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ABSTRACT: A statistical–dynamical downscaling (SDD) approach for the regionalization of wind energy output (Eout) over
Europe with special focus on Germany is proposed. SDD uses an extended circulation weather type (CWT) analysis on global
daily mean sea level pressure fields with the central point being located over Germany. Seventy-seven weather classes based on
the associated CWT and the intensity of the geostrophic flow are identified. Representatives of these classes are dynamically
downscaled with the regional climate model COSMO-CLM. By using weather class frequencies of different data sets, the
simulated representatives are recombined to probability density functions (PDFs) of near-surface wind speed and finally to
Eout of a sample wind turbine for present and future climate. This is performed for reanalysis, decadal hindcasts and long-term
future projections. For evaluation purposes, results of SDD are compared to wind observations and to simulated Eout of purely
dynamical downscaling (DD) methods.
For the present climate, SDD is able to simulate realistic PDFs of 10-m wind speed for most stations in Germany. The

resulting spatial Eout patterns are similar to DD-simulated Eout. In terms of decadal hindcasts, results of SDD are similar to
DD-simulated Eout over Germany, Poland, Czech Republic, and Benelux, for which high correlations between annual Eout
time series of SDD and DD are detected for selected hindcasts. Lower correlation is found for other European countries. It is
demonstrated that SDD can be used to downscale the full ensemble of the Earth System Model of the Max Planck Institute
(MPI-ESM) decadal prediction system.
Long-term climate change projections in Special Report on Emission Scenarios of ECHAM5/MPI-OM as obtained by SDD

agree well to the results of other studies using DDmethods, with increasing Eout over northern Europe and a negative trend over
southern Europe. Despite some biases, it is concluded that SDD is an adequate tool to assess regional wind energy changes in
large model ensembles.

KEY WORDS wind energy; statistical–dynamical downscaling; decadal forecasts; climate change projections; ensembles

Received 11 November 2013; Revised 10 January 2014; Accepted 11 February 2014

1. Introduction

In recent years, the demand for renewable energy sources
as alternative to fossil sources has increased due to the
imperative need to reduce greenhouse gas emissions
(Solomon et al., 2007). In Europe, wind energy pro-
duction has emerged as a promising energy source to
mitigate the climate change resulting from anthropogenic
greenhouse gas emission. A main challenge for political
and economical decision makers is the installation of
an effective network of wind power plants (Manwell
et al., 2009; Wilkes et al., 2012) to meet the goal of the
European Commission to produce 15.7% of the EU’s
electricity usage from wind energy resources by 2020
(Moccia et al., 2011).
Near-surface winds, and thus wind energy produc-

tion, strongly depend on the synoptic scale variability

*Correspondence to: M. Reyers, Institute for Geophysics and Meteo-
rology, University of Cologne, Pohligstr. 3, 50923 Cologne, Germany.
E-mail: mreyers@meteo.uni-koeln.de

(2–6 days, e.g. passage of low- and high-pressure cen-
tres), seasonality, and on climate variability on different
timescales (e.g. Pryor and Barthelmie, 2010). Further-
more, conditions for wind energy production are strongly
influenced by local characteristics (e.g. Ouammi et al.,
2012). Hence, suitable predictions of regional changes of
wind energy potentials on inter-annual to decadal and on
centennial timescales are essential for future planning.
A set of global decadal prediction hindcasts have been

recently made available through the Coupled Model Inter-
comparison Project Phase 5 (CMIP5; Taylor et al., 2012).
In these experiments, initial conditions for decadal hind-
casts and predictions are taken from assimilation runs
using analysis data from the past and present for the relax-
ation towards gridded observational values. Since small
initialization perturbations, which reflect the observational
uncertainties, might rapidly grow, differences between
ensemble members may be large because of these uncer-
tainties (Merryfield et al., 2013). Therefore, large ensem-
bles of decadal hindcasts are required for the assessment
of the predictive skill. In CMIP5, most decadal prediction
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systems comprise up to ten realizations of yearly initial-
ized hindcasts and thus several of hundreds of simulations,
which can hardly be downscaled by a purely dynamical
downscaling (hereafter DD) with regional climate models
(RCMs). Therefore, an alternative downscaling approach
for the regionalization of large ensembles of decadal hind-
casts is required.
The same line of thought also applies to the region-

alization of long-term climate change projections, where
global climate model’s (GCMs) output needs to be down-
scaled to the regional and local scales. With this aim,
several downscaling techniques have been developed and
applied in recent years. They can be roughly classified as
statistical, dynamical or statistical–dynamical approaches
(Hewitson and Crane, 1996; Wilby and Wigley, 1997;
Fuentes and Heimann, 2000; Maraun et al., 2010). In
terms of the regional impact of climate change on wind
energy potentials, Nolan et al. (2012) analyse possible
changes in wind energy resources of Ireland with a DD
approach (ECHAM5/MPI-OM1 GCM ensemble simula-
tions and one RCM). Hueging et al. (2013) investigated
regional changes in wind energy potential for Europe by
considering ensemble projections from two RCMs driven
by ECHAM5/MPI-OM1 simulations (A1B scenario). An
empirical downscaling method has been employed by, for
example, Pryor et al. (2005) to estimate the future change
in wind energy, using wind observations as predictands
and large-scale atmospheric fields of ECHAM4/OPYC3
as predictors. In these and other studies, the analysis
focuses typically on single emission scenarios or a single
GCM/RCM. In case of the DD methods, this is surely due
to the very time-consuming high-resolution simulations of
the RCMs. At the same time, several studies reveal that
uncertainties in the future projections of synoptic variabil-
ity in GCMs arise not only from different greenhouse gas
forcings but also from discrepancies between individual
GCMs using the same scenario that may be quite large,
e.g. because of different parameterizations or uncertain-
ties in ocean circulation changes (e.g. Ulbrich et al., 2008;
Harvey et al., 2012; Woollings et al., 2012). Because of
these uncertainties, a downscaling methodology for wind
energy, which can easily be applied to large (multi-model)
ensembles of long-term future projections, would be bene-
ficial. A useful method for downscaling multiple GCMs is
the expansion of DD applications by statistical approaches
(e.g. Fuentes and Heimann, 2000). For wind applications,
for example, Najac et al. (2011) have recently combined
mesoscale modelling with statistical transfer functions
between large-scale and local winds to infer the impact of
climate change on surface winds over France.
In this study, a statistical–dynamical downscaling

