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Abstract

Myostatin plays a fundamental role in regulating the size of skeletal muscles. To date, only a single myostatin gene and no
splice variants have been identified in mammals. Here we describe the splicing of a cryptic intron that removes the coding
sequence for the receptor binding moiety of sheep myostatin. The deduced polypeptide sequence of the myostatin splice
variant (MSV) contains a 256 amino acid N-terminal domain, which is common to myostatin, and a unique C-terminus of 65
amino acids. Western immunoblotting demonstrated that MSV mRNA is translated into protein, which is present in skeletal
muscles. To determine the biological role of MSV, we developed an MSV over-expressing C2C12 myoblast line and showed
that it proliferated faster than that of the control line in association with an increased abundance of the CDK2/Cyclin E
complex in the nucleus. Recombinant protein made for the novel C-terminus of MSV also stimulated myoblast proliferation
and bound to myostatin with high affinity as determined by surface plasmon resonance assay. Therefore, we postulated
that MSV functions as a binding protein and antagonist of myostatin. Consistent with our postulate, myostatin protein was
co-immunoprecipitated from skeletal muscle extracts with an MSV-specific antibody. MSV over-expression in C2C12

myoblasts blocked myostatin-induced Smad2/3-dependent signaling, thereby confirming that MSV antagonizes the
canonical myostatin pathway. Furthermore, MSV over-expression increased the abundance of MyoD, Myogenin and MRF4
proteins (P,0.05), which indicates that MSV stimulates myogenesis through the induction of myogenic regulatory factors.
To help elucidate a possible role in vivo, we observed that MSV protein was more abundant during early post-natal muscle
development, while myostatin remained unchanged, which suggests that MSV may promote the growth of skeletal
muscles. We conclude that MSV represents a unique example of intra-genic regulation in which a splice variant directly
antagonizes the biological activity of the canonical gene product.
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Introduction

Myostatin limits the size of skeletal muscles by inhibiting the

proliferation and differentiation of muscle progenitors during

development [1,2]. The presence of myostatin in scallops, sea

urchins and amphioxus indicates that it arose from a common

ancestral gene about 900 million years ago [3]. While gene

duplication events are thought to have given rise to multiple

myostatin genes in bony fish, only one myostatin gene has been

reported for mammals [4,5]. Given the presence of myostatin

before the emergence of chordates, it is interesting to note the lack

of multiple myostatin genes in mammals, but this does not

preclude the possibility that splice variants are present. Alternative

splicing of pre-mRNA allows the generation of multiple, distinct

mRNA transcripts and subsequently the production of structurally

and functionally distinct proteins from a given gene, thus

contributing to the high proteome diversity in mammals [6].

Splice variants of myostatin have been identified in crabs, fish,

chickens and ducks, but have not been reported for mammals

[7,8,9,10]. Here we report the discovery of a novel myostatin

splice variant (MSV) in sheep skeletal muscle that promotes

myogenesis in vitro.

Materials and Methods

Animals
Cohorts of male New Zealand Romney sheep were weighed

and then slaughtered at 1, 3, 6, 9, 12 and 18 months of age (n = 6

per age) after which the semitendinosus muscle was excised and

weighed. A sample was collected from each muscle and snap

frozen in liquid nitrogen and stored at 280uC for mRNA and

protein analysis. Semitendinosus muscle from newborn Angus calfs

PLOS ONE | www.plosone.org 1 December 2013 | Volume 8 | Issue 12 | e81713



and gastrocnemius muscle from mice (C57 strain) and rats (Sprague

Dawley strain) were collected and snap frozen in liquid nitrogen,

and then stored at 280uC for protein analysis. Primary myoblasts

were isolated from fresh muscles collected from newborn lambs as

described below. Polyclonal antibodies were raised in New

Zealand White rabbits against the C-terminus of MSV. All animal

experiments were carried out with the approval of the Ruakura

Animal Ethics Committee, Hamilton, New Zealand.

Isolation of Primary Sheep Myoblasts
Primary sheep myoblasts were isolated from hindlimb muscles

of newborn lambs as we have described previously [11]. To verify

the efficiency of myoblast isolation, we used immunocytochemistry

to show that .90% of the myoblasts were positive for Pax7 (data

not shown).

Northern and Southern Blot Analysis
For Northern blot analysis, total RNA was isolated from sheep

semitendinosus muscle with Trizol reagent (Invitrogen), and poly(A)+

RNA was purified with an mRNA purification kit (GE Healthcare)

according to the manufacturer’s instructions. Five micrograms of

poly(A)+ RNA were separated on a 1.2% formaldehyde-agarose

gel alongside with an RNA size ladder (Promega), and then

transferred to an uncharged nylon membrane (GE Healthcare) by

capillary action. A DNA probe was made using RT-PCR for exon

1 & 2 of sheep myostatin (GenBank accession number: AF019622,

nt 1–621). Radioactive labeling of the probe and hybridization was

carried out using conditions previously described [12]. In

Southern blot analysis, fifteen micrograms of sheep genomic

DNA were isolated as described elsewhere [13] and digested with

restriction enzymes Bcl I, EcoR I or Hinc II (Invitrogen). The

products were separated on a 1% agarose gel and then transferred

to a positively charged nylon membrane (GE Healthcare). The

membrane was hybridized with a radioactive probe as described

above using conditions reported earlier [14]. The size and number

of hybridization signals were compared with the expected size and

number of restriction fragments of the sheep myostatin gene

(GenBank accession number: DQ530260).

