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Abstract. This paper discusses ECG classification after parametrizing the ECG waveforms in 

the wavelet domain. The aim of the work is to develop an accurate classification algorithm that 

can be used to diagnose cardiac beat abnormalities detected using a mobile platform such as 

smart-phones. Continuous time recurrent neural network classifiers are considered for this task.  

Records from the European ST-T Database are decomposed in the wavelet domain using 

discrete wavelet transform (DWT) filter banks and the resulting DWT coefficients are filtered 

and used as inputs for training the neural network classifier. Advantages of the proposed 

methodology are the reduced memory requirement for the signals which is of relevance to 

mobile applications as well as an improvement in the ability of the neural network in its 

generalization ability due to the more parsimonious representation of the signal to its inputs.  

Introduction 

Early diagnosis of heart diseases enables patients to improve their quality of life through more 

effective treatments [1]. Analysis and classification of ECG signals can be particularly helpful to 

identify the initiation of heart conditions such as atrial fibrillation or flutter, multifocal atrial 

tachycardia, palpitations, paroxysmal supraventricular tachycardia, reasons for frequent fainting, slow 

heart rate (bradycardia) or ventricular tachycardia. Normally patients will be given a Holter monitor 

and wear the monitoring electrodes over a period of 24-48 hours. The data-logged signals are post-

processed and examined for cardiac beat abnormalities by doctors over the following days. There are 

restrictions, however, to how often one should perform such measurements. It is not uncommon for 

patients to complain to their doctors that the arrhythmias they suffered prior to the examination period 

were not present during the monitoring process, making early diagnosis more difficult. If one is 

prepared to wear the appropriately placed electrodes more often, it would be possible to use mobile 

phones as data logging devices directly. Bluetooth emitters such as the RN-42 from Microchip can 

provide a direct input from a small footprint battery-operated mobile data acquisition card to which the 

electrodes are interfaced. With the ever-increasing capabilities of smart-phones, portable ECG tele-

monitoring is likely to become a common feature for these devices, performing data-logging 

functionality for the ageing population. Beyond their data-logging functionalities, smart –phones can 

also use Multimedia Messaging Services (MMS) to enable the recorded signals to be sent directly for 

diagnosis by experts through current mobile networks or perform directly classification tasks. With the 

number of patients increasing due to current population sedative lifestyles and unhealthy eating habits, 

an increased expectation by patients for personalized medical treatment, as well as the envisaged 

wider proliferation of ECG data-logging devices, it is widely anticipated that there will soon be an 

overwhelming requirement for expert advice in healthcare service systems worldwide. As a 

consequence, there are pressures for devising automatic classifiers that could quickly and reliably pre-

screen for abnormalities before a referral to experts is made. A further aim of the proposed algorithms 

is to encourage the data-logging, analysis and classification of heart-beat patterns of subjects at regular 

intervals throughout their lifetime. Patterns from the same patient when they were healthy should 

provide a more accurate input to the classifiers for the early detection of abnormalities, direct 
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comparison of benefits from diet and fitness regimes in the cardio-vascular system, or the 

identification of potentially harmful side-effects to the cardiovascular system from different treatments 

associated to specific drugs.   

 The current work discusses efficient decompositions of the ECG signals in the wavelet domain 

using Discrete Wavelet Transforms (DWTs) and investigates their further processing using neural 

network based classifiers. There are additional benefits in terms of memory storage requirements as 

well as a possible reduction in energy and transmission bandwidth requirements which are important 

from a smart-phone applications perspective that can also be explored through the proposed signal 

decomposition process. In the next two sections, identification of the QRS complex and ECG signal 

wavelet decompositions are discussed in more detail whereas in section 4, candidate neural network 

classifiers are considered.  

 

Identification of the QRS complex in Electrocardiograms (ECG)  

ECGs provide a graphic representation of the electrical activity of the heart muscle. It can be seen that 

the contraction of any heart muscle is associated with electrical changes (depolarization) and these 

changes can be detected by electrodes attached to the surface of the body and the ECG monitor [2]. 