(SDD) approach for wind energy applications on the
regional scale in Europe with special focus on Germany
is proposed and evaluated. The aim of the study is to
investigate in how far:

• SDD is able to simulate realistic near-surface wind
distributions for recent climate conditions;

• SDD produces comparable results to the time-
consuming DD with respect to the simulation of
wind energy output on different timescales;

• SDD is efficient for the application to large ensembles
of both decadal hindcasts and long-term climate change
projections to assess the changes of wind energy in near
future and to the end of the 21st century in multi-model
ensembles.

This study is organized as follows. The methodology of
SDD and the used data sets are introduced in Section 2.
Results of SDD as applied to different exemplary global
data sets are discussed in the following sections: Section 3
describes the evaluation of SDD based on ERA-Interim
Reanalysis data, Section 4 describes the application on
the Earth System Model of the Max Planck Institute
(MPI-ESM) decadal hindcasts, and Section 5 describes
investigations based on climate change projections with
the ECHAM5 model. A short discussion concludes this
paper.

2. Methods and data

The proposed SDD approach (following Fuentes and
Heimann, 2000; Pinto et al., 2010) for the simulation of
highly-resolved wind energy output consists of four cru-
cial steps (see Figure 1). These steps will be introduced and
described in detail in the following. For convenience, the
stepwise application of SDD to a reanalysis data set is pre-
sented. The application to other data sets, such as decadal
hindcasts, is quite similar and will be described later in this
section (see below).
Step 1: In the first step of SDD approach, a weather

typing approach is used to characterize the large-scale
circulation of each day (see Figure 1). With this aim, the
circulation weather type (CWT) approach from Jones
et al. (1993) is considered. This approach follows the
manual Lamb weather types (Lamb, 1972; Jenkinson
and Collinson, 1977) and has been widely used in many
applications (e.g. Jones et al., 2012). Daily mean sea level
pressure (MSLP) fields of the ERA-Interim reanalysis
project (Dee et al., 2011) are used as input data. This
data set comprises the period 1979–2010 and is interpo-
lated on a 2.5∘ grid for the computation of the CWTs.
By regarding instantaneous MSLP values at 16 points
around the central point at 10∘E, 50∘N (near Frankfurt,
Germany; cf. Figure 2), the near-surface atmospheric flow
for each day is determined and assigned to one of the ten
basic CWTs: northeast, NE; east, E; southeast; SE; south,
S; southwest, SW; west, W; northwest, NW; north, N;
cyclonic, C; anti-cyclonic, A. In addition, the mixed type
anti-cyclonic/west A/W is considered as its frequency is
comparable to the values of some of the basic CWTs and
should, therefore, not be neglected. For wind energy, a fur-
ther crucial factor is the strength of the geostrophic flow.
Therefore, aside from the direction of flow, a f -parameter
representing the gradient of the instantaneous MSLP
field at the central point is calculated. Depending on
the CWT, the f -parameter ranges from ca. 45 hPa per

© 2014 Royal Meteorological Society Int. J. Climatol. (2014)
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Figure 1. Schematic illustration of the SDD with its four crucial steps: 1 – large-scale weather type analysis; 2 – DD of representative days for
each weather class; 3 – recombination of simulated wind signatures for the representatives to PDFs of 10-m wind speed for each CCLM grid point;
4 – determination of spatial distributions of regional Eout by applying wind turbine characteristics to the PDFs. The single steps are described in

detail in Section 2.

1000 km (strong MSLP gradient) to values below 5 hPa
per 1000 km (slack MSLP gradient). To capture the full
spectrum of potential wind velocities within a CWT, each
of the 11 CWTs is subdivided into classes of f -parameters
with 5 hPa per 1000 km intervals (0–5 to 40–45 hPa per
1000 km). Altogether, a total of 77 classes have been
identified (see Table 1). As an example, Figure 2 shows
climatological MSLP fields for class W, with f -parameter
0–5 versus 35–40 hPa per 1000 km, and for class C,
with f -parameter 0–5 versus 20–25 hPa per 1000 km.
As expected, classes with high f -parameters (Figure 2(b)
and (d)) show a much stronger MSLP gradient around
the central point and thus higher geostrophic wind speeds
than classes with low f -parameters (Figure 2(a) and (c)).
Step 2: To obtain highly resolved wind signatures of

the different classes, in the second step of SDD, rep-
resentative days for each of the 77 classes are simu-
lated with the regional COSMO model of the German
Weather Forecast Service Deutscher Wetterdienst (DWD)
(http://www.cosmo-model.org) in its CLimate Mode (ver-
sion 4.8, hereafter CCLM). CCLM is a three-dimensional,
non-hydrostatic atmospheric circulation model with gen-
eralized terrain-following height level on a rotated coordi-
nate system (Rockel et al., 2008). CCLM simulations are
performed with a horizontal resolution of 0.22∘ × 0.22∘,
using ERA-Interim data as initial and boundary conditions.