Molecular Cloning of MSV
MSV cDNA was amplified by RT-PCR using flanking PCR

primers around the ORF of myostatin cDNA. The forward primer

(59-TCAGACTGGGCAGGCATTAACG-39, nt 3498–3519,

GenBank accession number: DQ530260) was located in the

59UTR and the reverse primer (59-GCATATGGAGTTTTAA-

GACCA-39, nt 9672–9692) in the 39UTR. The PCR reaction was

carried out with 2 ml of cDNA of sheep skeletal muscle as a

template. Cycle conditions were 94uC for 2 min for pre-

amplification denaturation, then 94uC for 30 sec, 55uC for

1 min, and 72uC for 2 min for 35 cycles. The PCR product was

gel-purified and cloned into pGEM-T Easy E. coli plasmid vector

according to the manufacturer’s instructions (Promega). The insert

of three clones was sequenced. A complete insert was assembled

using VectorNTI software (Invitrogen) and aligned with sheep

myostatin (GenBank accession numbers: AF019622 &

DQ530260). Cattle MSV was similarly amplified by RT-PCR

using ORF-specific primers for full length MSV, then cloned and

sequenced.

Production of MSV-specific Antibodies
Two polyclonal antibodies to MSV were produced. The first

was to a synthetic oligopeptide (CYTPPYGQWIFHKERK aa

260-274 for MSVab) that was conjugated to keyhole limpet

haemocyanin using the N-terminal cysteine by Auspep Pty Ltd

(Australia). The second was to a recombinant protein for the C-

terminal 65 amino acids of MSV (aa 257–321 for MSVab65),

which was expressed and purified (see below). Two hundred

micrograms of synthetic oligopeptide or recombinant protein for

MSV were mixed with Freund’s complete adjuvant and used to

immunize rabbits, followed by two booster injections at four-week

intervals with Freund’s incomplete adjuvant. One week after the

last boost, rabbits were terminally bled and serum was separated

by centrifugation. Immunoglobulin was affinity purified from

immune sera using Protein A agarose (Invitrogen).

Recombinant Protein Expression in E. coli
The cDNA coding sequence was PCR amplified and cloned

into the pET100/D-TOPO protein expression vector (Invitrogen)

for the putative mature sheep MSV (rMSV, aa 275–321) and the

entire novel C-terminus of sheep MSV (rMSV65, aa 257–321).

Recombinant proteins were expressed in Origami B E. coli

(Novagen), which promotes the formation of disulfide bonds,

increased protein solubility and activity at room temperature [15].

Purification of recombinant proteins was carried out using the N-

terminal His-tag following Invitrogen’s native purification protocol

and a Ni-NTA resin (Invitrogen). The purified recombinant

protein was dialysed against two changes of dialysis buffer (20 mM

TRIS-HCl pH 7.0, 150 mM NaCl) at 4uC overnight and any

residual endotoxin was removed using a High-Capacity Endotoxin

Removal Resin (Pierce/Thermo Scientific Inc.) following the

manufacturer’s protocol. The protein concentration was deter-

mined using the bicinchoninic acid protein assay (Sigma). The

complete ORF of sheep MSV (aa 1-321) with a C-terminal V5-tag

(rMSV-V5, pET101/TOPO vector, Invitrogen) was cloned into

pcDNA3 plasmid and stably expressed in Chinese Hamster Ovary

(CHO) cells. Serum-free (CD CHO AGT, Invitrogen) conditioned

medium was harvested after seven days of incubation and purified

on Ni-NTA resin under native conditions according to Invitro-

gen’s purification protocol of recombinant proteins.

Quantitative and Non-quantitative RT-PCR
Total RNA was extracted from cultured cells, skeletal muscles,

heart, liver, brain, kidneys, testes, ovaries, gut, skin and aorta using

Trizol reagent (Invitrogen) and 5 mg of total RNA was reverse

transcribed into cDNA using the Superscript III Pre-Amplification

kit (Invitrogen) according to the manufacturer’s instructions. All

PCR primers used in this study span across exon-exon boundaries

to avoid the amplification of genomic templates (Table 1). PCR

was carried out with 2.5 ml of a 1:40 dilution of the reverse

transcriptase reaction using the FastStart DNA Master plus SYBR

Green I reagent on a LightCycler 2.0 PCR machine (Roche

Diagnostics). A dilution series of pooled reverse transcriptase

reactions was used to create a standard curve. The PCR products

were separated in a 2.0% agarose gel and stained with SybrSafe

(Invitrogen) to confirm their size. Representative PCR products

were extracted from the gel and directly sequenced to confirm

their identity. Data for each sample were normalized to the

concentration of cDNA in each RT sample using Quant-it

OliGreen ssDNA kit (Invitrogen) [16]. Tissue-specific expression

of MSV and myostatin mRNA was determined in 20 ml PCR

reaction mix using 1.0 ml RT reaction as a template, 400 nM of

each primer, and 1 x PCR buffer (Roche Diagnostics), 0.2 mM of

dNTPs (Invitrogen) and 1.0 U of FastStart Taq polymerase

(Roche Diagnostics). The following cycling protocol was used:

denaturation at 95uC for 2 min and amplification at 95uC for

15 sec, 55uC for 30 sec and 72uC for 1 min for 36 cycles.

MSV Is a Novel Intra-Genic Regulator of Myostatin
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Representative PCR products were isolated from the gel, and their

sequence identity was confirmed by direct sequencing.

Development of an MSV Over-expressing Stable C2C12

Myoblast Line
The complete ORF of sheep MSV (aa 1–321) was cloned into

the pcDNA3 mammalian expression vector which is driven by a

constitutive cytomegalovirus promoter (Invitrogen). The plasmids

either carrying the MSV coding sequence or the empty pcDNA3

vector were transfected into C2C12 myoblasts using the Lipofecta-

mine 2000 reagent (Invitrogen) according to the manufacturer’s

protocol. A stable myoblast line constitutively over-expressing

MSV (MSV-line) and an empty vector (Control-line) line were

developed using 500 mg/ml of Geneticin (Invitrogen) selection.

These stable myoblast lines did not undergo clonal selection to

eliminate experimental artefacts stemming from unintended

inactivation of genes in individual clonal lines. For each cell line,

cells of the same passage number were used for all experiments,

and maintained with continuous 500 mg/ml of Geneticin selection.