The electrocardiogram (ECG) consists of the measurement of electrical activity on the body surface 

associated with myocardial contraction with respect to time. The standard ECG consists of 12 different 

leads that record the same electric events but from different viewpoints. Each cardiac cycle in the ECG 

is normally characterized by a sequence of deflections that make waveforms that are known as the P 

wave, the QRS complex, and the T wave. Contraction of the atria is associated with the ECG wave 

called the P wave and that wave represents the sequential activation (depolarization) of the right and 

left atria. There is a large deflection of the ECG signal when the ventricles are depolarised, that is 

commonly known as the QRS complex wave. The muscle mass of the atria is small when compared 

with that of the ventricles due to the P wave being smaller than the QRS complex. The T wave is 

associated with the return of the ventricular mass to its resting electrical state, which is called 

repolarisation. Figure 1 shows the basic shape of the normal ECG wave. The ECG can provide 

evidence and information that can help doctors to identify abnormalities in heart beat rates, 

arrhythmias, myocardial infarctions, atrial enlargements, ventricular hypertrophies, and bundle branch 

blocks. ECG records are essential for diagnosing heart diseases such as abnormal cardiac rhythm, 

abnormal cardiac conduction, ischemia of myocardium, and cardiac hypertrophy [3]. The diagram 

below shows typical records of a normal ECG signal taken from the European ST-T Database, 

depicting the presence of the characteristic QRS complex.  

 

Figure 1. Typical records of normal heart beats taken from the European ST-T Database. 
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ECG signal decomposition using Discrete Wavelet Transforms (DWTs) 

It is convenient to decompose ECG signals into time-frequency representations by using Discrete 

Wavelet Transforms (DWTs). The main advantage of the DWT is its great time and frequency 

localization ability, which enables it to reveal the local characteristics of the input signal. Discrete 

wavelet transforms have already been used by the ECG community because of their multi-resolution 

capabilities in detecting specific ECG characteristics e.g., the P wave, Q wave, or QRS complex and 

for cardiac beat analysis [4].  

In the signal decomposition using  the DWT, both a low pass filter bank (LPF) and a high pass 

filter bank (HPF) are used to generate time domain responses, these are convolved with the time 

domain ECG signal. Convolving the response function of the chosen filter (corresponding to a 

particular mother wavelet) with the signal provides an output which has different energy at different 

scales. Approximation coefficients relate to the low frequency components of the signal whereas detail 

coefficients relate to the higher frequency components in the signal. Wavelet decomposition using the 

DWT provides essentially a multi-resolution representation of the input signal. The user normally 

retains coefficients up to a particular scale whereas more detailed decompositions become redundant 

as their incorporation have a negligible effect on the signal. The convolution operation may be 

conveniently performed in the frequency domain where it is implemented through a simple 

multiplication process [5].   

 The ECG signals considered in this study were taken from the European ST-T Database [6]. 

The features in the ECG signal were extracted using DWTs from the sym3, db4 and db6 wavelet 

families. Six decomposition levels are more than sufficient to faithfully represent the ECG signals.  As 

shown clearly in figure 2, blocks h[n] and g[n] represent the low-pass and high-pass filter responses 

(i=1,... 6) respectively, and the  2 operator denotes dyadic down-sampling. Approximation Ai and 

Detail Di coefficients at each decomposition step are also shown. Only perfect reconstruction 

quadrature mirror filter banks (orthogonal transforms) are considered in this study because they fully 

preserve the information content in the signal. This is important from an algorithm certification 

perspective which is normally associated with the introduction of new algorithms for bio-medical 

software applications. The discrete wavelet transform can be calculated in a fast manner by using 

finite-impulse-response (FIR) filter banks.   

 
Figure 2. Block diagram of wavelet decomposition. 

 

The filter bank transform can be regarded as a change of variables for the ECG signals xn:  

 

                  ∑   

   

   

  ( )                    

 

where    is a transformed variable and   ( )    is a transform weight. The transfer function of the 

low-pass filter in the z-domain can be written as: 
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where superscript (N) denotes that the filtering sequences have length 2N and    
( )
( ) and    

( )
( ) 

denote polyphasic components of   ( )( ). Further algorithmic details of the proposed filter banks 

and a discussion of adaptive filter banks for the purpose are discussed in [7]. Results from multi-level 

decompositions are shown in Figure 3.  

 
Figure 3. ECG signal multilevel decomposition using sym3, db4 and db6 wavelet families. 

 

Of particular interest to the current study is to identify the most parsimonious representation of the 

ECG signals in the wavelet domain so that a non-linear neural network classifier can perform the 

classification task directly in the wavelet domain. Further parameterization of the signals using 

adaptive wavelets using various adaptive filter banks [7] from the wavelet transform literature are 

considered in this project.    

 

Discussion of candidate neural network classifiers 

Classification of arrhythmias is a complex problem because of a strict requirement for avoiding false-

positive or false-negative results. There are many different approaches that can be used to analyze and 

classify ECG signals. There have been suggestions to use linear discriminant analysis [9], back 

propagation neural networks [10], self-organizing maps (SOM), learning vector quantization (LVQ) 

schemes [11], support vector machines (SVM) [12] and fuzzy or neuro-fuzzy algorithms [13].  

