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1 Introduction31

Inverse methods have widespread use throughout the atmospheric science commu-32

nity, with the fields of data assimilation and measurement retrieval from weather33

satellites perhaps being the most well-known application. However, such methods34

are not as commonly used with ground-based remote-sensing measurements, and35

are rare within the boundary-layer literature. Using inverse methods for small-36

scale applications would provide advantages: for example, the probabilistic basis37

of inverse modelling techniques provides well-defined errors in the results, and38

allows for many different measurements to be combined easily within the same39

model framework.40

A recent example of small-scale application of an inverse method is Hogan41

(2007), who used a variational method to retrieve rainfall rates using measure-42

ments from a polarization radar. The variational method allowed for attenuation43

in the measurement to be corrected, and also enabled the identification and mea-44

surement of hail, which would previously have required a separate algorithm. There45

have also been attempts to assimilate Doppler lidar measurements of wind velocity46

and turbulence into more complex boundary-layer models. For example, Newsom47

and Banta (2004) used a four-dimensional data assimilation method with radial48

Doppler lidar measurements of wind-velocity fields and turbulence. Their aim was49

to provide datasets that could be used to verify large-eddy simulation (LES) re-50

sults, in particular evaluating subgrid-scale turbulence parametrizations. Inverse51

modelling techniques have also been applied in atmospheric dispersion; Rudd et al.52

(2011) used a variational method to estimate the source strength and position of53

an atmospheric gas release as a possible tool in the case of accidental or malicious54

release.55

In this work, we use an inverse retrieval method with a surface-based remote-56

sensing instrument to demonstrate a method for measuring surface sensible heat57

flux. Measurement of heat flux is of importance as both input and verification58

for numerical models of varying temporal and spatial scales, from simulations of59

city-scale pollution dispersion to numerical weather prediction models. However,60

measurements of the surface heat flux suitable for these purposes have proven61

difficult, in particular when considering measurements made over heterogeneous62

surfaces. As Cleugh and Grimmond (2001) wrote when discussing energy exchange63

in heterogeneous landscapes: “A current challenge in boundary-layer meteorology64

is to provide, either through modelling or measurements, estimates of turbulent65

fluxes that are representative of large regions, areas of 102-104 km2, where the66

landscape is inevitably characterised by considerable surface heterogeneity”. More67

than a decade later, this issue still represents a problem.68

The principal difficulty with making measurements of surface fluxes over het-69

erogeneous surfaces, for example in urban areas, arises from the instruments typ-70

ically used. These are traditionally surface-based point instruments such as the71

sonic anemometer. The low height at which such instruments are generally placed72

results in measurements that have a small source area. For example, the source73

area of a typical tower-based flux measurement (at 20-30 m) is between 0.01-174

km2 (Cleugh and Grimmond, 2001), and so the flux measurements are only rep-75

resentative at the street scale. The placement of instruments is a problem that76

has limited efforts to measure and interpret urban fluxes and the urban boundary77
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layer, for the simple reason that it is practically difficult to place sufficiently tall78

measurement towers in busy cities (Roth, 2000).79

An increasingly popular method to resolve this problem is the use of remote-80

sensing instruments. These instruments are capable of making measurements over81

a range from hundreds of metres to tens of kilometres, and as such make mea-82

surements that are representative of much greater areas than those made by point83

instruments mounted near the surface. Until recently, the resolution and reliabil-84

ity of surface-based remote-sensing instruments could not match the performance85

of the traditional methods, but advances in remote-sensing technology over the86

last two decades mean that long-term, high-quality measurements of turbulence87

are now viable. Along with a reduction in cost and an increase in commercial88

availability, this has seen an increase in studies and campaigns seeking to take89

advantage of the benefits of remote-sensing instruments; in particular their range90

and their ability to observe a flow without disturbing it.91

Engelbart et al. (2007) reviewed some of the most common methods of using92

remote sensing to determine profiles of turbulent fluxes (and by extension surface93

fluxes) using various instruments; sodars, radio acoustic sounding systems (RASS),94

wind-profiling radars and lidars. They divided the methods into two categories;95

direct and parametric. Direct methods, as is implied, involve directly measuring96

fluxes using the eddy-correlation technique or by measuring variances. They re-97

quire a rapid scanning instrument, or multiple beams. Parametric methods utilize98

simple models that relate averaged profiles of different variables to the fluxes.99

A good example of the use of a parametric method was originally suggested100

by Angevine et al. (1994). They made measurements of the vertical velocity vari-101

ance (σ2
w) in a convective boundary layer (CBL) using a wind-profiling radar, and102

then used mixed-layer similarity theory to relate these measurements to the sur-103

face sensible heat flux. The results using this method were compared to heat-flux104

measurements made with the eddy-correlation method using a sonic anemometer.105

Angevine et al. (1994) considered the results to be in good agreement, although106

there was significant scatter that they believed could be reduced through longer107

averaging times for the variance measurements. Their dataset was quite small, con-108

sisting of only 20 measurements, which has often been a limitation with studies109

using remote sensing measurements for determining surface fluxes. For example,110