Myoblast Proliferation Assays
Proliferation assays were performed on C2C12 mouse myoblasts

and on primary myoblasts isolated from sheep including stable

MSV over-expressing and control C2C12 lines. These cells were

seeded onto uncoated 96-well tissue culture plates at a density of

1000 cells per well in DMEM medium with 10% fetal bovine

serum (FBS) for C2C12 and 2000 cells per well for sheep myoblasts

in DMEM medium with 20% FBS and 10% horse serum, and

allowed to attach to the plate at 37uC in 5% CO2 overnight.

C2C12 and sheep myoblasts were grown in DMEM medium with

5% FBS containing increasing concentrations of rMSV protein for

48 h (n = 8). The MSV over-expressing and control C2C12 lines

were grown in DMEM medium with 5% FBS for 0, 24, 48 and

72 h (n = 8). Myoblast proliferation was determined using the

WST-1 cell proliferation reagent (Roche Diagnostics) following the

manufacturer’s protocol. Each proliferation assay was run in the

same plate and repeated two or three times.

Smad2/3 Phosphorylation Assay
Myoblasts for the MSV- and Control-line were seeded onto

10 cm diameter tissue culture dishes at a density of 30,000 cells per

cm2 in 10 ml of DMEM medium supplemented with 10% FBS

and 500 mg/ml of Geneticin, and allowed to attach to the plate at

37uC in 5% CO2 overnight (n = 6 for each cell line). The following

day, the plating medium was replaced with 5 ml of DMEM

medium supplemented with 5% FBS and 500 mg/ml of Geneticin,

and cells were allowed to adapt to the test medium for 6 h at 37uC
in 5% CO2. The test medium was removed and complemented

with recombinant myostatin protein (R&D Systems) at a

concentration of 8 nM, and then the medium was quickly added

back into the plates (n = 3 for each cell line). For the control plates

(n = 3 for each cell line), the same volume of storage buffer without

myostatin protein was added. Plates were incubated for 60 minutes

at 37uC, 5% CO2, and then the test medium was removed and

cells were harvested from the plate with 1.0 ml of ice cold lysis

buffer (10 mM Hepes pH 7.9, 1.5 mM MgCl2, 10 mM KCl,

0.5% IGEPAL, 1 mM Na3VO4, 1 mM NaF and one Complete

[Roche Diagnostics, Germany] protease inhibitor tablet per

50 mL buffer). Nuclear and cytoplasmic protein fractions were

isolated from lysed cells following a protocol previously described

[17]. The abundance of phosphorylated and total Smad2/3

proteins in the nuclear and cytoplasmic protein fractions were

determined using Western immunoblotting.

Western Immunoblotting
One hundred milligrams of semitendinosus muscle from sheep and

from cattle, and a similarly sized sample of gastrocnemius muscle

from mice and from rats were homogenized on ice in 1.0 mL of

lysis buffer (see Smad2/3 phosphorylation assay). The homogenate

was centrifuged at 10,0006g for 5 min at 4uC to remove tissue

debris. The protein concentration was determined using the

bicinchoninic acid (Sigma, MO) protein assay. Protein extracts

were mixed in Laemmli sample buffer [18] and heated at 95uC for

5 min. Five (for nuclear protein fractions) or twenty (for

cytoplasmic protein fractions or tissue protein extracts) micro-

grams of protein was separated on 10 or 15% SDS-PAGE gels,

and then transferred to nitrocellulose membranes (BioTrace NT,

PALL Corporation, FL) by electroblotting. All blots were stained

with Ponceau S stain to confirm transfer and uniformity of

loading. After washing in Tris buffered saline with 0.1% Tween 20

(TBST), the blots were blocked in blocking buffer (TBST buffer

supplemented with 1% PVP-10, 1% PEG4000, 0.3% BSA fraction

V, 0.01% Thimerasol) or with TBST buffer supplemented with

5% non-fat milk powder for one hour, and then incubated with

different dilutions of primary antibodies: anti-MSVab, anti-

myostatin [19], anti-CDK2 (sc-163, Santa Cruz Biotechnology),

anti-Cyclin E (sc-481, Santa Cruz Biotechnology), anti-Myf5 (sc-

302, Santa Cruz Biotechnology), anti-MyoD (sc-304, Santa Cruz

Biotechnology), anti-MRF4 (sc-784, Santa Cruz Biotechnology),

anti-MEF2 (sc-313, Santa Cruz Biotechnology), anti-Pax7 (sc-163,

Santa Cruz Biotechnology), anti-Smad2/3 (sc-6032, Santa Cruz

Biotechnology), anti-pSmad2/3 (Ser423/425, sc-11769R, Santa

Cruz Biotechnology), anti-V5 (Invitrogen), anti-actin (A2066,

Sigma), anti-SP-1 (sc-59, Santa Cruz Biotechnology) or anti-a-

tubulin (T9026, Sigma) primary antibodies in the appropriate

blocking buffer at 4uC overnight. After washes, membranes were

incubated with the appropriate secondary antibody and developed

with enhanced chemiluminescence.

Table 1. Oligonucleotide primers used in quantitative and non-quantitative PCR.

Gene name Forward primer Reverse primer Accession number

Beta-actin TCATCACCATCGGCAATGAG TGTTGGCGTAGAGGTCTTTG NM_001009784

GAPDH TGCACCACCAACTGCTTAG GATGCAGGGATGATGTTC NM_008084

MSV-ORF ATGCAAAAACTGCAAATCTTTG TTATTTCATCCTAAAAGCTGCAGT DL465814

MSV GCTCAAACAACCTGAATCCAAC CCATAGGGAGGAGTGTAAAAATG DQ530260

Myostatin GATCTTGCTGTAACCTTCCC GTGGAGTGCTCATCACAATC DQ530260

All oligonucleotide primer sequences are shown in 59 to 39 orientation.
doi:10.1371/journal.pone.0081713.t001

