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Abstract. During the last decades, several windstorm seriesHanley and Caballero, 2012; Gémara et al., 2014). If these
hit Europe leading to large aggregated losses. Such storm s¢arge-scale conditions remain over several days, multiple
ries are examples of serial clustering of extreme cycloneswindstorms may affect Europe in a comparatively short time
presenting a considerable risk for the insurance industryperiod (Fink et al., 2009). The occurrence of such “cy-
Clustering of events and return periods of storm series forclone families” (e.g. Bjerknes and Solberg, 1922) can lead
Germany are quantified based on potential losses using ente large socio-economic impacts, cumulative losses (sum
pirical models. Two reanalysis data sets and observationsf losses caused by a particular series of events or aggre-
from German weather stations are considered for 30 wintersgated over a defined time period) and fatalities. In statisti-
Histograms of events exceeding selected return levels (1-, 2eal terms, this effect is known as serial clustering of events,
and 5-year) are derived. Return periods of historical stormfor example of cyclones (Mailier et al., 2006). A recent
series are estimated based on the Poisson and the negative btudy showed that clustering of extratropical cyclones over
nomial distributions. Over 4000 years of general circulationthe eastern North Atlantic and western Europe is a robust
model (GCM) simulations forced with current climate condi- feature in reanalysis data (Pinto et al., 2013). Furthermore,
tions are analysed to provide a better assessment of historic#there is evidence that clustering increases for extreme cy-
return periods. Estimations differ between distributions, for clones, particularly over the North Atlantic storm track area
example 40 to 65 years for the 1990 series. For such less freand western Europe (Vitolo et al., 2009; Pinto et al., 2013).
quent series, estimates obtained with the Poisson distributioin terms of windstorm-associated losses, a general result
clearly deviate from empirical data. The negative binomialis that large annual losses can be traced back to multiple
distribution provides better estimates, even though a sensitivstorms within a calendar year (MunichRe, 2001). One of
ity to return level and data set is identified. The considerationthe most severe storm series regarding insured losses for
of GCM data permits a strong reduction of uncertainties. Thethe German market occurred in early 1990, which includes
present results support the importance of considering explicthe storms “Dari&’, “Herta”, “Nana”, “Judith”, “Ottilie”,
itly clustering of losses for an adequate risk assessment fotPolly”, “Vivian” and “Wiebke”, reaching a total cost of
economical applications. ca. EUR 5500 million indexed to 2012 (Aon Benfield, 2013).
The cumulative damages associated with the windstorm se-
ries in December 1999 and January 2007 rank among the
] highest of the recent decades, with total costs reaching
1 Introduction EUR 1500 million and about EUR 3000 million in terms of

insured losses, respectively (Aon Benfield, 2013). Also the

. . i
Inten;e extratropical storms are the major weather ha,zard:inter of 2013/14 has been characterised by multiple storms
affecting western and central Europe (Klawa and Ulbrich,

2003; Schwierz et al., 2010; Pinto et al., 2012). Such storms  1storm names as given by tifeeie Universitat Berlinas used
typically hit western Europe when the upper troposphericby the German Weather Service (DWD). Souristp://www.met.
jet stream is intensified and extended towards Europe (e.gu-berlin.de/adopt-a-vortex/historie/
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Figure 1. (a) Location of reanalysis grid points (black) over and near Germany and population density (POP, colours) in number of inhab-
itants knT2 per Q25° grid cell; (b) same aga) but for ECHAM5 GCM grid points(c) same aga) but for DWD stations. Only stations
providing 80 % of the wind gust records for the period 1981/82 to 2010/11 are considered (112 stations). Fo2%agtidicell, the
wind/gust is associated using the nearest neighbour method.

