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Many studies evaluating model boundary-layer schemes focus either on near-surface

parameters or on short-term observational campaigns. This reflects the observational

datasets that are widely available for use in model evaluation. In this paper we show how

surface and long-term Doppler lidar observations, combined in a way to match model

representation of the boundary layer as closely as possible, can be used to evaluate the

skill of boundary-layer forecasts. We use a 2-year observational dataset from a rural

site in the UK to evaluate a climatology of boundary layer type forecast by the UK

Met Office Unified Model. In addition, we demonstrate the use of a binary skill score

(Symmetric Extremal Dependence Index) to investigate the dependence of forecast skill

on season, horizontal resolution and forecast leadtime. A clear diurnal and seasonal

cycle can be seen in the climatology of both the model and observations, with the

main discrepancies being the model overpredicting cumulus capped and decoupled

stratocumulus capped boundary-layers and underpredicting well mixed boundary-

layers. Using the SEDI skill score the model is most skillful at predicting the surface

stability. The skill of the model in predicting cumulus capped and stratocumulus capped

stable boundary layer forecasts is low but greater than a 24 hr persistence forecast.

In contrast, the prediction of decoupled boundary-layers and boundary-layers with

multiple cloud layers is lower than persistence. This process based evaluation approach

has the potential to be applied to other boundary-layer parameterisation schemes with

similar decision structures.
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1. Introduction

Climate models vary substantially in their predictions of

boundary-layer clouds in a warmer climate. This leads to an

uncertainty in radiative feedback and is one of the largest sources

of uncertainty in climate prediction (Webb et al. 2006, Bony et al.

2006). For example, Bony and Dufresne (2005) have shown that

climate models with the largest climate sensitivity are those that

have the largest changes in boundary-layer cloud in their future

climate.

On a more local scale, the boundary-layer parameterisation

scheme used in a given numerical weather prediction model can

affect the forecasts of weather phenomenon such as tornadoes

(Stensrud and Weiss 2002), hurricanes (Powell 1980) and

convective clouds (Zampieri et al. 2005). Even within a single

scheme, small differences in parameter values or initial conditions

can cause forecasts to change dramatically, for instance changing

from clear sky to overcast conditions (Martin et al. 2000). Such

changes have large impacts on surface temperatures and also

feedback onto the timing and location of deep convection (Baldauf

et al. 2011). Accurate near surface temperature forecasts are

important for a range of users including electricity companies,

as demand for electricity varies with temperature, and local

road authorities, who are concerned with values of near-surface

temperature relative to a threshold below which it should treat

roads to prevent ice formation. Therefore, there is a strong

need for accurate and comprehensive methods for the evaluation

of boundary-layer schemes, from both a climate and weather

prediction perspective.

There are many different boundary-layer parameterisation

schemes used in numerical weather prediction and climate models

(e.g. schemes based on a first order closure with local or non-

local diffusivities, and schemes based on the prognostic turbulent

kinetic energy method). There have been a number of attempts to

evaluate these schemes by comparing their output to observations

in case studies (Beesley et al. 2000; Betts and Jakob 2002; Zhang

and Zheng 2004; Cuxart et al. 2006; Hu et al. 2010; Shin and

Hong 2011; Svensson et al. 2011; Xie et al. 2012). However,

these are all based on short-term observational campaigns. In

addition they typically focus on only a few variables such as

2m temperature, 10m winds and boundary layer height. The

studies of Sengupta et al. (2004) and Barrett et al. (2009) go

further and consider the occurrence and distribution of boundary-

layer clouds, but to date there has been no systematic evaluation

of boundary-layer schemes based on surface and above surface

turbulent mixing and cloud type made throughout the depth of the

boundary layer.