The model domain is consistent with the domain used in
the EURO-CORDEX project (Giorgi et al., 2006), com-
prising the European-East Atlantic sector with 226 grid
points in south–north and 232 grid points in west–east
direction. It roughly ranges from 20∘N to 70∘N and from
30∘W to 50∘E.
For each of the 77 classes, ten representative days were

selected (see Appendix S1), if available, and simulated
with CCLM. If a class occurs on <10 days within the
ERA-Interim period 1979–2010, the full set of days is
used as representatives. A total of 669 representative days
have been simulated. The choice of the representative days
within a class is random, but we have selected representa-
tives from all four seasons if possible. As this is a quite
large number of selected days, it can be assumed that the
full spectrum of potential representatives is largely covered
by this method and thus the variability of the target param-
eter (wind) both for each weather class and climatology.
Step 3: In the third step, CCLM-simulated hourly

10-m winds of the representative days are recombined to
wind velocity distributions [probability density functions
(PDFs)] for the full ERA-Interim period 1979–2010.
The PDFs are determined for each CCLM grid point,
separately: for a given wind velocity (0.1m s−1 veloc-
ity ranges), the respective occurrence is calculated as
sum of the contributions of all classes weighted by

© 2014 Royal Meteorological Society Int. J. Climatol. (2014)
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(a) (b)

(c) (d)

Figure 2. Climatological means of exemplary CWT classes as obtained from MSLP fields of ERA-Interim. (a) CWT W with f -parameter between
0 and 5 hPa per 1000 km. (b) CWT W with f -parameter between 35 and 40 hPa per 1000 km. (c) CWT C with f -parameter between 0 and 5 hPa per
1000 km. (d) CWT C with f -parameter between 20 and 25 hPa per 1000 km. The black point represents the central point for the CWT analysis, the

black crosses the surrounding ERA-Interim grid points used for the computation of the CWTs. For more details, see text.

Table 1. Relative frequency, range of f -parameter (in hPa per
1000 km), and number of classes of each CWT. The last row

shows the total of identified CWT classes.

CWT Frequencies (%) f -Range No. of classes

NE 4.01 0–30 6
E 4.34 0–30 6
SE 4.93 0–35 7
S 5.36 0–35 7
SW 9.86 0–45 9
W 9.58 0–45 9
NW 8.17 0–45 9
N 5.29 0–35 7
C 12.02 0–25 5
A 32.16 0–25 5
A/W 4.30 0–35 7
Total no. of classes 77

the climatological class frequency and the number of
simulated representatives.
Step 4: The climatological 10-m wind speed PDFs form

the basis for the determination of mean wind energy output
(Eout) following Hueging et al. (2013). First, 10-m wind
velocities are extrapolated to a height of 80m, which is
assumed to be the average hub height of onshore wind

turbines (EEA, 2009). For the extrapolation, the power law
is used:

v (z)
v
(
zr
) =

(
z
zr

)�

, (1)

with v(z) and v(zr) being the wind velocities in 80m (z) and
10m (zr), respectively. The parameter � is the power law
exponent, which is set to 0.2 for onshore areas and to 0.14
for offshore sites (IEC, 2005a, 2005b). Wind velocities of
80m are then used to compute Eout, using wind turbine
characteristics of an idealized 2.5MW wind turbine from
General Electric (2010):

• No energy output is produced below 80-m wind veloc-
ities of 3.5m s−1 (cut-in velocity) and for velocities
higher than 25m s−1 (cut-out velocity).

• Between wind velocities of 3.5m s−1 (cut-in velocity)
and 12.5m s−1 (rated velocity), Eout can be determined
as follows:

Eout = cp
1
2
��R2v380, (2)

where cp is the power coefficient (0.35), � is the air density
(constant value of 1.225 kgm−3), R is the rotor radius of

© 2014 Royal Meteorological Society Int. J. Climatol. (2014)
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the idealized wind turbine (50m), and v80 is the 80-mwind
velocity.

• Between wind velocities of 12.5m s−1 (rated velocity)
and 25m s−1 (cut-out velocity), a constant energy output
of 2.5MW is assumed.

To obtain spatial distributions of mean annual wind
energy output for the period 1979–2010, for each CCLM
grid point, computed Eout is integrated over all wind
velocity ranges of the gridded PDFs, using the respec-
tive climatological velocity frequencies as weighting
factors.
For the application of SDD method to shorter time

periods or to other data sets, only the weather typing
analysis (step 1) has to be adapted to these new data
sets. If, for example, Eout is to be simulated on annual
timescales, the CWT analysis is carried out for single
years. In steps 2–4, the resulting weather class frequencies
(e.g. for single years) are then used in the same manner as
for ERA-Interim climatology to obtain 10-m wind speed
PDFs and finally spatial distributions of regional Eout,
using the same simulated representative days as for the full
ERA-Interim period. This assumes that the selected days
are also representative for the weather classes in other data
sets, only the frequencies of the classes will change (e.g.
in future projections).
In this study, the SDD approach is applied to three differ-

