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Abstract If the source of the slow solar wind is a web comprising pseudostreamer belts connected to the
streamer belt, then one expects the properties of interplanetary pseudostreamer flows to be similar to those
of streamer flows. That expectation is tested with data from the slow wind preceding stream interfaces in
stream interaction regions at 1 AU, where the interfaces separate what was originally slow and fast wind.
Pseudostreamer cases were separated from streamer cases with the aid of the streamer identification tool
developed by Owens et al. (2013), and superposed epoch analysis was performed to compare the patterns of
a number of plasma and composition parameters. The results reveal that pseudostreamer flows have all
of the slow-wind characteristics of streamer flows except that they are slightly less pronounced than streamer
characteristics when compared to fast wind. The results are consistent with the concept that the solar wind
displays a continuum of dynamic states rather than only slow and fast states.

1. Introduction

Recent studies indicate that slow solar wind comes from a web of connected streamer and pseudostreamer
belts [Antiochos et al., 2011; Riley and Luhmann, 2012; Crooker et al., 2012], where the streamer belt encases the
heliospheric current sheet (HCS) and the pseudostreamer belts lack current sheets. To analyze the interplanetary
composition of this slow wind, Crooker and McPherron [2012] used data from the ACE spacecraft at 1AU to
perform a superposed epoch analysis of passage through 258 stream interfaces, which mark the boundaries
between what was originally fast and slow flow. Stream interfaces presumably map back to the vicinity of the
coronal hole boundary on the Sun [e.g., Crooker et al., 2010]. Consistent with earlier studies [e.g., Geiss et al., 1995;
Wimmer-Schweingruber et al., 1997; Fisk et al., 1998], Crooker and McPherron [2012] concluded that all
slow wind has ionic and elemental composition characteristic of the streamer belt (the “streamer stalk”
wind of Zhao and Fisk [2011]). In particular, the result implied that slow wind from pseudostreamers, which
can be located quite far from the HCS [Antiochos et al., 2012; Crooker et al., 2012], has the same composition
as slow wind from the streamer belt. To test this implication directly, Crooker and McPherron [2012] performed
a limited superposed epoch analysis on a select subset of stream interfaces separated according to whether
the slow wind had a streamer (14 cases) or pseudostreamer (11 cases) source. They found that pseudostreamer
flow had slightly higher speeds and lower O7+/O6+ ratios than streamer flow, but the O7+/O6+ ratio was high
enough to meet the criterion for slow flow determined by Zhao et al. [2009].

This report expands upon that limited study by overcoming the difficulty of identifying pseudostreamer
flows at interfaces. From interplanetary data alone, one can only identify pseudostreamer cases as those that
lack a magnetic polarity reversal on the slow-flow side of the interface, since pseudostreamers contain no
current sheet. The problemwith this criterion is twofold. First, the criterion does not distinguish pseudostreamer
cases from streamer cases in which the spacecraft skims the streamer belt without passing through it and
thus does not encounter the polarity reversal signaling the HCS. Second, even if the spacecraft passes
through the streamer belt, if it does so obliquely, the interface might trail so far behind the HCS crossing
that it becomes unclear whether the two features are associated with each other. For this study we use a
pseudostreamer identification method developed by Owens et al. [2013] that avoids these ambiguities and
allows us to quadruple the number of pseudostreamer cases analyzed, thus improving the statistical reliability
of the results. Cumulative distribution functions (as opposed to the simple averages in the limited study)
are presented for the full complement of composition and plasma parameters, separated according to
pseudostreamer or streamer source.
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2. Analysis

To compare the properties of slow solar wind from
streamers with slow wind from pseudostreamers,
we began with the list of 258 stream interfaces
provided by Crooker and McPherron [2012]. These
span the period from March 1998 through
December 2009 andwere selected for their robust
signatures of azimuthal velocity shear arising from
the pressure ridge created by the fast wind
running into the slow wind. The list was then
reduced to those 128 cases that occurred during
69 Carrington Rotations (CRs) for which the
uncertainty in the streamer identification
parameter dS was reasonably low, following
Owens et al. [2013, 2014].

