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Thermal Remote Sensing of Sea Surface
Temperature

Christopher J. Merchant

School of GeoSciences, The University of Edinburgh, Edinburgh, UK

Abstract Sea surface temperature has been an important applica-
tion of remote sensing from space for three decades. This chapter
first describes well-established methods that have delivered valuable
routine observations of sea surface temperature for meteorology and
oceanography. Increasingly demanding requirements, often related
to climate science, have highlighted some limitations of these ap-
proaches. Practitioners have had to revisit techniques of estimation,
of characterising uncertainty, and of validating observations—and
even to reconsider the meaning(s) of “sea surface temperature”. The
current understanding of these issues is reviewed, drawing attention
to ongoing questions. Lastly, the prospect for thermal remote sens-
ing of sea surface temperature over coming years is discussed.

How does sea surface temperature vary?

Thermal remote sensing is a powerful technique to obtain global,
frequent observations sea surface temperature (SST). Surface tem-
perature across the oceans varies with time (e.g., Robinson, 2004),
responding, for example, to the daily cycle in heating by the Sun
(e.g., Fairall et al., 1996), to the passage of the seasons, and to
changes in upwelling or vertical mixing driven by the wind blowing
across the sea surface (e.g., Munk, 1950). Surface waters are con-
stantly moving: in ocean currents and eddies; and, near coasts, with
tides and river outflows. Surface water advection changes SST over
time at a given location.

Scales of a kilometre and upwards are globally observed with ra-
diometers from space (e.g., Donlon et al., 2010). Viewing the ther-



mal structure of the ocean surface at such scales, one may observe
relatively sharp boundaries in SST (Figure 1). These “fronts” are
signatures in SST of the convergence of surface water masses, con-
vergence that can arise from a number of processes of oceanograph-
ic interest. More generally, thermal remote sensing can reveal any
phenomenon that measurably alters the radiometric SST, provided
that the surface temperature signature occurs on a length scale long-
er than the sensor’s spatial resolution and persists for long enough
relative to the time-sampling properties of the observing system.
Note that the relevant sampling rate is not the rate of acquisition of
images, but rather the rate at which a cloud-free observation at a
given location is typically obtained. Examples of oceanographic
phenomena and their SST magnitude and spatiotemporal scales are
given in Table 1.

Table 1. Selected ocean phenomena and the magnitude and scales of their SST signature.
(Extracted and adapted from Robinson (2004), which provides a more complete listing.)

Phenomenon Magnitude / K Length scale / km Time scale
Climatological variation across oceans 35 10*

El Nino and interannual variability 05t05 500 - 5000 Months to years
Tropical instability waves 05t05 200 - 2000 Months to years
Meanders and eddies on major fronts 1to 8 5 to 2000 Weeks to months

and boundary currents

Diurnal warming cycle 0.1to5 5 to 1000 Hours
Coral bleaching events 03to3 20 to 200 Days
Coastal wind induced phenomena 02to2 1 to 100 Hours

Basis in physics of sea surface temperature remote sensing

All remote sensing depends on a remotely observable signal that
reflects variations in the phenomenon of interest. To observe SST
from space, the radiance at the top of atmosphere must change in re-
sponse to changes in surface temperature (e.g., Deschamps and
Phulpin, 1980). Figure 2 shows the spectral sensitivity of the top-of-
atmosphere brightness temperature (BT, y) to SST (x) variations—



i.e., it is a plot of the variation with wavelength, A, of dy/0x. This
has been simulated using the physics of thermal radiative transfer
encapsulated in a radiative transfer model. Here, the radiative trans-
fer (RT) model makes calculations of the emission, scattering, and
absorption of thermal radiation at the surface and through the full
vertical profile of the atmosphere, wavelength-by-wavelength. The
spectral BT sensitivity has been calculated for an example of mid-
latitude and of tropical conditions, in both cases for a cloud-free na-
dir view of the ocean. A change in temperature of 1 K of an ideal ra-
diating surface (a black body) would change the spectral BT ob-
served by a radiometer (under a vacuum) by 1 K—that is, the
sensitivity would be dy/0x = 1. A change in sea surface temperature
leads to a change in BT observed at the top-of-atmosphere that is
smaller, because of a number of factors listed and described in Table
2. The key point is that sensitivity is high at wavelengths where the
atmosphere is relatively transparent to the passage of electromagnet-
ic radiation.

Figure 2 presents two parts of the spectrum useful for SST remote
sensing: the atmospheric windows in the near infra-red (around 4
pm), and the mid infra-red (between 8 and 13 um, albeit interrupted
by an ozone absorption feature around 9.7 ym). Although described
as windows, there is variability in sensitivity with wavelength,
which would be even more striking if plotted with finer spectral res-
olution. Within the windows, individual molecular absorption fea-
tures reduce spectral sensitivity close to zero over narrow intervals
of wavelength, while there are also some intervals a few cm™ with-
out such lines. An example of the latter is the micro-window at 2616
cm’ (3.823 um). In such micro-windows, the clear-sky attenuation
of temperature by the atmosphere can be just a few tenths of degree
kelvin (except when the presence of atmospheric aerosols decreases
the transmittance). Most sensors from which SSTs are derived, how-
ever, have channels of width of order 100 cm™. This allows higher
spatial resolution with reasonable noise characteristics, but requires
that atmospheric effects must be accounted for when inferring sur-
face temperature (e.g., McMillin et al., 1984).
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Figure 1. Image at thermal window wavelength of 11 um of US Eastern seaboard including Cape
Hatteras and Pimlico Sound, obtained by the second Along Track Scanning Radiometer. The
width of the image is about 512 km and the pixel resolution is 1 km. Ocean features are reasona-
bly well resolved, with smooth contiguous variations in surface temperature reflected in the im-
age brightness temperature, except where there are scattered, cooler clouds that are often not ful-
ly resolved. Land is also more heterogeneous, and, this being a day time image, warmer than the
sea in many areas. Image obtained from URLI and adapted by the author.



Table 2. Factors that affect the top-of-atmosphere clear-sky spectral brightness tempera-
ture and its sensitivity to surface temperature variations. Summarized from Embury et al.

(2012a).

Factor

Nature of influence

Sea surface emissivity

Sea surface reflectivity

Radiatively active gases

Aerosols

Solar radiance

If emissivity is less than 1, emitted radiance is correspondingly
less than the ideal Planck (black body) radiance. Sea water emis-
sivity is generally high (0.96 to 0.99) for near-nadir observations
at wavelengths relevant to thermal remote sensing. For flat sea-
water, spectral emissivity depends on temperature, salinity and
the angle of view (emissivity reduces markedly at angles beyond
about 55°). Under wind-roughened conditions the water is not
flat, which modifies the effective emissivity as a function of wind
speed.

