008) have been
shown to inhibit thecal androgen production by cultured bovine theca cells.

Intra-ovarian factors

In concert with LH and other endocrine factors, numerous locally-produced
growth factors have been implicated as intra-ovarian regulators of thecal
androgen production. These include KITLG (Parrott & Skinner 1997), IGFs
(Campbell et al. 1998, Spicer et al. 2004), bFGF/FGF2 (Hurwitz et al. 1990,
Scaramuzzi & Downing 1995), FGF9 (Schreiber et al. 2012), EGF (Scaramuzzi &
Downing 1995, Campbell et al. 1998), TGFA (Roberts & Skinner 1991, Campbell
et al. 1994) TNFA (Spicer 1998), interleukins (Hurwitz et al. 1991) and multiple
TGFp superfamily members (reviews: (Woodruff & Mather 1995, Shimasaki et al.
2004, Knight & Glister 2006) (Fig. 2).
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Theca cells express a full complement of receptors and intracellular signal
transduction components for TGFf superfamily members and are responsive to
multiple ligands including TGFp, activins, BMP2, BMP4, BMP6, BMP7 and AMH,
all of which are expressed at the intrafollicular level and have been shown to
attenuate basal and/or LH-induced androgen production in several species
including rat, human, cattle and sheep (Brankin et al. 2005, Glister et al. 2005,
Campbell et al. 2006, Glister et al. 2010, Glister et al. 2011, Campbell et al. 2012,
Young et al. 2012, Young & McNeilly 2012). The suppressive effect of activin-A is
antagonised by follistatin and inhibin (Wrathall & Knight 1995, Young et al. 2012,
Young & McNeilly 2012). Activin-B also suppresses androgen production by
sheep theca cells to a similar extent as activin-A, and the effects of both are
effectively reversed by inhibin-A (Young et al. 2012).

In addition to blocking activin signaling, inhibin-A was shown to
antagonise the suppressive effects of BMP2, 4, 6 and 7 on bovine theca cells
(Glister et al. 2010). This was accompanied by a reversal of a marked BMP-
induced decline in expression of CYP17A1 and, to a lesser extent, LHCGR, STAR,
CYP11A1 and HSD3B1 expression. In sheep theca cells, the inhibitory effect of
activin-A on androgen production was associated with a decline in STAR and
HSD3B1 expression while CYP17A1 expression was unaffected (Young &
McNeilly 2012). However, co-treatment with inhibin-A to reverse the activin-
induced suppression of thecal androgen production, led to an increase in
expression of CYP17A1 and HSD3B1. Furthermore, treatment with inhibin alone
raised CYP17A1 expression and androgen production indicating that sheep theca
cells produce an endogenous ligand whose action is opposed by inhibin. The
finding that follistatin treatment alone also raised androgen secretion indicates
that activin is the endogenous ligand produced by sheep theca cells (Young &
McNeilly 2012). Indeed, the same group reported expression of INHBA and
INHBB mRNAs in the theca layer of sheep antral follicles (Young et al. 2012). In
contrast, whilst studies in the authors’ laboratory have also documented
expression of INHBA and INHBB mRNAs in bovine theca layers (Glister et al.
2010), we found no stimulatory effect of follistatin treatment on androgen
secretion by isolated theca interna cells (Glister & Knight, unpublished data).
Therefore, we interpret the ability of inhibin alone to raise androgen production
as being due to antagonism of endogenous BMPs, that are also expressed by
theca cells (Glister et al. 2010).

It was recently reported that AMH also exerts a suppressive effect on LH-
induced androgen production by cultured sheep theca cells (Campbell et al.
2012). Moreover, AMH immunoreactivity in granulosa cells declined during
follicle development and was inversely associated with aromatase
immunoreactivity. The study also found that active immunization of sheep
against AMH was associated with raised intrafollicular androgen concentrations
in small antral follicles, supporting a physiological role for granulosa-derived
AMH as an additional paracrine factor that can suppress thecal androgen
production.

Taken together, the above evidence indicates that multiple intra-follicular TGFf
family members including activins, BMPs and AMH negatively regulate basal and
LH-induced androgen production. In contrast, inhibins, follistatin and likely
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several BMP binding proteins (e.g. chordin, gremlin, noggin) secreted by
granulosa cells (Glister et al. 2011) oppose these signals and upregulate
androgen production. Granulosal production of inhibin and follistatin, as well as
thecal expression of the inhibin co-receptor, betaglycan (Glister et al. 2010),
increases in growing preovulatory follicles and, by counteracting activin/BMP
signaling on theca cells, this would serve to enhance the ability of theca cells to
deliver sufficient androgen to granulosa cells for aromatization to oestrogen. It
should be noted that recent evidence in sheep (Young et al. 2012) and cattle
(Glister et al. 2010) indicates that theca cells also express mRNAs for
inhibin/activin subunits. This raises the possibility that theca cells, as well as
granulosa cells, secrete functional inhibin/activin proteins that contribute to the
regulation of thecal androgen production and other intrafollicular events.
Further work is needed to investigate this aspect of intrafollicular regulation.

