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Abstract

This paper presents a novel approach to the automatic classification of very large data sets composed of terahertz pulse transient
signals, highlighting their potential use in biochemical, biomedical, pharmaceutical and security applications. Different types of THz
spectra are considered in the classification process: firstly a binary classification study of poly-A and poly-C ribonucleic acid samples
is performed, this is then contrasted with a difficult multi-class classification problem of spectra from six different powder samples
that although have fairly indistinguishable features in the optical spectrum they also possess a few discernable spectral features in
the terahertz part of the spectrum. Classification is performed using a complex-valued extreme learning machine algorithm that
take into account features in both the amplitude as well as the phase of the recorded spectra. Classification speed and accuracy are
contrasted with that achieved using a support vector machine classifier. The study systematically compares the classifier performance
achieved after adopting different Gaussian kernels when separate amplitude and phase signatures are presented as feature vectors
for both training and testing purposes. The study confirms the utility of complex-valued extreme learning machine algorithms
for classification of the very large data sets generated with current terahertz imaging spectrometers. The classifier can take into
consideration heterogeneous layers within an object as would be required within a tomographic setting and is sufficiently robust
to detect patterns hidden inside noisy terahertz data sets. The proposed study opens up the opportunity for the establishment of
complex-valued extreme learning machine algorithms as new chemometric tools that will assist the wider proliferation of terahertz
sensing technology for chemical sensing, quality control, security screening and clinic diagnosis. Furthermore, the proposed algorithm
should also be very useful in other applications requiring the classification of very large datasets.

Key words: THz, complex extreme learning machine, quaternary classification, Lagrangian, multiclass classification

1. Introduction

Terahertz (THz or T-ray) spectrometry and spectro-
radiometry have become increasingly popular sensing
modalities over the past two decades due in part to re-
cent advances in continuous wave terahertz sources and
detectors, but mostly due to the wide proliferation of THz
time domain spectrometers (TDS). The later, utilize ultra-
short laser pulse sources to perform time-resolved studies
of molecular dynamics as well as explore spectroscopic
imaging applications at millimetre and sub-millimetre fre-
quencies (also known as the far-infrared part of the spec-
trum shown in Fig. 1). The terahertz part of the spectrum
lying between the millimetre wave and infrared (100 GHz-
10 THz) is particularly rich in terms of spectral features
because at these frequencies we observe molecular rotation

∗ X.-X. Yin, Email: xiaoxia.yin@vu.edu.au

in gases, van der Waals bond or hydrogen-bond stretches
and torsional bond deformations in liquids, as well as low
frequency bond vibrations and phonon vibrations in crys-
tals. Furthermore, this is a frequency range where current
state-of-the-art electron-spin-resonance systems are oper-
ating [1, 2], thus paving the way for better bio-molecule
sensitivity on the basis of minute deviations in a sample’s
electron-spin resonance according to the physico-chemical
state of the solvent. The higher frequencies associated with
the THz spectrum correspond to the region where overtone
and combination band spectroscopy can be performed;
this is particularly interesting to environmental pollutants
monitoring as well as in molecular astronomy. Infrared
spectroscopy is unable to access lower frequency vibra-
tional modes, making THz spectroscopy the only possible
measurement modality in the above settings. A further
attractive feature of THz spectroscopy as opposed to in-
frared spectroscopy is that samples have lower Rayleigh
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scattering at this part of the spectrum thus making non-
invasive classification tests of samples while in situ (e.g.
anthrax spores within an envelope) more reliable.

Terahertz transient spectrometers and imaging systems
differ from their optical or infrared counterparts in that the
signal-to-noise ratios in the acquired spectra is low due to
a very inefficient process in the generation of the THz tran-
sients (lower by a factor of 105 compared to infrared time-
domain spectroscopy systems centered at 800 nm). This in-
troduces significant problems in the analysis and interpre-
tation of spectra as well as the classification of samples. A
further important difference of THz spectroscopy compared
to its optical or infrared counterpart is that the longer wave-
lengths used enable the reliable recording of the phase delay
across each frequency when the radiation is transmitted or
reflected through the sample. In the case of time-domain
spectrometry with a TDS system, one directly obtains re-
liable measurements of attenuation phase delay or disper-
sion at each spectral bin. Complementary information to
traditional spectroscopic measurements may be therefore
obtained. The current consensus in the bio-medical com-
munity is that advanced classification algorithms still need
to be developed to assist screening, expert diagnosis, and
subsequent treatment in an automated fashion.

It must be stressed that because of the significant cost
associated with the installation and operation of THz tran-
sient spectrometers many of these systems are found most-
ly in national labs or most well-funded Physics, Chem-
istry or Biology research labs worldwide. The usual mis-
take by managers in these facilities is that optical experts
are usually employed to run these systems. This decision
may be partly justified on the basis that such systems are
rather complex to operate requiring good understanding
of optoelectronics as well as frequent alignment of the op-
tical components in the system before performing an ex-
periment. This practice, however, does not address the is-
sue that a major bottle-neck resides in the analysis of the
recorded spectra. It is not uncommon for users to have a
relative lack of experience in the science of Chemometrics
or the management of the associated very large data sets
generated by these spectrometers. As a consequence THz-
transient Chemometrics and sample classification is still at
its infancy. The current work addresses this shortcoming
by proposing novel classification modalities as chemomet-
ric tools specifically for these systems. The challenge for
any automated THz pattern recognition systems is to ex-
plore the available spectral features in the input layer of
the designed classifier as these were generated directly on
the basis of the sample’s THz response. Most molecules
show rather complex THz absorption spectra with a multi-
tude of absorption lines. In liquid or gaseous samples, those
absorption lines are subject to thermal or pressure broad-
ening at room temperature and within an imaging setting
there may also be the result of several electromagnetic in-
teractions [3] or pseudo-coherence errors [4] that would be
associated with a thickness variation of the sample across
its aperture when placed in the imaging system.

In previous works [5], we have shown that using sig-
nal processing techniques, it is possible to apodize [6] and
de-noise the corresponding time-domain signatures [7] or
spectra or alternatively model them using a range of mod-
elling techniques adopted from the systems identification
literature [8, 9]. We have further demonstrated that such
analysis may be directly performed in the time, frequen-
cy or even the wavelet domains [10–13]. The current study
is concerned with the classification of T-ray measurements
on the basis of extracted features from their spectral signa-
tures only. In this respect, the work follows directly to that
performed by [14] where from the spectrum, a set of values
were extracted as features, to be used as inputs to the clas-
sifier. In contrast, in the current work, we use directly the
complex values associated with the Fourier transform of
the time domain signatures, after taking into consideration
separately the real and imaginary parts of the transform.
Our goal is to explore the use of a complex value Extreme
Learning Machine (ELM) to classify the complex-valued
THz datasets using complex valued labels.
The procedure is in many respects analogous to qua-

ternary classification, where complex coupled hyper-planes
are defined to accommodate the output of the classifier.
The formulation uses a complex input space for the spec-
tral signatures as well as optimisation variables that are
all complex valued. In contrast to classic Support Vector
machine (SVM) algorithms, complex-valued ELMs address
the complex valued hyper-planes through the calculation of
the smallest norm of output weights with the smallest train-
ing error. In this respect, the operation of this algorithm
is similar to its real-valued ELM counterpart [15]. The al-
gorithm discards the normal threshold of b found in SVM-
s, without calculating support vectors. As a consequence,
the complex extreme learning machine (CELM) is specif-
ically developed to address complex valued problems for
multi-class classification with a dramatically reduced com-
putational complexity and significantly improved compu-
tational speed. A further feature of the proposed algorithm
that will become apparent in the performed study is that
the label for multi-class implementation of the algorithm
is critical in the complex-valued classification process. An
additional requirement in the real and imaginary datasets
to belong in the same class is imposed for the correct op-
eration of the classifier. This approach avoids over fitting
problems. Because inter-relations of the data at the input
space are retained, the proposed approach is expected to
lead to improved classifier performance compared with its
real valued ELM counterpart.
For illustration purposes, different types of THz spectra

are considered in the classification process: firstly a bina-
ry classification study of poly-A and poly-C Ribo-Nucleic
Acid (RNA) samples is performed. This will then be con-
trasted with a difficult multi-class classification task of THz
spectra belonging to six different powder samples. These
samples, although have fairly indistinguishable features in
the optical spectrum they also possess a few discernable
spectral features in the THz part of the spectrum so that
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their classification can be performed.
The paper is organized as follows: Section II places the

work within a THz bio-medical imaging context. Section
III provides a description of a traditional terahertz imag-
ing system enabling the reader to understand the general
methodology in this sensing modality and the origin of the
complex valued data-sets. In Section IV, after reviewing the
basics of a quaternary classification scheme, we describe
the CELM classifier. In Section V, we present THz mea-
surements for the RNA and powdered samples. Section VI
discusses binary and multiclass classification of the RNA
and powder samples respectively, performed using CELM,
contrasting this modality to that of real-valued ELM and
SVM. The study systematically compares the classifier per-
formance achieved after adopting different Gaussian ker-
nels when separate amplitude and phase signatures are p-
resented as feature vectors for both training and testing
purposes. Section IV provides a conclusion of the work and
some closing remarks.