ent data sets. For evaluation purposes, the SDD approach
is applied to ERA-Interim as described above. To calcu-
late adequate Eout values, realistic simulations of 10-m
wind speed PDFs are required (see step 3). In this respect,
SDD-simulated PDFs are compared to PDFs as derived
from observations. Hourly 10-m wind velocities from sta-
tions of the German Weather Forecast Service (DWD) are
used. We have only regarded stations with a height below
800m asl, where measurements cover more than 98% of
the period 1979–2010. Furthermore, SDD-simulated Eout
is compared to Eout simulations of a purely DD method.
The DD run is simulated with CCLM, using continuous
ERA-Interim data from 1979 to 2010 as boundary condi-
tions (hereafter DDera). For DDera, Eout is computed from
hourly 10-m wind velocity output and then summed up for
certain periods, using the same turbine characteristics as
for SDD (see Equations 1 and 2). Aside from climatolog-
ical means, results of SDD for selected time periods are
compared to DDera results.
In terms of applications, the SDD approach is applied to

the decadal prediction system of the coupled MPI-ESM
(Mueller et al., 2012). The latest experiment version is
used (MPI-ESM Baseline1), where initial conditions for
decadal hindcasts and predictions are taken from assimila-
tion runs forced by sea surface temperature and salinity
anomalies of the operational ECMWF ocean reanalysis
system (ORAs4; Balmaseda et al., 2013). This experiment
comprises ten realizations of yearly initialized decadal
hindcasts and predictions from 1960 to 2011 (hereafter
dec1960 to dec2011; altogether 52× 10= 520 realiza-
tions), each of them covering a period of 10 years. SDD

results are compared to outcomes as obtained by the DD
method. Four DD runs are simulated with CCLM, using
atmospheric fields of four selected decadal hindcasts as
boundary conditions: first realization of dec1980 (initial-
ized at 01.01.1981; hereafter DD1980_1), first realization
of dec2000 (initialized at 01.01.2001; hereafter DD2000_1),
and the first and tenth realization of dec1990 (initial-
ized at 01.01.1991, respectively; hereafter DD1990_1 and
DD1990_10).
To demonstrate that SDD is appropriate for the appli-

cation to ensembles of long-term climate change projec-
tions, we employ the method also to simulations with
the GCMECHAM5/MPI-OM of theMax-Planck-Institute
Hamburg (hereafter ECHAM5; Jungclaus et al., 2006;
Roeckner et al., 2006). SDD is applied to an ensemble
for recent climate conditions (20C scenario, 1961–2000)
and to the three scenarios B1, A1B, and A2 (2061–2100,
respectively) of the Special Report on Emission Scenar-
ios (SRES; Nakicenovic and Swart, 2000) to estimate
regional changes of wind energy by the end of the 21st
century. As the projected changes for pressure gradients
and winds under future climate conditions for Europe on
the regional scale are comparatively small (e.g. Hueging
et al., 2013), it can be assumed that primarily only the
frequencies of the weather classes will change in future cli-
mate, while the wind characteristics within each class will
remain largely unchanged. Therefore, the selected repre-
sentatives are considered as suitable also for the climate
conditions during the second half of the 21st century. The
CO2 concentration increases from 367 ppm in the year
2000 to 540, 703, and 836 ppm by the year 2100 for B1,
A1B, and A2, respectively. For the A1B scenario, results
of SDD are compared to Hueging et al. (2013), who have
employed two different RCMs (inter alia the CCLM) to
simulate regional changes in wind energy potential over
Europe using the first two realizations of ECHAM5 20C
and A1B as boundary conditions.

3. Evaluation and application to ERA-Interim

In this section, results of the single steps of the SDD
application to ERA-Interim are presented and evaluated
against observations and DDera. Figure 3 shows the cli-
matological frequencies of the 77 classes for the period
1979–2010 as obtained from the weather typing approach
(step 1). The most dominating CWTs are A, C, and the
westerly types (SW, W, NW). While for CWT A, the
observed f -parameter range is mainly restricted to low
values (0–5 and 5–10 hPa per 1000 km), frequencies of
the CWTs SW, W, and NW are highest for f -parameter
ranges of 5–10 to 20–25 hPa per 1000 km. These results
reflect that anti-cyclonic conditions are generally related
to weak MSLP gradients, and that westerly flows are pre-
dominantly connected with stronger near-surface winds.
Lowest frequencies are found for the easterly CWTs
(SE, E, NE).
As described in Section 2, the frequencies of the

77 weather classes are used for the recombination of

© 2014 Royal Meteorological Society Int. J. Climatol. (2014)
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Figure 3. Climatological frequencies of all weather classes for
ERA-Interim (1979–2010). For each CWT, weather classes are shown
for ascending f -parameter (5 hPa per 1000 km intervals) from left to
right (0–5, 5–10, 10–15 hPa per 1000 km, etc.). For better indication,

the CWTs are separated by black and grey colouring.

simulated representative days (step 2) to downscaled
PDFs of 10-m wind velocities per COSMO-CLM grid
point (step 3). According to the wind turbine character-
istics used in this study (see Equations 2), the majority
of Eout is produced by upper wind percentiles. Figure 4
exemplary shows the 75th and 90th percentiles for the

period 1979–2010 as derived from SDD and DDera.
Differences between SDD- and DDera-simulated per-
centiles are quite small for the entire European sector (see
Figure 4(a)–(d)). Both SDD and DDera reveal highest
percentiles over sea surfaces and at the northern coasts,
and smallest percentiles over the Alps and in southeast
Europe.
Compared to observations, the 75th and 90th per-

centiles are overestimated by SDD for some stations
in Mid-Germany, whereas for most stations in western
and southern Germany as well as in the coastal area,
SDD-simulated percentiles agree well to observations (see
Figure 5). In general, the north–south gradient observed
for Germany, with strongest percentiles at the coasts and
lowest percentiles near the Alps, is matched well by the
SDD approach.
For eight exemplary stations (for location of the sta-

tions, see Figure 5(a)), full PDFs are compared to PDFs
for the respective nearest CCLM grid point as derived
by SDD (1979–2010, see Figure 6). Please note that fre-
quencies for the six stations in former West Germany
are shown in 0.5m s−1 intervals, whereas frequencies for
Schwerin (SW) and Leipzig (LE) are given in 1m s−1

(a) (b)

(c) (d)

Figure 4. 75th (left column) and 90th (right column) percentiles in m s−1 of the 10-m wind velocity for the period 1979–2010. Upper row, DD; lower
row, SDD.

