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Summary 19 

Reasons for performing study:  Metabonomics is emerging as a powerful tool for disease 20 

screening and investigating mammalian metabolism. This study aims to create a metabolic 21 
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framework by producing a preliminary reference guide for the normal equine metabolic 22 

milieu. 23 

Objectives: To metabolically profile plasma, urine and faecal water from healthy racehorses 24 

using high resolution 1H-NMR spectroscopy and to provide a list of dominant metabolites 25 

present in each biofluid for the benefit of future research in this area. 26 

Study design: This study was performed using seven Thoroughbreds in race training at a 27 

single time-point. Urine and faecal samples were collected non-invasively and plasma was 28 

obtained from samples taken for routine clinical chemistry purposes. 29 

Methods: Biofluids were analysed using 1H-NMR spectroscopy. Metabolite assignment was 30 

achieved via a range of 1D and 2D experiments.  31 

Results: A total of 102 metabolites were assigned across the three biological matrices. A core 32 

metabonome of 14 metabolites was ubiquitous across all biofluids. All biological matrices 33 

provided a unique window on different aspects of systematic metabolism. Urine was the most 34 

populated metabolite matrix with 65 identified metabolites, 39 of which were unique to this 35 

biological compartment.  A number of these were related to gut microbial host co-36 

metabolism. Faecal samples were the most metabolically variable between animals; acetate 37 

was responsible for the majority (28%) of this variation. Short chain fatty acids were the 38 

predominant features identified within this biofluid by 1H-NMR spectroscopy. 39 

Conclusions: Metabonomics provides a platform for investigating complex and dynamic 40 

interactions between the host and its consortium of gut microbes and has the potential to 41 

uncover markers for health and disease in a variety of biofluids.  Inherent variation in faecal 42 

extracts along with the relative abundance of microbial-mammalian metabolites in urine and 43 

invasive nature of plasma sampling, infers that urine is the most appropriate biofluid for the 44 

purposes of metabonomic analysis.    45 A
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 47 

Introduction  48 

Metabonomics is a powerful systems biology approach that aims to simultaneously measure 49 

all the low molecular weight metabolites present in a biofluid or tissue. This approach to 50 

global untargeted characterisation of the metabolic phenotype allows the study of 51 

multidimensional biochemical responses of complex biological systems to genetic or 52 

environmental stimuli [1]. Metabolic profiling captures information from both intrinsic 53 

(genetics, protein expression) and environmental inputs (diet, gut microbiota), providing 54 

holistic information on the global system. This strategy has proven highly effective for 55 

unravelling the complex metabolic interactions between the mammalian host and its resident 56 

gut microbiota. Metabonomics is a tool of particular interest to equine researchers given the 57 

vast impact of the equine gut microbiome on the bioavailability of food, medication and 58 

energy.  Metabonomics,  along  with  other   ‘omic’   technologies such as genomics, proteomics 59 

and transcriptomics is increasingly showing potential in clinical settings as both a screening 60 

tool and a means for mechanistic elucidation of disease pathways [2-4].  61 

To date, there are fewer metabonomic studies exploring veterinary concerns than there are 62 

human and rodent studies. The majority of mammalian work has concentrated on laboratory 63 

animals [5-7] and animal models with high translatability to human health such as the pig [8; 64 

9]. Less attention has been given to herbivorous hind-gut fermenters and the majority of 65 

equine metabolic work concentrates on drug detection within the racing industry [10; 11]. 66 

Equine-specific metabonomic studies include the use of the horse as a model for the 67 

metabolic response to a dextrose challenge in type-2 diabetes [12] and a laminitic plasma 68 

NMR study using an oligofructose overload model [13]. Other equine studies include 69 

metabolic analysis of biofluids in response to age [14] and osteochondrosis [15].  Pappalardo 70 A
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et al. have explored metabolic variation in association with breed of horse and importantly 71 

revealed significant differences that are likely to be attributed to differing growth rates and 72 

protein utilisation [16]. These bodies of equine metabonomic work address the enormous 73 

potential for exploring normal equine physiology and pathology-based variation. However, 74 

there is still a paucity of baseline data on the metabolic phenotype of horses and this study 75 

serves as a reference tool for the Thoroughbred racehorse for clinicians wishing to use 76 

metabonomic technologies to complement their research in either a diagnostic or mechanistic 77 

capacity.  78 

Two major analytical platforms are commonly used for metabolic profiling, nuclear magnetic 79 

resonance (NMR) spectroscopy and mass spectrometry (MS). These approaches 80 

simultaneously capture quantitative information from a range of low molecular weight 81 

metabolites across various different sample types. In metabonomic studies, NMR and MS are 82 

used both independently and in tandem to achieve an in-depth coverage of the metabolome. 83 