leading to large socio-economic impacts (“Christian” 28 Oc- for Medium Range Weather Forecast (ERA-Interim project,
tober 2013, “Xaver” 7 December 2013, “Dirk” 23 Decem- hereafter ERAI) are used in this study. The NCEP data are
ber 2013, “Anne” 3 January 2014, and “Christina” 5 Januaryavailable on a Gaussian grid with a resolution of T63{P,
2014), which have affected primarily the British Isles. roughly 200 km; Kistler et al., 2001), while the ERAI data
The estimation of return periods of single storms (eventare available on a reduced Gaussian grid with a resolution
based losses) and storm series (cumulative losses) is needefl T255 (Q7°; about 80 km over central Europe; Dee et
to determine the “occurrence loss exceeding probability”al., 2011). For comparability, ERAI is interpolated to the
(OEP; event loss) and the “aggregate loss exceeding probNCEP grid performed with a bilinear interpolation method
ability” (AEP; accumulated loss per calendar year) for risk (Fig. 1a shows relevant grid points for Germany). For both
assessment and the fulfilment of the Solvency Il (Solvencydata sets, the 6-hourly instantaneous 10 m wind speed (here-
Capital Requirements, QIS5) requirements. As top annuabfter wind) is considered. The daily maxima (largest val-
aggregated market losses (like 1990 for Germany) are assases for each calendar day between 00:00, 06:00, 12:00 and
ciated with multiple storms, the importance of clustering has18:00 UTC) are selected. Based on these daily maxima the
long been discussed within the insurance industry. However98th percentiles (see Sect. 3) are calculated for 30 winters
little to no attention has been paid to the clustering of wind- (October—March, 1981/82 to 2010/11) respectively.
storm related losses in peer-review literature. In this study, In order to obtain statistically robust estimates of the re-
the clustering of estimated potential losses associated witlurn periods of storm series based on potential losses, a
extratropical windstorms is analysed in detail for Germanylarge ensemble of 47 simulations performed with the cou-
and for recent decades. In particular, the probability of oc-pled ECHAM5/MPI-OM1 (European Centre Hamburg Ver-
currence of multiple storm events per winter over Germanysion 5/Max Planck Institute Version — Ocean Model ver-
exceeding a certain return level is evaluated with help of re-sion 1; Jungclaus et al., 2006; hereafter ECHAM5) GCM
analysis and general circulation model (GCM) data. is analysed. These simulations have a wide variety of se-
tups, but are all consistent with greenhouse gas forcing con-
ditions between the year 1860 (pre-industrial) and near future
2 Data (2030) climate conditions. All simulations were performed
with T63 resolution (1875, roughly 200 km, see grid in
In statistical terms, it is possible to build a simple storm lossFi9- 1b); 37 of them were conducted for the ESSENCE (En-
model using both wind gusts and daily maximum 10 m wind Sémblé SimulationS of Extreme weather events under Non-
speeds. For example, Pinto et al. (2007) gave evidence thdlear Climate changE) project (Sterl et al., 2008). Details of
loss estimations following the Klawa and Ulbrich (2003) ap- all simulations can be found in Supplement A. Again, the 6-
proach based on both variables provide equivalent resultd?ourly instantaneous 10m wind speed is used to determine
For this study, wind gusts are available and considered fofh€ daily maxima. The 98th percentile for GCM data is cal-
German weather service (“Deutscher Wetterdienst”, herepulated based on the 37 ESSENCE simulations for the winter
after DWD) observation data. As no gust data are availabld'alf year, as the length of this data set is long enough to de-
for reanalysis and GCM, a daily maximum of 10m wind five statistically stable estimates.
speed is used for those data sets. As the physical cause for building losses can be primarily
Reanalysis data from the National Centre for Environ- attributed to the peak wind gusts (Della-Marta et al., 2009)
mental Prediction/National Centre for Atmospheric Researct? data set of daily maxima of the 10m wind gust observa-
(hereafter NCEP) as well as from the European Centrdions from DWD is used for comparability and validation
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purposes. The time series of these data sets differ in terms @&.1 Storm loss indices

the length of the available time period and data quality (e.g.

Born et al., 2012). After an evaluation, 112 stations (Fig. 1c) The potential loss associated with a storm can be quantified
are considered for further analyses. For these stations, wingsing simple empirical models (Palutikof and Skellern, 1991;
gusts for at least 80 % of the days in winter are available forklawa and Ulbrich, 2003; Pinto et al., 2007). Here, calendar-
the period 1981/82 to 2010/11. The 98th percentile at eaclflay-based potential damages for Germany are estimated by
station is calculated for the winter half year. Then, a normal-using a modified version of the loss model of Klawa and UI-
isation of the 10 m wind gust observations with the 98th per-brich (2003) for stations and gridded data. The general as-
centile at each station is performed. The normalised valueSumptions of the loss model are as follows:

were interpolated to the.B5° grid of the population density ) N ) )

(Fig. 1c) using the inverse distance weighted interpolation — LOSSes occur only if a critical wind speed is exceeded.
of second order. This method assumes that the interpolated 1 NiS threshold corresponds to the local 98th percentile
value for each grid box should be influenced more by nearby ~ (ves) of the daily maximum wind speed (e.g. Palutikof
stations and less by more distant stations. The second-order ~@nd Skellern, 1991; Klawa and Ulbrich, 2003).

fit permits a higher weighting for nearer stations.

The German Insurance Association (“Gesamtverband der
Deutschen Versicherungswitschaft”, hereafter GDV) pro-
vides a simulation of daily residential building losses for pri-
vate buildings for the period of 1984-2008 for the 439 ad-
ministrative districts of Germany. This data were collected
from most of the insurance companies active in the German _ |nsured losses depend on the amount of insured property
market, so are representative of the insured market loss in  values within the affected area. As real insured prop-
Germany and are used here as a reference. Loss ratios, i.e. erty values are not available, the local population den-
the ratio between losses attributed to one event and the total  sjty (POP) is used as proxy.
insured value for that area are used. Inflation effects can be
neglected as well as other socio-economic factors that may — To each population density grid cell, the wind data (re-
have changed slightly during this period. More information analyses, GCM) from the nearest location are allocated
can be found in Donat et al. (2011) and Held et al. (2013). (nearest neighbour approach).

As insurance data are not available for the whole analysed
period, population of the year 2000 is used as proxy for theFollowing these assumptions, the potential lossa({)! per
estimation of potential losses. This data set was provided byalendar day is defined by the sum of all grid poiintaith
the Centre for International Earth Science Information Net-vij €xceedingg; weighted by the population density:
work (CIESIN) of Columbia University and the Centro In-

— Above this threshold, the potential damage increases
with the cube of the maximum wind speed, as the ki-
netic energy flux is proportional to the cube of wind
speed. This implies a strong non-linearity in the wind—
loss relation.

ternational de Agricultura Tropical (CIAT). The population vij 3

density is given as inhabitants ki with a spatial resolu-  Llraw= > von. -POR; - I (vij, ves;) 1)
tion of 0.25° x 0.25° (Fig. 1, coloured boxes). For grid boxes i 8

which are only partially within German borders the percent- 0 forv;; < vog.

age of each box is calculated with the geoinformation systemith 7 (vi;, veg;;) = 1 for U"' _ vg&’