Davis et al. (2008) successfully used a Doppler lidar to estimate surface sensible111

heat fluxes over Salford, Greater Manchester, but had only 12 data points.112

The results of Angevine et al. (1994) are encouraging, however their method113

was limited by the instruments available to them at the time; the vertical range114

resolution of the wind-profiling radar used was 105 m, and the lowest measured115

gate was centred at 150 m. Also, the model they used to relate the vertical velocity116

variance to the surface sensible heat flux was based upon averaged measurements117

over a limited height range in the lower half of the boundary layer.118

This paper presents a new technique for deriving surface sensible heat fluxes119

from boundary-layer turbulence observations using an inverse method. The method120

is applied to Doppler lidar observations of the profile of vertical velocity variance121

in a CBL. Firstly, the formalism of the inverse model and the treatment of errors122

is presented and secondly, the method is validated using a large-eddy simulation123

of a CBL with increasing values of wind shear. Well-known mixed-layer similarity124

theory results are used as forward models to relate variance profiles to heat flux.125

Thirdly, the method is applied to Doppler lidar observations over moderately het-126
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erogeneous terrain and compared with sonic anemometer heat-flux measurements.127

The inverse method allows for calculation of a well-defined error in the results,128

permitting a robust comparison.129

2 The optimal inverse method130

An optimal inverse method (e.g. Lorenc, 1986; Rodgers, 2000; Bannister, 2003)131

comprises of two main components: a set of measurements and some parameters132

to be determined. The physical processes that relate these components are repre-133

sented by a forward model. Given a particular set of measurements, the forward134

model can be inverted to determine an ‘optimal estimate’ of the parameters. The135

method explicitly accounts for observational errors, and errors in the predicted136

parameters. This section introduces the derivation of the optimal inverse method,137

describes the formulation of the errors in both the measurements and the predicted138

parameters, and presents two potential forward models.139

2.1 The cost function140

Following Rodgers (2000), we first define the notation of the components of our141

problem. Measurements are represented by the measurement vector, y, the param-142

eters we wish to retrieve are represented by the state vector, x, while the forward143

model is denoted by the function, F. The relationship between the measurements144

and retrieved parameters can then be written145

y = F(x) + ε, (1)

where ε represents any error in y.146

It is assumed that the observations can be described by a Gaussian distribution,147

with an associated mean and variance. Bayes theorem can then be used to define148

a cost function, J149

2J = (y − F(x))TR−1(y − F(x)), (2)

where R is the error covariance matrix (of size n × n) for the measurements. If150

the errors in the measurements are independent, this matrix is diagonal, with off-151

diagonal elements equal to zero. In this study, we assume that we possess no a152

priori knowledge of the state vector. The cost function is then minimized to find153

the optimal estimate of the state vector, x̂, which is now considered.154

2.2 Finding the optimal estimate155

In Bayesian terms, the minimum of the cost function is the same as the maximum156

of the posterior probability distribution P (x|y), i.e. the most probable value of the157

state vector given a set of measurements. In reality, P (x|y) may be asymmetric158

and have multiple peaks, making a solution difficult to find. It is reasonable to159
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assume P (x|y) to be Gaussian (Rodgers, 2000, p. 84), thus the mean value of the160

distribution will provide our best estimate.161

To find the minimum of the cost function we equate the derivative of Eq. 2 to162

zero, resulting in the following equation that is solved for x163

∇x (2J) = −[∇xF(x)]TR−1[y − F(x)] = 0. (3)

Most inverse problems in the atmosphere can be described as moderately non-164

linear i.e. the forward model is non-linear and the prior information does not have165

a Gaussian distribution, but the errors can be described using Gaussian statistics166

(Rodgers, 2000, p. 81). For a moderately non-linear forward model, the zero in167

the gradient of the cost function can be found using the Gauss-Newton iteration168

method, which for the equation f(x) = 0 can be written: xk+1 = xk−f(xk)/f ′(xk),169

where k represents the iterative step and in this case, f(x) is the first derivative170

of the cost function (Rodgers, 2000, p. 85). The iterative formula is then171

xk+1 = xk + A−1
(

(F′(xk ))TR−1(y − F(xk ))
)
, (4)

where A is the Hessian matrix, which is the second derivative of the cost function172

A = F′(xk )TR−1F′(xk )− F′′(xk )TR−1[y − F(x)]. (5)

The second term on the r.h.s. of A contains the second derivative of the forward173

model, F′′(x). This term is small in the moderately non-linear case and becomes174

smaller with successive iterations, and so can be neglected (Rodgers, 2000, p. 85).175

The iterative process is repeated until the solution converges satisfactorily.176

2.3 The error estimate in the posterior177

The best estimate of the state vector, x̂, has the maximum probability P (x̂). An178

estimate of the error in x̂ is the variance of the probability distribution, σ2. To179

find this variance, we first write the posterior distribution as a Gaussian function180