In this study we comprehensively characterise the dominant features within the urinary, 84 

plasma and faecal metabolomes of Thoroughbred racehorses using 1H-NMR spectroscopy, as 85 

this provides a reliable, reproducible [17] screening tool and is non-destructive of samples. 86 

Thoroughbred racehorses represent a highly uniform equine population both genetically and 87 

environmentally. Normal clinical chemistry parameters exist for this equine subtype to assist 88 

racing industry standards and this study will build upon data already in the literature and in 89 

clinical use.  90 

 91 

Materials and methods 92 

 93 

Sample collection 94 A
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From a large–scale study of urinary metabonomics of in-training Thoroughbred across a 95 

number of yards, 7 animals were selected at random to provide a baseline metabolic reference 96 

point for future comparison. Due to ethical constraints of invasive sampling and logistical 97 

limitations of simultaneous collection of all 3 biofluids, 7 animals were selected as 98 

representative of a wider population of animals. Early morning free-catch urine and faecal 99 

samples were collected into sterile plastic containers and snap-frozen in liquid nitrogen 100 

within 2 h.  Plasma was obtained from excess clinical samples. Plasma samples were 101 

collected into heparinised tubes, spun down to obtain the plasma fraction and snap-frozen 102 

within 2 h of collection.  All samples were then stored at -80°C prior to NMR analysis. 103 

Comprehensive metadata for each horse is shown in Supplementary Item 1 and samples were 104 

consistently taken before a morning concentrate feed. 105 

 106 

Sample preparation 107 

Plasma and urine sample preparation was carried out as described by Beckonert et al. 108 

2007[18]. 109 

 110 

Faecal samples (100 mg) were combined with 1.7 mm Zirconia beads and 1 mL of distilled 111 

water and homogenised in a bead-beater for 10 min and centrifuged at 13,000 g for 10 min. 112 

Water was evaporated from the samples using vacuum concentrator (Speed-Vac) and then 113 

reconstituted in 700 µL phosphate buffer (pH 7.4; 100% D2O) containing 1 mM sodium 3-114 

trimethylsilyl-1-[2,2,3,3-2H4]propionate (TSP).  115 

 116 

Combined sampling approach for 2D NMR Experiments 117 

2D spectra were obtained from pooled samples for each sample type to ensure comprehensive  118 

capture of metabolites. 50 µL of urine was pooled from each horse before the addition of 500 119 A
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µL of phosphate buffer (and 500 µL of the resulting volume was added to the 5 mm NMR 120 

tube). The same process was repeated for the plasma samples with the addition of 500 µL of 121 

D2O saline solution. For the faecal samples, individual samples were processed as previously 122 

described and then pooled after reconstitution with 100 µL of phosphate buffer. 123 

Acquisition of 1D 1H-NMR spectra 124 

Spectroscopic analysis of all samples was carried out on a 700 MHz Bruker NMR 125 

spectrometerb operating at 300K and equipped with a 5 mm 1H(13C/15N) inverse cryoprobe.  126 

Urine and faecal samples 127 

Standard one-dimensional 1H-NMR spectra were acquired for all urine and faecal samples. 128 

We employed a standard one-dimensional pulse sequence (noesypr1d) that employs the first 129 

increment of a NOE sequence to achieve suppression of the water resonance with water peak 130 

suppression using a standard pulse sequence [19]. For each sample, 8 dummy transients were 131 

followed by 256 transients and collected in 64K data point. Irradiation of the solvent (D2O) 132 

resonance was applied during presaturation delay (2.0 s) for all spectra. The pulse sequence 133 

parameters including the 90° pulse, receiver gain and pulse powers were optimised for each 134 

sample set run. The spectral width was 20 ppm for all spectra. The free induction decay (FID) 135 

was processed with an exponential line broadening of 0.5 Hz prior to Fourier transformation.  136 