(GIS). ij > Vo8>

POR; = population density for grid poirit, v;; =wind speed
3 Methodology at grid pointij andvgg,; =98th percentile at grid poin.
In this section, the potential loss indices based on the apFollowing Pinto et al. (2012), a meteorological index
proach by Klawa and Ulbrich (2003) and Pinto et al. (2012) (Mlraw) is also considered. My is defined as the sum of all
are presented. These indices are used to select events exce@tid pointsij per calendar day, wheng; is exceedingos;
ing a certain return level. For the chosen events, histogram#ithout weighting with the population density:
are analysed, and statistical distributions like the Poisson and

the negative binomial distribution are used to estimate return vij

periods of storm series. As the GCM data overestimate thé¥llraw= Z vos, 1 (vij, vog; ) ©
frequency of zonal weather patterns, the approach to cali- Y !

ggfricbﬁ'v' data towards reanalysis using weather types is |\ o o1y the method is modified to identify individ-

ual events of high Lky (or Mlaw). In a first step overlap-
ping 3-day sliding time windows of kdy (Ml aw) time series
are analysed, as this corresponds to the 72 h event definition
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often used by insurance companies in reinsurance treati€3.2 Statistics
(Klawa and Ulbrich, 2003). Moreover, given that Germany
is a comparatively small area, 3 days are reasonable for seg-he Poisson distribution is the simplest approach to describe
arating events. For each 3-day time window, the middle dayindependent events and is often used to model the number
is defined as event if it is a local maximum of i (Ml raw). of events occurring within a defined time period. This proce-
If no maximum is identified within the 3-day window, the dure is useful to describe the temporal distribution of events
first day after an event (for all kdw # O; considering the last ~ at & certain region and is typically used by insurance compa-
day of the 3-day time window) is defined as event. The out-Nies to estimate losses of winter storms. This discrete distri-
come is a time series of events. With this approach, storm&ution depends on one parameter and is a special case of the
like “Vivian” and “Wiebke” (26 and 28 February 1990) can binomial distribution. For the Poisson distribution the rate
be identified as separate events (see Supplement E). parameter. is equal to both the variance (Va)j and mean

In a second step, the local details of the identified eventd£(x)). For a random variable the probability distribution
are analysed in more detail. In analogy to the above, thds defined as

temporal local maximum of the 3-day time window at each Ae
P(x)= ' ,x=0,1,2...; E(x) = A = Var(x). (5)
X.

grid pointij (following maxs-p <U’;—8’>) is analysed for each
Y After Mailier et al. (2006), the dispersion statistics (a simple
event. If the determined maximum nw(%) isnotat measure of clustering) is defined as
J

the middle day,%’l' on the event day is replaced with the v = Var(X) _ 1.

Ty 500 (6)
identified maximum value of the first or the last day of the

are only separated by 1 day (e.g. Vivian and Wiebke, sedering), forE(x) > Var(x) the distribution is underdispersive
(regular) and forE (x) = Var(x) it is a random process. Be-

Vi .. .
Supplement E). If maxp el identified between both  sjge the Poisson distribution the negative binomial distribu-
events (here 27 February 1990), it is allocated to the evention is one of the major statistics that is used to describe in-

with higher%. This ensures that each local maximum only surance risks. Following Wilks (2006), the probability of the

counts once. To guarantee spatially coherent wind fields,m:"gat've binomial distribution is defined as
C(x+k)

larger values occurring on the first or third day only sub- Px)= (1= ) g* @)
stitute the values from the middle day if multiple (spatially I (k) - x! v
contiguous) nearby grid points exceed the 98th percentile. y;ih I'()= gamma functionk = auxiliary parameter> 0
The method to estimate potential losses of single event§see below), and @ ¢ < 1, =1 — p, p = probability.
can be described as As in our studyE (x) is fixed as the return level of con-
Vi 3 sidered events; is the only free parameter. The estimation
LI3_D:Z [maxg_D( Y )—1} - POR;-1 (vij, Ug&j), (3) of ¢ is done by a nonlinear least-square estimate using the
i v98;; Gauss—Newton algorithm.

3 ConsideringE (x) = 1kqu and Varx) = (1k2)2
Vij —
M|3'D=Z [max&D (_j> - 1} -1 (vij. vog;) - (4) d—q)
v o = k= E(x) (following Wilks, 2006) ®)

This new definition has the advantage that single stormThe dispersion statistics can also be described as
events can be well separated. Furthermore, strong potential

losses occurring 1 day before or 1 day after an event, which, _ 1 —_1>0 9)
are probably associated with the same event, are incorporated 1—g -
in Llraw (Mlraw)- For ¢ = 0, the negative binomial distribution is equal to the

Hereafter Lb.p (Ml3.p) is named LI (MI) for simplicity.  pojsson distribution. The higher the higher is the overdis-
These formulations are used for reanalysis, DWD and GCMpersion and therefore the clustering of events.
data. Then, the resulting time series of LI (MI) are ranked and  The return period is defined as the inverse of the proba-
1-, 2- and 5-year return levels are computed. The selectegjjity (Emanuel and Jagger, 2010). The estimation of return
samples of events exceeding each corresponding thresholgkriods of storm series consisting of events with a certain re-

(e.g. 30, 15 and 6 events respectively for 30 years of reanalyy,r |evel is calculated by the probabilify for x events of
sis data) are then assigned to individual winters. The namingertain intensity within 1 year:

is given by the second year, e.g. winter 1989/90 is named

1990. WKP(x) = % (10)
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Figure 2. Time series of 3-day accumulated losses between 15 January and 15 March 1990. The values are normalised by the maximum
accumulated loss of the period 1981/82 to 2010/11 for each dat@ay€&omparison between MI derived DWD gust observations (blue),

MI estimates based on NCEP (green) as well as Ml obtained from ERAI (oraihyegpme aga) but for LI and additionally compared to
simulated insurance data (GDV, red). Unlike MI, LI is population weighted.