MSV Is a Novel Intra-Genic Regulator of Myostatin
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Surface Plasmon Resonance Analysis
These studies were performed using carboxymethylated dextran

surfaces (CM5 chips) in a Biacore 3000 instrument (Biacore,

Uppsala, Sweden). Approximately 2000 response units (RU) of

recombinant myostatin (R&D Systems), activin receptor type IIB

(ActRIIB, produced as a chimera of the extracellular domain of

ActRIIB and Fc, R&D Systems) or rMSV was coupled to the

surface of a flow cell using EDC/NHS (1-ethyl-3-{3-dimethyla-

minopropyl}-carbodiimide; N-hydroxy-succinimide) NH2 chemis-

try according to the manufacturer’s standard protocols. Flow cell

one served as an in-line reference to subtract bulk effects and any

non-specific interactions. All samples were diluted in standard

HBS-EP buffer (0.01 M HEPES, pH 7.4, 0.15 M NaCl, 3 mM

EDTA, 0.005% Surfactant P20), which was also used as the

running buffer. For kinetic analyses, the instrument was

maintained at a constant temperature of 21uC and a flow rate of

30 mL/min throughout. A serial concentration series of rMSV,

myostatin, ActRIIB and Fc (used as an internal negative control to

subtract non-specific binding of ActRIIB-Fc chimera, R&D

Systems) proteins was made, ranging from 6.25 nM to 100 nM,

with the exception of the myostatin vs. myostatin analysis, where

the concentration range was 62.5 nM to 1 mM (due to the

significantly lower affinity for that interaction). For each concen-

tration, association was measured over 180 s and dissociation was

measured over a further 300 s. After each sample injection,

protein samples were eluted and the surface regenerated with a

10 mL injection of 0.1 M NaOH.

Myostatin Co-IP
Anti-MSV antibodies and normal rabbit IgG (DAKO), which

served as a negative control, were conjugated to beads as

previously described [20]. The anti-MSV antibodies were tested

for their ability to immunoprecipitate rMSV-V5 in a pilot

experiment. MSVab65 was selected because this antibody showed

the highest efficiency in IP (data not shown). Total muscle protein

was extracted from pooled semitendinosus muscles collected from

three month old sheep (n = 3) using an extraction buffer (50 mM

Tris-HCl pH 7.5, 100 mM NaCl, 0.1% [v/v] TritonX-100,

Complete protease inhibitor [Roche Diagnostics]) on ice. Ten

milliliters of total muscle protein extract was incubated with 100 ml

of MSVab65 beads with and without rMSV-V5, or IgG beads on

a rotating wheel at 4uC for 18 h. Beads were washed with ice cold

extraction buffer four times including a last wash without TritonX-

100. Immunoprecipitated proteins were eluted from beads with

200 ml of 0.1 M Na-citrate pH 2.5, neutralized with NaOH,

mixed with 50 ml of 5 x Laemmli sample buffer and boiled for

5 min. Eluted protein samples were separated on a 15% SDS-

PAGE gel, transferred to a nitrocellulose membrane and probed

with an anti-myostatin antibody (sc-28910, Santa Cruz Biotech-

nology).

CAGA-luciferase Reporter Assays
Myoblasts for the MSV- and Control-line were seeded onto

uncoated 6-well tissue culture plates at a cell density of 10,000

cells/cm2. The following day myoblasts were transiently co-

transfected with 3.0 mg of pGL3-(CAGA)12 firefly and 10 ng of

pRL-TK renilla luciferase reporter plasmids [21] per well using

Lipofectamine 2000 reagent (Invitrogen, CA) according to the

manufacturer’s protocol. Twenty-four hours following transfec-

tion, MSV- and Control-line myoblasts were treated either with

8 nM of recombinant myostatin (R&D Systems, n = 3 for each cell

line) or with the storage buffer of myostatin without myostatin

protein (n = 3 for each cell line) in DMEM medium with 5% FBS

for 24 h. Myoblasts were harvested and luciferase activity was

assayed with a Dual-Luciferase Reporter Assay System (Promega).

Firefly luciferase luminescence values were normalized to renilla

luciferase and expressed as fold induction to vehicle controls of the

Control-line.

Data Analysis
All data were analyzed by ANOVA using GenStat v13 software

(VSN International Ltd). Post-hoc Student’s t-tests were used to

analyze data for the in vitro treatments. Data are presented as the

mean 6 standard error of the mean (S.E.M.).

Results and Discussion

Identification of MSV in Sheep Skeletal Muscle
Northern blot analysis revealed two hybridization signals using a

radio-labeled probe for exons 1 and 2 in sheep skeletal muscle

(Figure 1A). The size of the lower band was consistent with

canonical myostatin mRNA (2.9 kb) but the identity of the higher

molecular weight band (4.5 kb) was unknown. We confirmed that

this unknown mRNA species was transcribed from the myostatin

locus and was not a pseudo-gene using Southern blot analysis (see

Supporting Information Figure S1). Therefore, we hypothesized

that the novel 4.5 kb mRNA was generated by alternative splicing

of the myostatin pre-mRNA. To address this hypothesis, the

cDNA sequence of the 4.5 kb product was determined by reverse

transcription-polymerase chain reaction (RT-PCR), cloning and

sequencing (GenBank accession number: DL465814). An align-

ment of the novel transcript with myostatin revealed a deletion of

1011 nucleotides within exon 3 of myostatin, due to the splicing of

a cryptic third intron (Figure 1B). As a result, the coding sequence

of the receptor binding moiety of myostatin (mature peptide),

including the RSRR proteolytic cleavage site, was missing from

the novel transcript. Instead, a 39 terminal coding sequence was

appended to a truncated 59 propeptide coding sequence to create a

novel ORF (Figure 1B). DNA sequence analysis identified

consensus splicing donor and acceptor sites, a polypirimidine

track and a branch point for the cryptic intron 3 sequence in sheep

and other Cetartiodactyls (see Supporting Information Figure S2).

We termed the new splice variant MSV. MSV mRNA was also

identified in skeletal muscles of cattle using RT-PCR and

sequencing (GenBank accession number: DL465818), but not in

humans or rodents. To our knowledge, this is the first report of

alternative splicing of myostatin in mammals. Thus, alternative

splicing of myostatin pre-mRNA may be an uncommon event, but

it has arisen independently in vertebrate and invertebrate species.