Plasma samples 137 

Water-suppressed Carr-Purcell-Meiboom-Gill (CPMG) spin-echo spectra were acquired for 138 

the plasma samples, Here, 8 dummy scans followed by 256 scans were acquired for each 139 

sample in 64k data points with a total spin-spin relaxation delay of 1.5 s and a total delay 140 

between pulse cycles of 4.85 s. 141 

Acquisition of 2D 1H-NMR spectroscopy was undertaken with an 800 MHz Bruker NMR 142 

spectrometerb operating at 300K and equipped with a triple-resonance probe (TXI). J-143 A
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resolved spectroscopy (J-res) spectra were acquired from all biofluid composite samples 144 

using 64 transients per increment with 160 increments in the second dimension. The F1 (J-145 

coupling) domain spectral width covered 120 Hz. Prior to the double FT and magnitude 146 

calculation, the F1 data was zero-filled to 1024 points. The spectra were then tilted by 45° to 147 

provide orthogonality of the chemical shift and coupling constant axes and subsequently 148 

symmetrised about the F1 axis. 1H-1H Correlation Spectroscopy (COSY) was performed on 149 

all 3 types of pooled biofluid samples in order to detect correlations between protons on 150 

adjacent carbons. Transients were acquired with 4096 data points (sweep width of 7200 Hz in 151 

both axis) with 64 scans per increment and 320 increments in the F1 axis. The relaxation 152 

between successive pulse cycles was 2.3 s and were weighted using a sine bell function in T1 153 

and T2 prior to fourier transformation and subsequently symmetrised about the diagonal axis. 154 

Two-dimensional echo/anti-echo 1H–13C heteronuclear single quantum correlation (HSQC) 155 

spectra were also obtained. 256 scans were collected (16 dummy scans) at a spectral 156 

resolution of 4k in F2 across a spectral width of 12 ppm for 1H and 170 ppm for the 13C axes.  157 

An acquisition time of 0.852 s and a relaxation delay of 1.2 s were used and delays were set 158 

for a 145 Hz one bond 1H–13C coupling constant. Spectra were zero-filled in the F2 159 

dimension by a factor of 2 to 8k, and zero-filling and linear prediction was applied in F1 to 160 

result in a resolution of 1k. 161 

NMR spectral data pre-processing 162 

Data [-1.0 to 10.0 ppm] were imported into MatLab environment (7.0 The Mathsworksc), 163 

where they were automatically phased, baseline-corrected and referenced to TSP (δ 0.00) or 164 

glucose (δ 5.233) for plasma using scripts written in-house [20]. To reduce analytical 165 

variation between samples the residual water signal (4.67 – 4.98 ppm) was truncated from the 166 A
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data set. Probabilistic-quotient normalisation was used on each biofluid class separately to 167 

account for differing sample dilutions [21].  168 

Data analysis of biological matrices 169 

Unsupervised multivariate analysis was undertaken to visualise clustering and differences 170 

between samples [22]. Principal component analysis (PCA) was constructed using unit-171 

variance scaled data (UV) [23]..  172 

Metabolite assignment of endogenous metabolites was made by compiling the following 173 

information from each peak: the chemical shift and relative integral height from 1D spectra, 174 

the multiplicity using J-res spectra, the proton coupling information from COSY spectra and 175 

carbon shifts from HSQC spectra. This information was then used to search for matching 176 

metabolites from in-house databases, online databases (http://www.hmdb.ca/) and reference 177 

to published literature data [24-26]. Statistical Total Correlation Spectroscopy (STOCSY) 178 

was also employed to aid metabolite identification [27].  This method uses statistical 179 

connectivity between data points within a spectral profile. However, unlike 2D-NMR this 180 

method will also pick up metabolites involved in the same pathways due to biological 181 

covariance [28]. 182 

 183 

Results 184 

Assignment of dominant metabolites across easily obtainable biofluids yields a preliminary 185 

equine metabolic atlas 186 

The majority of known NMR-detectable metabolites were assigned in each biological matrix 187 

(Fig 1), with numerical reference to Table 1. Metabolite assignments were performed using 188 

two-dimensional correlation (COSY) and J-resolved (J-res) spectroscopy to ascertain peak 189 A
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multiplicity, coupling constants and to overcome peak overlap. This is demonstrated in the 190 