Downward atmospheric and (for near infra-red) solar radiance
can be reflected at the surface. Reflectivity depends on the same
factors as emissivity, and increases as emissivity decreases.

The surface-leaving radiance is absorbed by gases in the atmos-
phere, to a greater or lesser degree according to wavelength. In
decreasing order of impact on SST remote sensing, the most rele-
vant gases are: water vapour, carbon dioxide, dinitrogen oxide,
methane, CFC-12, nitrogen, CFC-11 and nitric acid. These gases
also emit radiation by virtue of their temperature. For the most
part, this does not wholly offset the absorption, since the atmos-
phere is mostly colder than the underlying surface. Nevertheless,
the effect of the atmosphere is to introduce a source that is not di-
rectly dependent on the surface temperature, and therefore to re-
duce the BT sensitivity. At wavelengths where absorption is very
efficient, the BT becomes independent of the surface temperature.
Of the significant radiatively active gases, water vapour is by far
the most variable.

Particles in the atmosphere absorb and emit radiance, as with gas-
es, and may also significantly scatter radiance (in to or out of the
view of a satellite). The radiative properties and concentrations of
aerosols are much more variable and much less understood than
for gases. Aerosol impacts of BTs can range from negligible (in
clean air), to highly significant (e.g., dust storms).

Solar radiance can be reflected by the surface and scattered by the
atmosphere into the view of a satellite. This is usually very signif-
icant for day time observations at near infra-red wavelengths, and
can be marginally significant at longer thermal wavelengths when
there is strong specular (mirror-like) reflection (known as sun
glint).
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Figure 2. Spectral brightness temperature (BT) sensitivity (the response at the top of the atmos-
phere per unit change in surface temperature, in units of K K). Grey lines: for a mid-latitude
case with low total column water vapour (TCWYV). Black lines: for an equatorial case, high
TCWYV. Left panel: a near-infrared window used for SST remote sensing (usually for night-time
scenes only), presented at a spectral resolution of 10 cm™. Right panel: the mid-infrared window,
spectral resolution of 3 cm™.

We can expect more accurate, less noisy estimates of SST when
using observations with higher sensitivity, other factors being equal.
This is because the SST signal is then greater in proportion to in-
strumental noise and signals associated with variations in the atmos-
pheric state. Sensitivity to SST is greater in mid-latitude conditions
than tropical conditions largely because there is less absorption re-
lated to water vapour in the atmosphere (Merchant et al., 2009). The
near-infrared window maintains relatively high sensitivity even un-
der tropical conditions, and is particularly useful for observing equa-
torial SSTs. However, this window is usually only used for night-
time scenes, because of the complication of significant solar irradi-
ance at these wavelengths during the day. The sensitivity across the
mid-infrared window is highly responsive to the total amount of wa-
ter vapour. Thus, when relying on the mid-infrared window for day-
time SST, we can expect larger uncertainties for regions of high total
column water vapour (TCWYV).

The physics of atmospheric radiative transfer for these wave-
lengths is quantified with great precision in the spectroscopic data-
bases exploited by line-by-line RT models (Rothman, 2010). More-
over, the sea surface is relatively simple and homogeneous. The
thermal emission and reflection of the surface can also be well simu-
lated. In the absence of significant aerosol, clear-sky RT modelling
relevant to typical SST sensors gives BTs that seem to be physically
realistic to of order 0.1 K. This is comparable to the calibration un-
certainty and noise for “good” SST sensors. Therefore, RT-based



approaches to SST estimation are feasible and are currently used in
practice, in addition to empirical approaches.

Sea Surface Temperature Retrieval

Simple empirical estimators

The process of estimating SST from a number of clear-sky bright-
ness temperature observations is usually termed SST retrieval. Most
retrieval methods have been based on defining coefficients for a
weighted combination of BTs. This is a simple, computationally ef-
ficient approach. At least two BTs are required (Anding and Kauth,
1970), since it is necessary to infer both the SST (explicitly) and the
impact of the atmosphere on BTs (implicitly). The difference SST
minus BT is called the atmospheric correction, the idea being that
this is the temperature that must be added to the BT to correct the
net attenuating effect of the atmosphere. Despite the term, some of
the difference is due to non-ideal emissivity of the sea surface.

The minimum of two BT observations required to retrieve SST
must be at wavelengths that (i) have adequately high sensitivity to
SST and (ii) are differentially absorbed by atmospheric water va-
pour. Of the relevant absorbing gases in the atmosphere, only water
vapour is extremely variable, with total column water vapour
(TCWYV) varying from almost zero up to ~60 kg m™. The atmospher-
ic correction generally increases with increasing TCWV, and does
so more rapidly for wavelengths that are more effectively absorbed
by water vapour. Consequently, the atmospheric correction for either
of the BTs is approximately linearly related to the difference be-
tween the BTs:

X=Y1 XYL — Y2 (1)

Figure 3 illustrates the degree to which proportionality holds. The
SST can thus be estimated by an expression:



X=ag+ay; +a,(y; —y2) (2)

where a,, a; and a, are retrieval coefficients.

Wavelengths between about 10 and 13 xm have high sensitivity
that varies progressively across that window (Figure 2), reflecting
differential water vapour absorption. This is the principal window
used by SST sensors, and is usually split between two channels cen-
tred around 11 and 12 ym respectively. Eq. 2 in this case describes a
split window retrieval. This equation and variants of it have been
widely used to obtain SST from meteorological sensors (e.g.,
McClain et al., 1985; Walton et al., 1998). The coefficients need to
be specified for each sensor, since the spectral responses of the nom-
inal 11 and 12 ym channels are inevitably somewhat different be-
tween sensors. The split window equation is appealing because it is
physically intuitive (Barton, 1995): the SST is the 11 ym BT scaled
up a little to compensate for non-ideal emissivity (a4 is usually a lit-
tle more than 1.0), with an offset, a,, added (interpreted as compen-
sating for the absorption of non-varying trace gases), plus a term that
accounts for the highly variable water vapour absorption (whose im-
pact is proportional to the difference between the BTs).

The values of the coefficients have usually been defined empiri-
cally, by regression between BTs and matched in situ SST observa-
tions. This is discussed further in a later section. Here, we review the
ways in which the simple split window equation has been elaborat-
ed.