In vitro studies on bovine (Roberts & Skinner 1990, Wrathall & Knight
1995) and human (Gilling-Smith et al. 1997) theca cells have shown that
oestradiol itself, at physiological concentrations (i.e. similar to peak
concentrations in antral fluid) can upregulate thecal androgen production. This
indicates that an additional intra-follicular positive feedback loop operates to
ensure an adequate supply of androgen for conversion to oestrogen in the late
follicular phase. A recent study in rats also provided evidence that, in addition to
inhibin, another FSH-dependent paracrine factor from granulosa cells
(oestradiol?) was capable of upregulating thecal CYP17A1 expression (Hoang et
al. 2013).

With regard to potential regulatory roles of oocyte-derive factors on
thecal androgen production, GDF9 was found to enhance forskolin-stimulated
androgen production by rat theca-interstitial cells (Solovyeva et al. 2000) while
GDF9-induced upregulation of androgen secretion and CYP17A1 expression in
rat preantral follicles was blocked by intra-oocyte injection of GDF9 antisense
nucleotide (Orisaka et al. 2009). However, other studies showed that GDF9
inhibits forskolin-induced androgen production by human theca cells
(Yamamoto et al. 2002) and both LH- and IGF1-induced androgen production by
bovine theca cells (Spicer et al. 2008). Whether these discordant findings reflect
species differences, or differences in experimental methodology is not known at
this time. Nonetheless, the likelihood is that oocyte-derived factors do exert
direct regulatory actions on surrounding theca cells, as well as on granulosa cells.

Evidence for interactions between BMP and insulin-like peptide 3 (INSL3)
signaling in regulating theca androgen production

As mentioned above studies in the authors’ laboratory using bovine theca cells in
primary culture showed that bone morphogenetic proteins (BMPs) are powerful
suppressors of thecal androgen production and that granulosa-derived inhibin
can antagonise this effect of BMPs and raise androgen production (Glister et al.
2005, Glister et al. 2010). Likewise, several BMP-binding proteins (gremlin,
noggin) can reverse the inhibitory effect of BMPs (Fig. 3), and multiple BMP-
binding proteins are expressed in the bovine ovary, particularly by granulosa
cells (Glister et al. 2011). In a subsequent microarray study (Glister et al. 2013)
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we showed that BMP treatment down-regulates expression of several hundred
genes in theca cells including multiple components of the steroidogenic pathway
leading to androgen biosynthesis, most prominently CYP17A1 but also NR5A1,
STAR, CYP11A1 and HSD3B1. Intriguingly, thecal expression of insulin-like
peptide 3 (INSL3) was profoundly suppressed by BMP treatment and this
prompted a series of experiments that revealed a hitherto unknown functional
link between BMP and INSL3 pathways in the regulation of ovarian androgen
production (Glister et al. 2013, Satchell et al. 2013). INSL3 was initially identified
as a testicular product, but it has become evident that the ovary also synthesizes
substantial amounts of INSL3 (review: (Ivell & Anand-Ivell 2011). In the bovine
ovary, both INSL3 and its cognate receptor (RXFPZ) are predominantly expressed
by theca cells and expression levels of both increase during antral follicle
development (Satchell et al. 2013). In rat preantral follicles expression of RXFP2
was also detected in oocytes and INSL3 was shown to upregulate GDF9
expression, follicle growth and androgen production (Xue et al. 2014). Using
cultured bovine theca cells, RNAi-mediated knockdown of either INSL3 or its
receptor RXFP2 was shown to suppress androgen production (Fig. 4) whereas
exogenous synthetic human INSL3 promoted a modest increase in androgen
production (Glister et al. 2013). During the synchronized bovine oestrous cycle
plasma INSL3 levels increase during the preovulatory period and then decline
after the LH surge, paralleling the changes in plasma oestradiol (Satchell et al.
2013)(Fig. 5). This suggests that the peak in circulating INSL3 reflects the output
of theca cells of the dominant ovulatory follicle and that the subsequent fall in
INSL3 after the LH surge reflects diminished thecal output associated with
follicle luteinisation. In support of this, in vitro culture of theca cells with a
luteinizing concentration of LH promoted a marked decline in INSL3 mRNA
expression and INSL3 secretion accompanied by an upregulation of STAR and
CYP11A1 expression and progesterone secretion (Satchell et al. 2013).

Collectively, these findings revealed the importance of another
intraovarian growth factor, INSL3, for maintaining androgen production by
ovarian theca cells and showed that the suppressive action of BMPs on androgen
production is intimately linked to their inhibition of INSL3 signaling. On the basis
of these findings we propose that a functional deficit in thecal BMP signaling
promotes excess thecal INSL3-RXFP2 signaling and that this could be a
contributory factor in ovarian androgen excess disorders such as PCOS. Indeed,
circulating INSL3 levels are raised in women with PCOS (Gambineri et al. 2011,
Anand-Ivell et al. 2013). Conversely, a functional excess of thecal BMP signaling
could contribute to androgen insufficiency by reducing INSL3-RXFP2 signaling.
Both situations compromise normal follicle development and lead to subfertility
or infertility in animals and human. Moreover, the extra-ovarian actions of
androgens, either acting directly or after peripheral conversion to oestrogens,
will be perturbed by over- or under-secretion of ovarian androgen.