3.3 Calibration of GCM data with circulation weather reanalysis period. Second, results of the calibration of GCM
types data based on CWTs are presented in Sect. 4.3. The estima-
tion of return periods for storm series based on reanalysis
In order to obtain robust estimates of return periods for the(Sect. 4.4) and GCM data (Sect. 4.5) follow.
historical storm series, the large ensemble of ECHAMS sim-
ulations is considered to enhance the data sample. As thé.1 Comparison of loss indices for the reanalysis period
large-scale atmospheric circulation is too zonal over Eu-
rope in GCMs (e.g. Sillmann and Croci-Maspoli, 2009), a The loss indices described in Sect. 3.1 are now compared
correction of the model bias towards the reanalysis clima-based on different data sets. First, the MIs based on both re-
tology is necessary. This correction is performed based oranalysis data sets are compared to the Ml derived from DWD
weather types, so that the variability of weather patterns overdata as an illustrating example (storm series of early 1990).
Germany corresponds to the historical time period. The seResults for the period from 15 January to 15 March 1990 are
lected weather typing classification is the circulation weatherdisplayed in Fig. 2a. The outcome shows that the timing of
type (CWT) following Lamb (1972) and Jones et al. (1993). extreme events (“Daria” 25 January 1990, “Herta” 4 Febru-
The large-scale flow conditions over Germany are calculatedry 1990, “Judith” 7 February 1990, “Vivian” 26 February
from 00:00 UTC mean sea level pressure fields, usirigel0 1990 and “Wiebke” 1 March 1990) is generally well iden-
50° N (near Frankfurt/Main) as central grid point. Each day tified from all three data sets. In some cases, a 1-day shift
is classified into one of eight directional types defined &s 45 is observed, e.g. for 12 and 15 February. Such modifications
sectors: northeast (NE), east (E), southeast (SE), south (Syre associated with the methodology of the data assimilation
southwest (SW), west (W), northwest (NW), and north (N). within the data set (e.g. highest winds in NCEP may occur at
Two circulation types are considered: cyclonic (C) and anti-18:00 UTC of a certain day, for ERAI only 6 h later). In case
cyclonic (A). If neither rotational nor directional flow domi- of doubt the first day is taken (see Sect. 3.1). This means
nates, the day is attributed as hybrid CWT (e.g. anticyclonic-that the split-up of events and thus accurate event identifica-
west). The correction is done by adapting the relative fre-tion may depend on the data set. Though the timing of the
guency of events per CWT in the GCM simulations to the events is well accessed, the relative intensity of the events
number of events per CWT in the ERAI data (see Sect. 4.3)sometimes differs from data set to data set (e.g. “Vivian”,
This is only a first-order correction of the model biases. In 26 February 1990). The results for the LIs (Fig. 2b) are also
fact, differences in the probability density function of ex- compared to accumulated potential losses based on the GDV
treme losses per weather type may still be present (Pinto edata. With this aim, the latter is also aggregated for time win-
al., 2010). dows of 3 days. The timing of the identified events is pre-
dominantly correct. As expected, the findings are similar to
those for the Mls, with a good assessment of the timing of
4 Results the events and differences in terms of the relative intensity
between data sets. A calibration of the intensity towards the
In this section, the different loss indices (Sect. 4.1) andGDV data is not performed, as a linear calibration (as im-
the events selection (Sect. 4.2) are first analysed for th@lemented e.g. in Held et al., 2013) would not change the

www.nat-hazards-earth-syst-sci.net/14/2041/2014/ Nat. Hazards Earth Syst. Sci., 14, 20052 2014



2046 M. K. Karremann et al.: Clustering of winter storm losses

Table 1. List of the identified top 30 events and corresponding re- |
turn level for each event for NCEP, ERAIl and DWD gust data. Dates 2 .
are given as dd.mm.yyyy. o’
Q 4
NCEP Return ERAI Return DWD Return E 3
level level level 5 ,
15.12.1982 1 24.11.1981 2 18.01.1983 1 \
01.02.1983 2 16121982 1  01.02.1983 1 | | | Il" |
27111983 1 04011983 1 = 27111983 1 " 3535553855383 880882c0ZE8EERERE;
14.01.1984 5 18.01.1983 1 14.01.1984 T RO P P
24.11.1984 2 01.02.1983 2 24.11.1984 5 1 b) RA
19.01.1986 2 13.01.1984 1 01.01.1986 1 s
20.10.1986 2 15.01.1984 1 20.10.1986 1 2
19.12.1986 2 24.11.1984 5 19.12.1986 2 % ‘]
25.01.1990 5 06.12.1985 1 25.01.1990 5 s o]
14.02.1990 1 20.01.1986 2 03.02.1990 2 €
26.02.1990 5 19.12.1986 2 08.02.1990 2 =]
28.02.1990 5 25.01.1990 2 14.02.1990 1 1
13.01.1993 2 08.02.1990 1 26.02.1990 5 ,
24.01.1993 2 26.02.1990 5 01.03.1990 5 8838838853 8888388 8288582835
09.12.1993 1 01.03.1990 5 21.03.1992 1 o
28.01.1994 2 14.01.1993 1 11.11.1992 1 2
22.01.1995 5 24.01.1993 5 26.11.1992 2 oo owb
02.12.1999 1 09.12.1993 1 13.01.1993 1 5 4]
26.12.1999 1 28.01.1994 2 24.01.1993 2 -
31.01.2000 1 23.01.1995 1 09.12.1993 2 N
28.01.2002 1 28.10.1998 1 28.01.1994 2 5,
27.10.2002 2 03.12.1999 2 23.01.1995 1
02.01.2003 1 26.12.1999 5 26.01.1995 1 Y
31.01.2004 1 29.01.2002 1 28.03.1997 1 T e e e
20.03.2004 1 26.02.2002 1 03.12.1999 1 £23383535333833338333383338C8888c888R8¢8§%¢%
12.02.2005 1 28.10.2002 2 26.12.1999 2 W 1-vear W 2vear B S-year
16.12.2005 1 21.03.2004 1 27.10.2002 2
18.01.2007 5 18.01.2007 5 18.01.2007 5 Figure 3. Time series of the number of events per winter exceeding
01.03.2008 1 01.03.2008 2 01.03.2008 2 the 1-year return level (red), 2-year return level (green) and 5-year
28.02.2010 1 28.02.2010 1 28.10.2010 1 return level (blue) between 1981/82 and 2010(&} LI estimated