2. Placement of the proposed family of classifiers
within a THz bio-medical imaging context

The THz part of the spectrum is of direct relevance to
the biomedical sciences, because complementary informa-
tion to traditional spectroscopic measurements may be ob-
tained. The vibrational spectral characteristics of many
bio-molecules, lie in this range (wavenumbers between 3.3-
333 cm−1). Since THz photons, (or T-rays), have signifi-
cantly lower energies (e.g., only 0.04 meV at 100 GHz) than
X-rays, they have been considered bymany as non-invasive.
The interest in adopting THz radiation to perform imaging
in a biomedical setting stems from the fact that it is con-
sidered as non-invasive. When THz pulses interact with bi-
ological tissue, the Gibbs free energy conveyed in the THz
beam is insufficient to drive chemical reactions. The molar
energy at a frequency f of 100 GHz is given from E = Nhf
where N = 6.023× 1023 mol−1, (Avogadro’s number), and
h = 6.626 × 10−34 Js (Planck’s constant), and the calcu-
lated value of E = 0.04 kJ mol−1 is so low (approximately
100 times lower than the amount of molar energy required
for ATP hydrolysis) that for most practical purposes one
may assume that any interference with biochemical pro-
cesses should be minimal. Therefore, T-ray spectrometry
is a very promising new sensing modality rapidly gaining
momentum for clinical diagnosis.

A further advantage of performing imaging based on the
optical properties of biological tissue with THz radiation is
the associated lower scattering compared to infrared light.
Organ differentiation on the basis of tissue water content
using microwave transmission or reflection measurements is
impractical because the diffraction limited minimum spot
size for a free-space beam is too large to avoid beam spill-
over around most tissues and organs. From a technological
point of view, THz imaging needs to compete with positron
emission tomography (PET) imaging that has pico-molar
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Fig. 1. Illustration of the THz part of the spectrum as related to
other parts of the spectrum.

sensitivity but poor spatial resolution and magnetic res-
onance imaging (MRI) that offers milli-molar sensitivity
with high spatial resolution. Indeed, a diffraction limited
imaging system operating at 1 THz would have a spatial
resolution of 300 µm, which should be considered sufficient
for many biomedical applications. Meanwhile, since 70% of
the human body is composed of water, a large part of the
energy in the excitation pulse is attenuated. As a conse-
quence, biomedical samples may only be identified through
the application of advanced signal processing techniques
for feature extraction and pattern classification.
From a biomedical perspective, THz contrast imaging

is also becoming an increasingly important modality as it
can differentiate between samples on the basis of their wa-
ter content, this is particularly important in applications
where other imaging modalities may not be used (e.g. as
a substitute for X-ray mammography diagnosis and cancer
patient screening on the basis of breast tissue vasculariza-
tion when the subjects are pregnant or lactating women).
THz imaging has also shown significant potential for appli-
cations in both in vivo and ex vivo environments (e.g. the
diagnosis of skin cancers). Although non-linear interactions
between biological tissue and coherent THz radiation have
been predicted by [16] and experimentally verified by the
careful work of Grundler and the analysis of Kaiser [17] in
the ’90s, and more recently observed in yeast cells [10] the
widely held view at the moment is that any measurement
technique that operates within acceptable specific absorp-
tion rates is currently deemed as safe for bio-medical in-
vestigations. This motivates the current work, placing the
proposed classifier algorithms in a quality-control or diag-
nostics setting.

3. Dataset generation using a THz imaging
spectrometer in transmission configuration

The time-resolved THz spectrometer used in the report-
ed studies utilizes a short coherence length infrared source
(centered at around 800 nm) to generate a sub-100 fem-
tosecond duration pulse train with repetition frequency of

3
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around 80 MHz. Each infrared pulse, is split into separate
pump and probe beams. The pump beam is used to excite
an optical rectification ZnTe crystal, which acts as a T-ray
emitter, and the T-rays produced (duration around 200 f-
s) are collimated and focused onto a sample by a pair of
parabolic mirrors. The T-rays emerging from the sample
are re-collimated by another pair of mirrors, before being
combined with the probe beam in a T-ray ZnTe electro-
optic (EO) detector crystal. The samplemodified T-ray and
the probe beams propagate through the THz detector crys-
tal co-linearly. The pump beam, which is also transmitted
through a chopper, travels through an optical delay stage
that is modulated accordingly so that the pump and probe
beams arrive at the detector in a time-coincident manner.
By moving the delay line though the zero path difference
of the two arms of the interferometer, the cross correla-
tion of the optical and THz signal is obtained. The EO de-
tector crystal produces an output which is proportional to
the birefringence observed from the interaction of the THz
pulse with the time-coincident infrared pulse replica with-
in the crystal. This output is proportional to the T-ray re-
sponse of the sample. The signal is measured with the use
of a balanced optical photo-detection scheme operating on
the two orthogonally-polarized spatially-separated signal-
s coming out of the Wollaston prism. A lock-in amplifier
(LOI) is also used to demodulate the signal, this avoids 1/f
(flicker) noise problems, which are present in this detector-
limitedmeasurement scheme. Terahertz pulsed imaging (T-
PI) is achieved by performing a 2D raster scan after trans-
lating the sample in both the x and y direction, while keep-
ing it at the focal plane of the parabolic mirrors. A diagram
of the setup used for the measurements is shown in Fig. 2.
Terahertz-transient images are composed of several pixels,
where each pixel contains information of the attenuation,
phase delay and dispersion of a sample relative to a back-
ground signal as recorded when a THz pulse is propagating
in free space through the system (with the measuremen-
t port of the spectrometer evacuated). The Fourier trans-
formed signal of the sample interferogram is normally ra-
tioed with that of the background interferogram to obtain
the complex insertion loss of the sample, this provides a
measure of attenuation, phase delay and dispersion of the
sample across each frequency. Although data acquisition of
the time-domain signatures and processing at each pixel is
usually performed in real time during the image acquisition
process, further processing such as Fourier transformation
and insertion loss measurements of the associated spectra is
normally performed off-line[18]. The additional calculation
steps of sample refractive index and absorption coefficients
are also commonly performed off-line. Phase information is
retrieved by varying the time delay between the THz wave
and the probe beam [18]. For materials sufficiently trans-
parent to terahertz radiation, one measures the transmit-
ted responses and acquires spectral information to produce
contrast images. For highly attenuating or opaque samples
a reflection set-up may be used instead.

The solid curve in the inset of Fig. 2 depicts typical at-
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Fig. 2. Diagram of the electro-optic transmission THz-imaging set-
up with ZnTe crystals used for both EO generation and detection, as

illuminated by the femtosecond laser. The inset plot depicts time-do-
main THz-transient waveforms corresponding to sample and back-
ground interferograms (denoted by solid and dotted curves, respec-
tively).

tenuation, phase delay and dispersion (pulse broadening)
of the sample when compared to the background signature
(dotted curve) for a single pixel of the imaging system. The
observed phase delay is a measure of the average refrac-
tion index of the sample, whereas the broadening is caused
by dispersion and frequency-dependent attenuation of the
sample.