Concluding Remarks

In summary, theca interna cells have an indispensible role in the ovary, not only
contributing to preantral and antral follicle development mediated by androgen
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receptor interaction, but also in the timely provision of androgen substrate
required for granulosal oestrogen biosynthesis, particularly in the final
preovulatory stage of follicle development. It has become apparent that theca
cells are closely regulated by an array of intra-ovarian factors that operate in
concert with LH and other endocrine signals to modulate follicular androgen
biosynthesis. Intra-ovarian BMPs and the INSL3-RXFP2 system are recent
additions to this list and, based on findings from the authors’ laboratory, a
schematic model depicting their proposed involvement is presented in Fig. 6.
Dysregulation of ovarian androgen production is a likely consequence of
perturbations in one or more of these local signaling mechanisms at any stage of
follicle development. Recognising that most of the experimental evidence thus
far has arisen from in vitro studies, the challenge remains to define which are the
most important local signaling mechanisms in terms of physiological regulation
in the whole animal context.
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Figure Legends

Fig. 1 Theca cells are recruited from cortical stromal cells and proliferate and
differentiate under the influence of paracrine factors secreted by the granulosa
cells and/or oocyte of activated follicles. Differentiated theca interna cells are
responsive to LH and other endocrine and intra-ovarian factors. In turn, they
secrete factors (steroids and proteins) that exert autocrine/paracrine effects on
theca cells and paracrine effects on granulosa cells. They also deliver androgens
to granulosa cells as substrate for oestrogen synthesis. Abbreviations: AMH, anti-
mullerian hormone; BMP, bone morphogenetic protein; IGF, inslulin-like growth
factor; INSL3, insulin-like peptide 3; GDF, growth and differentiation factor; HGF,
hepatocyte growth factor; HH proteins, hedgehog proteins; KITL, kit ligand (stem
cell factor); TGF, transforming growth factor. Black arrows indicate paracrine
effects while orange arrows indicate autocrine effects. Grey arrows and grey
dashed arrows indicate endocrine effects.

Fig. 2 Systemic and intra-ovarian factors shown to modulate thecal androgen
production in vitro. So far, only a minority of these factors (highlighted in bold)
has been shown to modulate ovarian androgen production in vivo (evidenced by
experiments involving direct administration, immunoneutralization,
spontaneous mutations or targeted deletions of ligand /receptor genes). More in
vivo studies are required to strengthen the physiological relevance of in vitro
observations relating to local autocrine/paracrine interactions. However, such
experiments are challenging, not least due to multiple sites of action and
complex hypothalamic-pituitary-ovarian feedback interactions operating in vivo.
Superscript letters indicate the main source(s) of each factor: e, endocrine; g,
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granulosa; m, macrophage; o, oocyte; t, theca. For other abbreviations see Fig. 1
legend.

Fig. 3 The BMP-binding proteins gremlin and noggin are expressed in bovine
antral follicles and can selectively antagonize BMP-induced suppression of
androstenedione secretion by bovine theca cells in vitro. Note that gremlin also
raises ‘basal’ androstenedione secretion in the absence of BMP treatment,
suggesting neutralization of an endogenous ligand, likely BMP4. (Glister, Satchell
& Knight, unpublished data)

Fig. 4 RNAi knockdown of INSL3 or its receptor (RXFP2) in cultured bovine
theca cells reduces CYP17A1 expression and androstenedione secretion
indicating that INSL3 signaling is required for maintaining androgen synthesis.
Values are means * SEM (n=4 independent cultures). **P<0.01 versus control.
(redrawn from Glister et al 2013)

Fig. 5 Changes in mean (+*SEM) plasma concentrations of progesterone,
oestradiol-17f and INSL3 during PG-synchronized oestrous cycles in heifers.
Samples are aligned to the time of PG administration (day 0) indicated by the
arrow. Statistical analysis was performed by repeated measures ANOVA.
(replotted from Satchell et al 2013)

Fig. 6 Putative model of BMP-INSL3 pathway interaction in the regulation of
thecal androgen production. According to the model (a) both INSL3 and its
cognate receptor RXFP2 are primarily expressed by theca cells (TC); (b)
expression of INSL3 and RXFP2 increase during antral follicle development and
decline after the preovulatory LH surge; (c) INSL3-RXFP2 signalling is required
to sustain TC androgen production since knockdown of either suppresses
CYP17A1 expression and androgen production; (d) in a feed forward manner
androgens positively regulate INSL3-RXFP2 signaling since pharmacological
blockade of androgen synthesis reduces INSL3 and RXFP2 expression; (e) BMPs
from granulosa cells (GC) and/or TC suppress INSL3 expression and this is
accompanied by a loss of their androgen-synthesizing capacity; (f) BMP
signalling, in turn, is negatively regulated by GC-derived inhibin and extracellular
BMP-binding proteins; (g) diminished BMP signalling could contribute to raised
INSL3 and androgen production in conditions such as polycystic ovarian
syndrome in humans.
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