−2lnP (x|y) = (x− x̂)TŜ−1(x− x̂) + c0, (6)

where Ŝ is a covariance matrix that contains the variance of the distribution and c0181

is a component of the Gaussian distribution that correctly normalizes the probabil-182

ity distribution. By equating like terms from Eq. 2 and Eq. 6, which are quadratic183

in x, we can show that (Rodgers, 2000, p. 25)184

Ŝ−1 = F(x)TR−1F(x) + B−1, (7)

where B−1 is the associated posterior covariance matrix. This function is the same185

as the Hessian matrix (A) without the second derivative term, as defined in Eq.186

5, which is useful as the error estimate in x̂ has therefore already been calculated187

as part of the iteration method.188
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2.4 The forward models189

For a CBL, the simplest forward model relates observations of vertical velocity190

variance, σ2
w, to the convective velocity w∗, which represent y and x respectively.191

We consider here two different examples of such mixed-layer scaling, the first of192

which was developed by Lenschow et al. (1980)193

σ2
w

w2
∗

= c1(z/zi)
2/3(1− c2z/zi)2, (8)

where c1 and c2 are empirically derived co-efficients. Lenschow et al. (1980) found194

that this relationship fitted well to measurements from the Minnesota experiment195

(Kaimal et al. (1976)), as well as the numerical model results of Deardorff (1970),196

and it has since been used extensively to verify observation datasets (e.g. Young197

1988; Roth 2000; Chai and Lin 2004; Hogan et al. 2008).198

Sorbjan (1988) proposed a function that was decomposed into a non-penetrative199

part (which describes the free convective processes taking place from the ground200

upwards) and a residual part (which describes the difference between the non-201

penetrative, free convection and the penetrative convection that accounts for en-202

trainment). The two components are then combined to give203

σ2
w

w2
∗

= cb(z/zi)
2/3(1− z/zi)2/3 + ctR

2/3(1− z/zi +D)2/3(z/zi)
2/3, (9)

where cb and ct are constants, R is the ratio of the temperature fluxes at the top204

and bottom of the layer and D = ∆/zi is the ratio of the depth of the entrainment205

zone, ∆, to the depth of the mixed layer. In Sorbjan (1990), cb = 1.1 was found206

using tank experiments.207

Preliminary experiments showed that when using Eq. 9 as a forward model,208

the optimal inverse method would only work sporadically. This is probably due to209

the function being too non-linear, meaning that the cost function was too difficult210

to solve using a Gauss-Newton iteration. As such, the second term in Eq. 9 was211

neglected, i.e. representing only non-penetrative convection.212

Excluding the penetrative part of the function implies that entrainment pro-213

cesses are not considered, and hence the negative entrainment flux at the top of214

the boundary layer is not included in this forward model. Consideration of the215

penetrative part of the Sorbjan function shows that w2
∗, and therefore the heat216

flux, is inversely proportional to the magnitude of the dimensionless vertical ve-217

locity variance. Inclusion of the penetrative part of the Sorbjan function would218

therefore result in lower values of the estimated heat flux.219

More generally, consideration of both forward model functions shows that220

the surface heat flux is proportional to σ3
w, and is inversely proportional to the221

boundary-layer height. This suggests that the estimated heat flux will be more222

sensitive to errors in the measured σ2
w than to errors in zi. In our implementation223

we have not chosen to incoporate zi observations.224
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Wavelength 1.55 µm
Pulse Repetition Frequency 15 kHz
Focus ∞
Integration time 32 sec
Resolution 36 m

Table 1 Specifications of the Doppler lidar operation

3 Characterizing errors in the observations225

The Doppler lidar used in this work, which was developed by Halo Photonics,226

is a coherent, heterodyne system. Specifications of the lidar operation are shown227

in Table 1, and a full description of an identical instrument constructed by Halo228

Photonics and its performance is given in Pearson et al. (2009). The measurement229

integration time of the lidar is 32 sec, which is insufficient to capture the smallest230

scales of turbulence, and so a technique is used to estimate the un-sampled vertical231

velocity variance in which the inertial sub-range of the velocity measurements is232

extrapolated at the highest frequencies (e.g. Bouniol et al. (2004) and Hogan et al.233

(2008)).234

3.1 Assessing the errors in wind-velocity measurements235

Pearson et al. (2009) and O’Connor et al. (2010) describe how the theoretical per-236

formance of the Doppler velocity estimation can be calculated. The dimensionless237

value α characterizes the ratio of the photon count to the speckle count as shown238

by O’Connor et al. (2010):239

α = SNR/[(2π)1/2(∆v/B)], (10)

where SNR is the wideband signal-to-noise ratio, ∆v is the signal spectral width240

(i.e. the bandwidth of the emitted laser beam) and B is the bandwidth of the re-241

ceiver. For this instrument, ∆v ≈ 1.5 m s−1 (Pearson et al., 2009). The theoretical242

standard deviation of a Doppler velocity estimate for a weak signal regime, εw, is243

given by Rye and Hardesty (1993), who showed it to be:244

εw =

(
∆v2
√

2

αNp
(1 + 1.6α+ 0.4α2)

)1/2

, (11)

where Np is the accumulated photon count by the detector. This is calculated as245