4. Classification Methodology

Kernel based learning and support vector machine
(SVM) methodologies reside at the core of a range of inter-
disciplinary challenges. Their formulation shares concepts
from different disciplines such as: linear algebra, mathe-
matics, statistics, signal processing, systems and control
theory, optimization, machine learning, pattern recogni-
tion, data mining and neural networks. This paper extends
the formulation of a very important class of recently devel-
oped classifiers called Extreme Learning Machines (ELMs)
to complex valued problems [15, 19]. The motivation for
the proposed extension stems from the fact that the real
valued EML has shown some of the lowest training er-
rors among machine learning algorithms and in particular
support vector machines classifiers (SVMs) [5, 20–22]. By
extending ELMs to complex inputs, their applications do-
main can dramatically increase, encompassing all types of
research associated to the study of the interaction of mat-
ter with waves, and in particular spectroscopy (acoustic,
dielectric, optical, terahertz, infrared, electron-spin reso-
nance, nuclear magnetic or paramagnetic resonance, etc.)
as well as imaging and tomography modalities encountered
across the Physical, Chemical and Biomedical disciplines.
As a consequence, the proposed extension is fundamental
both from a Machine Learning as well as from a Chemo-
metrics perspective [23]. Because the above relations are
also analogous to the blurring function (relating ampli-
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tude and phase) developed by Bode [24] to describe the
dynamics of physical systems, such extension has a wide
range of applications across all physical sciences. In this
context, this study focuses on the use of CELM to perform
binary and multi-class classification of RNA and powder
samples respectively on the basis of images acquired by a
THz-transient imaging spectrometer. The analysis is per-
formed on large data sets as would be the case in a typical
bio-medical or quality control setting. Classification is per-
formed on the basis of discernable features in the measured
THz spectra.

4.1. Complex Valued ELM

CELM adopts induced complex RKHS kernels [25] to
map inputs from complex-valued non-linear spaces to other
real valued higher dimensional linear spaces. This permits
us to classify the inputs with linear complex valued feature
vectors. It involves the aspects of quaternary classification,
through the introduction of two complex-coupled hyper-
planes [26]. For 2D inputs, the complex-coupled hyper-
planes are used together to divide the input space into four
partitions. Such approach is further supported by the work
by Bouboulis et. al. [25], where within a SVM context, they
showed that a derived 2D complex kernel is equivalent to
an induced real kernel, formed as a linear combination of
two identical 2D real value kernels. A widely linear esti-
mation processing approach is adopted and the argument
composed of the sum of the two parts (real and imaginary)
is employed to model the output weights connecting the
hidden layer with the feature mapping of the input into the
hidden-layer feature space.

4.1.1. A quaternary classification problem
An important step of machine learning is to find hyper-

planes that separate the space in relation to different target
classes. According to ELM [15], in any real Hilbert space
H, a hyper-plane consists of all elements f ∈ H that satisfy
⟨f, ω⟩H = 0, for some ω ∈ H. The approach differs from
real valued supports vector machines (SVM), since in the
real valued ELM, the offset b of the hyper-plane from the
origin has been removed.

In order to be able to generalize the ELM rational to
complex space, we adopt the method proposed by [25], and
define a complex hyper-plane that divides the complex s-
pace Ĥ into four parts through the introduction of a Hermi-
tian matrix, label ∗. This enables us to classify objects into
four classes (instead of two). This approach is also support-
ed in Bouboulis’s et. al. article [25] where it was postulat-

ed that ⟨f̂, ω̂⟩Ĥ = ⟨f̂ℜ, ω̂ℜ⟩H + ⟨̂fℑ, ω̂ℑ⟩H + J (⟨̂fℑ, ω̂ℜ⟩H −
⟨f̂ℜ, ω̂ℑ⟩H) where Ĥ = H2, f̂, ω̂ indicates a complex deci-
sion function and the corresponding margin of the complex
hyper-plane Ĥ. Here, symbol ⟨·⟩H is used to denote inner
product in the corresponding real valued input space. Sym-
bols of ℜ and ℑ indicate the real and imaginary parts. This
is a real valued kernel function: ⟨κ(·,X), κ(·,Y)⟩H. The k-

ernel κ(·,X) is used for a feature map of real valued input
space H, labeled by ψ(X). According to [25], the corre-
sponding complex Gaussian kernel is defined as:

κ̂j
σj ,Cd(Ẑ, ω̂) := exp

(
−
∑d

k=1(ẑk − ω̂∗
k)

2

σ2
j

)
, (1)

where κ̂ denotes a complex valued kernel, Ẑ, ω̂ ∈ Cd, d ∈ N
or infinite, and ω̂ denotes a complex weight (margin), with
∗ for a Hermitian matrix, ẑk denotes the k-th component
of the complex vector Ẑ ∈ Cd and exp(·) is the extended
exponential function in the complex domain. Here, κ̂j in-
dicates the j-th complex kernel function, depending on the
value of kernel parameter σj , which is varied due to a d-
ifferent input for normal machine learning procedure, and
therefore time consuming. A proposed method is to fix the
value of kernel parameter σj to σ for all kernels in order to
simplify computation [27].

We use symbols ψ̂(Ẑ) to denote complex feature map-
ping in this context. In this section and following, in ad-
dition to the boldfaced symbols for the vector and matrix
valued quantities, the complex valued quantities are relat-
ed to matrix quantities, with specific subscripts to describe
the row and/or column of the complex valued matrix.
Definition 1. The complex machine learning task (i.e.

CELM) is equivalent to two real machine learning tasks,
i.e. (ELM) employing the two real kernels 2κ.
Definition 2. Let Ĥ be a complex Hilbert space. The

complex couple of hyper-planes is defined as the set of all
f ∈ Ĥ that satisfy one of the following relations:

ℜ(⟨̂fL, ω̂⟩Ĥ + ⟨f̂L∗ , ν̂⟩Ĥ) = 0 (2)

ℑ(⟨̂fL, ω̂⟩Ĥ + ⟨f̂L∗ , ν̂⟩Ĥ) = 0 (3)

for some ω̂, ν̂ ∈ Ĥ, where f̂L ∈ Ĥ represents two hyper-
planes of the doubled real space, H2.
The input space is divided into four partitions after defin-

ing the complex-couple hyper-planes as defined above, on
the basis of the positive and negative values of the two
hyper-planes indicated by the left sides of the expressions
in (2). These are: H++ = {ℜ > 0,ℑ > 0}; H+− = {ℜ >
0,ℑ < 0}; H−+ = {ℜ < 0,ℑ > 0}; H−− = {ℜ < 0,ℑ <
0}.

4.1.2. Multiclass Classification by a CELM
Similar to ELM, the complex valued extreme meaning

learning is an extension of single-hidden-layer feed-forward
networks (SLFNs), where the hidden layer need not be
tuned. Training of the classifier from the available data Ẑ
is performed from complex-valued input space to complex-
valued feature space through a feature map ψ(Ẑ). In this
context, we use the symbolˆto indicate the complex valued
parameters. The goal of the complex machine learning task
is to estimate a complex couple of maximum margin hyper-
planes. According to the work in [25], for a 2D simple case,
we aim to minimize:
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∥∥∥∥∥∥ω̂
r + ν̂r

ω̂j − ω̂j

∥∥∥∥∥∥
2

H2

+

∥∥∥∥∥∥−(ω̂
j
+ ν̂j)

ω̂r − ν̂r

∥∥∥∥∥∥
2

H2

= 2(∥ω̂∥2H + ∥ν̂∥2H).

Given a training data set (ẑn, ϑ̂n), and θ̂ = [ϑ̂1, ..., ϑ̂N ]T

with ϑ̂n (n ∈ 1, ..., N) known complex labels with m class-
es, CELM aims to simultaneously minimize the training er-
ror ∥ψω̂ + ψ∗ν̂ − θ̂∥2 and the norm of the output weights
∥ω̂∥H + ∥ν̂∥H. The hidden-layer feature mapping matrix ψ
is represented as:

ψ =


φ1(ẑ1) · · · φL(ẑ1)

...
...

...

φ1(ẑN ) · · · φL(ẑN )

 (4)

where the dimension of ψ is set by the numbers of training
samples N and the number or hidden nodes L, irrespective
of the number of output nodes (number of classes), and
{ẑ1, ..., ẑN} ∈ Ẑ.

For an m class classier with m output nodes where m >
1, the classification problem (denoted by ~P ) for CELM
can be formulated as:

min
(ω̂,ν̂,C)

: ~P =

(
1

2
∥ ω̂ ∥2Ĥ +

1

2
∥ ν̂ ∥2Ĥ +

C

N

N∑
n=1

(δ̂2)

)
, (5)

Subject to:{
ℜ(⟨ψĤ(ẑn), ω̂⟩+ ⟨ψ∗

Ĥ(ẑn), ν̂⟩) ≥ θ̂rn − δ̂rn
ℑ(⟨ψĤ(ẑn), ω̂⟩+ ⟨ψ∗

Ĥ(ẑn), ν̂⟩) ≥ θ̂jn − δ̂jn
(6)

where C is a parameter given by the user. There is a trade-
off between the distance in relation to the separatingmargin
and the training error.