The new dataset of observed boundary-layer type derived by

Harvey et al. (2013) provides an opportunity to perform such an

evaluation. Surface and above-surface observations are analysed

in such a way to diagnose boundary-layer types that match

the categories used in models as closely as possible, making it

possible to evaluate boundary-layer parameterisations. In addition

the method is based soley on ground-based Doppler lidar and

sonic anemometer data which is routinely collected at various

locations worldwide, and therefore provides a viable method for

performing long-term boundary-layer scheme evaluations over

different sites. This dataset could also be used in many different

ways to characterise other aspects of the boundary layer, such

as cloud cover and the structure of turbulence, however here we

restrict our attention to evaluating one particular boundary-layer

parameterisation scheme.

In this study, two years of data from the Chilbolton Facility

for Atmospheric and Radio Research (CFARR), UK, is used

to provide such an evaluation of the boundary-layer scheme in

the UK Met Office Unified Model (UM). This model has a

boundary-layer parameterisation scheme that makes explicit use

of the concept of boundary-layer type: it uses model variables

to diagnose discrete boundary-layer types, which are then used

to determine the location and intensity of of the turbulent

mixing to apply. In principle, this analysis could be extended

to other atmospheric models that use binary decisions inside

their boundary-layer parameterisations, since each combination of

binary decisions can be interpreted as a boundary-layer type. The

evaluation of parameterisation schemes is an indispensable part

of the development of prediction systems. In this paper we aim to

design an evaluation scheme that can be used to quantify both skill

and bias in model forecasts, with the intention that this scheme can

aid model development and eventually lead to improved forecasts.
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This paper is organised as follows. In Section 2 the

methodology of Harvey et al. (2013) is briefly outlined, followed

by a description of the data used in this study. In Section 3 a two-

year climatology of boundary-layer type is presented for both the

model and observations, and in Section 4 the Symmetric Extremal

Dependence Index (SEDI) is then used to evaluate the skill of both

the 4 km and 12 km resolution versions of the UM. This measure

of skill is also used to assess the predictions of boundary-layer

type as a function of forecast lead time and season.

2. Method

2.1. Observational data

Harvey et al. (2013) diagnose discrete boundary-layer types from

observations according to an extension of the classifications used

in the UM (Lock et al. 2000). Thus the verification data is matched

to the forecast data as closely as possible making it easier to

verify the model forecast and identify bias. Table 1 lists the

seven UM boundary-layer types, and their relation to the nine

observational types of Harvey et al. (2013). The observational

boundary-layer types are diagnosed using data from a vertically-

pointing ground-based Doppler lidar and a sonic anemometer,

both located at the CFARR. The sonic anemometer is used to

derive the surface sensible heat flux (H). The Doppler lidar is

used to infer the presence of one or more layers of boundary-

layer cloud, and the skewness (s) and variance (σ2w) of the vertical

velocity throughout the depth of the boundary layer. Together, s

and σ2w provide information on the presence of turbulent mixing

in the boundary-layer as well as its source (cloud-top or surface-

driven convection).

Each decision in the algorithm incorporates observational

uncertainties, and as such results in a probability of occurrence for

each of the nine boundary-layer types for each hour of available

data. For a fair comparison with the deterministic hourly UM

data, only the most probable boundary-layer type is considered

and observational types Ia, Ib, Ic are combined into one type

and IIIa and IIIb are combined into one type, as shown in Table

1. In addition, the observational diagnosis is unreliable during

periods of precipitation. As a result all hours where there is

precipitation in either the observational data (from a co-located

rain gauge) or the model forecast (defined as precipitation rate

above 0.02 mm hr−1) are removed from the comparison. This

removes approximately 20% of the data from the comparison.

2.2. Model data

The UM (version 5.2 onwards) solves non-hydrostatic, deep-

atmosphere dynamics using a semi-implicit, semi-Lagrangian

numerical scheme (Cullen et al. 1997 and Davies et al. 2005).

The model includes a comprehensive set of parameterisations,

including schemes for the surface (Essery et al. 2001, Best

et al. 2011 and Clark et al. 2011), boundary layer (Lock et al.