Np = (SNR)Mn, (12)

in which M is the number of data points per range gate and n is the number of246

pulses averaged to make the velocity estimate.247

The error in the Doppler velocity measurement is used to calculate the in-248

strumental error in a measurement of the vertical velocity variance. This error is249
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calculated using the method of Gal-Chen and Xu (1992). We define the standard250

deviation of the error in the variance, σ(εσ2
w

), as251

σ(εσ2
w

) = 2σwσ(εw), (13)

where σw is the standard deviation of the Doppler velocity estimates and σ(εw)252

is the standard deviation of the errors in the Doppler velocity measurements as253

calculated in Eq. 11. For N measurements, the error is254

σ(εσ2
w

) = (2/N1/2)σwσ(εw). (14)

3.2 The sampling error255

Lenschow et al. (1994) derive a sampling error for a time-averaged turbulent statis-256

tic that comprises of two parts; a systematic error that arises due to the difference257

between the ensemble variance, 〈σ2
w〉, and the mean of a set of time-averaged258

variances, σ2
w(T ), where T is the sampling time of the measurement; and a ran-259

dom error that represents the scatter of the time-averaged variances about the260

ensemble-averaged variance, calculated as the variance of the time-averaged vari-261

ances, σ2
var(T ). Many studies neglect the systematic part of the sampling error (e.g.262

Angevine et al. 1994; Drennan et al. 2007) as it can be significantly smaller than263

the random error, particularly for larger sampling times. Here, we shall include264

the systematic error as part of our formulation.265

Functions for the systematic and random errors were derived by Lenschow et al.266

(1994), and for the vertical velocity variance the absolute errors can be written as:267

εsys =
(

1−
(

1− as
(τw
T

)))
σ2
w(T ), (15)

εrand =

(
ar
(τw
T

)1/2)
σ2
w(T ), (16)

where ar and as are constants relating to the skewness (or Gaussianity) of the268

vertical velocity measurements, and τw is the integral time scale. In the CBL, w(t)269

is a positively skewed process, but for practical purposes the assumption is made270

that w(t) is Gaussian, making ar and as both equal to 2. Lenschow et al. (1994)271

showed that these functions are good approximations within the limit T � τw; as272

a rule of thumb this is typically τw ≥ 10. Equations 15 and 16 are combined to273

give an equation for the sampling error274

εsamp =
√
ε2sys + ε2rand. (17)

In our study, the integral time scale is calculated for each averaging period as the275

integral of the autocorrelation function of the vertical velocity. Typically, τw is276

of the order of 100 sec, which is similar to values of τw found by Lenschow and277

Wulfmeyer (2000). As a 60-min averaging period is used, this gives ∼ T/τw ≥ 30.278
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4 Validation of optimal estimation method using Large-Eddy279

Simulation (LES) data280

LES data simulating the CBL under different wind-shear conditions are used to281

validate the optimal inverse method, as well as provide insight into both the sam-282

pling error and the error due to the assumptions in the forward models. The mea-283

surements of individual profiles by the Doppler lidar are simulated and compared284

with domain-averaged statistics; these are assumed to be equivalent to ensemble-285

averaged statistics.286

4.1 Description of the Large-Eddy Model (LEM)287

The model used was the UK Met Office Large Eddy Model (LEM) (Shutts and288

Gray, 1994). Simulations were performed with increasing values of the geostrophic289

wind (ug = 2, 5 and 10 m s−1), referred to as runs 1, 2 and 3 respectively. The290

geostrophic wind is determined above the boundary-layer top where the horizontal291

windspeed becomes constant with height. The three runs have values of w∗/u∗ =292

10.0, 6.3 and 4.5 respectively. The model domain was divided into 1003 gridpoints,293

with a horizontal resolution of 100 m, and a vertical resolution of 30 m (similar294

to the gate length of the Doppler lidar). The model timestep was 4 sec (this is295

smaller than that of the Doppler lidar instrument used, although this does not296

affect our conclusions). Domain-averaged statistics were provided at each height297

every 30 min and include subgrid-scale turbulence. The LEM requires a spin-up298

time of about 1.5 hours to reach an equilibrium state, and so data in the first hour299

are not included in the analysis.300

In order to validate the optimal inverse method, three profiles of vertical wind301

velocity were extracted from the model domain in a line perpendicular to the flow302

to simulate “virtual lidar” profiles. If we assume a typical time scale for the flow303

of 100 sec, and a horizontal wind speed of 7.5 m s−1 (as seen in the mixed layer304

in run 3), then the decorrelation length-scale for the flow is about 750 m. As the305

profiles are separated by 25 grid points, or 2500 m, then they can be considered306

to be statistically independent.307

4.2 Comparison of LEM vertical velocity variance profiles with results from308

previous studies309

Figure 1 shows the LEM normalized vertical velocity variance profiles compared310

with previous datasets. These include: the aircraft and tank data that Lenschow311

et al. (1980) and Sorbjan (1990) used to derive the forward model variance func-312

tions, along with the functions themselves; data from three LES runs with in-313

creasing model resolution (323, 643 and 2563 gridpoints) from Sullivan and Pat-314