© 2014 Royal Meteorological Society Int. J. Climatol. (2014)
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(a)

(b)

Figure 5. (a) 75th and (b) 90th percentiles in m s−1 of the 10-m wind
velocity for the period 1979–2010 as obtained by SDD (shaded) and
observations (small circles). Note that (a) shows a zoom of Figure 4(c),
and (b) shows a zoom of Figure 4(d). The black circles in (a) mark the
locations of the stations shown in Figure 6: CH, Cuxhaven; BR, Bremen;
SW, Schwerin; ES, Essen; KA, Kassel; LE, Leipzig; ST, Stuttgart; MU,

Munich.

intervals (due to different measurement accuracy in for-
mer east Germany before 1990). Discrepancies between
SDD-simulated and observed PDFs are largest for the
coastal and near-coastal stations Cuxhaven (CH), Bremen
(BR), and Schwerin (SW), while PDFs are simulated quite
realistic for the non-coastal stations. However, the gen-
eral observed wind distributions are captured well by the
SDD approach, with highest wind speeds occurring in the
North and frequent low wind velocities in southern Ger-
many. The same PDFs have been derived from DDera sim-
ulations. These PDFs are for most stations similar to the
PDFs as obtained by the SDD approach. Only for few sta-
tions, results from DDera show a slightly higher agreement
to observations than SDD-simulated PDFs (e.g. Essen and
Munich).
The gridded PDFs of the 10-m wind velocity for the

period 1979–2010 are used to compute climatological
annual means of Eout per CCLM model grid point (step
4). The spatial pattern of Eout as obtained by the SDD
approach is realistic and quite similar to DDera-simulated

Eout, with highest values over ocean surfaces and rather
small output over mountainous areas and southeast Europe
(see Figure 7(a) and (b)). Only the magnitudes between
both downscaling methods slightly differ. For most
regions, SDD simulates higher Eout values than DDera, but
deviations are quite small compared with absolute mag-
nitudes (see Figure 7(c)). The main positive bias of SDD
compared to DDera results from a slight overestimation of
the frequencies of high wind speeds by SDD, as can be
seen for most of the eight stations in Germany presented
in Figure 6. Although the differences between the PDFs of
SDD and DDera are actually very small, they still lead to a
slight but visible overestimation of wind energy output by
SDD, as Eout is proportional to v

3.
For the application to decadal predictions, SDD should

be able to simulate suitable Eout anomalies on timescales
from several years down to single years. This is first
tested for ERA-Interim by comparing annual time series
of Eout anomalies as simulated by SDD to time series
derived from DDera. Figure 8 shows such a comparison
for six exemplary sub-regions in central Europe (for
location of the sub-regions, see Figure 7(a)). For Belgium,
central Germany, northern Germany, and Poland, the
time series of both methods are quite similar. Despite a
slight underestimation of the general variability by SDD
compared to DDera, the year-to-year variation is captured
well. Larger discrepancies between the two methods of
up to 800MWhyear−1 can be seen for a sub-region in
northern France, where the annual variability is clearly
underestimated by SDD. Nevertheless, for most years, the
anomalies of both methods have the same sign. Differ-
ences between SDD and DDera are largest for a sub-region
in the North Sea. Comparisons of time series of 5-year
runningmeans and for other sub-regions also reveal a good
accordance between SDD and DDera for land surfaces in
central Europe and a lower agreement over ocean surfaces
(not shown). Even over the Baltic States, SDD-simulated
time series of Eout are similar to DDera. An overview of the
regions with a high agreement between SDD and DDera is
given by Figure 9(a), which shows the correlation between
annual Eout time series of both downscaling methods for
all CCLM grid points. Very high correlations of more
than 0.8 can be seen for Germany, Benelux, and Poland.
Significant positive correlations of up to 0.8 are found
for Great Britain, Czech Republic, and parts of the Baltic
States, while correlation is low for southern Europe and
the North Sea. This is due to the used weather typing
approach, which is only representative for the large scale
flow at the surrounding of the central point (in this case
Germany and nearby areas) but not for areas far away from
it (e.g. Italy). A physical explanation for the comparable
low correlation over the North Sea is the high roughness
length variability over sea surfaces due to varying heights
of the water waves, which cannot be fully captured by
SDD on timescales down to single years (unlike DD), as
the same simulated representatives are used every time
(see Section 2).
Figure 9(b) shows the RMSE of the SDD time series rel-

ative to the time series as obtained by DDera. To take into
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Figure 6. PDFs of the 10-m wind velocity for the period 1979–2010 at eight exemplary stations and at the corresponding CCLM grid points. Black
line, SDD; dark grey line, observations; bright grey line, DD. Locations of the stations are shown in Figure 5(a). Please note that frequencies for the

upper six stations are shown in 0.5m s−1 intervals, and for the lower two stations in 1m s−1 intervals.

account that the RMSE is inherently small over regions
with low Eout and thus low variability (like e.g. the Alps)
and vice versa, the RMSE is normed by the standard devi-
ation of DDera. Over central Europe, regions with small
RMSE correspond well to regions with a high correlation

between both time series (cf. Figure 9(a)). This implies
that for these areas, SDD is not only able to capture the
year-to-year variation in wind energy output (Figure 9(a)),
but also simulates magnitudes of Eout, which are similar to
that of DDera (Figure 9(b)).
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(a)

(b)

(c)

Figure 7. (a) Annual mean of Eout in 103 MWhyear−1 for ERA-Interim
(1979–2010) as obtained by DDera. (b) Annual mean of Eout in 103

MWhyear−1 for ERA-Interim (1979–2010) as obtained by SDD. (c)
Difference between Eout from SDD and from DDera in 10

3 MWhyear−1.
The boxes in (a) represent sub-regions for the computation of Eout time

series as shown in Figures 8 and 10.