2000), mixed-phase cloud microphysics (Wilson and Ballard

1999) and radiation (Edwards and Slingo 1996). The model also

includes an option for convection parameterisation (Gregory and

Rowntree 1990) which is used in all resolutions greater than

4 km, with additional downdraught and momentum-transport

parameterisations. The model runs on a rotated latitude/longitude

horizontal grid with Arakawa C staggering and a terrain-

following hybrid-height vertical coordinate with Charney-Philips

staggering.

Operational forecasts from two versions of the UM are used in

this study. The 4 km resolution version of the UM (UK4) is used

for the main observational comparison presented in Sections 3 and

4, and the North Atlantic European version of the UM (NAE)

is used to investigate the effect of horizontal resolution on the

boundary-layer type forecasts. The UK4 covers a domain slightly

larger than the UK, and has 70 levels in the vertical, 16 of which

are in the lowest 1 km. The NAE covers a larger domain over the

North Atlantic and Europe, and has a 12 km horizontal resolution

and a coarser vertical resolution of 38 levels with 7 levels in

the lowest 1 km. There are several other differences between the

two models, most notably in the convection and data assimilation

schemes.

Each forecast is 36 hours long and these are initialised 4 times

per day, at 03, 09, 15 and 21 UTC for the UK4 and 00, 06, 12 and

18 UTC for the NAE. UK4 data is available for the 2-year period

01/09/2009 - 31/08/2011 whereas NAE data is available for the

9-month period 01/09/2009 - 31/5/2010. This data is available for

the closest nine grid points to CFARR.

c© 0000 Royal Meteorological Society Prepared using qjrms4.cls



4 N. J. Harvey et al.

Table 1. The UM boundary-layer types of Lock et al. (2000) (left column) and their relation to the nine observational boundary-layer types of Harvey et al.
(2013) (right column).

UM Type Observational Type
I Stable, possibly with non-turbulent cloud Ia Stable boundary layer, no cloud

Ib Stratus-topped boundary layer, no cumulus
Ic Forced cumulus under stratocumulus

II Stratocumulus over a stable surface layer II Decoupled stratocumulus over a stable
surface layer

III Single mixed layer, possibly cloud topped IIIa Single mixed layer, no cloud
IIIb Single stratocumulus-topped mixed layer, no

cumulus
IV Decoupled stratocumulus not over cumulus IV Decoupled stratocumulus
V Decoupled stratocumulus over cumulus V Decoupled stratocumulus over cumulus
VI Cumulus-capped layer VI Cumulus-capped layer
VII Shear dominated unstable layer III Type a or b, depending on the presence of

cloud

The same boundary-layer scheme (Lock et al. 2000; Lock and

Edwards 2011) is used in both the UK4 and NAE models. It

categorises the boundary-layer at each grid point and time step

into one of the seven different types summarised in Table 1, based

on the surface stability, the vertical profile of potential temperature

and the presence and type of cloud. The selected boundary-layer

type then influences the form of the eddy diffusivity profile used

to parameterise the turbulent fluxes within the boundary layer. A

first-order K-closure scheme is used and the diffusivity can have

contributions from both local and nonlocal terms, depending on

the static stability. Additional diffusivity terms are included if

boundary-layer cloud is present. For example, if cumulus cloud

is diagnosed then it is assumed that there is turbulent mixing

present from the surface up to the cumulus cloud base. In that

case the associated convection is treated entirely by the convection

scheme. In stratocumulus-capped boundary layers there is an

additional source of mixing associated with turbulence driven

from the cloud-top due to radiative cooling.

3. Evaluation of the model climatology

In this section the climatology of hourly boundary-layer types

from the UK4 forecasts is compared to observations. Figure

1 shows the frequency of occurrence of hourly UK4 and

observational boundary-layer types for the two years of available

model data. For this comparison, only data from the nearest grid

point to the CFARR is used. In addition, only data from the first

6 hours of each forecast is used (the dependence on lead time is

discussed in Section 4.2.1).