based on NCERp) same aga) but for ERAI; (c) same aga) but
for DWD gust. The indicated year corresponds to the second year
of a winter (2000 indicates 1999/00).

relative ranking of events within a certain data set. Neverthe-

less, storms on successive days cannot always be well sep-

arated with our methodology. For example, storms “Elvira” in the data set (Ulbrich et al., 2001; see their Fig. 1). Other

(4 March 1998) and “Farah” (5 March 1998) cannot be sep-differences may be associated with data availability or inter-

arated for either reanalysis or DWD data (not shown). How-polation to the population density grid for DWD versus the

ever, this is also not possible based on insurance loss datgwer resolution gridded data sets for NCEP and ERAL. In

On the other hand, our method separates important stormspite of these limitations, the method is able to identify con-

like “Vivian” and “Wiebke” (26 February and 1 March 1990; sistent events, which constitutes a reliable basis to estimate

Fig. 2). the return period of storm series in the following. However,
The top 30 events for the two reanalysis data sets as well ag0 % of the identified events in NCEP data are also found in

the DWD observations are shown in Table 1. Per definition,ERAI and DWD data, and the same is valid for DWD and

these are the events exceeding the 1-year return level for eaghRAl.

data set. The most prominent historical storms affecting Ger-

many like “Kyrill” (18 January 2007), “Vivian” (26 Febru- 4.2 Comparison of identified events for the reanalysis

ary 1990) and “Daria” (25 January 1990) are identified in period

all three data sets as top events. However, some differences

are found regarding the exceeded return level. For exampleBar plots for different data sets and intensities (1-, 2-, 5-

storm “Daria” is estimated as a 5-year return level event foryear return level events) are now analysed for the 30-year

NCEP and DWD data and as 2-year event for ERAI. Theseperiod. For each threshold, the selected LI samples (30, 15

differences are partly attributed by the resolution of the dataand 6 events, respectively) are shown in Fig. 3. In some

sets and to known caveats. For instance, the relatively weakases the number of events per winter differs from data set

values for “Lothar” (26 December 1999) in NCEP can be di- to data set. Nevertheless, in all three data sets a maximum

rectly attributed to an insufficient representation of this stormof events is found in the winter 1989/90 (Fig. 3a, b denoted
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1990). Differences in the identified number of events atthe 1-4.4 Estimation of return periods of storm series based

year return level are determined for 11 winters. For example on reanalysis

for ERAI, the winter 1983 features four 1-year events, while

NCEP only features two events. For stronger events exceedFhe identified frequency of events per year for the two re-
ing a 2- or 5-year return level, seven/six years with a differ- analysis data sets as well as the DWD based data set is al-
ence in the number of events are identified. For instance amost identical for the considered return levels (see Supple-
the 2-year return level for the storm series of 2000 (1999/00ment B1). For succinctness, in the following only results
see Fig. 3a, b) two events for ERAI, and no event for NCEPbased on ERAI data are discussed in detail. The return pe-
data are detected. This can be attributed to the limited repriod of storm series with a certain return level is estimated
resentation of storms like “Lothar” (26 December 1999) in based on the negative binomial and on the Poisson distri-
NCEP (c.f. Ulbrich et al., 2001). However, both data sets arebution (Supplement D, left). The related return periods are
generally in good agreement, identifying clearly the wintersshown in Table 2 (left).

with well-known storm series like in 1990 or 2007. In com- A return period about 65 years is estimated for a storm se-
parison to the estimations based on the DWD observationies with four 1-year return level events (like 1990) based
data (Fig. 3c) some differences to the reanalysis data are apn the Poisson distribution (Table 2). For the negative bino-
parent. For example the storm series of 2002 is not identifiednial distribution the assessed return period is ca. 49 years.
for DWD data. On the other hand, the storm series of 19900n the other hand, for a return level of observed two 5-year
includes six events for the DWD data (1-year return level). events (like 1990), the estimated return periods are 61 years
As mentioned in Sect. 4.1, this could be attributed both tofor Poisson and about 42 years for negative binomial distribu-
known caveats of the data sets, station density vs. griddetions. AW value of about 0.16 for 1-year return level and of
data, and to the methodology used to assign the data to th@.25 for 5-year return level are determined for the negative
population grid cells. In spite of these deviations, the histor-binomial distribution, both indicating serial clustering (see
ical storm series can be generally identified in all data setsTable 3a). Thal' values calculated with Eq. (6) are different,
Furthermore, the resulting overall statistics over the 30 yearsvith more clustering for frequent events (0.24 for 1-year re-
are also similar (Supplement B) as the small permutations ofurn level events) and less clustering for extreme events (0.17