ton (2011); and measurements from the NOAA High Resolution Doppler Lidar315

(HRDL) from Lenschow et al. (2012).316

The LEM profile is compared with the LES data of Sullivan and Patton (2011)317

to assess whether grid resolution limits the computed variance. They found that the318

higher-order statistics converge and become grid-independent when the resolution319

ratio zi/(Cs∆f) > 310, where zi is the mixed-layer height, Cs is the Smagorinsky320
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constant, and ∆f is the filter cut-off scale. By considering a typical range of321

mixed-layer heights in the LEM simulations, from 800 to 1300 m, we find a range322

in resolution ratio from zi/(Cs∆f) = 92−149. Thus, according to the criterion set323

by Sullivan and Patton (2011), the statistics from the LEM simulations cannot be324

said to have fully converged, and so the statistics will be grid-dependent. However,325

the LEM profile is seen to agree best with the most highly resolved run with 2563
326

gridpoints, suggesting that the limited resolution is not significantly affecting the327

magnitude of the variance profiles.328

The LEM profile lies within the scatter of most of the data-sets, suggesting329

that it is in good agreement with them. However, the Limagne aircraft data-set330

is notably higher than all of the other data, and perhaps should be treated with331

caution. The agreement between the LEM data and the Lenschow function is also332

very good. The peak in the Sorbjan function sits higher at z/zi = 0.5, which is to333

be expected as it represents only non-penetrative convection. This gives confidence334

that the LEM data-set is suitable for testing the optimal estimation method with335

both convective boundary layer forward models.336

4.3 Testing of the optimal inverse method337

Figure 2 shows an example of the two forward models fitted to 60-min averaged338

variance profiles extracted from the middle of the domain of run 1. The profiles of339

variance are quite irregular, in particular the profile for hour 4-5 has two distinct340

peaks and a minimum mid-boundary layer. The sampling error in the variance341

profile, calculated using Eq. 17, varies between 25-35%. The Lenschow forward342

model fits the variance profiles well, in particular at the top and the bottom of343

the mixed layer where the small sampling error constrains the fit. The Sorbjan344

forward model does not fit the data as well, in particular due to the height of345

the maximum variance in the LEM data being lower than 0.5z/zi. However, the346

magnitude of the maximum variance of the Sorbjan forward model is similar to347

that of the Lenschow forward model.348

The estimated values of QH for all runs and profile locations for both forward349

models are shown in Fig. 3 and statistics are shown in Table 2. The results from350

both forward models are very well correlated, as both forward models estimate351

similar values for the maximum variance. The estimated heat fluxes compare well352

with the heat flux input into the LEM (179.4 W m−2), with most points agreeing353

within one standard deviation (calculated from the covariance matrix of the poste-354

rior as described in Sect. 2.3). However, some points do not lie within one standard355

deviation of the input heat flux; this spread in the results may be partially due to356

model error (i.e. the error in the fitted coefficients of the forward models), but also357

due to the fact that turbulent processes are inherently stochastic, as evidenced by358

the double peak variance distribution for hour 4-5 that lies outside the sampling359

errors.360

The average heat flux over all three runs and for all three points is 164 W361

m−2 (σ = 10.2 W m−2) for the Lenschow forward model, and 180 W m−2 (σ =362

6.8 W m−2) for the Sorbjan model. The overall underestimate of the Lenschow363

model is due to the small negative bias in the flux estimates with increasing shear.364

This may be due to the lack of explicit dependence on u∗ in the forward model365

scaling. The Sorbjan model overall produces flux estimates with a greater spread,366
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Fig. 1 Normalized vertical velocity variance measurements from NOAA’s High Resolution
Doppler Lidar (HRDL) (thick purple line) and African Monsoon Multidisciplinary Analysis
(AMMA) aircraft campaign (black dots with one standard deviation error bars), both taken
from Lenschow et al. (2012); measurements from the Air Mass Transformation Experiment
(AMTEX) campaign (empty circles) and Limagne (crosses) aircraft campaigns, and tank data
also from the AMTEX campaign (grey squares), all taken from Sorbjan (1991); the normalized,
domain-averaged vertical velocity variance from the LEM (thick black line); the Lenschow (thin
blue line) and Sorbjan (thin red line) variance functions; and normalized, domain-averaged
profiles of vertical velocity variance for LES runs with resolutions of 323, 643 and 2563 from
Sullivan and Patton (2011) (dotted, dash-dotted and solid thin grey lines respectively).

perhaps reflecting its poorer fit, but shows no significant trend with increasing367

shear. For both models the error in the flux estimates, and spread of the estimates368

themselves, reduce with increasing shear due to the reduction in τw with less369

convective conditions. Overall, the forward models give reasonable estimates for a370

CBL with increasing shear, thus justifying a simpler formulation based on purely371

mixed-layer scaling when combined with the optimal inverse method.372

In conclusion, the optimal inverse method has worked well in retrieving heat373

fluxes in agreement with the heat flux input into the LEM. The estimated uncer-374

tainty in the heat fluxes captures most of the variability around the true value.375