Using positive Lagrangian multiplies a and b, the asso-
ciated Lagrangian function becomes

L(ω̂, ν̂,a,b) =
1

2
∥ ω̂ ∥2Ĥ +

1

2
∥ ν̂ ∥2Ĥ +

C

N
∥ δ̂rn,ρ + δ̂jn,ρ ∥2

−
N∑

n=1

m∑
ρ=1

an,ρ

(
ℜ
(
⟨ψĤ(ẑn), ω̂ρ⟩+ ⟨ψ∗

Ĥ(ẑn), ν̂ρ⟩
)
− ϑ̂rn,ρ + δ̂rn,ρ

)

−
N∑

n=1

m∑
ρ=1

bn,ρ

(
ℑ
(
⟨ψĤ(ẑn), ω̂ρ⟩+ ⟨ψ∗

Ĥ(ẑn), ν̂ρ⟩
)
− ϑ̂jn,ρ + δ̂jn,ρ

)

Here, θ̂n = {ϑ̂n,ρ}with ρ = 1, ...,m, where {ϑ̂n,ρ} denotes
the output value of the ρ output node for the training data
ẑn and m labels the number of the classes of the output.
When both the real and imaginary parts of the Sth element
ϑ̂n, s are one and the remaining of ϑ̂n are zero, we attribute
to this class the designation S + J S. Using Wirtinger’s
calculus to compute the respective gradients, we have:

∂L

ω̂∗
ρ

=
1

2
ω̂ρ −

1

2

N∑
n=1

an,ρψ
T
Ĥ(ẑn) +

J
2

N∑
n=1

bn,ρψ
T
Ĥ(ẑn) = 0

⇒ ω̂ρ =

N∑
n=1

(αn,ρ − J bn,ρ)ψT
Ĥ(ẑn) (7)

∂L

ν̂∗ρ
=

1

2
ν̂ρ −

1

2

N∑
n=1

an,ρψ
∗T

Ĥ (ẑn) +
J
2

N∑
n=1

bn,ρψ
∗T

Ĥ (ẑn) = 0

⇒ ν̂ρ =
N∑

n=1

(an,ρ − J bn,ρ)ψ∗T
Ĥ (ẑn) (8)

∂L

δ̂rn,ρ
=

2C

N
δ̂rn,ρ − an,ρ = 0 ⇒ δ̂rn,ρ =

N

2C
an,ρ

∂L

δ̂jn,ρ
=

2C

N
δ̂jn,ρ − bn,ρ = 0 ⇒ δ̂jn,ρ =

N

2C
bn,ρ (9)

∂L

an,ρ
= −1

2

(
ℜ
(
⟨ψĤ(ẑn), ω̂ρ⟩+ ⟨ψ∗

Ĥ(ẑn), ν̂ρ⟩
))

−1

2

(
−ϑ̂rn,ρ + δ̂rn,ρ

)
= 0 (10)

∂L

bn,ρ
= −1

2

(
ℑ
(
⟨ψĤ(ẑn), ω̂ρ⟩+ ⟨ψ∗

Ĥ(ẑn), ν̂ρ⟩
))

−1

2

(
−ϑ̂jn,ρ + δ̂jn,ρ

)
= 0 (11)

According to the last two equations,

⟨ψĤ(ẑn), ω̂ρ⟩+ ⟨ψ∗
Ĥ(ẑn), ν̂ρ⟩ − ϑ̂n,ρ + δ̂n,ρ = 0 (12)

By substituting Eqn. 7, Eqn. 8 and Eqn. 9, Eqn. 12 can
be written as:

(a− Jb)
(
ψĤ(ẑn)ψ

T
Ĥ(ẑn) + ψ∗

Ĥ(ẑn)ψ
∗T
Ĥ (ẑn)

)
+
N

2C
(a+ Jb) = θ̂ (13)

The real part of the output is:

θr = aℜ
(
ψĤψ

T
Ĥ + ψ∗

Ĥψ
∗T
Ĥ

)
+

N

2C
a

= a

(
ℜ
(
ψĤψ

T
Ĥ + ψ∗

Ĥψ
∗T
Ĥ

)
+

N

2C
I

)
(14)

whereas the imaginary part of the output is:

θj = −bℑ
(
ψĤψ

T
Ĥ + ψ∗

Ĥψ
∗T
Ĥ

)
+

N

2C
b

= b

(
−ℑ

(
ψĤψ

T
Ĥ + ψ∗

Ĥψ
∗T
Ĥ

)
+

N

2C
I

)
(15)

By substituting Eqn. 14 and Eqn. 15 to Eqn. 7 and E-
qn. 8, the real and imaginary parts of the output weights
are written as:
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ωr = ℜ
(
ψT
Ĥ

)
a

= ℜ
(
ψT
Ĥ

)(
ℜ
(
ψĤψ

T
Ĥ + ψ∗

Ĥψ
∗T
Ĥ

)
+

N

2C
I

)−1

θr (16)

ωj = −ℑ
(
ψT
Ĥ

)
b

= ℑ
(
ψT
Ĥ

)(
ℑ
(
ψĤψ

T
Ĥ + ψ∗

Ĥψ
∗T
Ĥ

)
− N

2C
I

)−1

θj (17)

νr = ℜ
(
ψ∗T
Ĥ

)
a

= ℜ
(
ψ∗T
Ĥ

)(
ℜ
(
ψĤψ

T
Ĥ + ψ∗

Ĥψ
∗T
Ĥ

)
+

N

2C
I

)−1

θr (18)

νi = −ℑ
(
ψ∗T
Ĥ

)
b

= ℑ
(
ψ∗T
Ĥ

)(
ℑ
(
ψĤψ

T
Ĥ + ψ∗

Ĥψ
∗T
Ĥ

)
− N

2C
I

)−1

θj (19)

The output decision functions of the CELM classifier are:

ℜ(̂fL(Ẑ)) = ℜ
(
ψĤ(Ẑ), ω̂

)
= ℜ(

ψĤ(Ẑ)ψT
Ĥ

((
ψĤψ

T
Ĥ + ψ∗

Ĥψ
∗T
Ĥ

)
+

N

2C
I

)−1

θ̂

)
(20)

ℑ(̂fL(Ẑ)) = ℑ
(
ψĤ(Ẑ), ω̂

)
= −ℑ(

ψĤ(Ẑ)ψT
Ĥ

((
ψĤψ

T
Ĥ + ψ∗

Ĥψ
∗T
Ĥ

)
+

N

2C
I

)−1

θ̂

)
(21)

ℜ(̂fL∗(Ẑ)) = ℜ
(
ψ∗
Ĥ(Ẑ), ν̂

)
= ℜ(

ψ∗
Ĥ(Ẑ)ψ∗T

Ĥ

((
ψĤψ

T
Ĥ + ψ∗

Ĥψ
∗T
Ĥ

)
+

N

2C
I

)−1

θ̂

)
(22)

ℑ(̂fL∗(Ẑ)) = ℑ
(
ψ∗
Ĥ(Ẑ), ν̂

)
= −ℑ(

ψ∗
Ĥ(Ẑ)ψ∗T

Ĥ

((
ψĤψ

T
Ĥ + ψ∗

Ĥψ
∗T
Ĥ

)
+

N

2C
I

)−1

θ̂

)
(23)

where ψĤψ
T
Ĥ and ψ∗

Ĥψ
∗T
Ĥ are N × N or L × L matrices,

according to the size of the inputs. When m = 1, the pre-
dicted class label of sample Ẑ is:

label(Ẑ) = sign(⟨ψ̂Ĥ(Ẑ), ω̂⟩+ ⟨ψ̂∗
Ĥ(Ẑ), ν̂⟩) (24)

When m > 1, the predicted class label of sample Ẑ is:

label(Ẑ) = arg max
n=1,..,m

(⟨ψĤ(Ẑ), ω̂⟩+ ⟨ψ∗
Ĥ(Ẑ), ν̂⟩) (25)

where label(Ẑ) = label(ℜ(Ẑ)) + J label(ℑ(Ẑ)). Here, we
employ the induced real kernel 2κ̂r instead of the complex
kernel κ̂ for the solution of the complex labelling function.