the single events are in balance. at the 5-year return level, Table 3b). Nevertheless, both meth-
o ods identify overdispersion for the events. The estimated re-
4.3 Calibration of GCM data based on CWTs turn period of storm series with two events per year for 1-year

i ) _ level (like in 1984) with the negative binomial distribution
In order to enable the calibration of the GCM data, the dis-3nq the Poisson distribution are closer to each other, with

tribution of the events for each CWT within the reanalysis about 5.9 and 5.4 years (Table 2). In fact, for 1-year events
period is analysed. Each loss event is assigned to the identjz g deviations between the two distributions are only found
fied CWT for the corresponding date. Additionally to the 1-, for four or more events per year. The same is true for 2-
2- and 5-year return levels, a return level of 0.5years is conyear (5.year) occurrences and three (two) or more events per
sidered to help with the calibration. The resulting histogramsy ¢ (Taple 2). In these cases, the Poisson distribution clearly
are similar for both reanalysis data sets (Fig. 4a, b). Con<yerestimates the return period of multiple events per winter.

sidering frequent events (0.5-year), most events are identi- | order to test the sensitivity to certain storm series
fied for W CWT. The focus on this class becomes more pro-jie 1990, additional computations were performed based on
nounced for higher retu_rn levels. For example _for a returnNcepP and ERAI as above but single years (with three and
level of Syears the maximum of all events are in the west-¢,,r events) were removed respectively. Results show for all
erly CWT for both reanalyses. This predominance of wind- ya¢5 jittie dependence on the selected years (not shown). For
storms in the westerly flow type Is in line with previous re- .,mnaratively frequent storm series, a relatively small spread
sults (e.g. Donatetal., 2010; Pinto etal., 2010). For the GCMgg jgentified, e.g. for 1-year return level and three events per
data (Fig. 4c) the distribution of the events per CWT is dif- year the estimated retumn period remains between 15 and
ferent. Most fr.equent events (e.g. 0.5-year) are identified for; g years. On the other hand, for 5-year return levels and three
A CWT. For higher return levels (e.g. 5-year) the events arég,ents the range is much larger, with estimates between 112
more equally distributed over all CWTs than for the two re- 54 306 years (not shown). As the estimation of the return

analyses. This bias is corrected assuming the same relativﬁeriod is almost independent of the chosen years, the method
frequency of events per CWT as in ERAI for GCM data. For g reliable for further application.

example, two SW events are identified for the top 30 and

ERAI, which corresponds to 6.7 % of all considered events.; 5 ggtimation of return periods of storm series based
The corresponding number of events in GCM is 273 (6.7 % on GCM data

of 4092). Thus, the top 273 SW events are included in the

event set of the 4092 top events. The resulting distribution isyp,q large ensemble of GCM runs is now considered to en-
shown in Fig. 4d. hance the estimation of return periods of historical storm
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Table 2. Estimated return periods for three different return levels (1-, 2-, 5-year) based on the Poisson distribution (Pois. RP), the empirical
data for each data set (eRP), and the negative binomial distribution (Neg. Bin. RP; with uncertainty estisiatpshe Gaussian error
propagation) for NCEP, ERAI and independent selected GCM samples (GCM: all runsgdgCWM ESSENCE runs: ES&r, 3 20C runs

from MPI: 20Corr, PREorr from MPI, 3 CSMT runs from MPI: CSM{orr; all runs indexed with corr are bias corrected based on CWTs)
considering only the number of years available for each data set respectively. The number of years is indicated below each data set. Fol
further details see Table B1 in the Supplement.

Events ERAI NCEP GCM ERAI NCEP GCM GCrr ESSorr 20Ccorr PREorr

per

year

30years 30years 30years 4092years  4092years  2360years 720years 505 years
Pois. RP eRP Neg. Bin. RP

£ 0 2.72 231 2.50 2.13 .B3+154 249+119 239+011 235+0.05 251+0.09 24+0.19 259+0.26
% s 1 2.72 3.00 3.33 3.42 .93+154 298+119 313+0.11 32+005 296+0.09 311+0.19 286+0.26
x 3 2 5.44 5.00 4.29 7.64 .86+3.6 596+284 625+029 639+0.12 591+02 621+£05 571+0.58
s - 3 16 - 30 19 1519 15+ 15 15+ 1.4 15+0.59 15+ 1.05 15+2.37 16+3.20
j 4 65 15 30 45 4989 46+ 66 41+6 40+2 47+5 42+ 10 53+ 16

5 326 - - - 172419 155+ 294 121423 110+ 9 163+ 22 124+ 39 207+ 85
S_ 0 1.65 1.58 1.58 154 .62+0.68 158+0.09 157+0.03 157+0.02 160+0.02 159+0.02 162+0.03
g 1 3.3 3.00 3.75 4.07 B+145 378+0.22 381+0.07 382+005 362+005 37+0.05 347+0.07
= 3 2 13 30 15 13 1216 13+2.25 13+0.7 13+0.51 13+ 0.5 13+0.5 13+0.8
g 3 79 30 30 51 63135 52+ 15 51+5 51+3 58+ 4 55+ 3 65+ 7
& 4 633 - - - 3881132 229+ 93 221+ 28 218+ 20 294+ 28 254+ 23 391+ 56
5 0 1.22 1.15 1.15 1.21 .24+0.02 116+0.08 121+001 121+001 122+001 121+001 122+0.04
¢ % 1 6.11 750 10.00 6.60 A5+0.56 1052+1.06 674+01 659+005 638+0.27 66+0.23 624+0.76
§ = 2 61 30 - 53 427 38+9 48+2 50+ 1 54+5 50+ 4 57+16
L{?; 3 916 - 30 334 225 59 112+ 40 369+ 19 432+11 567+ 85 425+ 51 707+ 300

* As the propagation of uncertainty for one event per year and 1-year return level is not possible to identify, the error bars are set to be the same as for zero events per year.