There is good agreement between the frequency of occurrence

of the stable boundary-layer types (I and II) in the model and

the observations, with the model forecasting a slightly higher

frequency of each. There is less agreement for the unstable types,

with the model forecasting the decoupled stratocumulus types (IV

and V) more frequently than occurs in the observations and the

well-mixed (III) and cumulus (VI) types less frequently than in

the observations. The rank of the types in terms of the frequency

of occurrence is similar in the model and the observations, with

only the order of the decoupled stratocumulus (IV) and cumulus

(VI) types reversed.

Regarding the diurnal evolution of the boundary-layer type,

Figure 2 shows the frequency of occurrence of each type as a

function of time of day for each season. A clear diurnal cycle

is present in both the model and the observations with the stable

types dominating at night and the unstable types during daylight

hours. Consistent with this, there is a seasonal cycle in the

frequency of occurrence of each type with higher occurrences

of the unstable types during the summer months and higher

occurrences of the stable types during the winter months. The

transition between these two states occurs fairly rapidly around

the time of sunrise, although this is blurred out in the seasonal

averages of Figure 2.

The tendency for the model to favour the decoupled

stratocumulus type (IV) over the well-mixed (III) type (Figure

1) is apparent in all seasons by the relative sizes of the red and

green bars. This discrepancy is largest during the morning daylight

hours, particularly in spring and summer. Another feature to note

is the difference between the occurrence of unstable types during

c© 0000 Royal Meteorological Society Prepared using qjrms4.cls
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night time hours. The observations show the presence of unstable

types during night time during spring, summer and autumn with

very little in winter, whereas the opposite is true of the model

forecasts.

4. Evaluation of forecast skill

4.1. Verification measures

In this section the skill of the model in predicting the correct

boundary-layer type at the correct time is assessed using

binary verification measures. These are calculated from joint

histograms between the boundary-layer types of the UK4 and the

observations. Figure 3 shows the joint histogram for the hourly

boundary-layer data from the entire two-year period. It shows the

total number of occurrences of each combination of observed and

modelled boundary-layer type.

If the model provided perfect forecasts then all occurrences

would lie on the diagonal in Figure 3. However, this is not the

case here and there is a large spread. Multi-category verification

measures do exist for quantitatively assessing the skill of multi-

category variables, however as our contingency table arises from

a sequence of binary decisions for both the model and the

observations, we will instead assess the skill using the more

intuitive approach of applying binary verification measures to

each decision in turn. There are five decisions used in determining

the observational boundary-layer type, as listed in Table 3.

For binary events, the problem of forecast verification has a

long history dating back to Finley (1884), who studied forecasts

of tornadoes. More recently similar techniques have been used

for instance by Barrett et al. (2009), Hogan et al. (2009b) and

Mittermaier (2012) to evaluate forecasts of cloud properties.

In the present case, the joint histogram is split into 2x2

contingency tables by dividing it into four quadrants based on

the decisions made in the diagnosis of boundary-layer type. It is

common to refer to quadrants in a contingency table using the

letters a, b, c and d, as shown in Table 2, and this convention is

followed here. The third column of Table 3 shows how each of the

five decisions uniquely discriminate between the boundary-layer

types, and Figure 4 shows schematically how the histogram is

split for each decision. For the ‘surface layer stable’ and ‘cumulus

present’ decisions, the totals from each combination of events are

summed to give the quadrant values. As an example, for the joint

histogram shown in Figure 3 the 2x2 contingency table for the

stability decision is as follows:

 c d

a b

 =

 233 3596

5853 624

 , (1)

meaning that of the 6086 observed stable types 5853 occurred in

the model, and of the 4220 unstable types 3596 occurred in the

model.

Event forecast
Event observed

Yes No
No c (misses) d (correct rejections)
Yes a (hits) b (false alarms)

Table 2. The construction of a 2x2 contingency table.