4. Application to decadal hindcasts and predictions

The objective of this subsection is to investigate whether
SDD is appropriate for the application to the full ensem-
ble of the decadal prediction system of the MPI-ESM
(520 decadal hindcasts and predictions with a length
of 10 years). It should be kept in mind that a detailed

evaluation of a potential predictive skill of the MPI-ESM
on the regional scale is still ongoing and is not the
purpose of this study. This will be analysed in a
separate study.
Like for ERA-Interim, results of SDD application to

MPI-ESM are compared to the outcomes of DD. Here,
four selected decadal hindcasts are regarded. Again, sim-
ulated annual time series of Eout anomalies of both meth-
ods are compared. Figure 10 exemplary shows the annual
Eout anomalies of both methods for the first realization of
dec1980 (1 January 1981 to 31 December 1990). Despite
a slightly lower variability of SDD, time series of both
methods are quite similar. The accordance between SDD
and DD1980_1 is highest for Belgium (BE), sub-regions in
Germany, and Poland, while discrepancies are stronger
for the sub-region in northern France and over the North
Sea. Similar results are found for the first and tenth real-
ization of dec1990 and the first realization of dec2000
(not shown). These outcomes are confirmed when regard-
ing the correlation per grid point between the simulated
time series of SDD and DD methods (Figure 11). For
all four analysed hindcasts, correlations between SDD
and DD are highest for grid points over Germany, for
which the 77 weather classes were defined (see Section 2).
High and, in most cases, significant correlations are also
found for Poland and the Benelux. Also for the coastal
areas of these countries, where high energy output is pro-
duced, SDD simulations agree well to the DD method.
Compared to ERA-Interim (cf. Figure 9(a)) correlation
between SDD and DD is lower at grid points over the
Baltic States. Like for ERA-Interim, we have also com-
puted the RMSE of the SDD time series relative to the
time series as obtained by DD (not shown). Again, regions
with small RMSE correspond well to regions with high
correlations (cf. Figure 11), which means that the magni-
tudes of Eout as simulated by SDD are similar to those of
DD for these areas (particularly Germany). To summarize,
these results reveal that for onshore areas in central Europe,
SDD is an appropriate alternative to time-consuming DD
and can therefore be used as an applicable tool to anal-
yse the full ensemble of the decadal prediction system of
the MPI-ESM. An example for a potential application of
SDD to determine a predictive skill of the MPI-ESM is
given in Figure 12. For each realization of all yearly ini-
tialized decadal hindcasts and predictions, PDFs of the
10-m wind velocity for years 1–4 after initialisation are
determined to generate 4-year running mean time series
of Eout. Time series of the ensemble mean Eout as well as
the standard deviation (SD) between the ten realisations
for the sub-region in central Germany (CG) are shown in
Figure 12(a). For comparison, the corresponding 4-year
running mean time series as simulated by DDera is pre-
sented. Not surprisingly, the ensemble mean time series
of the MPI-ESM show a lower variability than time series
from DDera. At the same time, the spread between the dif-
ferent realisations is quite large, revealing that the uncer-
tainty arising from different initialisations is very high in
the MPI-ESM decadal prediction system. The correlations
between the 4-year running mean time series of DDera and
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Figure 8. Time series of annual Eout anomalies in 103 MWh for the ERA-Interim period 1979–2010 as obtained by SDD (black solid line) and by
DDera (grey dashed line) for sub-regions in Belgium (BE), central Germany (CG), northern Germany (NG), Poland (PO), northern France (NF), and
the North Sea (NS). For location of the sub-regions, see Figure 7(a). The correlations between SDD and DD time series are given in the upper left

corner of each panel.

of the MPI-ESM ensemble mean for years 1–4 after ini-
tialisation are rather low or in some cases even negative
for most grid points over central Europe (see Figure 12(b)).
For countries in central Europe, only over The Netherlands
and for a small region in Czech Republic, a significant pos-
itive correlation is found. These preliminary results sug-
gest that with respect to wind energy on the regional scale,
the predictive skill of the MPI-ESM decadal prediction
system for short lead times is rather small, but a much
deeper analysis is required to quantify the forecast skill.