Alternative splicing can also generate unproductive mRNAs

which are targeted for degradation through a mechanism called

nonsense-mediated mRNA decay (NMD). NMD is activated when

the ribosome encounters a premature termination (nonsense)

codon .50 bases upstream of an exon/exon boundary [22]. It is

unlikely that MSV mRNA is subjected to NMD because the

cryptic intron is located in the last canonical exon of the myostatin

gene and the splicing event does not result in a premature

termination codon.

To determine the tissue-specific expression of MSV, we

analyzed different tissues of sheep using RT-PCR. PCR primers

flanking the cryptic intron 3 of MSV co-amplified MSV and

myostatin cDNAs (Figure 1C). MSV was expressed predominantly

in skeletal muscles (biceps femoris, quadriceps and semitendinosus) and

was also present in brain at low abundance, but was undetectable

in other tissues (Figure 1C).

MSV Is a Novel Intra-Genic Regulator of Myostatin
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Figure 1. Alternative splicing of sheep myostatin pre-mRNA and translation of MSV mRNA into protein. (A) A representative Northern
blot identified canonical myostatin (Mstn) and MSV mRNAs in poly(A)+ RNA isolated from sheep skeletal muscle using a radiolabeled probe
complementary to exon 1 & 2 sequence of sheep myostatin (nt 1–621). (B) Schematic representation of alternative splicing of the myostatin gene.
Genomic structure, splicing of canonical myostatin and MSV mRNAs are shown as determined by RT-PCR amplification and sequencing. The sheep
myostatin gene has a cryptic third intron sequence (Int 3, 1011 bp) located 21 bp downstream of the intron 2/exon 3 boundary, thereby removing
the coding sequence of the canonical mature myostatin protein. Alternate splicing creates a new ORF (966 bp) by appending a novel C-terminal
coding sequence (exon 3b, 198 bp) to a truncated propeptide coding sequence of myostatin (exon 1 & 2 and 3a) in the MSV transcript. Open boxes
show 59 and 39 untranslated regions, filled boxes represent translated sequences. Also shown are exons (Ex), introns (Int), translation start (ATG) and
stop (TGA, TAA) sites, and the size of each transcript. Location of the 11 bp deletion in exon 3 identified in Belgian Blue cattle is also indicated. (C)
Tissue-specific mRNA expression of MSV and myostatin was analyzed in biceps femoris (Biceps), quadriceps (Quad.) and semitendinosus (Semit.)
muscles, and heart, liver, brain, kidney, testicle, ovary, gut, skin and aorta tissues of three months old sheep using RT-PCR. Actin was used as a positive
control for each tissue sample. NTC is a no template PCR control. (D) Multiple polypeptide sequence alignment of the predicted C-terminus of MSV in
sheep, cattle, pig and dolphin. A consensus proteolytic cleavage site [(K/R)-(X)n-(K/R)Q where n = 0, 2, 4, 6 and X is any amino acid except cysteine at
aa 271–274] has been identified for precursor convertases. A dotted line indicates the location of the putative cleavage site. The scale shows the
positions of the amino acid residues in the MSV polypeptide sequence. The unshaded background highlights residues that are different from the

MSV Is a Novel Intra-Genic Regulator of Myostatin

PLOS ONE | www.plosone.org 5 December 2013 | Volume 8 | Issue 12 | e81713



MSV is Translated into Protein and is Present in Skeletal
Muscle

The deduced MSV polypeptide contains an N-terminal domain

(aa 1–256) which is identical to the canonical myostatin

propeptide, but has a novel C-terminal sequence of 65 amino

acids (aa 257–321, Figure 1D & 1E, Supporting Information

Figure S3). The presence of the signal peptide (aa 1–24) suggests

that MSV is secreted in a similar manner to that of myostatin

(Figure 1E) [2]. The N-terminal domain of MSV may function in a

similar manner to the propeptide of myostatin by binding to the C-

terminal, receptor binding moiety of myostatin to form an inactive

latent complex [20]. Formation of this latent complex inhibited the

interaction of the myostatin ligand with its cognate receptor,

ActRIIB [23] and over-expression increased the muscle mass of

transgenic mice [24,25].

On close examination of the novel C-terminus of MSV, we

identified an amino acid motif (KERK, aa 273–278), which

contains a consensus site [(K/R)-(X)n-(K/R)Q where n = 0, 2, 4, 6

and X is any amino acid except cysteine] for precursor convertases

that may cleave and liberate the C-terminal peptide of 47 amino

acids (aa 275–321) of MSV (Figure 1D & 1F) [26]. The RERK

and NERK amino acid motifs of cattle, pigs and dolphins also fit

with this consensus rule. Precursor convertases belong to an

evolutionary conserved family of subtilisin-like, calcium-dependent

serine proteinases that cleave pro-protein and pro-hormone

precursors at paired basic amino acids to generate biologically

active peptides [26]. To better understand the secondary structure

of the C-terminus of sheep MSV, we subjected the polypeptide

sequence to an in silico analysis (SSpro, Institute for Genomics and

Bioinformatics, University of California, Irvine, Figure 1D). The

analysis revealed two putative alpha helices in sheep and this was

confirmed for cattle, dolphins and pigs. In support, phylogenetic

analysis of the third exon of myostatin indicates that MSV may

have only emerged in the Cetartiodactyla clade during evolution

and may not be present in other mammals (see Supporting

Information Figure S4) [27].

An MSV-specific antibody (MSVab) recognised recombinant

MSV (rMSV65), which verifies its specificity (Figure 1F). We also

noticed that weaker immunoreactive bands were also detected at

about 24 and 36 kDa which are in agreement with the predicted

sizes of a homo-dimer and a homo-trimer of rMSV65. These

homo-polymers of rMSV65 are likely to be produced by the

oxidation of some of the four cysteine residues which can form

inter-chain disulfide bonds. The predicted sizes of MSV precursor,

propeptide and mature polypeptides are 37, 28.7 and 5.4 kDa,

respectively. MSVab identified two immunoreactive bands in

sheep semitendinosus muscle using Western blotting which accords

with the expected sizes of MSV precursor and propeptide (28.7

and 37 kDa, Fig. 1F). As predicted, the size of immunoreactive

bands in cattle was identical to that of sheep and no immunore-

active bands were detected in mouse and rat muscles in which

MSV is not present (Fig. 1F). We acknowledge that further studies

are required to confirm the proteolytic processing site of the MSV

precursor and the identity of cleavage products.