The first elaboration is with respect to satellite view angle. The to-
tal column of water vapour encountered by radiance passing through
the atmosphere on a slant path exceeds the TCWV by an approxi-
mate factor of approximately sec(6), where 6 is the satellite zenith
angle (angle of the slant path to the vertical at the surface). The de-
gree to which sea surface emissivity is less than 1 increases marked-
ly with angles beyond about 55°. A common approach has been to
fit the combined BT impact of these effects by having some coeffi-
cients depend on S = sec(8)-1, such that a, — a, + b,S etc. (e.g.,
Walton et al., 1998).
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Figure 3. Nadir atmospheric correction for 11 um brightness temperatures against difference in
brightness temperature between 11 and 12 um channels, for a typical split-window sensor. Each
point represents an observation made at a particular location and time from a global sample. The
distribution is close to linear for differences between the 11 and 12 wm brightness temperatures
greater than about 1 K. The scatter for a given brightness temperature difference arises from fac-
tors such as variable vertical distribution of water vapour, troposphere-sea temperature differ-
ence, etc. These factors have systematic geographical variations, which tends to create coherent
geographical biases in any SST retrieval based on fitting a function to such a distribution.

The second elaboration is adaptation to use additional channels. In
addition to the split window channels of 11 and 12 ym, BTs ob-
served in the near-infrared window between about 3.6 to 4 ym are
useful for SST estimation. BTs in this region have mainly been used
for night-time scenes, when solar-reflected radiance is absent. There
is a high degree of sensitivity in this range (Figure 2) to surface tem-
perature, and in addition the dependence of radiance on temperature
is extremely steep for terrestrial temperatures 7 ~ 285 K—around
T". This strong non-linearity reduces the impact of non-unity emis-
sivity, of contaminants in the field of view such as sub-pixel unde-
tected clouds, and of radiometric noise of a given magnitude. There-
fore, on a well-designed sensor, a channel centred at 3.7 to 3.9 um
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can be particularly “clean” for SST, which is a colloquial way of ex-
pressing that the information content on SST is very high. Compared
to the near-infrared window, the high-sensitivity region around 8.7
um behaves more similarly to the usual 11 and 12 ym channels.
Nonetheless, it can be useful if present.

Inclusion of additional BTs has been done using various equa-
tions, most of which can be re-expressed in the form:

X =ag+ boS + 2i(a; + b;S) y; 3)

Some investigators impose additional restrictions on the empirical fit
of the coefficients in eq. 3 by choosing specific forms of equation
(e.g., Li et al., 2001). For example, a three-channel algorithm with
form:

X=ay+byS+(a; + bls)y3.7um +a; (yllum - ylZum) 4)

is eq. 3 with the additional constraints that a, = —a;and b, = b; = 0.
Sometimes a physical argument is put forward to justify a specific
form of equation. Imposing such additional constraints may seem at
odds to adopting an empirical approach to determine coefficients,
but if the empirical dataset relating BTs and SSTs is small, imposing
such additional constraints may avoid over-fitting. Additional con-
straints can also modify the sensitivity of the estimator to factors
such as atmospheric aerosols (discussed further below).

As well as observations at additional wavelengths, “channels” can
be added by having sensors view the sea surface at more than one
view angle, i.e., near-nadir and off-nadir (forwards or backwards
along the track).

The third elaboration relates to use of non-linear terms. The resid-
uals (retrieved minus in situ SSTs) of purely linear estimators such
as eq. 3 usually display coherent systematic variations if plotted
against latitude, longitude-within-a-latitude-zone, TCWV, BT dif-
ferences, and so on. These reflect the non-linearity evident in Figure
3, and sensitivity to geographical variations in the broad vertical
structure of water vapour and temperature in the atmosphere. A wide
range of non-linear estimators have been proposed, for example:
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* banding of coefficients by latitude or other regional optimisa-
tion (e.g., Minnett et al., 1990)

* banding of coefficients by BT difference (e.g., Kilpatrick et al.,
2001)

* banding of coefficients by prior TCWV or retrieved TCWV
(e.g., Barton, 2011)

* inclusion of a term that modifies coefficients via a prior SST
(e.g., Pichel et al., 2001)

* quadratic dependence on BTs or prior TCWV (e.g., Emery et
al., 1994)

These generally offer modest benefit to retrieval accuracy. Simple
functional forms do not reflect the underlying origins of the system-
atic residuals, which are the non-linearity of the physics of RT and
geographical variations in atmospheric structure (Merchant et al.,
2000).

The final elaboration is to use alternatives regression methods.
The usual means of defining retrieval estimators empirically has
been ordinary least squares fitting (multiple linear regression). Neu-
ral nets in principle seem an attractive way to deal with the non-
linear aspects of the retrieval problem, but are yet to demonstrate
good success. ‘Genetic’ algorithm identification seems to converge
on a form rather similar to the split window formulation.

Approaches involving radiative transfer modelling

Progress has been made in recent years using RT modelling to im-
prove retrieval accuracy and precision.

The main use of RT has been to define coefficients that look ra-
ther like the simple empirical estimators discussed above. Instead of
empirical matches between in situ SST measurements and satellite
observations, RT-based coefficients are derived by regressing simu-
lated BTs to the SSTs used as input to the simulations. The simula-
tions are driven using atmospheric profiles obtained from radio-
sondes or numerical weather prediction (NWP) systems. The RT-
based approach is compared to the empirical approach in Table 3.
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Table 3. Contrasting advantages and disadvantages of deriving SST retrieval coefficients
by empirical means compared with derivation by radiative transfer simulation. See also

Merchant and Le Borgne, 2004.

Aspect

Empirical approach

RT-based approach

Instrument calibration
and characterisation

Reduced need to understand instrument
characteristics and calibration, since
many calibration issues are empirically
accounted for in the coefficients.

Need sensor to be well char-
acterised (accurate spectral
response functions available)
and calibrated (ideally to
~0.1 K). In absence of this,
significant effort is required
to bias-correct simulated
BTs to match observations.

Spatio-temporal sam-
pling (representativity)

Can only match locations where in situ
measurements are already present. This
gives no formal basis for assessing the
accuracy of retrieved SSTs in are-
as/periods with few or no in situ meas-
urements. In situ coverage has greatly
improved since the early 2000s, but
high latitude seas remain under-
represented.

The spatio-temporal sam-
pling is in the control of the
investigator. Access to an
NWP re-analysis provides a
consistent atmospheric data
set that can be sampled
across all epochs and with
no gap regions.

Nature of sea surface
temperature

Satellite SSTs are regressed to the SST
at the depth typical of the in situ meas-
urements (tens of cm in the case of
drifting buoys). However, BTs are sen-
sitive to skin SSTs. Thus, empirical
methods conflate different forms of
SST that do not bear a simple relation
to each other. An approach which ad-
dresses this issue is to restrict the re-
gression cases to those where skin-
depth differences are thought to be well
understood (e.g., moderate wind stress
at night).