The streamer identification parameter dS is
illustrated in Figure 1. It is the distance between
the photospheric foot points of evenly spaced

field lines on the surface of a potential field source surface model. Small values of dS indicate mapping to
coronal holes, and large values indicate mapping to the base of either streamers or pseudostreamers. These
are distinguished from each other by the presence or absence of a change in polarity signaling a current
sheet. Streamers separate the polar coronal holes of opposite polarity and encase the heliospheric current
sheet. Sometimes they are called “dipolar streamers,” to distinguish them from “pseudostreamers,” the latter
named by Wang et al. [2007], which separate coronal holes of like polarity and contain no current sheet.

Figure 2a shows a plot of the time variation of ln dS in the ecliptic plane at the Sun’s central meridian during
CR2007 in 2003. The dS values, in arbitrary units, were calculated from the two-dimensional formulation used

Figure 1. Schematic diagram illustrating the streamer identifi-
cation parameter dS, the distance between the foot points of
evenly spaced field lines on the source surface mapped down
to the Sun’s surface. Large values indicate streamers encasing
the heliospheric current sheet or pseudostreamers with no
current sheet, and small values indicate coronal holes (CH).

Figure 2. Analysis of the solar source of slow wind preceding two stream interfaces, marked by vertical dashed lines,
observed by ACE at 1 AU on 9 September (day of year (DOY) 252) and 17 September (DOY 260) in 2003, during CR2007.
(a) Time variations of the natural logarithm of the streamer identification parameter dS and of the magnetic polarity (thin
line) at central meridian on the Sun in the ecliptic plane, calculated from a potential field source surface model. Stream
interface locations were ballistically mapped back to the Sun from 1AU. The first falls in the middle of a toward sector,
implying that the peaks in ln dS there must indicate a pseudostreamer source. The second follows a sector boundary,
implying that the peak in ln dS preceding it indicates a streamer source. (b) Time variations of solar wind speed V and
longitude angleϕB of the magnetic field in the ecliptic plane at 1 AU. The time scale is shifted by 3 days to account for solar
wind travel time to 1AU.
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by Owens et al. [2014], an improvement over the one-dimensional version first used by Owens et al. [2013].
The horizontal dashed line at ln dS=�3 marks the threshold above which peaks in ln dS locate streamers
and pseudostreamers. The peaks typically lie between �2 and +0.5, while elsewhere the values are
typically�5. Thus, the typical distance dS between field line foot points in streamers or pseudostreamers is
on the order of 100 times the distance between foot points in coronal holes (much larger than illustrated
in Figure 1).

Of particular interest in Figure 2 are the peaks immediately preceding the two vertical dashed lines
marking the locations of two of the selected stream interfaces, which were ballistically mapped back to the
Sun from 1AU. These peaks lie on the slow-wind side of the interfaces. To test whether these peaks
represent streamers or pseudostreamers, we check to see if they align with a magnetic polarity change,
where polarity is indicated by the thin line below the ln dS curve. The double peak on days 247–248,
preceding the first dashed line, falls in the middle of the sector with polarity pointing toward the Sun.
We thus classify this case as a pseudostreamer source (although the double peak suggests an even more
complicated structure). The peak on day 255, preceding the second interface, marks a streamer source
because it clearly aligns with a polarity change.

The plots in Figure 2b provide context for the plots in Figure 2a. They show time variations of solar wind
speed V and magnetic longitude angle ϕB in the ecliptic plane at 1 AU. There are two high-speed streams per
sector rather than the generic single stream per sector [cf. Crooker et al., 1996], consistent with mid-sector
slow wind from pseudostreamers [cf. Neugebauer et al., 2004]. The time scale is shifted by 3 days relative to
Figure 2a to roughly account for solar wind travel time to 1AU. The vertical dashed lines marking the two
interfaces of interest fall on the leading edges of high-speed streams, as expected. The preceding slow wind
contains a polarity reversal in the second case but not in the first, consistent with streamer and
pseudostreamer sources, respectively.