COSY (Fig 2A) and the J-res (Fig 2B). Heteronuclear Single Quantum Coherence (HSQC) 191 

was also performed to provide 13C shifts and confirm assignments. Putative metabolite 192 

assignment was made using 1H and 13C chemical shifts, peak multiplicity, coupling constants 193 

and relative peak integrals. Overall, 102 metabolites were identified by 1H-NMR in the 3 194 

biofluids (Table 1). Detailed assignment information is shown in Supplementary Item 2. 195 

 196 

Cross-compartmental analysis revealed a core metabonome, along with compartment specific 197 

metabolites 198 

Metabolites assigned to the 3 biofluids were compared to ascertain ubiquitous metabolites 199 

and those that were specific to each biological compartment. The metabolic variation across 200 

the biological matrices is displayed in a Venn diagram (Fig 3) to easily visualise inter-201 

compartmental overlap.  A total of 14 metabolites were ubiquitous to all biofluids, which we 202 

will  refer  to  as  ‘core’  metabolites.  These  include  energy-related metabolites such as glucose 203 

and lactate as well as a number of amino-acids including alanine, arginine, glycine, 204 

glutamine, taurine, threonine and valine. The microbial related metabolites acetate, formate 205 

and p-hydroxyphenylacetate were also conserved across all biofluids studied. 206 

PCA revealed that inter-animal metabolic variation was lower than the variation between the 207 

different biofluids as visualised via clustering in the PCA scores plot (Fig 4A). As would be 208 

expected, the PCA samples cluster based on biofluid type. However, importantly the degree 209 

of clustering is different amongst biological matrices. Faecal samples demonstrate that they 210 

are inherently variable compared to either matched urine or plasma samples. The faecal 211 

metabonome displayed relatively higher concentrations of SCFA (butyrate, acetate and 212 

propionate) compared to plasma and urine.  Urine samples had relatively higher level of gut-213 A
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microbial co-metabolites such as hippurate, phenylacetylglycine (PAG), p-cresyl sulfate and 214 

trimethylamine-N-oxide (TMAO). In contrast, energy-related metabolites such as glucose and 215 

pyruvate were observed in relatively higher concentrations in plasma compared to urine. 216 

Variance plots shown in Fig 4A and B display the mean spectra of faeces and urine 217 

respectively coloured by the variance, represented as a percentage of the total variance. Here, 218 

creatinine can be seen to represent over 10% of the total variance seen within the urinary 219 

profiles (Fig 4B) and acetate accounted for over 28% of the total variance observed in the 220 

faecal profile (Fig 4A) compared to 1.8% in the plasma profile (not shown).   221 

 222 

Plasma 223 

Equine plasma contained relatively few metabolites compared to urine and faeces when 224 

analysed by NMR spectroscopy, partly as a result of the overlap of signals from 225 

macromolecular components such as lipoproteins and low molecular weight chemicals. A 226 

total of 38 metabolites were identified (Table 1), and of these 12 were unique to this biofluid, 227 

including the amino-acids tyrosine and phenylalanine and ketone bodies (α- and β-228 

hydroxybutyrate).  Plasma was observed to contain the highest levels of glucose compared to 229 

other biofluids within the data matrix. 230 

Urine 231 

The equine urinary metabolic profile was the most metabolically abundant of all biofluids 232 

measured (Table 1). In total 65 metabolites were identified. Of these, 11 were unique to urine 233 

and plasma, 3 were present in both urine and faeces and 39 metabolites were specific to 234 

urine. Urinary-specific metabolites included a number of aromatic compounds that arise from 235 

microbial-host co-metabolism. Hippurate, PAG, p-cresyl glucuronide and sulphate were 236 A
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notably prominent in the aromatic region of the horse urine spectra (Fig 1B). Other urine 237 

specific metabolites of note include dietary compounds such as proline betaine. 238 

Faeces 239 

The faecal metabotype contained 43 metabolites, including 21 specific to faeces (Fig 3). 240 

These metabolites include microbial fermentation products, SCFA (butyrate and propionate), 241 

and a number of dietary metabolites (caprylate and arabinose, maltose, glycerol and xylose). 242 

Acetate was present in significantly greater concentrations than other metabolites. 243 

 244 

Discussion 245 

This is the first systematic description of the dominant metabolites of the healthy 246 