There are many verification measures that can be used to assess

the skill of a 2x2 contingency table (e.g. Wilks 1995, Von Storch

and Zwiers 1999, Casati et al. 2008, Hogan et al. 2009b, Hogan

and Mason 2012). Here the Symmetric Extremal Dependence

Index (SEDI) is used (Ferro and Stephenson 2011). This measure

was chosen as it has many desirable properties; it is equitable,

meaning that all random forecasting systems will receive the

same expected score, and it is also difficult to hedge meaning

that it cannot be influenced by issuing a forecast that is not the

true judgment of the forecaster. In addition, many verification

measures tend to give meaningless values for rare events but SEDI

is independent of the frequency of occurrence of an event and

therefore can be used for both rare and overwhelmingly common

events (which is required here for types V and I respectively).

The SEDI skill score is defined as

SEDI =
lnF − lnH + ln (1−H)− ln (1− F )

lnF + lnH + ln (1−H) + ln (1− F )
, (2)

where H is the hit rate (H = a/(a+ c)) and F is the false-alarm

rate (F = b/(b+ d)). A SEDI value of 1 indicates perfect forecast

skill whereas a value of 0 indicates no more skill than a random

forecast.

c© 0000 Royal Meteorological Society Prepared using qjrms4.cls



6 N. J. Harvey et al.

Table 3. Summary of decisions that are assessed using a binary verification measures.

Decision Description Types Forecast
SEDI

Persistence
SEDI

1 Surface layer stable? I and II vs. III, IV, V and VI 0.938 0.903
2 Cumulus present given unstable surface layer? V and VI vs. III and IV 0.184 0.108
3 Decoupled given cumulus is not present? IV vs. III 0.152 0.299
4 More than 1 cloud layer given cumulus cloud present? VI vs. V -0.019 0.083
5 Stratocumulus present given surface layer is stable? II vs. I 0.271 0.098

4.2. The SEDI skill score for the UK4 forecasts

In this section the SEDI skill score is used in both relative and

absolute terms to judge the skill of forecasts relative to each

other and relative to two baseline reference forecasts. The first

is a persistence forecast for which the boundary-layer type at a

given hour of a given day is set to the boundary-layer type of the

same hour of the previous day, and the second is a hypothetical

random forecast for which the SEDI skill score is zero. The SEDI

skill scores for the full 2-year period, using data from only the

first 6 hours of each forecast (i.e. the same data as discussed in

Section 3) are shown in Table 3. These are briefly discussed before

considering the impact of leadtime, season and model resolution.

The highest value of skill by far is for the stability decision

(0.938), which may be due to the presence of a strong diurnal

cycle. For this decision, the UK4 forecast skill is greater than

the skill from persistence. The cumulus and stable stratocumulus

decisions have lower forecast skill than the stability decision

(0.184 and 0.271 respectively), and again the UK4 forecast skill is

greater than the skill from persistence. In contrast, the decoupled

and layers decisions have SEDI values lower in the UK4 forecasts

than the persistence forecast (0.152 and -0.019 respectively),

and further the layers decision has a slightly negative SEDI

value which is worse than that expected from a random forecast.

The size of the error bars on these values due to sampling is

discussed in section4.2.1. The sharp decrease in SEDI between

the stability and cloud-related decisions is probably due to the

fact that it is fundamentally more difficult to predict cloud-related

variables as they are sensitive to subtle changes in the vertical

temperature structure. This hypothesis is supported by Hogan

et al. (2009b) who found that the NAE model systematically

under-predicts cloud fractions greater than 5% in the lowest 5km

of the atmosphere.

The sensitivity of the SEDI skill scores to the choice of model

gridpoint used has been found to be small. In particular, the values

in Table 3 are very similar if instead of using the nearest model

gridpoint to the CFARR for the observational comparison, the

most common boundary-layer type of the nearest 9 grid points

is used.