The forward models themselves are relatively robust under increasing shear, the376

small negative bias in the Lenschow model results at this stage would not jus-377

tify the addition of u∗ to the model. This gives confidence in retaining the model378

formulation when applying this method to data measured in a real CBL, where379

w∗/u∗ varies.380
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Fig. 2 60-min averaged profiles of the vertical velocity variance (thick grey line) from the
point number 2 of the LEM domain, for run 1. The sampling error associated with the profile
of variance, calculated using Eq. 17, is shown by the thin horizontal black lines. The plots
along the top row show the Lenschow forward model after fitting to the variance (thick blue
line) as well as the previous iterations (dashed blue lines). Similarly, the bottom row shows the
Sorbjan model fitted to the variance (thick red line) as well as the previous iterations (dashed
red lines).

5 Estimating heat fluxes from full-scale data381

The method is now tested using Doppler lidar data from the Chilbolton Observa-382

tory, UK. Estimated heat fluxes are compared with those from a sonic anemometer383

at the site.384

5.1 Description of experimental site385

The Chilbolton Facility for Atmospheric and Radio Research (CFARR), is located386

in the county of Hampshire, UK (51.14500◦N 1.43667◦W). As can be seen in Fig.387

Lenschow Sorbjan
Run 1 2 3 1 2 3

QH (Wm−2) 184.2 162.4 142.4 213.0 177.2 157.2
δ (QH) 0.19 0.15 0.17 0.23 0.13 0.16

σ (QH) (Wm−2) 30.0 24.5 20.3 32.0 24.4 20.1

Table 2 The mean estimated heat flux, relative error and mean standard deviation for the
three runs with each forward model.
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Fig. 3 The surface sensible heat fluxes estimated using the inverse method with the profiles
of simulated lidar measurements from the LEM. Results when using the Lenschow forward
model are shown in blue, results when using the Sorbjan forward model are shown in red. The
results for all three independent profiles are plotted on top of the heat flux prescribed in the
LEM (thick grey line), with vertical error bars indicating one standard deviation as calculated
using the inverse method.

4, the area surrounding the observatory is predominantly rural with two potential388

sources of significant inhomogeneity: Chilbolton village, which is situated roughly389

700 m to the north, and a wooded area approximately 1 km to the west alongside390

the banks of the river Test. The lidar is mounted at approximately 1.5 m on the391

wall of the main building. The sonic anemometer is mounted at a height of 5 m,392

approximately 200 m away on the ‘range’, which is 400 m in length with grass of393

about 30-40 mm in length.394

As the forward models used are based upon mixed-layer similarity scaling,395

there are some criteria that must be met by the data in order that they are396

suitable for use. The boundary layer must be convectively driven, with little or no397

shear production of turbulence, and cloud cover should also be negligible so that398

turbulence is mainly driven by the surface fluxes. Plots of vertical velocity and399

backscatter were examined by eye between the months of May to September 2008400

in order to select days with very little or no cloud cover visible in the backscatter,401

and when the vertical velocity shows a deep well-mixed layer during the daytime.402

Unfortunately technical problems with the sonic anemometer during this time403

period limited the number of days available for analysis. Thirteen days were found404

in total: the 6, 7, 8, 11 and 12 May, the 7, 8, 9, 17 and 19 June, the 30 July, and405

the 26 and 28 September. Measurement data between the hours of 0900 and 1700406
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Fig. 4 The upper part of the figure shows a satellite image of the area surrounding the
Chilbolton Observatory. Chilbolton Village is circled to the north of the Observatory site,
and the River Test, which is surrounded by woodland, is labelled to the west. The lower part
shows a magnified image of the observatory site as indicated by the dashed white rectangle.
The locations of the Doppler lidar and the sonic anemometer are indicated; the concentric
rings show distances in steps of 200 m centred upon the lidar location. c©Google Imagery,
2011.

UTC were examined for these days; during these times values of w∗/u∗ ranged407

between 1.8 and 8.9, with an average value of 3.6.408

5.2 Profile fits for a typical day409

Figure 5 shows the forward models fitted to the variance profiles on 7 May 2008.410

The diurnal evolution of the CBL is evident, with maximum variance and deepest411

mixed layer occurring in the middle of the day. It can be seen that for different412

time periods one forward model is generally better suited than the other i.e. the413

Sorbjan function is a better fit than the Lenschow function for 1300-1400. The414

optimal inverse method was occasionally unable to fit the Lenschow function to415

profiles in which the measured variance profile lacks a defined peak e.g. from 0900-416

1000, which resembles a neutral profile. Overall, the Sorbjan function proved more417

robust, possibly due to its symmetrical shape, and could be fitted to most profiles.418
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Fig. 5 Hourly plots of the measured vertical velocity variance profile measured by the lidar
(thick grey line) on the 7 May, 2008 (all times are in UTC). Errors are indicated by the
horizontal grey lines. The Lenschow function is indicated by the blue line, and the Sorbjan
function by the red line.