Thoroughbred racehorse and is important in establishing a metabolic reference from which to 247 

compare pathology-related variation.  Characterisation of the equine metabolome highlights 248 

the diversity of information available in different biological matrices and as such provides a 249 

useful guide for researchers.  Importantly, as has been shown in other species, urine provides 250 

a biological window into host-microbial metabolic interactions in the horse [8].  Although 251 

faeces may be considered a more direct representation of microbial metabolism, Fig 4A and 252 

B highlights the relatively greater variation in the faecal metabolic profiles compared to 253 

plasma and urine.  Additionally, microbial-derived compounds absorbed from the gut are 254 

commonly not well represented in the faecal signature rendering the biological usefulness of 255 

this biofluid in gastrointestinal disease and mammalian-microbial co-metabolsim 256 

questionable. 257 

A ubiquitous metabonome is present amongst mammals. The core equine metabonome 258 

comprises metabolites present in all 3 biofluids studied. 14 metabolites were identified 259 

including amino-acids, gut microbial metabolites and energy metabolites. Many of these 260 A
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metabolites are ubiquitous, with varied functions and located in numerous tissue types. 261 

Similar findings were reported by Merrifield et al. with 22 metabolites shared across 4 262 

biological matrices in pigs [8]. 263 

Marked 1H-NMR metabolic similarities between horses and humans are suggested by 264 

observations of a number of shared metabolites. In total, there were 32 plasma, 23 urine and 265 

27 faecal NMR detectable compounds common to both horses and humans [29-31]. 266 

Metabolic consistency was strongest across the plasma profiles. This validates the concept of 267 

conservation of mammalian physiology across species and that homeostatic metabolic control 268 

is tight in both systems. A lower percentage of the equine faecal and urine metabolic profiles 269 

were shared with humans but this was to be expected due to different digestive systems and 270 

metabolic pathways. In contrast, ruminants share a number of gut microbial co-metabolites 271 

such as hippurate and PAG [32-34].  These herbivores have similar digestive strategies to 272 

obtain nutrients from a cellulose-rich diet.  273 

Excretory biofluids (urine and faeces) are the most metabolite-rich. The environmentally-274 

determined nature of these biofluids renders them under less tight homeostatic control than 275 

that of the plasma. However, urine was also remarkably tightly controlled, given the 276 

relatively homogeneous genetic and environmental backgrounds of Thoroughbred racehorses. 277 

Differing creatinine excretion in one animal (due to the sample being collected after exercise) 278 

was responsible for the increased inter-animal variation observed (Fig 4A).  In urine, 39 279 

metabolites were identified as being unique whereas 21 metabolites were faeces-specific and 280 

12 metabolites were plasma-specific. However, there were a small number of low-281 

concentration unassigned metabolites that have not been included in these counts. All 3 282 

biofluids are likely to contain thousands of metabolites which are too dilute to produce a 283 

significant NMR signal or were not detected by NMR in this study, but we feel we were able 284 A
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to capture a good representation of the normal equine metabonome and this has been verified 285 

by our ongoing work on a larger cohort of animals (data not shown). 286 

Inter-compartmental variation is greater than inter-animal variation and is consistent with 287 

other mammalian studies [8; 35]. Faecal samples varied from other biological matrices due to 288 

the presence of a number of SCFAs, formate and isovalerate. SCFAs are the product of gut-289 

microbial   fermentation   of   dietary   fibre   and   contribute   up   to   70%   of   a   horse’s   energy  290 

requirements [36; 37]. Acetate level variability is likely to be due to differing bacterial 291 

communities and consequently SCFA production. Collection time in relation to feeding time 292 

is known to exert an effect on SCFA levels in equine faeces [38]. Samples were consistently 293 

taken before a morning feed. However, this variability could be due to the difference in 294 

individual intestinal transit times [39; 40]. Other SCFAs were not seen to vary to the same 295 

extent as acetate. Butyrate is the main energy source for colonocytes and hence is likely to 296 

have been utilised rather than excreted [41]. Butyrate and propionate are extensively 297 

metabolised by first-pass metabolism and therefore absent in NMR detectable quantities in 298 

urine and plasma samples. Creatinine was the greatest source of variation amongst urine 299 

samples. Creatinine is a waste product of muscle metabolism formed from creatine in order to 300 

maintain ATP levels during exercise [42].  The concentration of urine and thus metabolites 301 

can change dramatically. Normalisation of the data prior to analysis helps to minimise 302 

spectral anomalies caused by differences in urinary dilution.  Creatinine levels can vary 303 

according to factors such as muscle mass, physical exercise, diet, age and muscle damage 304 

from previous strenuous exercise [43].   305 

The urine metabolome provides a metabolic window into gut microbial co-metabolism.  306 