4.2. Classifier design for the identification of T-ray spectra

4.2.1. Binary classifier design for the identification of
poly-A and poly-C T-ray spectra
Currently, the identification of the binding state of DNA

is an emergent interdisciplinary research topic within the
THz community, because it promises a label-free modality
for the determination of the four base pairs; furthermore
it has the potential to eliminate the polymerase chain re-
action (PCR) step commonly associated with a sequenc-
ing process. In spite of the lack of characteristic absorption
features in the T-ray region, it is possible to discriminate
un-hybridized from hybridized DNA strands on the basis
of observed loading (scattering parameters) of samples de-
posited on planar micro-fabricated T-ray resonators [28–
31]. Furthermore, there have been suggestions that proteins
can be detected by T-ray circular dichroism (TCD) spec-
troscopy, because many bio-molecules in crystalline form
exhibit strong and specific features in their dielectric spec-
tra [28] different from their phonon resonances.
In the current study, spectra from two different R-

NA polymer strands, polyadenylic acid (poly-A), and
polycytidylic acid (poly-C) are used as inputs for the bi-
nary classification task. Commercially available poly-A
and poly-C potassium salts are used for the experiment
(Sigma–Aldrich, product numbers P9403 and P4903). The
experimental data sets are generated under guidance with
personnel in the time-domain THz facility at the Univer-
sity of Freiburg, Germany. Details regarding the sample
crystallization protocol are descried in detail in Fischer et
al. [28]. The THz image illustrated in Fig. 3, is created
using a THz time-domain spectroscopy imaging system
based on free-space propagation and aperture-less focus-
ing of the T-ray beam. Each pixel in the image represents
the normalized peak values corresponding to Poly-A and
Poly-C. The sample consists of a 4× 4 array of spots. Two
of the spots are removed from the substrate in order to
identify the orientation of the substrate in the image. The
spot of Poly-A is shown at the top left corner of the image,
it shows weak transmission, compared with the spots of
poly-C. The positions of poly-A and poly-C sub-images are
labelled in the diagram to the right of the picture. Based
on the positions of poly-A and poly-C within the terahertz
image, we select eight neighbouring pixels around a center
pixel position from each spot for signal post-processing
and classification. The pixels lying on the boundaries of
each class are excluded from training and test vectors.

4.2.2. Multi-class classifier design for the identification of
powder sample spectra
In the second example, a multi-class classification prob-

lem is considered. The motivation for using THz pulse tran-
sients for extracting information on densities, thicknesses
and number of absorber molecules per unit volume in differ-
ent powder samples stems from the fact that powder data
classification is of interest to the pharmaceutical industries

7
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Fig. 3. T-ray transmission image of the poly-A and poly-C, showing
stronger absorption in poly-C compared with poly-A. Each spot

contained 200 µg of either poly-A or poly-C in alternating order, as
indicated in the diagram on the right. The colour scale indicates the
normalized peak values of the two RNA samples.

(for the detection of drug polymorphs and isomorphs [32–
34]. Such investigations also have applications in security
(e.g. fingerprinting of explosives and illicit drug detection
[5, 35, 36]). Our goal is to demonstrate a generic feature
extraction methodology that may be used across different
THz data sets. This is of significant importance to the THz
community as current data driven classifiers prohibit prop-
er inter-comparison between results obtained in different
labs. Current practice precludes the development of stan-
dards, guidelines and specifications that could be adopted
by the biomedical, pharmaceutical as well as security in-
dustries, which are envisaged to become emerging market-
s for THz-transient spectrometers [37]. In this sense, the
requirement that our proposed algorithm should perform
well in two very different classification tasks (binary as well
as multi-class) represents a departure from previous THz
works presented in the literature. Furthermore, a universal
approach to the management of the associated large data
sets generated through this measurement modality can be
developed.

In the current work, multi-class classification is per-
formed for the following samples: sand, talcum, salt, pow-
dered sugar, wheat flour, and baking soda on the basis of
their recorded THz spectra. Absorbance, phase delay and
dispersion of the THz pulses are directly related to sample
density, concentration of absorbers as well as thickness.
All samples have a 4 mm thickness and are held in a spe-
cially made sample holder with two Teflon windows. A
traditional T-ray imaging system is used to detect the T-
ray responses. Differential absorption is measured for each
pixel with the empty cuvette providing the background
signal. Images constructed from 50 pixel responses (with a
pixel spacing of 100 m) can be acquired in under 30 min.
Extraction of the complex insertion loss is straight-forward
once these data sets are obtained [38, 39]

4.2.3. T-ray feature extraction from frequency domain data
Both types of classification task are performed to assess

the potential of CELMs, ELMs and SVMs in T-ray pulsed
classification. RBF kernels (both real and complex-valued)
are applied for statistical feature mapping. Signal process-
ing is applied to track the key features of training vectors
for different classes of signals. The Fourier transform of the
time-domain signatures produces complex-valued spectra,
containing both phase and amplitude information. The am-
plitude and phase at certain key frequency components con-
stitute pairs of feature subsets on which the classification
is based. An important advantage of this approach is the
small dimensionality of feature vectors. This allows the fea-
tures to be directly extracted from pulsed responses with
relatively low computational complexity.

4.3. Performance Assessment of Classification

Cross-validation methods [40] and a leave one out (LOO)
[41, 42] estimator of the de-convolved T-ray data set are
utilized to provide a nearly unbiased estimate of the pre-
diction error rate. The performance of classifying the R-
NA samples is evaluated using eight-fold cross-validation,
while the powdered material classification is validated us-
ing LOO. The RNA dataset is divided into eight subsets of
approximately equal size.
For CELMs, the real and imaginary parts of each subset

are tested using the classifier trained on the remaining sub-
sets consisting of both the real and imaginary parts. The
real and imaginary parts of the complex valued labels asso-
ciated in the input matrix are used for training the classifi-
er to calculate the real and imaginary parts of the complex
valued output weights, respectively. The results from the 8
runs (50 runs in the case of powder samples) for each class
of RNA samples (powder samples), corresponding to real
and imaginary parts, respectively, are averaged to provide
a statistical estimate of the complex valued classifier per-
formances. Therefore, the test elapsed time indicates the 8
runs (300 runs) required to perform classification as test-
ing time. For real valued SVMs, in order to achieve maxi-
mum classification accuracy, we use both phase and ampli-
tude as training and testing feature vectors. This approach
serves as a useful comparison with the classification accu-
racy using CELMs. In order to compare the classifier per-
formances between complex valued EML and real valued
EML, we extent the same classifier design from CEML to
real valued EML. In real-valued classification, only part of
the complex valued inputs, (either the real or phase part),
is used as an input to train the classifier.

4.3.1. Binary classification of poly-A and poly-C datasets
T-ray spectra
Currently, the identification of the binding state of DNA

is an emergent interdisciplinary research topic within the
THz community, because it promises a label-free modality
for the determination of the four base pairs; furthermore

8
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it has the potential to eliminate the polymerase chain re-
action (PCR) step commonly associated with a sequenc-
ing process. In spite of the lack of characteristic absorption
features in the T-ray region, it is possible to discriminate
un-hybridized from hybridized DNA strands on the basis
of observed loading (scattering parameters) of samples de-
posited on planar micro-fabricated T-ray resonators [28].
Furthermore, there have been suggestions that proteins
can be detected by T-ray circular dichroism (TCD) spec-
troscopy, because many bio-molecules in crystalline form
exhibit strong and specific features in their dielectric spec-
tra [28] different from their phonon resonances. In the cur-
rent case, we illustrate the resultant real valued classifi-
cation performance using only the complex part (phase),
as the feature vector, to train and test the classifier. This
choice is made on the basis of the large observed differ-
ences of the spectral phase depicted in Fig. 7(b). This ap-
proach facilities classification. To tune the algorithm, we
used small-and-separate validation sets drawn from the test
subsets, with the remainder of the test subsets used for test-
ing the classification performance. In the approach outlined
above, each RNA pixel instance is predicted once so the
cross-validation accuracy is the percentage of data which
are correctly classified.