5.3 Heat flux estimation for all days419

Figures 6 and 7 show time series of heat fluxes estimated by the optimal inverse420

method for all days compared to those measured using the sonic anemometer.421

A clear diurnal cycle can be seen with generally good agreement with the sonic422

anemometer fluxes. A negative bias for both forward models can be seen in the423

mornings: this occurred when the variance profile was more neutral in shape (i.e.424

monotonically decreasing) as shown in Fig. 5. Occasionally, mid-day fluxes are425

extremely large, and inconsistent with periods before and after. These were due426

to large spikes in variance observed by the lidar in the middle of the boundary427

layer, rather than smooth peaks, to which the models were fitted. These estimates428

therefore seem unphysically large and are treated as outliers.429

The methodology of Willmott et al. (1985) is used to calculate the systematic430

and non-systematic root-mean-square errors (RMSEsys and RMSEnonsys respec-431

tively) for the afternoon results. RMSEsys describes the linear bias (a measure of432

the underestimation), while RMSEnonsys can be interpreted as the random error433

(a measure of the variability) in the results. RMSEsys is larger for the heat fluxes434

estimated using the Lenschow function (−71 W m−2) than those using the Sorbjan435

function (−55W m−2), indicating a larger bias when using the Lenschow function.436

RMSEnonsys is the same for the heat fluxes estimated using both forward models437

(23 W m−2), indicating that they both have a similar scatter in the results. This438

analysis shows that the linear bias in the results constitutes the majority of the439

error for this method.440
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Fig. 6 Time series comparing the lidar estimated surface sensible heat flux for the two variance
profile models (Lenschow model - blue line, Sorbjan model - red line) to that measured by the
sonic anemometer (grey line). The vertical lines show errors in estimates of the heat flux; for
the optimal estimation method it is the variance in the state vector, for the sonic anemometer
it is the sampling error (NB: the error for the sonic anemometer fluxes is approx. 1% and thus
not visible on graph.)

The relative errors in the surface sensible heat fluxes estimated by the optimal441

inverse method have a median value of 17% when using the Sorbjan function,442

and 18% when using the Lenschow function. Comparing with previous results,443

Angevine et al. (1994) estimated a relative uncertainty of 30% in their results,444

although their analysis only takes into account a parametrized sampling error in445

the vertical velocity variance measurement. The only error considered in the sonic446

anemometer measurements of the heat flux is the sampling error, which is very447

small for these results, with the median relative error less than 1%. This is due to448

the relatively short integral time scales measured by the sonic anemometer, which449

are of the order of 1 s, compared to the integral time scales measured by the lidar,450

which are of the order of 100 sec. The shorter integral timescale is a result of the451

height of the sonic anemometer: the proximity of the instrument to the ground452

limits the size of the turbulent eddies that it is measuring.453
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Fig. 7 As for Fig. 6.

5.4 Exploring the scatter and bias in the results454

There are several possible explanations for the bias between the heat fluxes esti-455

mated using the optimal inverse method and those measured by the sonic anemome-456

ter that are now explored.457

1) Due to the limited sampling rate, the lidar may still underestimate the458

vertical velocity variance, and thus the heat flux, despite the use of the inertial459

sub-range extrapolation technique (as mentioned in Sect. 3). This is unlikely as the460

measurements are made in the daytime, when the underestimation of the variance461
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(a) (b) (c)

Fig. 8 (a) Profiles of variance measured by the lidar between 0900 and 1000. Profiles from
individual days are shown by the thin grey lines. (b) Profiles measured between 1000 and 1100.
(c) Profiles measured between 1100 and 1200.

by the lidar is minimized due to the large size of the turbulent eddies. However,462

underestimation due to spatial averaging over each 30 m range gate has not been463

explored.464

2) The optimal inverse method may be overestimating the mixing height, which465

is part of the predicted state vector, and thus underestimating the heat flux due466

to the inverse relationship between zi and QH . The estimated mixing heights us-467

ing both forward models (ziS for the Sorbjan function and ziL for the Lenschow468

function) were compared with heights calculated using the vertical velocity vari-469

ance threshold method described in Barlow et al. (2011). This method involves470

defining a ground-based turbulent layer of depth ziV in which σ2
w > 0.1 m2 s−2

471

at all heights. On average, the mixing height estimated using the Lenschow for-472

ward model is 215 m higher than that estimated using the Sorbjan forward model,473

which is consistent with the Lenschow function producing negatively biased heat474

fluxes. However, ziL is closer to ziV : ziL is on average only 37 m lower than ziV ,475

whilst ziS is 252 m lower than ziV . This suggests that the optimal inverse estimate476

of mixing height using the Lenschow function is not overestimated, and therefore477

does not explain the underestimation of heat fluxes.478

3) Differences in the source areas of the two instruments may be causing a bias479

between the heat fluxes. Approximately 200 m to the south of the sonic anemome-480

ter are some buildings which may be drier and warmer than the surrounding481

vegetation. If they lie within the source area of the sonic anemometer, which is482

smaller than for the lidar due to the lower measurement height, the measured heat483

flux may be larger than that calculated using the lidar measurements. The heat484

fluxes measured using the sonic anemometer showed no significant relationship485

with wind direction, i.e. were not anomalously large when the wind direction was486

aligned with the buildings. We conclude that differences in the source areas do not487

explain the negative bias in lidar-derived fluxes.488

4) Fig. 8 shows the variance profiles measured by the lidar in the morning for489

each hour between 0900 and 1200. It is clear from plot a) that between 0900 and490