In the cases shown in Figure 2, one would correctly deduce the sources from interplanetary data alone.
This is not true for the cases shown in Figure 3, where the dS parameter plays a decisive role. Like
Figure 2a, Figure 3a shows the first of two mapped interfaces falling near the middle of a toward sector,
but in this case there is no preceding peak in ln dS that lacks a polarity reversal. The nearest peaks, on days
207–208 and 224, occur at polarity reversals marking the streamers at either end of the toward sector.
With no ln dS peak in the middle of the sector, we must conclude that the slow wind preceding the
interface did not arise from a pseudostreamer. Since the only other source of slow wind is a streamer, the

Figure 3. Analysis of the solar source of slow wind preceding two stream interfaces observed by ACE at 1 AU on 9 August
(DOY 222) and 18 August (DOY 231) in 2008, during CR 2073, in the same format as Figure 2. Although the first
interface falls in the middle of a toward sector, as in Figure 2a, in this case there is no preceding peak in ln dS
indicating a pseudostreamer source. Instead, the source of the slow wind must have been the preceding streamer
traversed obliquely.
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slow wind preceding the interface must have come from the preceding streamer on days 207–208,
which reached central meridian 10 days earlier. This long period of time implies oblique passage through
the streamer.

The interplanetary data in Figure 3b support the idea of oblique passage. The slow wind preceding the
first interface extends all the way back to the polarity reversal on day 212, corresponding to the streamer on
the Sun spanning days 207–208. One might ask why ln dS in Figure 3a does not show a pattern of extended
elevated values corresponding to the extended slow speed in Figure 3b. A look at Figure 1 helps explain
this lack. There, dS has essentially two values—small and large. There are no boundary effects like the ones
that are assumed to give rise to slow wind [e.g., Riley and Luhmann, 2012]. The ln dS plot in Figure 3a does

Figure 4. Cumulative distribution functions for plasma parameters across stream interfaces bounding slow flow from streamers
compared to pseudostreamers. The heavy lines mark the quartiles of the distributions. The 50% quartile running between
the blue and green bands traces the median values.
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hint at oblique passage, however, in the form of the flat-topped peaks. These successive high values indicate
skimming near the heart of the streamer belt.

The long gap between the polarity reversal and the first interface in Figure 3 would preclude identification
of this event as a streamer case in any automated scheme trained to test whether an interface has an
associated polarity reversal using only interplanetary data, since the gap betweenmost interfaces and their
associated polarity reversals is usually shorter than a day [Gosling et al., 1978]. The second interface in
Figure 3 more nearly fits the usual streamer pattern. Although the gap between the mapped interface and
the polarity reversal in Figure 3a is over 2 days long, in Figure 3b, at 1 AU, the gap is roughly 1 day long.
Thus, both interfaces in Figure 3 are classified as streamer cases. Consistent with this view is the fact that
Figure 3b displays only one stream per sector, in contrast to the two per sector in Figure 2b, where a
pseudostreamer brought slow wind mid-sector to create those two streams.

Examining the streamer identification parameter and the interplanetary data for each of the selected 128
stream interface cases, as illustrated in Figures 2 and 3, we found that 84 met the criteria of a streamer case
and 44met the criteria of a pseudostreamer case. Superposed epoch analysis was then performed separately on
the two different kinds of cases. Figures 4 and 5 present the results in the form of cumulative distribution
functions (cdfs).