4.3.2. Multiclass classification of powder datasets T-ray
spectra

Similarly, LOO is used to evaluate each unknown fea-
ture vector, and then is used as a basis to evaluate classifi-
er designs for powder classification [7, 41]. Therefore, LOO
accuracy depicts also the percentage of correctly classified
data sets. The reason why LOO is used instead of eight-
fold cross-validation for the powder experiment is due to
the relatively small number of measurements for the differ-
ent powders. With such a restriction, LOO is preferred as
the overall classification experiment is averaged over more
runs. In order to evaluate the classification performance in
relation to the two types of THz experiments presented in
the paper, accuracy of classification is used as the quantity
for assessing the performance of all the classification tasks.
This is equal to the number of correct classified test vec-
tors Ntrue

ι for all-class samples ι = 1, ...,m divided by the

total number of vectors to be tested Ntotal.

accuracy =

∑m
ι=1N

true
ι

Ntotal
(26)

5. Experimental Results

5.1. The Fourier Spectrum Analysis

5.1.1. The Fourier Spectrum Analysis for the
Classification of Poly-A and Poly-C T-Ray Pulses

In the RNA study, each pixel is composed of 350 time-
domain points. Upon Fourier transformation, one generates
350 frequency bins spanning from DC to 8 THz. The 3000

pixel data set consists of pairs of background and sample
data. The population of pixels belonging to the poly-A and
poly-C classes is 48 for both classes; this number excludes
background pixels. In order to obtain reduced dimension
feature subsets and make them discriminable for the differ-
ent class, as the amplitude and phase values of the pulse
responses are first calculated, and then those values corre-
sponding to the frequency with the greatest amplitude (i.e.,
strongest response) are used as the input features to the
classifier. This process extracts a 2-D feature vector from
the full spectral data with 350 non-redundant dimensions.
Fig. 4 displays the corresponding amplitude and phase

spectra of poly-A and poly-C, which are obtained by fast
Fourier transform (FFT) of the T-ray pulse responses. Lin-
ear extrapolation of the phase to DC is performed with
phase de-branching.
Fig. 4 displays the corresponding amplitude and phase

spectra of poly-A and poly-C, which are obtained by fast
Fourier transform (FFT) of the T-ray pulse responses. Lin-
ear extrapolation of the phase to DC is performed with
phase de-branching. The amplitude and phase values at 2
frequency bins are used as inputs to all the classifiers. For
CELMs, the amplitude and phase are combined to form a
complex valued input. For real valued EML, since the out-
put needs to be associated to a real valued parameter, only
part of the complex valued inputs are used in the training
process of the classifier, (either the real or the imaginary
part). In the current case, we prefer to use the imaginary
part, phase, as the feature vector, to train and test the clas-
sifier. This is deemed acceptable as both the real and imag-
inary parts are related to each other through the Kramers-
Kronig relation. We use phase as the input feature space,
because it shows better separation than amplitude curves.
For CELMs, two real Gaussian kernels are used for the fi-
nal feature mapping from two nonlinear feature spaces to
two linear ones, as two real ELMs tasks are conducted to
realise complex valued learning. This differs from, real ma-
chine learning, i.e. ELMs and SVMs, where only one real
Gaussian kernel is used for mapping. Accordingly, we apply
the classifiers training algorithm to produce CELM- and
SVM-associated learning vector patterns in a 2-D feature
space (consisting of amplitude and phase). These are illus-
trated in Fig. 5(a) and (b), respectively, with the penalty
parameter C = 0.5 and σ = 1 for CELMs, and the penalty
parameter C of infinity and the width parameter of Gaus-
sian kernel σ set equal to 1× e− 5.
Fig. 5(a) and (b) depict 36 training vectors for illustra-

tion purposes. The background colour shows the shape of
the decision surface. In Fig. 5(a), red regions represent the
class belonging to the poly-C sample labelled by 1, and blue
regions indicate the class related to poly-A sample labelled
by -1. Contrary to real-valued machine learning, the labels
of CELMs are complex valued. The numbered labels to be
output are shown in Fig. 5(a) are calculated as the addition
of doubled value of the real part (R) and the value of imag-
inary part (J), in relation to the complex valued labels,
with zero indicating non-classified data. That is, the num-
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Fig. 4. Illustration of (a) amplitude and (b) phase of poly-A and poly-C T-ray RNA spectra as a function of frequency. In order to show

an full phase variation throughout all frequency, we keep the whole frequency bins, though the amplitude plot has symmetry with center at
175th frequency bin.
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Fig. 5. Illustration of binary classification for the recognition of RNA samples consisting of 36 training vectors for each. (a) Illustration of a
CELM classification scheme, using two real Gaussian kernels to map the training vectors to a 2-D complex-valued feature space, with the
penalty parameter C = 0.5 and σ = 1. (b) Illustration of a real SVM classification scheme, using a real Gaussian kernel to map the training

vectors to a 2-D complex-valued feature space. The penalty parameter C is set to infinity and the width parameter of the Gaussian kernel σ
is set to 1× e−5.
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Fig. 6. Single pixel plots of complex valued learning vectors for the six
powder samples measured via T-rays illustrating the linear decision
function among each classes by applying induced real RKHS kernels

to map the complex input data into a 2D complex-valued feature
space. There are 49 pixels selected randomly from each of six classes
of powder samples. The labels are complex valued and produce 12
classes.

bered labels (Y) satisfies the equation: Y = 2×R+J(ℑ)2
with (ℑ)2 = −1. Specifically, we set the classification label
belonging to poly-A as I + ℑ(I), and belonging to poly-C
as -I+ℑ(-I). The I indicates an identity matrix. Fig. 5(b)
illustrates a SVMs classification scheme, where dark blue
regions represent the class belonging to the poly-C sample
labelled by 1, and light blue regions indicate the class relat-
ed to poly-A sample labelled by -1. Separating hyper-planes
for two classes are indicated by 0. The circles represent
the calculated support vectors. Compared with the training
vectors, the number of support vectors are reduced, which
takes on an important role in achieving the ideal shape of
hyper-planes and facilitating computation of the classifica-
tion algorithm. In both cases, the machine learning for two-
class samples — poly-A and poly-C denoted by white ”+”
and black ”×” are approximately separated by their own
boundary lines though there is a little overlapping. More
detailed results on classification accuracy are described in
the next section, where 200 random selections of training
vectors are fed to the classifiers.

5.1.2. The Fourier Spectrum Analysis for Multi-class
Classification of THz spectra

The images of powder samples consist of 6 × 50 = 300
pixels. For each pixel, the number of samples associated to a
pulse time transient is 400. Fig. 6 shows the corresponding
time domain signals for a single pixel taken from each of
the powder sample image datasets.

Fig. 7 shows the phase and amplitude plots in the fre-
quency domain for six different powder samples. Each curve
is associated with a single pixel sampled from the image da-
ta. The spectrum has a cut-off frequency at 3 THz. Sharp
changes of amplitude at the second frequency bin may be
observed in Fig. 7(a). Good separations of curves of T-ray
phase are illustrated in Fig. 7(b). We produce the learning
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Fig. 9. Learning vectors for the powder data sets plotted to illustrate
the linear decision function between the pairs of classes after applying

a Gaussian kernel for mapping. There are 49 pixels selected randomly
from each of the six powder samples. Background colour shows clearly
the contour shape of the decision surface. The small yellow region on
the bottom of the right hand side denotes undecided classification.

vector patterns for multiclass recognition via CELM, shown
in Fig. 8(a) after Fourier transformation of the time-domain
signatures and extraction of the corresponding complex
valued features associated with the second frequency bin.
We use 49 input vectors related to each powder sample for
training the classifier. Two real RKHS kernels are used for
mapping. The optimal Gaussian parameter of σ is set to
100 and the penalty parameter C is set to 0.1. The label-
s are complex-valued and produce 12 output classes. Back
ground colour shows the contour shape of the decision sur-
face, (these are numbered from 2-12), these correspond to
the amplitude calculations derived from the sum of real and
imaginary values of the respective complex labels. It can
be observed that THz measurements of powder samples re-
garding salt, sand, talcum, are grouped more tightly than
the powder samples of flour, soda and sugar.
Only the labels consisting of the same real and imaginary

parts (both parts label the same class) are validated for fi-
nal power identification. The labelled contours that corre-
spond to different real and imaginary parts (the real and
imaginary parts label the different classes) are illustrated
in Fig. 8(b). These regions are undecided in the classifica-
tion process and are therefore excluded to avoid over-fitting
problems.
Fig. 9 illustrates the multi-class separation for the six

types of powder substances using SVMs. SVMs are designed
according to a pair wise-strategy. One real Gaussian kernel
with C = 1000 and σ = 1 × e−7 is used to map the in-
put data into a 2D Fourier feature space for visualisation
purposes. The support vectors indicated by cyan circles are
subsets of the training data sets and are used to construct
a two-dimensional hyper-plane in feature space, which act-
s as a boundary separating each class of different powder
materials.
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Fig. 7. Illustration of Fourier spectrum. (a) shows the amplitude (attenuation) as a function of terahertz frequency, whereas (b) shows

corresponding phase delay (equivalent to chromatic dispersion) as a function of terahertz frequency.