4.2.1. Dependence of skill on forecast lead time

To test whether the skill of the UK4 forecasts varies with lead

time the SEDI has been calculated for all forecast lead times

grouped into 6 hour periods. These are: 0–5 hours, 6–11 hours,

12–17 hours, 18–23 hours, 24–29 hours and 30–36 hours the 2-

year period (01/09/2009 - 31/08/2011).

Figure 5 shows the evolution of the SEDI values with lead time.

The plots also show error bars on each SEDI value which are

based on the following formula, as presented in Hogan and Mason

(2012):

S2
err =

S2
H

[
SEDI(1−2H)+1

H(1−H)

]2
+ S2

F

[
SEDI(1−2F )+1

F (1−F )

]2
[lnF + lnH + ln (1−H) + ln (1− F )]2

, (3)

where S2
H = H(1−H)/(a+ c) and S2

F = F (1− F )/(b+ d) are

the error variances of H and F . However, this formula assumes

that each event in the contingency table is independent. In the case

of boundary-layer type diagnosis this is unlikely to be true since,

particularly at night time, there are prolonged periods (i.e. several

consecutive hours) with the same type present. To take account of

this, the number of independent events for each type is estimated

by counting the number of times that there is a transition to that

boundary-layer type. For example, the sequence I I I I I would be

one event for type I whereas I V V II II would be three events, one

each for type I, II and V. The contingency table coefficients are

scaled by the fraction of independent events over total events, and

c© 0000 Royal Meteorological Society Prepared using qjrms4.cls
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these scaled coefficients are then used to calculate the SEDI error

variance of Equation (3).

Figure 5 shows that none of the decisions have a significant

increase or decrease in skill with lead time. This contrasts with

the behaviour found by Hogan et al. (2009a) for cloud occurrence

(at all levels) in a similar model, where skill dropped significantly

during the 36 hr forecast period. This may be because their short

lead time skill scores were higher than the skill scores here,

with the exception of the stability decision for which the skill is

aided by the strong dependence on the diurnal cycle. In addition,

all hourly periods which contain either observed or modelled

precipitation have been removed (see Section 2.1). Therefore it is

possible that for some large-scale weather events, the forecasts of

which tend to have a strong dependence on lead time (for instance

the passing of a front), have been neglected thus skewing the

results.

The error bars for each lead time in Figure 5 are generally

small. One exception is for the layers decision, this is due to the

relatively small number of samples. there is therefore no evidence

that the SEDI is negative, i.e. that the UK4 forecasts are worse

than a random forecast.

4.2.2. Dependence of skill on season

To assess the dependence of the forecast skill on the time of year,

Figure 6 summarises the SEDI score for each decision for each

season. In this plot data from all 6 forecast lead time periods have

been combined. This is to improve the statistics by increasing the

number of samples. This is justified in this case since as, shown

section 4.2.1, there is very little variation of the forecast skill with

lead time meaning each forecast can be treated as an alternative

realisation of the same period. The error bars in Figure 6 are

estimated from the variations between the forecasts of different

lead times, σ, in the following way

CI = ±1.96 σ√
N − 2

, (4)

where N = 6 is the number of forecast lead times used. The

scaling of 1.96 corresponds to a confidence interval of 95%

assuming a normal distribution.

Figure 6 shows that in winter, the decisions which discriminate

between the unstable types are predicted with less skill than in

all the other seasons. The stability decision also has the lowest

skill during winter. The reason for this drop in skill in winter

may be related to the fact that it is seen observationally that

during winter the sensible heat flux can remain close to zero

throughout the day. This can make it difficult for the model to

predict when the transition from stable to unstable occurs, thus

reducing the skill. Spring has the highest SEDI scores for stability

and decoupled. Summer has the highest score for the cumulus

and layers decisions. The prediction of more than one cloud layer

when cumulus is present has little or no skill in all seasons.

4.3. Dependence of skill on model resolution

The effect of model resolution is investigated by using another

model in the operational suite of the UK Met Office. Here the

NAE is used, as described in Section 2.2. Due to the availability

of the NAE data, the shorter period of 01/09/2009 - 31/5/2010 is

used for this analysis.