Figure 4 displays cdfs of the variations of plasma parameters across the stream interfaces, from 5days before
to 5 days after the crossing at zero epoch. The slow-wind side of the interfaces lies in the negative epoch
range, as is clear from the speed cdfs in the top row. They indicate that the slowest winds occurred during the

Figure 5. Cumulative distribution functions for ionic and elemental composition parameters across stream interfaces in the
format of Figure 4.
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2 days preceding the interface (�2 to 0 epoch time), where the median (50%) speed contour dips down to
about 350 km/s in streamer flow compared to about 375 km/s in pseudostreamer flow, consistent with
the comparison in Crooker and McPherron [2012]. Also, apparent from �2 to 0 epoch is the larger spread of
speed values for pseudostreamer flow, indicating greater variability compared to streamer flow. Comparison
of the density and proton temperature cdfs in the middle panels shows similar findings from �2 to 0 epoch
time. The expected elevated density and depressed temperatures [e.g., Gosling et al., 1978] are slightly
more pronounced for streamer flow compared to pseudostreamer flow, consistent with the limited findings
of Neugebauer et al. [2004], and the variability for pseudostreamer flow is slightly higher. The cdfs for
magnetic field magnitude in the bottom panel show a stronger peak at the interface for streamers compared
to pseudostreamers, consistent with the stronger speed gradient across the interface bounding streamers,
which results in stronger compression.

Similar to Figure 4, Figure 5 displays cdfs of the variations of composition parameters across the interfaces.
From �2 to 0 epoch time, both the ionic composition ratios of O7+/O6+ and C6+/C5+ and the elemental
composition ratio of Fe/O are elevated, as expected [e.g., Wimmer-Schweingruber et al., 1997; Crooker and
McPherron, 2012], with slightly higher ratios for streamer flow compared to pseudostreamer flow, consistent
with the case studies ofWang et al. [2012]. Moreover, the broad width of the regions of characteristic slow flow
in both streamers and pseudostreamers in Figures 4 and 5 suggests that the source mechanism proposed by
Wang et al. [2012], that is, a large expansion factor within coronal hole boundaries [e.g., Wang and Sheeley,
1990], may contribute to the slow flows in addition to the competing source mechanism of opening large flux
loops through interchange reconnection [e.g., Fisk et al., 1998; Antiochos et al., 2011].

3. Discussion and Conclusions

The results in Figures 4 and 5 clearly show that pseudostreamer flows have the same characteristics as
streamer flow, that is, low speed and proton temperature and high density and composition ratio, but that
these characteristics are slightly less pronounced in pseudostreamers. These findings raise two related
issues, discussed below, regarding the speed of pseudostreamer flows and the concept of two kinds of solar
wind—slow and fast.

One might argue that the slow speeds of pseudostreamer flows identified in this study were essentially
guaranteed by the selection process, since the wind speed downstream of the impinging fast flow behind the
interface is always slow. By definition, interfaces are boundaries between fast and slow flow. It may well
be that some pseudostreamer flows not included in this study are fast, as first predicted byWang et al. [2007].
Occasionally, one can see high-speed segments in what otherwise is a slow-wind web on synoptic maps of
solar wind speed predicted by the Wang-Sheeley-Arge model [Arge et al., 2004], but these appear to be
uncommon. We conclude that the slow flows analyzed in this paper are typical of pseudostreamer flows.

On the other hand, the finding that in every way the pseudostreamer flow has less pronounced characteristics
than streamer flow supports the idea that the solar wind comprises a continuum of dynamic states, as
proposed by Zurbuchen et al. [2002] and inherent in the correlation between solar wind speed and O7+/O6+

[Fisk, 2003; Gloeckler et al., 2003]. The continuum stretches from the fastest winds from coronal holes to the
slowest winds from streamers. Pseudostreamer flow can be said to represent the first step up from
streamer flow in this continuum. The concept that solar wind is either slow or fast comes from the fact that
much of the time spacecraft are sampling wind near the extremes of the continuum. Only since the
beginning of the declining phase of solar cycle 23, in 2003, were pseudostreamer flows prevalent enough
to be identified as solar wind at a different position on the continuum.
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