5. Application to climate change projections

Finally, SDD is applied to different scenarios from the
ECHAM5 model. The weather typing approach is applied
to large-scale daily MSLP fields of the different ECHAM5
scenarios to obtain climatological PDFs of the 10-m wind
velocity for the recent climate (20C, 1961–2000) and for

the second half of the 21st century (A1B, B1, and A2 sce-
narios; 2061–2100, respectively). Then, the differences
between the resulting Eout climatologies of the greenhouse
gas scenarios and the 20C scenario are computed to deter-
mine climate change signals for wind energy (2061–2100
minus 1961–2000). For the A1B scenario, results are com-
pared to Hueging et al. (2013), who used DD methods for
their analysis. For consistency, ensemble means of the first
and second realization of the scenarios are regarded.
The climatological regional Eout patterns for the

ECHAM5 20C scenario (1961–2000) as obtained by
SDD are comparable to the results of Hueging et al.
(2013, cf. their figure 1(e)), with highest values over
ocean surfaces and near the coasts and low energy output
for southeast Europe (not shown).
The regional changes of Eout for 2061–2100 in the three

SRES are shown in Figure 13. For the A1B scenario,
annual changes as simulated by SDD (Figure 13(a)) are
similar to the changes detected byHueging et al. (2013, see
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(a)

(b)

Figure 9. (a) Correlation between annual Eout time series of SDD and
DDera per CCLM grid point for the ERA-Interim period 1979–2010.
Grid points with a significant correlation are dotted (t-test, 95% con-
fidence level). (b) RMSE of annual Eout time series of SDD relative
to DDera time series per CCLM grid point for the ERA-Interim period

1979–2010, normed by the standard deviation of DDera.

their figure 3(g)). Although the magnitudes of the signals
are somewhat weaker for SDD, regional trends of annual
Eout are the same as in Hueging et al. (2013). Both, results
of SDD and of Hueging et al. (2013), reveal increasing
annual energy output over northern and northeast Europe
and a decrease in Eout over southern Europe. Similar
results are observed for changes in Eout during the winter
months (December, January, February; see Figure 13(b)).
Again, climate change signals as simulated by SDD are
weaker than in Hueging et al. (2013, see their figure 3(i)),
but regional patterns agree well in terms of the sign of
the trend. Higher Eout for 2061–2100 is observed over
northern and central Europe, whereas less energy output is
simulated for the Mediterranean countries. Clear regional
differences between SDD and Hueging et al. (2013) occur
only for the climate change signals of the summer months
(June, July, and August). While Hueging et al. (2013)
detected a positive trend of Eout over the Baltic Sea (see
their figure 3(k)), reduced Eout for 2061–2100 is simulated
by SDD (Figure 13(c)). However, both methods reveal a

decrease in Eout for Germany, Poland, Great Britain, and
most parts of the Mediterranean countries.
The advantage of SDD is that it can also be applied

to other greenhouse gas scenarios. Climate change
signals of B1 are weaker than for the A1B scenario
(Figure 13(d)–(f)), as one would expect. Apart from that,
both scenarios show similar regional trends by the end of
the 21st century, i.e. increasing Eout over northern Europe
and decreasing Eout over southern Europe for the whole
year and for the winter months, and a negative trend over
central and western Europe for summer.
Regional changes of annual Eout in the A2 scenario have

the same magnitude as in the A1B scenario (Figure 13(g)).
Interestingly, differences between both scenarios are
stronger in terms of the intra-annual changes. While the
trend of Eout for the winter months is stronger in the
A2 scenario over most parts of the central and northern
Europe, in particular over Germany (Figure 13(h)), the
decrease in Eout for June, July, and August is slightly
weaker than in the A1B scenario (Figure 13(i)).
Despite slight discrepancies in the climate change pro-

jections for the A1B scenario compared to Hueging et al.
(2013), these results reveal that the proposed SDD is
an adequate downscaling tool for the analysis of wind
energy changes in large ensembles of climate change sce-
narios, providing results consistent to DD methods in a
cost-efficient way.

6. Summary and discussion

In this study, a SDD approach for the analysis of regional
changes of wind energy output in large ensembles of
decadal prediction systems and long-term climate projec-
tions is proposed and evaluated for different data sets.
Here, SDD has been generated for applications to cen-
tral Europe with special focus on Germany, for which the
weather typing approach has been performed.
Regarding the verification of the SDD methodology and

the comparison to observational data, SDD is able to derive
realistic near-surface wind distributions for most stations
in Germany. Some deficits can be observed for coastal sta-
tions, where simulated and observed PDFs of 10-m wind
velocities differ. These discrepancies may in part be asso-
ciated with the resolution of the model chain. At a hor-
izontal resolution of 0.22∘ (∼25 km), grid cells that cor-
respond to stations at the coasts consist of not only land
surfaces but also ocean surfaces, thus comprising unre-
alistic surface characteristics. Results for coastal areas
would be improved by increasing the horizontal resolution
of the simulated representative episodes by, for example,
using a double nesting procedure. Despite these deficits,
we conclude that SDD simulates realistic near-surface
wind speeds and regional Eout patterns for recent cli-
mate conditions, and provides comparable results to the
time-consuming pure DD approach. This assessment is
valid for the entire European sector.
Regarding the application of SDD to decadal hindcasts,

a good accordance between the SDD approach and DD
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Figure 10. Time series of annual Eout anomalies in 103 MWh for the first realization of dec1980 (1981–1990) as obtained by SDD (black solid line)
and by DD1980_1 (grey dashed line) for sub-regions in Belgium (BE), central Germany (CG), northern Germany (NG), Poland (PO), northern France
(NF), and the North Sea (NS). For location of the sub-regions, see Figure 7(a). The correlations between SDD and DD time series are given in the

upper left corner of each panel.