The simulation can be done
using skin SST. The coeftfi-
cients are then unambigu-
ously retrieval coefficients
for skin-SST, the geophysi-
cal variable to which the
BTs are sensitive.

Independence from in
situ data sets

No independence (fully tied to in situ).

Independence possible for
best characterized instru-
ments. For reasonably well
calibrated instruments, RT-
based coefficients can be
tuned by adjusting only the
offset coefficient.

Difficulty of defining
algorithm

Requires a statistically sound number
of satellite-in situ matches (for every
required stratum of latitude/TCWV/
view angles/etc). Implies no retrieval
scheme is available at launch.

Requires a RT simulation
capability, sampled NWP
profiles, and commensurate
computing power. Retrieval
scheme can be defined prior
to launch.




13

One strength of approaching SST retrieval with RT simulations is
the enhanced ability to diagnose and solve problems. An example is
how to adapt SST retrieval to the presence of stratospheric aerosol
(Merchant et al., 1999). Occasionally, major volcanic eruptions pen-
etrate the stratosphere and create a haze of sulphuric acid droplets
that persists at altitudes of order 20 km for a year or two. This strato-
spheric aerosol layer has climatic impacts, and also affects remote
sensing at visible and infra-red wavelengths. The aerosol absorbs in-
fra-red radiation, and causes BTs to be reduced. Let’s assume that
the impact per unit aerosol optical depth, 7, on the BTs of a typical

.9 dY3.7um 0y 0y12um\"
three-channel sensor is =~ = ( ATpm Zilpm _Tlap m) . Here, and
T at ot at

hereafter, y is used for a column vector containing the BTs to be
used in a SST retrieval. For a given observation (at a particular view
angle etc.), the retrieval equation can be conveniently written also
using vector notation as:

£=a+aly (5)

where, compared to eq. 3, a = a,+b,S; the first element of the coeffi-
cient column vector, a, is equal to a,+b,S; and so on. The summation
in eq. 3 is achieved in eq. 5 by the matrix multiplication of row vec-
tor a' and the column vector y. Use of matrix algebra may at first
seem unnecessary, but is a powerful tool for expressing and analys-
ing retrieval algorithms.Written in this form, it is clear that the im-
pact of the stratospheric aerosol on the retrieved SST will be:

o _ _.T0y
60X =ta P (6)

at least over the range for which the BT depression is linear in the

. . iy ]
optical depth. Using radiative transfer, a—}; can be calculated from

knowledge of the properties of the sulphuric acid droplets (concen-
tration and size distribution). Knowing this, the different sensitivities
to stratospheric aerosol of different retrieval formulations can be un-
derstood using eq. 6. Moreover, we readily formulate the require-
ment for an SST retrieval algorithm to be robust (i.e., insensitive) to
stratospheric aerosol. It is:
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9y
a’l 7 =0 (7)

This property can be designed into retrieval coefficients by impos-
ing eq. 7 as a linear constraint when deriving coefficients by regres-
sion. This has been done successfully for a dual view sensor in rela-
tion to the major eruption in 1991 of Mount Pinatubo in the
Philippines (Merchant and Harris, 1999). The addition of an extra
constraint like this means that a useful set of robust coefficients can
only be found for three or more channels (at different wavelengths
and/or view angles). The relationships between other perturbations
to observed BTs and the resulting SST bias can be analysed with a
similar approach. This illustrates that understanding a retrieval prob-
lem by simulation can lead to useful insights.

More recent RT-based approaches emphasize simulation of BTs
for the particular context of an observation (rather than for a spatio-
temporal sample, as when defining coefficients). To achieve this in
near-real time, an operational centre requires routine access to NWP
forecast fields and a fast simulation capability (Le Borgne et al.,
2011). For retrospective processing, NWP re-analysis fields may be
used. Either way, a prior estimate for the BT based on simulation is
obtained for every satellite pixel. These simulated BTs can then be
used in a variety of ways to give improved SST estimates.

If simulated BTs, y, (where subscript b indicates BTs simulated
using prior or ‘background’ information), are used with SST retriev-
al coefficients, a simulated SST estimate is obtained X, = a +
a’y,. But the simulation of y, assumes a background SST as input
to the RT model, x,. The difference X, — x;, is then an estimate of
retrieval bias for the circumstances of the retrieval (i.e., for the cir-
cumstances embodied in the NWP information). If this is a good
SST bias estimate, then an SST estimate, X', that improves upon the
original estimate, X', can be obtained:

X'=x- (Qb _xb) = Xp +aT(y_Yb) (8)

Practical experience has shown that this is indeed a beneficial ex-
tension to coefficient based retrieval, reducing geographical biases
and the standard deviation of discrepancies in validation (Le Borgne
et al., 2011). It requires that simulated and observed BTs have, if
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necessary, been tuned to have no relative bias on average. Eq. 8
shows that simulation-based bias correction (central expression) is
equivalent to adjusting the background SST in the light of the dis-
crepancy between observed and simulated BTs (rightmost expres-
sion).

In the above approach, the coefficients, a, are defined as retrieval
coefficients that operate on BTs in the usual way. A further alterna-
tive is to keep essentially the same equation (adding only an offset
coefficient), and then to redefine coefficients specifically for an ‘in-
cremental’ retrieval (Petrenko et al., 2011). This involves regressing
differences between background and in situ SSTs against differences
between matched BT observations and simulated BTs. The relative
calibration of sensor and forward model is empirically included
within the incremental coefficients in this approach.

Despite their practical successes, none of the above methods
(whether purely empirical or including RT) is formally optimal
when viewed from the standpoint of inverse theory (Rodgers, 2000).
Inverse theory gives a coherent framework for analysing SST re-
trieval as an inverse problem, in terms of a fundamental understand-
ing of how much information is truly present about SST in a given
set of BTs. Different ‘optimal estimates’ of SST can, in principle, be
defined, that optimize clearly defined aspects of the SSTs obtained.
Where the information content of the observations is high for SST, a
useful estimator is the maximum likelihood (ML) estimate, which
returns the most likely SST given the observations. In an ML re-
trieval, the background information is used, effectively, as a lineari-
zation point for an incremental retrieval with context-specific coeffi-
cients (derived dynamically using RT). However, for a traditional
split window retrieval using 11 and 12 ym channels, the ML esti-
mate is not always useful, particularly in tropical regions and/or at
high satellite zenith angle when the 12 ym channel in particular be-
comes nearly insensitive to SST in comparison to observational
noise. In these circumstances, the BTs fundamentally contain insuf-
ficient information on SST to obtain a good retrieval without relying
on prior information. (This prior information may be embedded in
empirical retrieval coefficients or explicitly represented by NWP
profiles—either way, its presence is unavoidable.) Thus, for split
window retrieval, an appropriate optimal estimate is the maximum a
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posteriori (MAP) estimate. A simplified MAP formulation has been
shown to be useful for split window retrieval (Merchant et al.,
2008). A further benefit of optimal estimation techniques is that they
naturally output a goodness-of-fit indicator that gives useful insight
into retrieval quality.