2

22

3

3

3

4

4

4

5

5

5

6

6

6

7

7

7

8

8

8

8

9

9
99

9

9

9

9

9

9

910 10

10

10

10

10

10

10 10

10

11

11

11

11

11

11 11

11

12

12

12

12

12

12 12

12

real part

im
ag

in
ar

y 
pa

rt

 

 

−1 0 1 2 3 4 5
1

1.5

2

2.5

3

3.5

4

4.5

Salt4mm
Sand4mm
Talc4mm
Sugar4mm
Flour4mm
Soda4mm

(a)

real part

im
ag

in
ar

y 
pa

rt

−1 0 1 2 3 4 5
1

1.5

2

2.5

3

3.5

4

4.5

(b)

Fig. 8. Illustration of CELM multi-class classification scheme. (a) Complex valued learning vectors for the six samples plotted to illustrate the
linear decision function among each classes by applying induced real RKHS kernels to map the complex input data into 2D complex valued

feature space. There are 49 pixels selected randomly from each of the six powder samples. The labels are complex valued, generating 12 classes.
(b) Illustration of the colour coded regions with non-zeros indicated by the colour bar. The colour regions with non-zero value indicate that
the multi-class powder sample classification process remains undecided by CEML as the real and imaginary parts are not equal to each other.

5.2. Resultant Classification Performance

5.2.1. CELM Classification performance of RNA sample
Spectra

For classification of RNA samples, two real Gaussian k-
ernels are applied to generate complex valued RKHS. All
the classification runs are performed in MATLAB version
R2013a on a personal computer running Windows 7 with
an Intel(R) Core(TM) i5-3470 CPU (3.20 GHz) and 8 GB
of memory. Using CELMs, the average time spent classify-
ing the two classes of RNA samples is 0.1293 seconds after

200 classification runs using 36 datasets for each class of R-
NA sample. To evaluate the effect of the Gaussian kernels
for the RNA sample classification with complex valued fea-
ture, suitable values of C and σ are considered via a para-
metric search using separate validation sets. After training,
the final classification accuracy is compared. In the train-
ing phase, the training vectors are randomly selected from
a given proportion, (varying from 1/8 to 6/8), of the in-
put population of 48 pixel responses from each RNA class.
The highest classification performance was obtained for the
penalty parameter C = 1 and σ = 1, with a classification
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accuracy of 72%.
It was found that the classification accuracy varies

throughout the range of values of σ, which was varied from
0.1 to 100, in steps of 1 in log scale. The classification ac-
curacy increased with an increased number of training vec-
tors, according to our expectation. The classification accu-
racies are varied according to the penalty parameter values
C. Fig. 10(a)—(c) show classification performance using
our algorithm as a function of different sizes of testing data
sets, related to C = 0.1, C = 0.5, and C = 5, respectively.
The various value of σ are all plotted according to the dif-
ferent values of C for direct comparison. It is clear that the
three figures show the different trends, which implies that
the different value of penalty parameter C leads to differ-
ent classification characteristics. In Fig. 10(b), the curve,
related to σ of 10, leads to best performance, especially
when the number of training vectors is in the range from
48 to 84, with classification performance over 70%, while
in Fig. 10(c), the curve with σ of 100, shows second best
performance of classification accuracy compared with the
others. In general, the classification performances shown
in Fig. 10(a) are inferior when compared with Fig. 10(b)
and Fig. 10(c), but not by very much.

For comparison purposes, we also use SVMs to classi-
fy the object samples. Similar to the classification of RNA
samples via CELM, real Gaussian kernels are applied with
both phase and amplitude as feature vectors for training
and testing of the SVM classifiers. The time spent classify-
ing the RNA samples is 4.14 seconds for 200 runs of mea-
surements when using 72 input data sets.

To evaluate the effect of the Gaussian kernel on the RNA
classification problem via SVMs, the values of C are tuned.
After training, the final error rate, the number of support
vectors and the elapsed time are compared. The training
phase follows the same procedure as CELMs. Considering
the classification performance to be less sensitive on the
choice of λ, we illustrate the tuning of C briefly. The high-
est classification performance was obtained for the penalty
parameter C = 1 and λ = 0.003, with a classification accu-
racy of 72%. This is the same as the classification accuracy
achieved by CELM, but the elapsed time is 30 times slower
than using CELM for the two-class classification.

It was found that the classification accuracy using SVMs
is similar to CELM across a range of values for C, from
0.001 to 104, when this was varied in steps of 1 on a log scale.
The classification accuracy is improved with an increased
number of training vectors, according to our expectations.
Fig. 11 shows the classification performance using SVMs
for different sizes of test data sets, respectively. The various
values of C are all plotted for direct comparison. In this
figure, the curve, related to a C value of 1, shows that
best performance is achieved when the number of training
vectors is in the range of 48 to 84.

The number of the computed support vectors is rough-
ly one-third fewer than the number of training vectors. A
small number of SVs is desirable for implementation since
their number directly relates to the computational com-

plexity of the automatic classification task. Fig. 12 shows
the variation of the number of SVs with the increased num-
ber of the input training feature sets for binary classifica-
tion of RNAmeasurements. The number of the input train-
ing RNA samples is varied from 12 to 84, with a step size of
12. It can be seen that the corresponding number of SVs,
the accuracy and the elapsed time increased monotonically
and almost linearly with the number of training vectors.

5.2.2. CELM Classification performance of multi-class
powder sample spectra
Tables 1–3 show the achieved multi-class classification

accuracy on the THz Fourier spectral features after apply-
ing three types of machine learning algorithms: CELM,
ELM and SVMs, respectively, as a function of varying
penalty parameter C, optimal Gaussian kernel parameter
σ and elapsed time. A leave-one-out (LOO) estimator is
used for both training and testing purposes. For training,
pixels from all the classes are presented to the three clas-
sifiers. The remaining 1 pixel from each class is used for
testing. The classification experiments are repeated over
50 runs. Therefore, the test elapsed time indicates the
300 runs required to perform classification as testing time.
All the powder sample classification runs were performed
using MATLAB version R2013a on a personal computer
running Windows 7 with an Intel(R) Core(TM) i5-3470
CPU (3.20 GHz) and 8 GB of memory.
We used real valued Gaussian kernels for all classifiers.

To evaluate both real and complex valued ELMs, we varied
the optimal parameter σ from 0.1 to 1000 and the penalty
parameter C from 10 to 1000, in steps of 1 in log scale. For
SVMs, we also set a similar optimal parameter σ, but did
not include results from such setting because it does not
lead to any meaningful classification. Similarly, the penalty
parameter C of SVMs is varied from 0.1 to 100, in steps of
1 in log scale for analysis. Setting these parameter values
allows comparable classification performance among differ-
ent classifiers.
The classification performance for CELM is listed in Ta-

ble. 1, where both real and imaginary parts are used as in-
put features for training and testing for the classifier. The
known real and imaginary parts of complex valued labels
associated matrix are applied further to calculate the re-
al and imaginary parts of output weights, respectively, for
training purposes. For real valued machine learning, i.e.
SVMs, we use both phase and amplitude as training and
testing feature vectors, to find the maximum possible clas-
sification accuracy, with only real valued labels associated
matrix as an input label matrix. This way, one can make
a useful comparison with the classification accuracy using
CELMs, as these use both real and imaginary portions of
the input complex valued labels each time for training, sep-
arately. The classification performance for CELM is listed
in Table. 2. The elapsed time of the CELM classification
scheme is around 3× e−1 second, which is nearly hundred
times faster than in real SVM classification (which requires
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Fig. 10. Illustration of classification performance using our algorithm versus different sizes of testing data sets, with the range of values for
σ, from 0.1 to 100, in steps of 1 in log scale, related to C = 0.1 in (a), C = 0.5 in (b), and C = 5 in (c), respectively.

20 30 40 50 60 70 80

56

58

60

62

64

66

68

70

the number of train vectors

ac
cu

ra
cy

classification accuracy using test datasets

c=0.01
c=0.1
c=1
c=10
c=100

Fig. 11. Illustration of the validation of classification accuracy, via

the plot of classification performance versus the number of input
validation vectors, corresponding to the different value of parameter
C.

an elapsed time of over 30 seconds). Furthermore, the to-
tal classification accuracy of CELM is increased in tandem
with the penalty parameter C. This can be observed by
finding the classification accuracy with the same value of
the optimal parameter σ. It is worth noting that the total
classification accuracy of CELM, however, is reduced for
an increased value of the optimal parameter σ. This means,
that a bigger σ, value results in a lower classification accu-
racy for CELM. Among these T-ray measurements, powder
samples of salt and talcum are easiest to be separated, with
classification accuracy of 100% under all the cases, whereas
the powder sample of sugar is more difficult to identify.