methods on timescales down to single years is found for
Germany and nearby areas, particularly Poland, Czech
Republic, and the Benelux countries. For four exemplary
decadal hindcasts, high correlations between SDD- and
DD-simulated annual Eout time series are found for these
onshore areas. Lower correlations are detected for other
European countries (e.g. France and Scandinavia) and for
offshore areas, which implies that the applicability of SDD
for decadal prediction systems as used in this study is lim-
ited to Germany and the surrounding countries. This is due
to the considered weather typing approach that is repre-
sentative for the large-scale flow over an area of roughly
20∘ by 30∘ centred over Germany (see Figure 2). The
approach could also be applied for decadal predictions of
wind energy in other regions of Europe simply by choos-
ing different central points for the CWT classification, e.g.
in Scandinavia or in southern Europe. For Germany and
nearby areas, annual Eout time series as obtained by SDD
show a slightly lower variability than DD-simulated time

series. The consequences of this deficit for the detection
of a predictive skill of decadal hindcasts (e.g. in terms of
anomaly correlations) can be considered negligible, as for
almost every year SDD simulates similar anomalies as DD
in terms of the sign of Eout, as this effect can be easily
scaled up. SDD has been employed to downscale the full
ensemble of MPI-ESM that comprises 520 decadal hind-
casts and predictions of a length of 10 years. Assuming a
simulation time of ∼5 days per hindcast when using tran-
sient simulations with RCMs even on fast supercomputers,
the regionalization of such a large ensemble can hardly
be accomplished by purely DD methods. SDD, therefore,
forms a suitable tool to analyse the predictive skill of
decadal prediction systems with respect to wind energy on
regional scales.
In this study, simulated representative days of the 77

classes have been forced with ERA-Interim. In a sensi-
tivity study, we have repeated the procedure as applied to
decadal hindcasts with a new set of representatives using
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Figure 11. Correlation per CCLM grid point between annual Eout time series simulated by SDD and by DD for exemplary hindcasts dec1980_r1
(1981–1990), dec1990_r1 (1991–2000), dec1990_r10 (1991–2000), and dec2000_r1 (2001–2010). Grid points with a significant correlation are

dotted (t-test, 95% confidence level).

large-scale fields of the MPI-ESM as boundary condi-
tions. For Germany and nearby areas, results of the sen-
sitivity study are quite similar to the results presented
in this paper (e.g. annual Eout time series). Hence, the
SDD method seems to be quite robust and the downscaled
ERA-Interim-forced representatives used in this study can
also be employed for the application of SDD to decadal
prediction systems of other institutions contributing to
CMIP5.
Regarding climate change applications, the SDDmethod

performs well for the entire European sector, including
Scandinavia and southern Europe. For example, long-term
climate change projections of wind energy potentials
as obtained by SDD agree well to the results of other
studies using DD methods, with mean annual wind

energy increasing over countries in northern Europe and
decreasing over southern Europe in a future climate (cf.
Hueging et al., 2013). Furthermore, several studies reveal
positive trends over the regions in northern Europe for
future winter months and a decline in wind energy during
the summer months (Nolan et al., 2012; Hueging et al.,
2013), which is consistent with the findings of this study.
These results suggest that ten representatives per class
(see also Appendix S1) are sufficient to cover the main
spectrum of potential European-wide spacious wind pat-
terns that may occur within a class in climatological time
periods. Compared to Hueging et al. (2013), the climate
change signals of SDD are slightly weaker for most parts
of Europe, hence the magnitude of the wind energy trends
as simulated by SDD should be regarded with care. Here,
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(a) (b)

Figure 12. (a) Four-year running mean time series of Eout for years 1–4 after initialization for the MPI-ESM decadal hindcasts and predictions from
dec1960 to dec2011 as obtained by the SDD method for a sub-region in central Germany (cf. Figure 7(a)). Shown is the ensemble mean over the ten
realizations (black solid line), and the ensemble mean± 1 SD of the ten ensemble members (grey dashed line). The thin grey line shows the 4-year
running mean time series of DDera. (b) Correlation between the 4-year running mean time series of DDera (thin grey line in (a)) and of the MPI-ESM
ensemble mean for years 1–4 after initialization (black solid line in (a)). Grid points with a significant correlation are dotted (t-test, 95% confidence

level).

Figure 13. Regional changes (%) in Eout between ECHAM5 SRES (2061–2100) and the ECHAM5 20C scenario (1961–2000) as obtained by SDD
for all year (annual, left column), winter (DJF, middle column), and summer (JJA, right column). Differences are shown for ensemble means of the

first two realizations of the scenarios A1B (upper row), B1 (middle row), and A2 (lower row).
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SDD has been employed to SRES of the GCM ECHAM5.
As its application to other data sets requires only a new
employment of the CWT analysis on global MSLP fields,
while the other steps of the downscaling procedure are
in principle the same as for ECHAM5, SDD can easily
be applied to other GCMs. This enables an assessment of
the uncertainty of long-term climate change projections
that may arise not only from different scenarios but also
from different GCMs. SDD is therefore an adequate tool
to analyse regional wind energy changes in multi-model
ensembles such as those released in the new CMIP5
(Taylor et al., 2012), which includes current GCM data of
29 institutions.
We conclude that SDD is a suitable and inexpensive

alternative to DD and that it can be easily applied for
large ensemble of global runs. Although the current appli-
cation focused on wind energy potentials for Germany,
decadal hindcasts and climate change projections, the
methodology has the potential for use in many other
applications. Another potential valuable application could
be, for example, the investigation of changes of surface
wind percentiles in near- and long-term future. As PDFs
of 10m winds are computed in the third step of SDD (see
Section 2), the same procedure and simulated represen-
tatives as used in this study could be employed for this
purpose.
The here presented SDD methodology has been devel-

oped primarily for applications within the ongoing
MiKlip consortium (‘Mittelfristige Klimaprojektion’,
http://www.fona-miklip.de) and a detailed analysis of
the forecast skill of the MPI-ESM decadal prediction
system with respect to wind energy on the regional scale
is still ongoing. With this aim, different deterministic and
probabilistic metrics (see, for example, Goddard et al.,
2013) for estimating the predictive skill and the forecast
uncertainty will be employed.
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