Table 3. ¥ values for the different data sets: (a) calculated with Eq. (9) and with the information of the confidence interval (b) computed
with ¢ = Y&X) _ 1 RL: Return Level.

E(X)
RL ERAI NCEP GCM GCMorr ESSorr 20Ccorr CTRLcorr
(@ 1 Q1595+£0.1127 01972+0.1123 030624+0.0188 06383+£0.0055 01777+0.0071 029194+0.0294 01020+ 0.0115
2 00727+£0.0650 01962+0.0271 02081+0.0090 031684+0.0039 01297+0.0040 01661+0.0049 00713+0.0031
5 02464+0.0290 08186+0.1881 01161+0.0023 01095+0.0025 0Q0491+0.0027 00908+0.0043 00240+ 0.0037
(b)y 1 0.2414 0.1034 0.1756 0.2717 0.1863 0.1752 0.1604
2 0.0690 0.2069 0.1442 0.1707 0.1210 0.0925 0.0513
5 0.1724 0.8621 0.1033 0.1303 0.0741 0.0662 0.0004

series. The corresponding return periods are shown in Table fbur (three/two) or more events for 1- (2-/5-) year level (see
(right). The consideration of 4092 years leads to the identi-Table 2, Supplement D).
fication of multiple years with four or more 1-year events. The consideration of GCM data with bias correction
This enables more accurate estimates of the return perio@GCMcor) leads only to a small difference for return periods,
as well as lower uncertainties calculated with the Gaussiare.g. notable for less frequent events and higher return levels
error propagation (Table 2). Following the above given ex-(Table 2). Thel for GCM attributions are in all cases clearly
amples, a return period of 41years is assessed for a stormositive, also indicating clustering of the events (Table 3a).
series with four events per year exceeding the 1-year returClustering is also positive, but lower or similar when be-
level (like 1990). This value is lower than for the negative ing calculated with Eq. (6) (Table 3b). However, unlike pre-
binomial fit based on ERAI data and the Poisson distributionvious results obtained for extratropical cyclones (Pinto et
(49 and 65years, respectively). The obtained return periodl., 2013), thel value does not increase for larger return lev-
for two events per year exceeding the 5-year level is aboukls. For more intense events (5-year return level) the derived
48 years. Clear deviations between the Poisson distributiont becomes smaller (e.g = 0.11 considering all GClby,
and the negative binomial distribution are also found forruns), indicating less deviation from the Poisson distribution
than for the 1-year event¥/(= 0.6 considering all GCMyy
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% Analogously to the historical data, a sensitivity analysis
2 #INCEP was performed regarding the GCM data. In this case, it was
§ 20 i analysed how the estimates depend on the choice of GCM
§ runs. With this aim, the computations were repeated for each
£ ] | I of the 47 runs (see Supplement A) individually and combina-
tions of them. As the length of the runs is different, this also
CTRETE s s sw W W N G A AW provides some insight on how the results may be sensitive to
w0 bERm | the length of the time series. For example the estimated return
H periods of three events a winter above the 1-year return level
.§ 20 - are assessed to ca. 15 and 16years depending on whether
g ol | the whole data set, selected groups of runs or individual runs
2 ‘I (see Table 2) are considered. The major difference is the
Y S || %“ﬂ—!\‘vr uncertainty: while for all GCNy data, 15+-0.59 years is
3000 estimated, the value is for example £3.05 years for all
o 2500 ] ©/GOM L ESSENCEr runs, 16t 3.2 years for the PRE, run and for
7;’ 2000 | . example 15t 8.24 years for the first Essengg run (length
S 1500 - only 50 years; not included separately in Table 2). BRES
é 1000 - different because it is expected to have more (multi) decadal
= 500 o - variability (505 years of free running coupled GCM simu-
O e e W W e T A T lation) than shorter 50-year runs. These results demonstrate
6000 that the estimation of return periods by the negative binomial
g 5000 | ) CMear - distribution is robust and depend only little on the length of
f'z_’ 4000 4 - data set. The more events per year are considered, the wider
% 8000 7 I the uncertainty range. For a storm series as in 1990 (four
£ 2] I events above the 1-year return level, three above the 2-year
‘°°Z ] [, | Ll return level and two events above the 5-year return level) for
NECESES T sWE W NN e A A all data sets and return levels the negative binomial based
O5-year W t-year W Z-year W S-year estimate for the return period is between 40 and 65 years.

Figure 4. (a) Distribution of events exceeding a certain return level 1is is for all cases a more reliable estimate compared to the
depending on the CWT for LI NCEP. Colours denotes the differ- €mpirical data (see Supplement B2) than based on the Pois-
ent return level (0.5-, 1-, 2- and 5-year even(b);same aga) but ~ son distribution, which has an estimate of 65years (1-year
for ERAI; (c) same aga) but for the GCM ensemblédd) same as  return level) and for more extreme events with a return level
(c) but for the corrected frequency of events per weather type basedf 2-year (5-year) an assessment of 79 (61) years. The devi-
on ERAI. For(a) and(b) the total number of years is 30, f@) and  ations between the Poisson and the negative binomial distri-
(d) itis 4092 years. bution are much larger if less frequent series are considered
(Table 2).