Over-expression of MSV Stimulates Myoblast
Proliferation Associated with an Increased Nuclear
Abundance of CDK2 and Cyclin E Proteins

To determine the biological function of MSV, we developed a

stable C2C12 myoblast line over-expressing full length sheep MSV

with an empty vector transfected stable control line (Figure 2A).

Proliferation of the MSV-line was greater than that of the Control-

line (at least P,0.01, Figure 2B). While these results confirm that

MSV stimulates myoblast proliferation, they could also be

explained by the propeptide region, which is largely identical

(explained above) to the myostatin propeptide, binding to and

antagonizing the actions of myostatin [20]. To address whether or

not the C-terminus of MSV could stimulate proliferation,

recombinant protein was made for the C-terminal domain of

MSV (rMSV). rMSV stimulated the proliferation of both murine

C2C12 and sheep primary myoblasts in a dose-dependent manner

(P,0.001, Figure 2C & 2D, respectively), which confirms that the

C-terminal domain of MSV is bioactive. However, the relative

contribution and roles of the N- and C-terminal domains to the

biological function of MSV are unknown at present.

In support for a role of MSV in myoblast proliferation, the

protein abundance of CDK2 and Cyclin E, key regulators of G1-S

checkpoint of cell cycle, were increased in nuclear protein extracts

from the MSV-line compared to that of the Control-line (P,0.05,

Figure 2E & 2F). These observations are consistent with stimulated

cell replication and raise the possibility that MSV may antagonize

endogenous myostatin, which blocks the cell cycle at the G1-S

checkpoint and down-regulates CDK2 [28,29].

Over-expression of MSV Stimulates the Expression of
Myogenic Regulatory Factors

To better understand the effect of MSV on myogenesis, we

measured the protein abundance of key muscle-specific transcrip-

tion factors (Pax7, Myf5, MyoD, MRF4, Myogenin and MEF2) in

the MSV- and Control-lines during proliferation. Endogenous

over-expression of MSV increased the abundance of MyoD

(P,0.05), Myogenin (P,0.05) and MRF4 (P = 0.058), but Pax7,

Myf5 and MEF2 remained unchanged (Figure 2G). These data

suggest that MSV functions, at least in part, via up-regulating

MyoD, Myogenin and MRF4, which are critical transcription

factors required for the execution of the myogenic program. The

up-regulation of MyoD and myogenin by MSV is consistent with

the blockade of endogenous myostatin, which inhibits myogenesis

through the down-regulation of these transcription factors

[28,29,30].

MSV Binds to Myostatin
The observation that MSV stimulated the proliferation of

myoblasts prompted us to investigate if MSV directly interacts

with myostatin. We determined if an MSV antibody was able to

co-immunoprecipitate (Co-IP) mature myostatin from protein

extracts isolated from sheep skeletal muscle. A band corresponding

to the 26 kDa mature myostatin dimer protein was detected using

beads coated with MSV antibody, while no immunoreactive bands

were evident when using control IgG beads (Figure 3A). The

consensus sequence. An in-silico predicted secondary structure of mature sheep MSV is also shown. (E) Schematic representation of the known and
proposed proteolytic processing of canonical myostatin and MSV precursors, respectively. The location of the secretion signal peptide and the C-
terminal cleavage sites are indicated. Grey filling shows the novel C-terminus of the MSV precursor. Black bars denote the location of polypeptide
sequences used to raise MSV-specific polyclonal antibodies (MSVab and MSVab65). (F) Detection of MSV-immunoreactive proteins in semitendinosus
muscles of sheep and cattle and its absence in gastrocnemius muscles of mouse and rat (20 mg of total protein per lane) using an anti-MSVab in
Western immunoblotting. Recombinant peptide (Recomb.) corresponds to a polypeptide for the C-terminal 65 amino acids (11.9 kDa) of sheep MSV.
Molecular weights of a protein marker are also indicated.
doi:10.1371/journal.pone.0081713.g001
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Figure 2. Functional analysis of MSV. (A) Detection of full length MSV mRNA in a stable MSV over-expressing (MSV-line) and an empty vector
stably transfected C2C12 myoblast line (Control-line) using RT-PCR. GAPDH was used as a positive control for each sample. NTC is a no template PCR
control. (B) Effect of endogenous over-expression of MSV on the proliferation of C2C12 myoblasts. Proliferation of the MSV- and Control-line was
determined at 0, 24, 48 and 72 h using the WST-1 cell proliferation reagent (**P,0.01, ***P,0.001, n = 8). (C) Effect of rMSV on the proliferation of
C2C12 myoblasts. C2C12 myoblasts were treated with increasing concentrations of rMSV for 48 h, and cell replication was determined using the WST-1
cell proliferation reagent (*P,0.05, **P,0.01, ***P,0.001, n = 8). (D) Effect of rMSV on the proliferation of sheep myoblasts. Sheep myoblasts were
treated with increasing concentrations of rMSV for 48 h, and cell replication was determined using the WST-1 cell proliferation reagent (***P,0.001,
n = 8). (E) The abundance of CDK2 protein in nuclear and cytoplasmic fractions of the MSV- and Control-line during proliferation (**P,0.01, n = 3). The
abundance of actin and SP-1 proteins was used as cytoplasmic and nuclear loading controls, respectively. (F) The abundance of Cyclin E protein in
nuclear and cytoplasmic fractions of the MSV- and Control-line during proliferation (**P,0.01, **P,0.001, n = 3). The abundance of actin and SP-1
proteins was used as cytoplasmic and nuclear loading controls, respectively. (G) The abundance of Myf5, MyoD, Myogenin, MRF4, Pax7 and MEF2
proteins was determined using Western immunoblotting in proliferating myoblasts of the MSV- and Control-line (*P,0.05, n = 3).
doi:10.1371/journal.pone.0081713.g002
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immunointensity of the 26 kDa mature myostatin band increased

in Co-IP when the muscle protein extract was spiked with rMSV-

V5 protein, which is consistent with MSV acting as a binding

protein to pull down bound myostatin (Figure 3A). Furthermore, a

faint 13 kDa band was also detected in Co-IP but not in skeletal

muscle which may indicate the pull down of a low abundance

monomeric form of mature myostatin protein, the expected size of

which is 12.5 kDa (Figure 3A) [1]. These observations are in

agreement with the high sequence identity between the N-terminal

domain of MSV and the propeptide sequence of myostatin, which

binds to myostatin [20,23,31]. However, the binding affinity of the

novel C-terminal domain of MSV to myostatin remained unclear.