For a truly optimal MAP retrieval, several relatively onerous con-
ditions need to be met, including an unbiased RT simulation capabil-
ity (for both BTs and their partial derivatives) and a thorough under-
standing of instrumental noise and background error characteristics.
In some areas of thermal remote sensing—nadir sounding of trace
gases in the atmosphere, perhaps —the inverse problem is sufficient-
ly delicate that a formal optimal approach is virtually obligatory. In
the case of SST, strong practical success has been obtained for three
decades using more direct, intuitive methods. Nonetheless, renewed
interest in driving down SST retrieval uncertainties and in under-
standing biases has prompted new activity in exploiting RT and in
optimal estimation.

Evaluating SST retrievals

The quality of an SST retrieval scheme is typically evaluated in
validation by considering ‘error statistics’, usually the mean and
standard deviation of discrepancy between the satellite and matched
in situ SSTs (e.g., Donlon et al., 2009). The mean discrepancy is of-
ten interpreted as ‘bias’, but this needs to be done with care. There
are real geophysical differences to be expected between satellite and
in situ measurements (and between different types of in sifu meas-
urements). No measurements are perfect, and the validation data (in
situ measurements) can also contribute errors to the discrepancy be-
tween satellite and in situ. Here, ‘bias’ is avoided in preference to
the more descriptive term ‘mean discrepancy’.

Between the mid-1990s and the mid-2000s, drifting buoys that
routinely report SST became progressively more numerous (Mel-
drum et al., 2009). For recent years, it is possible to calculate a sta-
tistically sound, geographically resolved mean discrepancy com-
pared to drifting buoys for most of the global oceans (Figure 4). This
is a great benefit to development of SST remote sensing. The uncer-
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tainty of SST calibration across the ensemble of drifting buoys
seems to be about 0.2 K (1 o value; Castro et al. 2012), so in regions
of Figure 4 where only a few different drifting buoys have contribut-
ed, the mean discrepancy could reflect buoy calibration errors rather
than systematic error in satellite SST. In principle, the thermistor
technology used in drifting buoys could be calibrated to better than
0.05 K uncertainty (on deployment). New requirements for estimat-
ing SST for climate (see later) arguably justify the expense associat-
ed with this improvement in the drifting buoy programme. Nonethe-
less, with the current drifting buoy network, geographical biases in
satellite SST can now be inferred (with due care and interpretation)
from maps of mean discrepancy covering a long enough time period.
Figure 4 is based on 20 years of observations (1991 to 2011), with
most matches being obtained in the last decade. The satellite SSTs
are from a reprocessing for climate of Along Track Scanning Radi-
ometer observations. The mean discrepancy maps have credible
structure on length scales of 1000 km for a large part of the ocean.
There is a noticeable variation in bias along the equator seen in Fig-
ure 4, particularly with negative biases in the tropical Atlantic. Simi-
lar or larger biases in tropical SSTs are a common feature of retriev-
al of SST by coefficients using the split-window channels in a single
view (e.g., Merchant et al., 2009).

The precision of satellite SSTs refers here to the retrieval-error
standard deviation. The information available to assess precision in-
cludes maps of standard deviation of discrepancy. The values in this
measure are an upper limit on precision, since the in situ observa-
tions errors contribute to the spread of discrepancy. Assuming
enough different drifting buoys contribute to a particular calculation
of standard deviation of discrepancy, the satellite SST precision can
be approximately inferred.
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Figure 4. Upper panel: Mean
discrepancy map for a single-
view split-window SST estima-
tor, adjusted for the SST skin ef-
fect and near-surface stratifica-
tion, relative to drifting buoy
SST. This is an estimate of the
geographical variation in bias in
the SST estimates. The SSTs are
for the “nadir two-channel” re-
trieval for all matches found for
a series of three Along Track
Scanning Radiometers (ATSRs)
between 1991 and 2011. (Note
-05 -04 —03 02 -01 00 01 02 03 04 05 ot the ATSRs are dual-view
Mean Discrepancy / K . .

sensors; the geographical varia-
tions seen here in the tropics are
greatly reduced when taking ad-
vantage of dual-view capability.)
Lower panel: number of
ATSR/drifting-buoy matches
obtained over two decades. The
marked variation in density of
matches arises from the combi-
nation of drifting buoy deploy-
ment patterns and prevalence of
cloud cover. Matches are partic-
ularly few in the highest lati-
tudes and the tropical warm pool
0 10 100 1000 (round Indonesia), where both

Humber of Matehes these factors are unfavourable.

In the context of climate applications of SST, an important quality
is stability (e.g., GCOS, 2006). Stability is the constancy in time of
the SST bias, or, equivalently, the additional uncertainty on any cal-
culated climatic trends arising from (unknown) drift the calibration
of the observing system. The current in situ observing system is not
well equipped for assessment of stability of satellite SSTs since the
SST calibration of drifting buoy and other in situ deployments has
not been controlled with stability in mind. Long-term deployments
of well-calibrated moorings in tropical seas (initially to monitor the
El Nifio region, and now worldwide; McPhaden et al., 2010) are use-
ful for assessing stability, although geographically limited (Mer-
chant et al., 2012). More recent near-surface (~5 m) measurements
from Argo profiling floats (Freeland et al., 2010) may prove a useful
global reference for stability as a longer time series accumulates.
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The ideal for the long-term would be a network of SST reference
sites of known, controlled stability, distributed at locations selected
to allow assessment of global stability of SST. Research is needed to
optimize such a network of reference sites to be effective and cost-
effective. At reference site locations, both radiometric and sub-
surface measurements of SST should be considered (Minnett and
Corlett, 2012).

A further parameter to evaluate satellite SST is SST sensitivity
(Merchant et al., 2009). SST sensitivity is the fractional response of
the retrieved SST to variation in true SST, other factors (such as the
atmospheric state) being equal. Ideally, the sensitivity should be 1 K
K™, so that a true change in SST causes an identical change in re-
trieved SST. In general, this is not the case (Figure 5).

S —
04 1.0
Zonal Mean

Sensitivity to True SST Sensitivity to True SST

Figure 5. Change in retrieved SST per unit change in true SST, all other factors being held con-
stant, for a split window SST estimate (non-linear SST retrieval applied to the Advanced Very
High Resolution Radiometer on Metop-A). Reproduced from Merchant et al. (2009) with per-
mission.