A Recurrent Neural Network (RNN) was implemented and used as a basis for detection of the 

variability of ECG signals. RNN can be used to classify different types of ECG beats, such as normal 

beat, congestive heart failure beat, ventricular tachyarrhythmia beat and atrial fibrillation beat that are 

obtained from different ECG databases. A particular feature of all neural networks is their multi-

layered architecture. Multi-layered networks can be classified as feed-forward or feedback networks, 

according to their connectivity and the direction of information flow. The recurrence allows the 

network to remember cues from the past without complicating the learning excessively.  

An Elman RNN is a network which in principle is set up as a regular feed-forward network. This 

means that in this type of network, all neurons in one layer are connected with all neurons in the next 

layer. Figure 4 depicts the architecture of this type of network, it can be seen that the neurons in the 

context layer (context neurons) hold a copy of the output of the hidden neurons. Moreover, the output 

of each hidden neuron is copied into a specific neuron in the context layer.  
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Figure 4.  Elman recurrent neural network structure. 

 

RNNs can perform highly nonlinear dynamic mappings and thus, have temporally extended 

applications; whereas multi-layer feed-forward networks are confined to performing static mappings. 

This is an important advantage over other topologies for the current application. The strength of all 

connections between neurons are indicated with a weight, which is similar to a regular feed-forward 

neural network. At the start point, all weight values are chosen randomly and are then optimized 

during the training stage. The weights from the hidden layer to the context layer are set to one and are 

fixed because the values of the context neurons have to be copied exactly in an Elman network. 

Furthermore, the first output weights of the context neurons are set to be equal to half the output range 

of the other neurons in the network. Similar to regular feed-forward neural networks, the Elman 

network can be trained with gradient descent back propagation and optimization methods [14-16]. 

Elman networks are, therefore, good candidates for ECG signal classification. 

In recent years, there has been a growing interest in Continuous Time Recurrent Neural Networks 

(CTRNN). The popularity of these networks has been increasing because of their simplicity in 

simulating non-linear dynamical processes. Gallagher et al., (2005) suggested that CTRNNs should be 

seen as Hopfield type networks with unconstrained connection weight matrices [17]. The 

unconstrained connectivity provides an improvement in the generalization ability of the networks in 

the learning process, thus improving its classification ability. Furthermore, CTRNNs are capable of 

faithfully emulating neuronal activity, and as such they are a natural platform upon which a classifier 

can be built for ECG diagnostics. CTRNNs are made up of neurons and each neuron's activity can be 

described by the following expression: 

 

   
   
    

       ∑   

 

   

 (     )      ( )            

 

In the above expression,     is the internal state of neuron   ,    is a time constant of neuron i, N is the 

total number of neurons,     is the strength of the connection from neuron     to neuron     ,    is a 

threshold/bias term, (x) =1 / (1+ -x 
) is the standard non-linear (sigmoid) logistic activation function 

and   ( ) represents a weighted sensory input with strength    [17]. 

The main difference of a CTRNN over other kinds of neural networks is that the neurons could 

propagate a signal back through the network. Other neural networks considered in ECG are feed 

forward, which means that neuron signals could only be unidirectional. In addition, CTRNNs are more 

dynamic in terms of mimicking biological neuronal signal discharge processes. Moreover, CTRNNs 

are also deemed to be more efficient than other neural networks in terms of computations since they 

could be used to directly simulate each spike [18]. The CTRNN has additional advantages and 

computational efficiency over other discrete formulations. For example, using a discrete-time RNNs 

there is a considerable dependence of the resulting models on the sampling period used in the process, 

whereas for CTRNNs this can be varied without the need for re-training. Even in the presence of 
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measurements noise the RNNs are capable of providing long-range predictions. Another advantage of 

CTRNNs is that if they are compared with other NN types such as feed forward neural networks 

(FFNNs), they have been shown to be more efficient in terms of the number of neurons required to 

model a dynamic system [19]. 

 

Conclusion  

The current study proposes the use of smart-phones and a wireless communication network for 

monitoring patients at home or on the go over a prolonged period of time for the purpose of providing 

early diagnosis of heart conditions. Different wavelet decomposition schemes of ECG signals 

assuming different levels of approximation and detail for each wavelet family are considered and their 

suitability as inputs to neural network classifiers is investigated. The efficiency in parametrizing the 

wavelet coefficients using adaptive structures from the perspective of improving parsimony in each 

decomposition step and improving the reliability of the classification task is currently investigated and 

will be discussed at the conference. The results from different classifiers where the classification 

process is performed in the wavelet domain are also being considered.  
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