1000 most of the variance profiles are monotonically decreasing. Between 1000 and491

1100, and 1100 and 1200, most of the variance profiles are similar in shape to the492

forward models (i.e. they possess a peak in the middle of the boundary layer).493
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Sonic anemometer measurements of w∗/u∗ in the morning ranged between 1.5494

and 5.2 with an average value of 2.7 between 0900 and 1000. These values suggest495

that the layer is convectively unstable whereas the measured profiles of variance496

were neutral in shape (i.e. monotonically decreasing). Beare (2008) studied the role497

of shear in the morning transitional layer using an LES, simulating a CBL growing498

within a stable layer. He showed that during the early stages of the growing CBL,499

the turbulent kinetic energy budget of the layer is still dominated by shear, giving500

a mixed “convective-stable” state of the boundary layer. The classic CBL state,501

dominated by buoyancy, is only reached after several hours of simulation, when502

the previous night’s residual layer has been completely eroded by thermals. These503

results suggest that the chosen forward models may not appropriate for use in504

the early morning when boundary layer structure is more complex and shear may505

be playing a dominant role. Beare (2008) suggested scaling to account for this506

effect, which could form the basis of a more sophisticated forward model in future507

development of the present work.508

6 Conclusions509

We have presented a novel technique that uses an optimal inverse method with510

Doppler lidar measurements of turbulence to estimate the surface sensible heat511

flux. This is the first time such a method has been used for a small-scale boundary-512

layer application. The heat fluxes estimated using this method are assumed to have513

an effective source area of tens of km −2, and thus the inverse method for estimat-514

ing fluxes may be more appropriate over heterogeneous surfaces than traditional515

point measurement methods, such as those that use sonic anemometers, which516

have a smaller source area.517

The simple case of a CBL with a homogeneous surface heat flux was chosen to518

test the optimal inverse method. Two forward models of mixed-layer scaling were519

chosen to relate vertical velocity variance to surface heat flux, namely Lenschow520

et al. (1980) and Sorbjan (1990). The error covariance matrix for the Doppler521

lidar observations of vertical velocity variance was derived as a combination of522

instrumental and sampling errors. The error in the estimated state vector (in523

this case the surface heat flux) was derived by assuming the posterior probability524

function to be Gaussian.525

Firstly, the method was tested using an LES of a CBL with constant surface526

heat flux and three runs with increasing geostrophic wind speed. Three indepen-527

dent “virtual lidar” profiles were taken across the domain and used with the inverse528

method, the error based solely on sampling considerations. The optimal inverse529

method successfully fitted the forward models to the LES variance profiles, and530

the majority of the estimated heat fluxes agreed within error with the input heat531

flux. The estimated heat fluxes varied little with increasing wind speed, suggest-532

ing that the forward models in this case were relatively robust and did not require533

explicit inclusion of the effect of shear.534

Secondly, the optimal inverse method was applied to Doppler lidar data from535

the Chilbolton Observatory, UK, which lies in relatively flat terrain with mod-536

erately heterogeneous land use. Estimated heat fluxes were compared with those537

from a sonic anemometer mounted at a height of 5 m. The comparison showed538

that the optimal inverse estimates were linearly correlated with the point mea-539
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surements with a degree of scatter (23 W m−2) and a significant negative bias:540

−71 W m−2 for the Lenschow model and −55 W m−2 for the Sorbjan model. As541

the bias was more pronounced in the morning, it was noted that variance pro-542

files at that time tended to lack a peak, instead decreasing monotonically with543

height, despite a large surface heat flux. In these cases the forward models would544

be successfully fitted to the data, despite the profile being “shear-like” rather than545

“convective-like”, resulting in a reduced heat-flux estimate. Extending the forward546

model to include surface-layer scaling (i.e. the friction velocity) might be a solu-547

tion to this issue. The heterogeneity of the site, given the difference in source areas548

for the sonic anemometer and the lidar, was considered: a positive bias in sonic549

anemometer-derived heat fluxes could not be found with wind direction, suggest-550

ing that this did not explain the overall negative bias of the optimal estimates.551

However, this result suggested that the optimal estimate method should be tested552

against either path-averaged or area-averaged flux data, or flux data from a truly553

homogeneous site.554

Overall, the optimal inverse method was shown to provide reasonable flux555

estimates for the simple case of a CBL. Discrepancies were shown to be largely556

related to the choice of forward model, which was kept deliberately simple for557

this study. Results shown here demonstrate that this method has great promise558

in utilizing ground-based remote sensing observations of the boundary layer to559

derive surface fluxes. Extension of the method is relatively straight-forward, and560

could include a more complex forward model, or even independent measurements561

as additional constraints (e.g. boundary-layer depth).562
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