SST sensitivity is readily calculated for a coefficient-based re-
trieval as

ox _ 1Oy
6x_a dax (9)

where the partial derivatives of BTs are calculated using RT simula-
tion. Readers familiar with atmospheric sounding will recognize
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that the averaging kernel is an indispensable tool for interpreting
remotely sensed atmospheric profiles. If retrieving SST by optimal
estimation, sensitivity is the diagonal term corresponding to SST in
the averaging kernel matrix.

Where sensitivity of an SST estimate is much less than 1 K K™, it
is expected that the strength of ocean thermal gradients is underes-
timated (an expectation that requires further validation at the time of
writing). Likewise, diurnal variations in SST are attenuated by low-
sensitivity estimators (Merchant et al., in press). Moreover, the SST
sensitivity has a deep connection to the information content of the
BTs (Rodgers, 2000). SST sensitivity is low when low BT sensitivi-
ty to SST reduces the signal-to-noise ratio, in which case the retriev-
al must depend more heavily on prior SST information. (The prior
information may be explicit, as in optimal estimation, or may be im-
plicitly embedded in SST retrieval coefficients.) Thus, the sensitivity
can also be interpreted as the fraction of the information in a particu-
lar SST estimate that comes from the BTs. Figure 5 therefore illus-
trates the point made previously that typical split-window retrievals
rely significantly on prior information in the tropics.

Meanings of ‘sea surface temperature’

It is a general issue in remote sensing that the remotely sensed quan-
tity is not identical to measurements made in sifu of nominally the
same quantity.

In the case of SST, a lot is understood about how different ‘sea
surface temperatures’ relate. This understanding is the fruit of re-
search cruises (e.g., Minnett et al., 2011) and profilers (e.g., Ward et
al., 2004) that have undertaken intensive multiple observations, and
of modelling the near-surface ocean and atmosphere using funda-
mental physics.

The thermal emission from the sea surface comes from a layer
whose characteristic depth varies with wavelength (because the
complex refractive index of water varies with wavelength; e.g.,
Hanafin and Minnett, 2005). The radiometric skin depth is ~10 um
at wavelengths around 12 wm, and ~100 ym at wavelengths around
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4 um. As well as this radiometric skin, the ocean surface also has a
thermal skin. Heat can be transported through this thermal skin only
by molecular heat diffusion, and not via the turbulent motions that
are effective in moving heat within the bulk of the fluid. Heat flux is
usually from ocean to atmosphere. A temperature gradient must be
present within the thermal skin to transport heat via molecular diffu-
sion. For a typical ocean-atmosphere heat flux, the drop in tempera-
ture across this thermal skin is of order 0.2 K. The radiometric tem-
perature of the sea surface differs from the thermodynamic
temperature of water below the diffusive layer (the ‘sub-skin SST”)
both because the sea surface emissivity is less than 1, and because
the temperature of the water within the radiometric skin depth is ac-
tually different from (usually cooler than) the sub-skin SST.

The sub-skin SST can be very close to the SST measured by drift-
ing buoys (at a depth of order 20 cm), moored buoys (typically of
order 1 m depth) or the top observation of conventional Argo pro-
files (around 5 m). Sub-skin SSTs and in situ-depth SSTs are equal
when the near-surface is not thermally stratified, reflecting efficient
mixing of the near-surface water by wind action. Although near-
surface stratification is often small compared to SST uncertainties, it
is sometimes considerable (e.g., Clayson and Weitlich, 2007). Strati-
fication that causes sub-skin to in situ-depth SST differences may be
caused by heavy rainfall creating a fresh ‘lens’ of water of a differ-
ent temperature on the sea surface. However, near-surface stratifica-
tion has been most clearly observed in satellite SSTs when caused
by diurnal warming (e.g., Gentemann et al., 2008).

During the day, sunlight preferentially heats the upper centimetres
to metres of the ocean, because most wavelengths of sunlight are ab-
sorbed by seawater over such distances. In the absence of wind, this
will tend to cause a warm near surface layer—that is, it thermally
stratifies the water (Fairall et al., 1996). Under persistently calm
conditions (wind speed less than 1 or 2 m s), this effect can warm
the sub-skin SST by 6 or 7 K between sunrise and early afternoon
(e.g., Gentemann et al., 2008). Wind action tends to act against strat-
ification, by mixing the heat down, and an increase of wind can fair-
ly rapidly erode diurnal stratification. Under wind speeds of about 6
m s or more, the peak amplitude of the diurnal cycle in sub-skin
SST is no more than a few tenths of kelvin.
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In summary:

* The ocean thermal skin effect is generally present, so the skin
SST is different (usually cooler) than the sub-skin SST. Meas-
urements by thermal remote sensing are sensitive to this skin
SST.

* The difference between sub-skin SST and SST at depths meas-
ured by drifting and moored buoys can range from negligible
(e.g., night-time, windy conditions) to several degrees (high-
insolation, sustained low-wind-speed conditions).

Satellite SSTs obtained using coefficients derived by regression to
drifting buoys are sensitive to skin SSTs, but are tuned to remove the
mean skin-depth difference present in the matched data set. This ig-
nores the true variability of skin—depth differences, which then be-
comes part of the error budget for the satellite SST estimate.

Some investigators have restricted the in situ observations used
for deriving empirical coefficients to situations likely to have negli-
gible stratification. This can be done by specifying that the wind
speed around the time of the satellite—in situ match must be above a
threshold. The satellite SSTs can then be justifiably described as es-
timates of sub-skin SST on average, since the mean skin—sub-skin
difference is tuned out.

Satellite SSTs retrieved using RT methods should return a true
skin SST. This has the merit that the estimated quantity is the quanti-
ty to which the observations are sensitive. To compare such satellite
SSTs to others then requires explicit account to be taken of
skin—sub-skin and sub-skin—depth differences. This can be done us-
ing physical models (e.g., Kantha and Clayson, 1994) driven by heat
flux and wind speed over the diurnal cycle (e.g. from NWP) to ob-
tain an adjustment between skin (satellite) and depth (in sifu) SST
(e.g., Embury et al., 2012b). The complication with this approach is
that any discrepancy after such an adjustment could arise from mod-
el errors as well as observational errors.

The discussion above focusses on geophysical differences in SST
with respect to depth. Horizontal variability in SST is also im-
portant. In situ observations give the SST at a point in space. Satel-
lite SSTs are estimates over an area of typically 1 to 30 km®. Thus,
there is point-to-pixel sampling variability in any satellite—in situ
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comparison. Specialist research cruises and a few automated systems
make radiometer measurements of SST. Radiometer measurements
are attractive to compare with satellite SSTs because both respond to
the skin SST, removing ‘vertical’ variability. Point-to-pixel issues
remain in such comparisons, however (e.g., Wimmer et al., 2012).
For both radiometer and well-calibrated subsurface SST, it seems to
be difficult to reduce satellite—in situ discrepancies from geophysical
variability to less than about 0.1 K (Castro et al., 2010).