Urine was found to differ from the other biological matrices due to the presence of a number 307 

of gut-microbial co-metabolites (hippurate, PAG and p-cresyl sulphate and TMAO). These 308 A
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compounds originate from exogenous sources (microbial and dietary) and are incorporated 309 

into the host circulation after absorption. They subsequently undergo enzymatic conjugation 310 

in the liver and gut mucosa to increase their polarity and enable renal excretion. In mammals, 311 

enterohepatic recycling means further metabolism can occur at the gut-level [44]. Hippurate 312 

is an aromatic compound predominantly formed from glycine conjugation of dietary or 313 

microbial benzoate and PAG is a glycine-conjugated microbial metabolite of phenylalanine 314 

metabolism (glutamine in higher apes and humans) [45]. P-cresol is formed from bacterial 315 

degradation of tyrosine and is subsequently sulfated or glucuronidated in the liver or gut [46]. 316 

Both forms of conversion occur in rodents and horses, whereas humans predominately form 317 

sulphate conjugates and pigs predominately glucuronidate the cresol molecule. 318 

Trimethylamine (TMA) is a microbial degradation product of dietary choline; this metabolite 319 

is absorbed from the gut and subsequently oxidised in the liver to produce TMAO [47]. A 320 

number of anaerobic bacterial populations are known to produce these metabolites including 321 

clostridia [48-50]. This taxonomic classification of bacteria has been associated with 322 

intestinal disease in horses as well as being part of the normal microflora [51-54]. 323 

1H NMR spectroscopy is a robust method for assessing the inter-animal variation in 324 

Thoroughbred racehorses.  It is important to address potential sources of variation when 325 

assessing metabonomic studies. The sensitive nature of such investigations necessitates the 326 

collection of metadata to help explain possible variation between the samples. This 327 

information should include details from sample collection, sample storage and run order, as 328 

well as information relating to sample subject (health status, age, sex for example). The effect 329 

of these is widely reported in the literature [35; 55; 56]. Although the 7 horses were taken 330 

from 2 different yards, the samples clustered tightly, highlighting the metabolic uniformity of 331 

these Thoroughbred racehorses despite differing age ranges, location and stages of fitness 332 A
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(see Supplementary Item 1). This study was intended to create a reference tool for research 333 

into Thoroughbred racehorse metabolism and microbial co-metabolism. Since the samples 334 

from this first pilot clustered closely for all 3 biofluids indicating that the dominant 335 

metabolites visible by NMR were conserved across animals, it was deemed unnecessary to 336 

collect samples from further animals to minimise unnecessary sampling. Although, the 337 

sample size in this study is small and only one metabolic snap shot was taken for each horse, 338 

the fact that inter-animal   variation   in   metabolic   profiles   was   low,   suggests   that   ‘healthy’  339 

Thoroughbreds share a similar metabolic phenotype, which we explored using a range of 340 

NMR-based structural elucidation tools including 2-D pulse sequences to elicit carbon-proton 341 

correlations and statistical spectroscopy methods. Our future work includes a larger study 342 

investigating normal variation amongst different racehorse populations over time. 343 

This work comprehensively assigns dominant features of the 1H NMR spectra of the equine 344 

metabonome from plasma, urine and faeces and for the first time provides baseline 345 

information for future studies in equine health and disease. Urine and faecal profiles provide 346 

an insight into host-microbial metabolic interactions, whereas plasma profiles are more likely 347 

to represent host physiological processes. The purpose of this study is to provide an analytical 348 

template to researchers thinking about adding metabonomic analysis to their experiments and 349 

to indicate which biofluids may be of use to them. We have showed that faecal samples are 350 

more variable that either urine or plasma. Plasma is under tight homeostatic control and thus 351 

might be expected to show relatively less variation. However, urine, other than one identified 352 

outlier, exhibited less variation than the other biofluids under investigation and contributed 353 

the greatest number of identifiable metabolites. Further studies are warranted using 354 

metabonomic and metagenomic technology to explore the role of gut microbes on equine 355 

physiology and metabolism. 356 A
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 382 