To confirm a possible interaction, we employed a surface plasmon

resonance assay. As a positive control, the binding of myostatin to

ActRIIB was assessed. Myostatin bound to ActRIIB with high

affinity as expected (Table 2). MSV peptide bound to myostatin

protein with higher affinity than myostatin bound to itself (Table 2,

Figure 3B). The calculated Kd for the myostatin/MSV interaction

is comparable to the Kd of myostatin/propeptide, myostatin/

follistatin or myostatin/FLRG interaction reported recently

[32,33]. This binding affinity suggests that the C-terminal domain

of MSV directly interacts with myostatin, although as discussed

earlier, the N-terminal domain of MSV is also likely to bind

myostatin due to the similarity in sequence to the propeptide of

myostatin. Therefore, MSV is a potential binding protein and

antagonist of myostatin. If this is the case, MSV should block the

molecular signalling of myostatin.

MSV Blocks Canonical Smad2/3-mediated Signalling of
Myostatin

Endogenous over-expression of MSV inhibited the myostatin-

induced increase of the ratio of phosphorylated to total Smad2/

3(S423/425) in nuclear protein extracts of C2C12 myoblasts, while

myostatin treatment increased that ratio in the Control-line

(Figure 3C). No change was detected for the ratio of phosphor-

ylated to total Smad2/3(S423/425) in the cytoplasmic protein

extracts (Figure 3D). In support, myostatin-induced stimulation

of a CAGA-luciferase reporter was antagonized in C2C12

myoblasts over-expressing MSV (MSV-line) to that of the

Control-line suggesting that MSV can block the canonical

signaling pathway of myostatin (Fig. 3E). We speculate that the

partial blockade of the myostatin-induced stimulation of a CAGA-

luciferase reporter is attributable to the expression level of MSV in

the myoblast line. These results confirm that MSV protein

functions as an antagonist of myostatin signalling.

Expression of MSV Protein is Developmentally Regulated
in Post-natal Muscles of Sheep

To further explore the role of MSV in post-natal growth of

skeletal muscles, we measured the amount of MSV and myostatin

mRNA and protein in semitendinosus muscles of male sheep from 1

to 18 months of age (Figure 3F & 3G). Concentrations of MSV

mRNA did not show marked changes over time. In contrast, the

concentration of myostatin transcripts increased in muscle from 1

to 9 months (P,0.05), then declined at 12 months of age (P,0.05),

a point in development at which sheep reach adult size (Figure 3F

and see Supporting Information Figs. S5A & S5B). The

abundance of MSV precursor protein (37 kDa) was maximal at

one month after birth and steadily declined to 12 months and

slightly increased thereafter (P,0.001, Figure 3G). In contrast, the

abundance of mature myostatin protein (26 kDa) did not alter

markedly from 1 to 18 months of age (Figure 3G). We speculate

that the greater abundance of MSV to that of mature myostatin

protein may support the rapid growth of postnatal skeletal muscles

by binding to and antagonizing the canonical signaling of

myostatin thereby aiding hypertrophy of muscle fibres.

Conclusions

In summary, we have identified a novel splice variant of

myostatin in mammals. We propose a model wherein MSV

protein binds to canonical myostatin which antagonizes Smad2/3-

dependent myostatin signaling to increase the nuclear abundance

of CDK2/Cyclin E complex (Figure 3H). An increase in the

abundance of this complex promotes the G1-S phase transition of

cells in the cell cycle resulting in enhanced myoblast proliferation.

Our in vitro over-expression model indicated that beyond a positive

effect of MSV on myoblast proliferation, MSV increased the

protein abundance of key myogenic factors such as MyoD,

Myogenin and MRF4 to promote myogenesis. Furthermore, the

results of the Co-IP and surface plasmon resonance assay

demonstrated that MSV binds myostatin and acts as a binding

protein. Finally, MSV over-expression antagonized the canonical

signalling of myostatin which suggests that MSV has the potential

to regulate the bioactivity and/or bioavailability of myostatin to

control muscle mass.

To the best of our knowledge, MSV represents a unique

example of intra-genic regulation in biology where a splice variant

is produced to directly control the bioactivity of the canonical gene

product. This intriguing mechanism provides a direct way to

influence the bioavailability of myostatin rather than relying on

paracrine or endocrine control through the production of

interacting proteins such as follistatin or FLRG [20,24]. It would

appear that there are numerous strategies to regulate myostatin

and that some are species-specific. For example, male rodents have

less mature myostatin than females and this was postulated to aid

in development of sexual dimorphic growth of skeletal muscles

[34]. However, we did not find a sexually dimorphic difference in

the abundance of mature myostatin in skeletal muscles of sheep or

in biopsy samples obtained from human subjects [35]. Therefore,

we postulate that MSV has emerged through natural selection as a

novel means to regulate the activity of myostatin in the

Cetartiodactyla clade of mammals.