Figure 7 shows the frequency of occurrence of boundary-

layer types for the observations, the UK4 model and the NAE

model for the period 01/09/2009 - 31/5/2010. As before, the

observations and the UK4 model agree reasonably well for the

stable boundary-layer types (I and II) but there is a discrepancy

with the NAE model. The NAE model has a much greater

frequency of occurrence of stable boundary-layer type I than the

other data sets. This is compensated by a lower frequency of

occurrence of the stable under stratocumulus type (II).

The NAE model also diagnoses both of the cumulus types (V

and VI) much less frequently than the UK4 model. The decrease

in occurrence of cumulus types in the NAE model is compensated

by an increase in the number of well mixed boundary-layer types

diagnosed. The occurrence of decoupled stratocumulus cloud is

very similar in all data sets.

The SEDI score has been calculated for each of the decisions

described in Section 4.2.1. As in Section 4.2.2, data from all of the

forecast lead time periods has been used. Figure 8 shows the SEDI

skill score for each decision in turn. To aid comparison with the

12 km grid of the NAE model, rather than using the nearest grid

c© 0000 Royal Meteorological Society Prepared using qjrms4.cls



8 N. J. Harvey et al.

point to the CFARR in the UK4 grid, instead the most commonly

occurring boundary-layer type in the nearest 9 gridpoints is used.

Within the 95% confidence intervals (calculated as in Equation

(4)) there is no significant difference in skill between the UK4

and NAE models for any of the decisions. This is supported by

Mittermaier (2012) who could not draw any conclusion about

the impact of horizontal resolution on the Symmetric Extreme

Dependency Score of cloud base height and total cloud amount

in the NAE, UK4 and UKV (a 1.5 km resolution version of the

Met Office Unified Model). Conversely, Lean et al. (2008) found

that increasing horizontal resolution increased the Fractions Skill

Score of precipitation events over the UK for a forecast lead time

of 6 hours. Small differences in skill as model resolution increases

were also seen in the NCEP Eta model by Mass et al. (2002).

They found that more realistic mesoscale structures and evolutions

were seen as the resolution increased from 36 km to 12 km. This

gave improvements in precipitation amount, 10 m winds, 2 m

temperature and surface pressure. However, there was not much

impact on skill as the resolution was further increased from 12 km

to 4 km.

Also shown in Figure 8 is the SEDI score for the presence of

low cloud (below 3 km) in the UK4 and NAE models. This score

is significantly higher than all of the cloud decisions related to

boundary-layer type. This shows that the model does a reasonable

job of predicting low cloud despite incorrectly predicting the

cloud type. This is because in the model cloud presence is

controlled by the large-scale humidity field, rather than more

subtle features in the thermodynamic profile.

5. Conclusions

In this paper we have demonstrated how numerical weather

prediction boundary-layer parameterisation schemes may be

verified utilising continuous Doppler lidar and sonic anemometer

observations. Designing the observational verification data to

closely match the model forecast dataset allows the boundary

layer parameterisation scheme to be verified in a more direct

way making it easier to identify model bias and areas for model

improvement.

Firstly the climatology of boundary-layer type has been

compared. In general, the seasonal and diurnal cycles seen in the

model and observations are not dissimilar with the most common

boundary-layer type in both the model and observations being

stable, followed by well mixed. However, there is a tendency for

the model to diagnose decoupled stratocumulus capped boundary-

layers over well mixed boundary-layers, particularly during the

morning hours in spring and summer. In addition the model

underpredicts the presence of unstable boundary-layers during the

nightime in spring, summer and autumn but overpredicts during

the winter.