 383 

Figure legends: 384 

Fig 1: (A) 700 MHz 1D 1H-NMR spectrum of urine, (B) CPMG 1H-NMR spectrum of 385 

plasma, (C)1D 1H-NMR spectrum of faecal water. All spectra partially labelled according to 386 

the assignments made in Table 1 and Supplementary Item 2. 387 

 388 

Fig 2: (A) 800 MHz 1H COSY NMR spectrum of the aromatic region of urine (B) J-res NMR 389 

spectrum of plasma highlighting the aliphatic region between 3-4.5 ppm. Key to metabolite 390 

identification is provided in Table 1 and Supplementary Item 2. 391 

 392 

Fig 3: (A) Venn diagram highlighting the degree of metabolite overlap between biological 393 

compartments.  The central section represents the number of core metabolites visible across 394 

all biological matrices (14 ubiquitous metabolites). The outer circle with numbered slices 395 

represents biological matrix specific metabolites that are ordered according to 396 

origins/function, and numbered according to metabolites in Table 1.  Compartments are 397 

colour coded - plasma (red), urine (yellow) and faeces (green). Coloured dots represent 398 

metabolic functions, protein and amino-acid metabolism (purple), energy metabolism 399 

(orange) and fat metabolism (blue). Asterisk denotes metabolite can be mammalian in origin 400 

and  a  ‘d’  denotes metabolite can be from dietary origin. 401 

 402 

Fig 4: (A) PCA scores plot demonstrating increased faecal variability relative to other 403 

biological matrices. Plasma (red), urine (yellow) and faecal (green) samples. Principal 404 

component 1 (PC1) accounts for 51%, PC2 for 15%, and PC3 for 5% of the total variation. 405 

Variance colour plots indicating the percentage of the total variance for each metabolite in 406 

(B) faeces and (C) urine (Mean spectrum is plotted, coloured by variance expressed as a 407 

percentage of the total variance). 408 
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Table 1: Metabolites identified using 1H-NMR of equine plasma, urine and faeces. 410 

Metabolite numbers correspond with annotated 1H-NMR spectra in Figs 1, 2 and 3. 411 

Metabolites are assigned to biofluids denoted by coloured dots; urine (yellow), plasma (red), 412 

faeces (green). The 14 core metabolites are highlighted in purple.  413 

 414 

 415 

Manufacturers’ addresses  416 
aBertin Technologies, Montigny-le-Bretonneux, France 417 
bBruker, Massachusetts, USA  418 
cMATLAB, Mathwork, Massachusetts, USA 419 

 420 

Additional Supplementary Items may be found in the online version of this article at the 421 

publisher’s  website: 422 

 423 

Supplementary Item 1: The table highlights sample metadata and possible sources of 424 

variation within the data set. Yard, gender, age and training schedule are included. Gender is 425 

denoted as G=gelding, C=colt. 426 

 427 

Supplementary Item 2: Table showing metabolites found in plasma (red circle), urine 428 

(yellow circle) and faeces (green circle) using 1H-NMR spectroscopy. Peak multiplicities and 429 

chemical shifts are shown and structural information is also provided. Ϯ indicates tentative 430 

assignment.  Details  on  each  metabolite’s  origin  and  function  are  highlighted  as  well  as  a  link  431 

to  the  metabolite’s  page  in  the  hmdb  database.   432 

 433 

Supplementary Item 3: Table denoting feeding regimes on the 2 yards sampled. Top section 434 

highlights concentrate feeds and bottom highlights roughage types offered. 435 

 436 

Supplementary Item 4: 800 MHz 1H COSY NMR spectrum of the aliphatic region of 437 

faeces, between 3-4 ppm. Key to metabolite identification is provided in Table 1 and 438 

Supplementary Item 2. 439 
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Supplementary Item 5: 800 MHz 1H 13C HSCQ NMR spectrum of the aromatic region of 441 

urine, between 8-7 ppm. Key to metabolite identification is provided in Table 1 and 442 

Supplementary Item 2. 443 
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