Supporting Information

Figure S1 Southern blot analysis of the sheep myostatin
locus. Fifteen micrograms of sheep genomic DNA was digested

with restriction enzymes Bcl I, EcoR I or Hinc II, separated on a

1% agarose gel and transferred to a positively charged nylon

membrane. The membrane was probed with a32P-dCTP labelled

DNA probe homologous to exon 1 and 2 sequences of the sheep

myostatin gene (nt 1-621, GenBank accession number:

AF019622). Autoradiography shows positive hybridisation signals

consistent with the predicted sizes of the DNA fragments (BclI

3004 and 3356 bp, EcoRI 990 and 5227 bp, HincII 5654 bp)

determined by restriction site analysis of the sheep myostatin gene

(GenBank accession number: DQ530260) using the Vector NTI

software (Invitrogen). These results confirmed that there are no

pseudo-genes for myostatin in the sheep genome.

(EPS)

Figure S2 Alignment of the exon 3 DNA sequences of
myostatin for cattle, dolphin, sheep and pigs. Accession

numbers are: AF320998 (GenBank) for cattle,

ENSTTRG00000013877 (Ensembl) for dolphin, DQ530260

(GenBank) for sheep and AY208121 (GenBank) for pigs. Shown

are the canonical splicing donor (GT) and acceptor (AG) sites,
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Figure 3. MSV binds to and antagonizes the canonical signaling of myostatin. (A) Co-immunoprecipitation (Co-IP) of myostatin protein was
performed with an MSV-specific rabbit polyclonal antibody (MSVab) with normal rabbit IgG serving as a control (IgG) from a sheep muscle protein
extract (Muscle). MSVab Co-IP was carried out with or without rMSV-V5 protein (rMSV). Protein samples were separated on a 15% SDS- PAGE, transferred
to a nitrocellulose membrane and probed with an anti-myostatin antibody. Myostatin protein bands (Mstn) at 13 and 26 kDa are indicated with arrows.
(B) Characterization of the interaction of mature MSV with mature myostatin using surface plasmon resonance assay. A representative sensorgram is
shown for rMSV (6.25–100 nM) binding to and dissociating from myostatin immobilized on a sensorchip. For each concentration, association and
dissociation were measured in duplicate and the response units (RU) are plotted against time. (C) Ratios of phosphorylated (Ser423/425) to total Smad2/3
protein abundance in nuclear protein fractions of proliferating myoblasts of the MSV-line and Control-line treated with or without myostatin (8 nM,
n = 3). Unlike letters indicate significance (P,0.05). (D) Ratios of phosphorylated (Ser423/425) to total Smad2/3 protein abundance in cytoplasmic protein
fractions of proliferating myoblasts of the MSV-line and Control-line treated with or without myostatin (8 nM, n = 3). (E) CAGA-luciferase reporter assay,
wherein the MSV-line and Control-line were treated with or without myostatin (8 nM) for 24 hours (n = 3). Firefly luciferase luminescence values were
normalized to renilla luciferase internal control and expressed as fold induction to vehicle controls of the Control-line. (F) Arbitrary concentrations (mean
6 S.E.M.) of MSV and myostatin mRNAs in semitendinosus muscle of male sheep at 1, 3, 6, 9, 12 and 18 months of age (n = 6 per age) determined using
qPCR. (G) The abundance (mean 6 S.E.M.) of MSV (37 kDa) and myostatin (26 kDa) proteins during post-natal muscle growth in semitendinosus muscle
of male sheep determined using Western immunoblotting at 1, 3, 6, 9, 12 and 18 months of age (n = 6 per age). a-tubulin (55 kDa) was used to assess the
uniformity of loading. (H) A proposed model for the regulation of myoblast proliferation by MSV and myostatin (Mstn).
doi:10.1371/journal.pone.0081713.g003
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polypirimidine track (poly(Y)) and branch point (YNYTRAY,

where Y is C or T; N is any; R is A or G nucleotides) of a cryptic

intron 3 sequence. The unshaded background indicates nucleo-

tides that are different from the consensus sequence. Numbering

starts at the first nucleotide of exon 3 of canonical myostatin.

(EPS)

Figure S3 Alignment of the polypeptide sequence of
myostatin (Mstn) and MSV precursors in sheep. The

proteolytic processing sites for furin (RSRR) and the putative pre-

protein convertases (KERK) are typed in bold. The divergence of

MSV from myostatin and the N-terminal end of the putative

mature MSV peptide are indicated with arrows.

(EPS)

Figure S4 A phylogenetic topology plot showing the
bootstrap consensus tree for a 1500 bp length of
myostatin sequence from the start of exon 3 for all
mammalian species for which there was complete
sequence available in Ensembl (http://www.ensembl.org).
Numbers above each branch indicate the percent confidence for

the division. Sequences were aligned using the ClustalW

procedure and a phylogenetic tree constructed using the

Maximum Composite Likelihood model in the Minimum

Evolution method of MEGA version4 software (http://www.

megasoftware.net). The branch point, donor and acceptor motifs

are not present for splicing in marsupials and Xenarthrans, which

suggests that MSV arose in placental mammals in the

Boreoeutherian clade. In this group, two major clades are

apparent based on the molecular classification system: Cetartio-

dactyla in which the splicing and translation of MSV have been

confirmed, and in Primates where a putative single alpha helix of

mature MSV is predicted by in silico analysis but no transcript has

been confirmed. There is no discrepancy in the currently

understood relationship among placental mammals using this

region of myostatin to construct phylogeny (26). Incomplete

splicing motifs (dogs, shrews, rat), or indels (horses, megabats,

mice) either change the ORF (megabats), or introduce premature

stop codons (horses, mice). This suggests that the splicing event

became fixed in Cetartiodactyls (A), and may be present in

Primates (B), but was lost in other branches. The gradient in the

shading reflects this postulate. In support, fish, lizards, birds, frogs

were also compared, but the splicing motifs were not present and,

therefore, the data were excluded from this tree. The exception is

alpacas where a single nucleotide deletion is present in the C-

terminal coding sequence of MSV, which leads to a premature

stop codon.

(EPS)

Figure S5 Mean body mass ± S.E.M. (A) and semiten-
dinosus muscle mass ± S.E.M. (B) at 1, 3, 6, 9, 12 and 18
months of age in male Romney sheep (n = 6).
(EPS)
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