The d of val . tributed to the fact that For insurance applications, it is often desirable to consider
runs). The ecrease dhvalues is contributed to the fact that -, exactly a certain number of events, but rather a minimum
the sample of lower intensity events includes also higher in-

i value, e.g. three or more events per year above 2-year re-
tensity events and therefore more clusters are expected. F?ﬂrn level. With this aim. the estimations of Table 2 were
higher return level the occurrence of cluster is more rando ; ’

mcomputed for cumulative probabilities (Supplement C). Re-

and ther_efore closer to the P0|sso_n distribution. The reasol its are in line with the previous: for example, the estimated
for the differences compared to Pinto et al. (2013) may be

X . . return periods for four or more events at the 1-year return
that they based their conclusions on lower percentiles (an(iIeveI is between 26 and 40years based on the negative bi-

Fhus a h_|gher frequency of eyents). This S uggests that CIUSte'ﬁomial distribution, whereas by the Poisson distribution it is
ing of windstorm and associated losses is quite complex, pars3 years. For two or more events at the 5-year return level the

ticularly in terms of inten_sity yariations. Neverthel_ess,_ ar_ld in range is between 42 and 53 years with the negative binomial
"’?'! cases, clear overestimation of th_e returr_1 p?‘“oq IS 'de_n'distribution, while for the Poisson distribution it is 57 years.
juﬂed for the GCM based on thg Poisson d'Str'bUt'on.' This Iso from this perspective, the results clearly indicate the im-
IS an |mp9rtant result, as '.t |nd|cat§s that return_ Perio ds Q;Rortance of estimates with the negative binomial distribution,
storm series are better estimated with the negative b|nom|aWhich considers explicitly the clustering of events.
distribution than with the Poisson distribution, especially for
winters with a considerable number of events.

www.nat-hazards-earth-syst-sci.net/14/2041/2014/ Nat. Hazards Earth Syst. Sci., 14, 20052 2014



2050 M. K. Karremann et al.: Clustering of winter storm losses

5 Summary and conclusions uncertainty estimates was achieved. These results put the his-
torical storm series into a much larger perspective: the es-
For insurance applications, it is important to use reliabletimates indicate that an occurrence of exactly four events
methods to estimate “occurrence loss exceeding probability’like in 1990 takes place once in 40-53 years. If four or more
(OEP) and the “aggregate loss exceeding probability” (AEP).events are considered, the estimation of the accumulated like-
With this aim, an adequate quantification of clustering is es-lihood is between 26 and 40 years based on the negative bi-
sential. In this study we analysed different methods to esti-nomial distribution.
mate the return period of series of windstorm related losses Results of the present study are potentially helpful for in-
exceeding selected return levels. For the purpose of statisticalurance companies to parameterise loss frequency assump-
robustness, a combination of two reanalysis data, observatiotions of severe winter storm events. In Germany, the possible
DWD data and an ensemble of over 4000 years of GCM runswumber of significant storm events per year was intensively
were considered. First, the potential loss for Germany was esdiscussed after the storm series in 1990, which is the top an-
timated using an approach of the storm loss model of Klawanual aggregated loss for recent decades (e.g. for insurance
and Ulbrich (2003) for all data sets and additionally a me-of residential buildings in Germany, after inflation correc-
teorological index (Pinto et al., 2012). These methods werdion: GDV, 2012). Even over 20 years later, German compa-
adapted to separate consecutive potential losses associateis use the 1990 storm series as an internal benchmark test
with extreme events within 3 days. As Germany is a compar-for their reinsurance cover or capital requirements. A similar
atively small area, this time frame is reasonable for separatdiscussion took place in France after the events “Lothar” and
ing events. Moreover, it accords to the 72 h event definition,"Martin” (Ulbrich et al., 2001) hit the country in late 1999.
which is often used by insurance companies in reinsurance The present results demonstrate that the negative bino-
treaties (Klawa and Ulbrich, 2003). The estimated events arenial distribution provides good estimates of return periods
ranked and only the top events representing a return level ofor less frequent storm series. Future work should focus on a
1-year, 2-year or 5-years are analysed. The distribution of thenore detailed analysis of events with different return periods
number of events per winter was analysed. This was followedwithin one winter as this could improve results. Furthermore,
by the estimation of the return period of storm series like inan investigation of the clustering within single CWTs, espe-
1990 (with four storms in ERAI) with the Poisson distribu- cially for CWTs with a high frequency of events, could be
tion as well as with the negative binomial distribution. The helpful for a better understanding of the physical aspects of
main conclusion is that especially for storm series with manyclustering. Another interesting investigation could be to per-
events per winter (e.g. four events exceeding the 1-year reform a similar analysis of further European countries.
turn level) the Poisson distribution clearly overestimates the
return period for storm series, as overdispersion is evident.
Deviations from the Poisson distribution are also identified The Supplement related to this article is available online
when considering the long GCM data set (over 4000 years)at doi:10.5194/nhess-14-2041-2014-supplement
but results show that mean estimates and uncertainties do
vary between data sets (see Table 2). In general terms, the
negative binomial distribution provides a good approXima_AcknowledgementaNe a}ck_nowledge the provision of loss data
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