The wider context for thermal remote sensing of SST

Operational SST production

To support weather forecasting (numerical weather prediction,
NWP) and near-real time oceanography, SSTs are produced opera-
tionally (Donlon et al., 2010). This means regional-to-global, near-
real time, high-availability, continuous generation and distribution of
SST products. The requirements on timeliness and availability and
the volume of data flow involved mean that operations tend to be
undertaken by major agencies that can maintain 24 hr/day functions.
The ultimate quality of SST products depends as much on the steps
relating to calibration of observations and cloud-detection as on the
SST retrieval itself.

Users of operational SST are varied. Some require visual interpre-
tation of SST images, perhaps to locate fronts in real time. Such us-
ers may prefer ‘level 2’ imagery, where the SSTs are presented on
the geographical locations at which they were observed (for the
clear-sky areas available). Other users, requiring reduced data vol-
umes and/or more convenient formats, prefer ‘level 3 products’, in
which there is some regridding, and averaging or compositing in
space and time. A level 3 product might comprise, for example, the
daily average on a regular latitude-longitude grid of all the observa-
tions within each grid cell taken by a particular sensor.

For many applications, a spatially completed, gridded field is nec-
essary — referred to as an ‘analysis’ or as a ‘level 4 SST product’. To
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improve the spatial sampling above that observed by a single sensor,
blending data from multiple sources is usually performed for level 4
production (e.g., Reynolds et al., 2007; Donlon et al., 2012). This
may include in situ observations and passive microwave (PMW)
SSTs as well as SST from thermal remote sensing. Even so, spatio-
temporal gaps will exist, requiring interpolation (gap-filling) — see
Figure 6.
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Figure 6. Typical example of the daily coverage of SST from six different SST data products, at
different spatial resolutions, all from the same day. Reproduced from Robinson et al., 2012, with
permission.

There are many approaches to SST analysis (combining data to
cope with the different types of data, with different resolutions, gaps,
uncertainties and biases). Irrespective of the method, the process of
analysis will tend to create an SST field that, to a greater or lesser
degree, has certain limitations. The analysis SST will tend to have
poorer resolution of thermal features than the highest resolution data
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used in the analysis (i.e., thermal gradients and contrasts will tend to
be reduced by the analysis process). The results of the analysis are
sensitive to the assumptions made about the relative uncertainties of
different data sources, and the treatment of bias correction. The SST
estimates given in the absence of observations (filling data gaps) are
based on assumptions about the correlations of the unobserved SST
anomalies to those observed nearby in time and space. Features in
gap-filled areas may differ systematically from reality. In general,
the SST error statistics across the analysis are far from uniform, alt-
hough this variation is sometimes neglected in applications. These
caveats have to be traded against the practical usefulness of having a
spatially complete SST estimate.

Weather and ocean forecasting are major routine applications of
near-real time SST products. The atmosphere and ocean interact, ex-
changing heat, mass (evaporation and rain) and momentum; in mari-
time climates, air temperature and humidity are partly determined by
upwind SST. Surface winds interact with ocean thermal fronts, with
the influence of SST changes propagating through the troposphere
(Chelton et al, 2001). Meanwhile, cloudiness (via the strength of sur-
face solar heating) and wind affect processes of mixing and stratifi-
cation in the upper ocean. Numerical simulations for weather fore-
casting up to several days ahead are, at present, generally performed
assuming the most recent level-4 SST analysis as a fixed boundary
condition for the bottom of the atmosphere.

SST production for climate services

Table 4 lists some uses of SST products in the realm of climatology
and climate services.

The demands on SST accuracy and stability for climate applica-
tions are onerous (GCOS, 2011). Consistent SST data sets for cli-
mate applications have often been provided via reprocessing projects
(e.g., Kilpatrick et al., 2001). In such a project, an SST record for a
particular time period is generated by re-deriving SST from the input
satellite (and perhaps in situ) data streams in a manner that is con-
sistent, and, hopefully, an improvement over previous products.
However, some of the climate-related applications in Table 4 are de-
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veloping into climate services that require an estimate of the ther-
modynamic state of the ocean that is constantly updated, while sim-
ultaneously being of ‘climate quality’ and consistent with a climate
data record going back in time. An example is ‘seamless’ prediction
of long-range weather, seasonal tendencies and future climate sce-
narios. This will require systems capable of delivering ‘climate qual-
ity’ SST with a relatively short delay from the time of acquisition
(perhaps a few days).



Table 4. Established uses of SST in climatology
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Use Purpose(s) Comments
Quantifying Baseline knowledge of behaviour ~ Of order 100 years of SST required for vari-
SST/climate of atmosphere-ocean system, in- ability at multi-annual and decadal scale, and
variability  cluding geographical patterns of for climate trend analyses. In satellite era,
and trends  SST variability and corresponding  this can be addressed with much greater spa-
weather anomalies. Assessment of  tiotemporal detail than in pre-satellite era.
long-term changes, including those Satellite SSTs are helpful in establishing
associated with human forcing of ~ modes (spatial patterns) of variability that
climate. can be exploited in filling gaps in historical
data (“historical reconstruction”).
Detection Assessment of climatic trends that ~ Usually requiring historical reconstructions
and attribu-  are ‘stand out’ above climatic vari- of SST fields over of order 100 years.
tion of cli-  ability. Comparison of spatio-
mate chang- temporal progression of SST with
es expected evolution under different
agents forcing change, to attribute
which forcings have caused ob-
served trends.
Boundary Atmospheric reanalysis use anu-  Reanalyses to date generally rely on pre-
condition of merical weather prediction system  scribed, spatially complete SST fields. For
atmospheric retrospectively to infer the best es-  recent decades these rely heavily on remote-
reanalyses  timate of past weather. ly sensed SST. Reanalyses are useful in gen-
erating consistent estimates of air-sea fluxes
of heat and precipitation, amongst numerous
other applications.
Boundary Verification that climate models SST field is prescribed, while atmosphere
condition of reproduce historical (e.g., 20"C) and land components evolve in the climate
climate climates when driven with best es-  simulation in response. The ability to repro-
model runs  timate SSTs. duce the land climate of the 20™C given pre-
scribed SST has been viewed as a basic test
for validity of a given climate model.
Climate Forecasts from seasonal to decadal ~Requires a coupled climate model (one in
prediction scales of the statistics of future which ocean is interactive, not prescribed).
weather. Relatively slow response time of ocean
mixed layer gives some level of predictabil-
ity for seasonal forecasting. Seasonal fore-
casting requires that the simulation starts
with as realistic as possible an estimate of
state of the ocean (accurate ‘initialisation’).
On timescales of decades, predictability
comes from dominance of the influence of
forcings over internal variability.
Climate- Research into the responses of Important in understanding present and fu-
ecological ~ plankton, fish and corals to SST ture productivity and ecological health of the

interactions

variations.