The ability of model forecasts to predict boundary-layer type at

the correct time has been evaluated in an absolute sense relative

to persistence and random forecasts. Overall there is good skill

when predicting stable and unstable boundary layer types due

to the strong diurnal cycle. Consistent with previous studies it

was shown that the skill of predicting cloud presence is much

greater than persistence. However, when considering different

cloud types the skill reduces. The skill of the model in predicting

cumulus capped and stratocumulus capped stable boundary layers

is low but greater than persistence. In contrast the prediction of

decoupled boundary layers and boundary layers with multiple

cloud layers is lower than persistence. This is likely due to the

fact that the presence of cloud in the model depends on smoothly

varying fields (e.g. temperature and humidity) however cloud type

in the model depends on the gradients in these fields which are

much more difficult to forecast.

The verification method described can also be used to judge the

model skill in relative terms. Thus it is possible to determine how

changes in the model resolution, leadtime and seasonality affect

the skill of the forecast. It was found that there is no significant

impact of changing model resolution, from 12 km to 4 km. This

is likely to be due to the fact that the boundary-layer scheme

used in both the 4 km and 12 km resolution is the same and at

4 km the model is still not able to resolve turbulent processes

within the boundary layer. It would be interesting to evaluate

a model running at several hundred metres or better, when the

largest eddies in the the boundary layer are resolved and there

would be less dependence on the boundary layer parameterisation.

No decrease in model skill was found with increasing leadtime.

However, it was found that in decisions which discriminate
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between boundary layer types in winter are predicted with less

skill than in all of the other seasons.

An obvious further extension to this study would be to evaluate

the model skill at a different site to see if the model bias identified

at the rural site were also present at other locations. It would also

be interesting to compare the skill and climatology of boundary-

layer type over an urban surface which may exhibit different

seasonal and diurnal evolutions.

The UK Met Office are the only modelling centre to use

the Lock boundary layer scheme but many other models have

a similar tree of decisions which is used to determine which

parameterisation schemes are applied i.e. whether to apply a local

or non-local mixing scheme. An example of this is the European

Centre for Medium-range Weather Forecasts (ECMWF) model

that uses an eddy-diffusivity mass-flux framework (Kohler et al.

2011). With this in mind it would be possible to extend this type

of comparison to models from other forecast centres around the

world.
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Figure 1. The frequency of occurrence of hourly boundary-layer types for the UK4 and the observations during the period 01/09/2009–31/08/2011.
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14 FIGURES

Figure 2. The frequency of occurrence of each type as a function of time of day for the (a, e) winter, (b, f) spring, (c, g) summer, and (d, h) autumn. The top row shows
the observational boundary-layer types and the bottom row shows the UK4 boundary-layer types.
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FIGURES 15

Figure 3. The joint histogram of hourly boundary-layer types for the UK4 and the observations during the period 01/09/2009–31/08/2011. The darker shading indicates
larger number number of events.
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16 FIGURES

Figure 4. Schematic of how the joint histogram in Figure 3 is split into multiple 2x2 contingency tables corresponding to each decision. The number refers to the decision
being considered (as in Table 3). Abscissa refers to the observed boundary-layer type and ordinate to the modelled type.
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Figure 5. The dependence of skill on forecast lead time. The panels show the skill for (a) the stability decision, (b) the cumulus decision, (c) the decoupled decision, (d)
the layers decision, and (e) the stable stratocumulus decision. The lines indicate the SEDI values for the (solid) UK4 and (dot-dash) persistence forecasts, the dotted line
indicates the expected SEDI values for a random forecast. The error bars are calculated as described in the text.
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the text.
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Figure 7. The frequency of occurrence of hourly boundary-layer types for the UK4 and NAE models, and the observations during the period 01/09/2009 - 31/05/2010
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Figure 8. Summary of the SEDI score for each decision for the the modal UK4 boundary-layer type and NAE boundary-layer type closest to the CFARR with 95%
confidence intervals calculated using the forecast lead time data for the period 01/09/2009 - 31/05/2010. The right panel shows the SEDI score for the presence of cloud
(>10%) below 3 km for the same period for the UK for the closest grid point to CFARR.
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