To evaluate the classification performance of SVMs, in
addition to the classification accuracy and elapsed time, we
list the number of support vectors (SVs) used to calculate
the boundaries of each powder class, these are illustrated in
Table. 2. In contrast to CELMs, the classification accuracy
of SVMs is increased as a result of increasing the value of
parameterC, only when σ = 0.1. In this case, the total clas-
sification accuracy is increased rapidly from 55.44% at C =
0.1 to 99.66% at C = 10 and C = 100 respectively, with the
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Fig. 12. Illustration of the variation of the number of SVs, classifi-
cation accuracy and elapsed time with the increment of the number
of the input training feature sets in the classification of RNA data,

with C = 1 and σ = 0.003.

associated number of support vectors needed reduced from
993 to 516. The elapsed time is reduced dramatically from
over 24 seconds to around 11 seconds, due to the reduced
number of SVs. For the case where σ is changed from 10
to 1000, the classification accuracy does not significantly
change as a function of parameters C and σ. The associat-
ed classification accuracy is around 87%–88%. The number
of SVs is 1500, which results in much longer elapsed time
(38 seconds), due to the increased computation load from
the increased number of support vectors. Among these T-
ray measurements, powder samples of salt are easiest to
be separated with classification accuracy of 100% under al-
l the cases, whereas the powder sample of sugar and soda
are more difficult to identify.
Similarly to the binary classification example, CELM

performance is compared to ELM performance also for the
multi-class case. The classification performance achieved
is listed in Table. 3. An improved classification accuracy
is observed with the increased value of the C variable. In
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Table 1

Classification accuracy (%) and elapsed time are illustrated for powder classification using CELM with varying penalty parameter C and
optimal Gaussian kernel parameter σ. The Fourier spectral features are extracted as real and imaginary parts.

C σ
each class name and classification accuracy

total classification elapsed time (s)
salt sand talcum sugar flour soda accuracy

10

0.1 100 100 100 93.88 100 100 98.98 0.7236

1 100 100 100 95.92 100 100 99.32 0.8651

10 100 100 100 0 100 100 83.33 0.6716

100 100 100 100 63.27 100 100 89.46 0.6935

1000 100 0 100 0 83.67 93.88 48.30 0.6661

100

0.1 100 100 100 95.92 100 100 99.32 0.6901

1 100 100 100 95.92 100 100 99.32 0.6786

10 100 100 100 0.6327 100 100 89.46 0.6734

100 100 100 100 0 100 93.88 82.31 0.6669

10000 100 0 100 0 65.31 93.88 59.86 0.6756

1000

0.1 100 100 100 95.92 100 100 99.32 0.6880

1 100 100 100 95.92 100 100 99.32 0.6758

10 100 100 100 97.96 100 100 99.66 0.6877

100 100 100 100 0 100 93.88 82.31 0.8549

1000 100 0 100 0 97.96 83.67 63.61 0.6817

Table 2
Classification accuracy (%) and elapsed time are illustrated for powder classification using SVMs with varying penalty parameter C and
optimal Gaussian kernel parameter σ. The Fourier spectral features are extracted as input features for classification.

C σ
each class name and classification accuracy

total classification ♯ of SVs elapsed time (s)
salt sand talcum sugar flour soda accuracy

0.1

0.1 100 20.41 79.59 24.49 75.51 32.65 55.44 993 24.5390

10 100 100 100 85.71 100 40.82 87.76 1500 35.7086

100 100 100 100 91.84 100 36.73 88.10 1500 33.6962

1000 100 100 100 95.92 100 26.53 87.07 1500 34.8194

1

0.1 100 100 100 91.84 100 53.06 90.82 546 14.9137

10 100 100 100 81.63 100 40.82 87.07 1500 33.2700

100 100 100 100 91.84 100 36.73 88.10 1500 38.7038

1000 100 100 100 95.92 100 26.53 87.07 1500 33.6806

10

0.1 100 100 100 97.96 100 100 99.66 516 10.9045

10 100 100 100 81.63 100 40.82 87.07 1500 38.1266

100 100 100 100 91.84 100 36.73 88.10 1500 38.0018

1000 100 100 100 95.92 100 26.53 87.07 1500 38.0486

100

0.1 100 100 100 97.96 100 100 99.66 516 11.2789

10 100 100 100 81.63 100 40.82 87.07 1500 33.3998

100 100 100 100 91.84 100 36.73 88.10 1500 33.1502

1000 100 100 100 95.92 100 26.53 87.07 1500 37.6274

addition, a reduction in classification accuracy is observed
when the value of the σ variable is increased. The maximum
classification accuracy is found to be 99.32%. The elapsed
time is half of the time that required when using CELM.
However, when compared with CELMs, the total classifi-

cation accuracy of real ELM is reduced rapidly when the
value of the σ variable is decreased. In contrast to CELM,
among these T-ray measurements, powder samples of flour
and soda are easiest to be separated for real ELM, with
classification accuracy of 100% in all the cases, whereas the
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Table 3

Classification accuracy (%) and elapsed time for powder classification using real ELM with varying penalty parameter C and optimal Gaussian
kernel parameter σ. The same validation procedure to that used in CEML validation is followed. One of the Fourier spectral phase features,
is extracted as training and testing to generate feature vectors for all classes of powder datasets.

C σ
each class name and classification accuracy

total classification elapsed time (s)
salt sand talcum sugar flour soda accuracy

10

0.1 100 95.92 100 100 100 100 99.32 0.3580

1 100 44.90 73.47 100 100 100 86.39 0.4136

10 100 0 0 0 100 100 50 0.3500

100 0 0 0 100 100 100 33.33 0.3488

1000 0 0 0 0 100 100 33.33 0.3537

100

0.1 100 95.92 100 100 100 100 99.32 0.4902

1 100 0.6122 100 100 100 100 93.54 0.3400

10 100 0 0 14.29 100 100 52.38 0.3475

100 100 0 0 0 100 100 50 0.3461

1000 0 0 0 0 100 100 33.33 0.3481

1000

0.1 100 95.92 100 100 100 100 99.32 0.3502

1 100 65.31 100 100 100 100 94.22 0.3459

10 100 0 0 100 100 100 66.67 0.7800

100 100 0 0 0 100 100 50 0.3513

1000 0 0 0 0 100 100 33.33 0.3559

sand powder sample is more difficult to identify.

6. Conclusions

The widening proliferation of THz transient imaging as
well as tomographic systems in the biomedical and phar-
maceutical industries as well as the security sector have
led to the generation of very large datasets requiring novel
methods for comparing and classifying the acquired spec-
tra. Typical THz images can be composed of more than
512x512 pixels each, and to each pixel output corresponds
a time-domain THz transient signal usually recorded over a
span of several picoseconds, oversampled at 200 to 3000 in-
stances. Furthermore, the resolution of recording these time
domain transients is usually 12 bits. Spectral resolution is
a direct consequence of the duration of the time domain
signal recorded as well as the sampling rate attained, with
the finer resolution achieved when a larger number of sam-
ples is recorded. This leads to management problems that
can only be addressed within a very large database con-
text. This paper describes a CELM-based classifier based
on selected spectral features of these Fourier transformed
T-ray pulsed signals. The work assesses the suitability of
CELMs in performing binary classification tasks of RNA
samples, as well as its applicability in problems requiring
a multi-class separation, the later problem being explored
using datasets from six powder samples of different com-
position. The work also contrasts this performance to that
using SVMs as well as EMLs. Since the observed spectral
phase variations of the recorded signals between samples

are generally larger than their amplitude counterparts they
are more appropriate to be used as inputs to the classifi-
er. CELM has an advantage over SVM classifiers in that it
generates an output much faster without significantly sac-
rificing classification accuracy. The advantage of using only
selected spectral features as inputs to the classifier is that
the number of feature vectors required is minimized, this
has computational advantages and avoids over-fitting prob-
lems. This work, therefore, establishes CELM with Gaus-
sian kernels as a viable alternative to EML and SVM for
this type of data sets.
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17



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

H. Kurz, A. Bosserhoff, and R. Büttner, “Integrated
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