oceans.
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International co-operation

There is a well-developed framework of international co-operation
in operational remote sensing of SST involving many agencies
worldwide. The Group for High Resolution SST (GHRSST) co-
ordinates sharing of tasks, including routine inter-comparison of
SST products, archiving and product distribution (Donlon et al.,
2009). Common standards and data formats have been developed to
increase the ease of use of SST from different sources. GHRSST al-
so gives a forum in which the science of SST remote sensing is de-
bated and advanced.

At time of writing, GHRSST has a project office supported by the
European Space Agency and is formally linked to the Committee on
Earth Observation Satellites (the international forum for co-
ordination of civil remote sensing). At the GHRSST web site,
www.ghrsst.org, links to operational and archive products (levels 2,
3 and 4) are available, with routinely updated visualizations of SST
products and analyses (Martin et al., 2012; Dash et al., 2012), efc.

The SST sensor constellation and SST analysis

Table 5 illustrates the constellation of SST relevant sensors. Dif-
ferent classes of sensors / platforms have complementary technical
capabilities and roles, with strengths in providing different aspects
of the user requirements for remotely sensed SST. For example: ge-
ostationary sensors are well suited to resolve sub-daily variability in
SST, complementing the higher-resolution less-frequent observa-
tions from lower-altitude polar orbiting instruments; dual-view sen-
sors can give higher SST accuracy, but have poorer sampling be-
cause a dual-view swath width is unavoidably narrower than that for
a traditional single-view imager. (The examples given in Table 5 do
not include any SST-capable instruments whose products are not in-
cluded within the GHRSST co-operative framework, although sev-
eral such instruments are in flight.)

An important complement to the thermal sensing constellation is
an SST capability at microwave frequencies (Wentz et al., 2000).
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Passive microwave (PMW) sensors have some limitations relative to
thermal remote sensing using infra-red (IR) wavelengths. First,
PMW SSTs have lower spatial resolution. Because the size of foot-
print of a PMW sensor with a given antenna is inversely related to
frequency, it is difficult to define a single resolution for the multi-
frequency PMW retrievals; a reasonable indication is an area of or-
der 2500 km®, which is obviously a much greater than the 1 km’ to
100 km” typical of IR imagers. Second, PMW SSTs are not available
or have much increased uncertainty within about 50 km of land and
sea-ice, because of sensitivity to the land or ice emission in the side-
lobes of the antenna pattern. Third, PMW SSTs to date have to SST
uncertainty (~0.5 K) comparable to the less capable IR imagers. A
significant contribution in PMW SST uncertainty is the greater sea-
state dependence in emissivity. Fourth, problems with radio fre-
quency interference are degrading PMW SSTs across progressively
more of the ocean in European seas and elsewhere.

Nonetheless, PMW SSTs are a very powerful addition to the sen-
sor constellation for SST, because retrievals are available through
non-raining clouds. PMW SSTs are particularly beneficial, there-
fore, in areas and periods of total cloud cover; they may provide the
only satellite information about SST near a particular location for
days or even weeks, sometimes with important consequences
(Wentz et al., 2000).

The full constellation of sensors is beneficial to our ability to es-
timate the global distribution of SST at a given time — i.e., to the
process of creating SST analyses. Synthesis of the different sources
of SST information remains a challenge, especially in the face of in-
creasing demands for high spatial resolution (e.g., 1 km globally)
and sub-daily temporal resolution (e.g., 3 hourly, capturing the diur-
nal cycle). Given the sampling limitations of thermal remote sensing
(because of clouds) and the resolution limitations of microwave re-
mote sensing (~50 km, one or twice a day per sensor in the open
ocean), the degree to which such demands can be met by the present
constellation is a topic of ongoing research. (“Meaningfully” here
means that the SST variations in the analyses are determined more
by real information observed by the SST constellation, than by noise
arising from observation uncertainty and the analysis system.) One
clear direction for progress is to develop a more complete under-
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standing of the uncertainties of different types of data and the degree
of correlation of different components of error in time and space.
SST analysis systems properly able to use such improved uncertain-
ty characterization will (i) preserve as much as possible of the true
information on SST held in the constellation of sensors, (ii) mini-
mize the introduction of spurious features in the analysed SST, and
(ii1) deliver realistic estimates of the uncertainty in the analysed

SST.

Table 5. Categories of infra-red SST sensors and examples used within the GHRSST

framework.

Orbit Channels View Role(s) in constella- Example(s)

tion

Geosta  Split-window  Fixed view  High temporal sam- Spinning Enhanced Visible

sta- and near-IR  of visible pling: resolves diurnal ~ and Infra-Red Imager

tionary (broad chan-  Earth disk  cycle; maximizes spa- (SEVIRI)
nels) tial coverage by track-
ing gaps in cloud.

Polar Split-window  Single Near-global coverage ~ Advanced Very High Reso-
and near-IR view, on daily basis includ-  lution Radiometer (AVHRR)
(broad chan-  across track ing high latitudes (be-
nels) fore cloud screening).

Main operational me-
teorological sensors,
usually at least two in
orbit (morning and af-
ternoon).

Polar As above Single Extended capability Moderate-resolution Imager
plus addi- view, relative to AVHRR- Spectroradiometer (MODIS),
tional SST across track like channel set. near-IR bands centred on
relevant 3.95 and 4.05 um.
channels Visible/Infrared Imager Ra-

diometer Suite (VIIRS)

Polar Split-window  Dual-view, High-accuracy SST Advanced Along-Track
and near-IR  acrossand  for climate and/or Scanning Radiometer
(broad chan-  along track  SST calibration refer- (AATSR)
nels) ence. Poorer sampling  geq and Land Surface Tem-

from narrower swath.
Greater robustness to

aerosol contamination
with dual view.

perature Radiometer
(SLSTR, from c. 2014)

Thermal remote sensing of SST is an integral part of the observa-
tion of the ocean, and indeed of the global environment. Space and
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meteorological agencies are committed to maintaining the capability
over the coming decades. This commitment is accompanied by on-
going improvement in our ability to sense the temperature of the
ocean surface, bringing many benefits to society.
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