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ABSTRACT

Tropical Applications of Meteorology Using Satellite Data and Ground-Based Observations (TAMSAT)

rainfall monitoring products have been extended to provide spatially contiguous rainfall estimates across

Africa. This has been achieved through a new, climatology-based calibration, which varies in both space and

time. As a result, cumulative estimates of rainfall are now issued at the end of each 10-day period (dekad) at 4-

km spatial resolution with pan-African coverage. The utility of the products for decision making is improved

by the routine provision of validation reports, for which the 10-day (dekadal) TAMSAT rainfall estimates are

compared with independent gauge observations. This paper describes the methodology by which the

TAMSAT method has been applied to generate the pan-African rainfall monitoring products. It is demon-

strated through comparison with gauge measurements that the method provides skillful estimates, although

with a systematic dry bias. This study illustrates TAMSAT’s value as a complementary method of estimating

rainfall through examples of successful operational application.

1. Introduction

Understanding the spatial and temporal variability of

African rainfall is essential to agrometeorological appli-

cations such as droughtmonitoring and seasonal crop yield

forecasting (Challinor et al. 2003; Teo 2006). In the absence

of long-term ground observations of rainfall across Africa,

satellite-based rainfall estimates have provided a practical

and complementary alternative. Here, we report on the

extension of the Tropical Applications of Meteorology

Using Satellite Data and Ground-Based Observations

(TAMSAT) approach for rainfall estimation over Africa

and from 1983 to present. As part of this, the 30-yr (1983–

2012) TAMSAT African Rainfall Climatology and Time

Series (TARCAT)dataset has beendeveloped (Maidment

et al. 2014). TARCAT benefits from the temporally con-

sistent (climatology based) calibration described here and

is updated in near–real time to constitute the TAMSAT

rainfall estimates and derived products (see the appendix).

These include rainfall estimates, 30-yr climatologies, and

anomalies at dekadal (10 day), monthly, and seasonal time
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steps, provided on a grid at spatial resolution of 0.03758 in
latitude and longitude (approximately 4km at nadir).

The TAMSAT method combines geostationary

Meteosat data with gauge observations through a cali-

bration approach that exploits both data sources. Until

2009, the TAMSAT approach had only been applied to

northern and southern/eastern Africa during the

respective rainy seasons May–October (Northern

Hemisphere) and November–April (Southern Hemi-

sphere), and the gauge data inputs had varied over time

when calibrations were updated. The new pan-African

calibration was undertaken to extend the spatial cover-

age of TAMSAT’s rainfall estimates and derived prod-

ucts over the entire continent and the temporal extent of

the time series from January 1983 to the present without

varying the gauge data input.

TAMSAT rainfall estimates have been available since

the early 1990s and have been validated for several re-

gions and applications. Comparisons with other avail-

able products have been carried out, including for

Kenya (Herman et al. 1997; Tucker and Sear 2001),

West Africa (Laurent et al. 1998; Jobard et al. 2011;

Snijders 1991), Ethiopia (Dinku et al. 2007), southern

Africa (Thorne et al. 2001), and Uganda (Asadullah

et al. 2008;Maidment et al. 2013). These showed that the

TAMSAT approach outperforms or is comparable to

other available satellite-based datasets with similar spa-

tial and temporal resolution and extent. Other studies

have focused on the factors that affect the accuracy of

rainfall estimation (Milford et al. 1994; Dugdale et al.

1991; Grimes et al. 1999), demonstrating the utility of

TAMSAT as a complementary approach for estimating

rainfall in gauge-sparse regions.

Previous validations have used earlier versions of the

TAMSAT data, calibrated against differing gauge inputs,

which confirm the usefulness of the TAMSAT algorithm,

but make it difficult to assess the reliability of rainfall es-

timates over time. Furthermore, these studies covered

only selected regions in Africa and focused mainly on the

rainy seasons. Hence, from a users’ perspective, pre-

viously there has been a lack of information on the re-

liability of the TAMSAT (as well as other) rainfall

estimates in various African regions. For TAMSAT to be

useful for decisionmaking, it is essential that the reliability

of the data is understood. Operationally, we address this

need through the establishment of a system for validation

of dekadal TAMSAT rainfall estimates in near–real time

against independent rain gauge observations.

Hence, this study reports on (i) the spatially contigu-

ous and temporally consistent calibration applied to the

quality-controlled archive of Meteosat thermal infrared

(TIR) data, and (ii) the systematic approach for routine,

near-real-time validation of the operational dekadal

rainfall estimates. Results are discussed in the context of

the use of TAMSAT rainfall estimates by those most in

need of timely information on rainfall at organizations

concerned with agrometeorological monitoring and

forecasting. In the final part of the paper, we reflect on

the range of rainfall products and the complementary

role of TAMSAT’s pan-African rainfall monitoring.

2. Data and methods

There are three aspects to theTAMSATsystem.Thefirst

is the calibration of the algorithm, using a newly compiled

archive of rain gauge observations and contemporaneous

cold cloud duration (CCD) fields. The calibration is carried

out for 1983–2010. The second aspect is the provision of

near-real-time rainfall estimates, derived by applying the

calibration to the CCD generated from Meteosat imagery

transmitted in real time. Finally, outside the calibration

period (i.e., from 2011 onward), gauge data are used to in-

dependently validate dekadal TAMSAT rainfall estimates.

TAMSAT’s use of a climatology-based calibration

over 28 years (1983–2010), based on the relationship

between CCD and gauge data, means that trends and

anomalies inferred from TAMSAT data are not biased

by changes in gauge coverage (see section 2a and Fig. 3,

described below). This is particularly important for re-

gions with sparse gauge networks, regions where there

has been substantial data loss, and in regions charac-

terized by steep gradients of rainfall that may not be

captured by sparse gauge networks. It should also be

noted that independent validation is only possible as

TAMSAT rainfall estimates are not merged with gauge

observations. Moreover, the validation metrics provide

useful input into decisions based either solely on

TAMSAT data (in regions with no gauges) or on anal-

ysis of TAMSAT,model output, and gauge observations

(Kucera et al. 2013; Boyd et al. 2013).

In the rest of this section, we first summarize the three

data sources used in the TAMSAT system: Meteosat

imagery, the historical gauge archive, and the real-time

gauge validation data (section 2a). The following section

(section 2b) outlines the methodology for calibrating

TAMSAT and extending the algorithm throughout

Africa.We then describe themethodology for validating

the dekadal TAMSAT rainfall estimates in real time and

how we have exploited these validations to comment on

the skill of the TAMSAT approach.

a. Data

1) METEOSAT THERMAL INFRARED IMAGERY

The TAMSAT rainfall estimation approach is based

on TIR imagery acquired every 30min until June 2006
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and every 15min from July 2006 onward. The high-

frequency sampling captures short-duration rain events

that provide much of the seasonal rainfall in parts of the

African continent such as the Sahel. For example, squall

lines characteristic of the West African Sahel deliver

over half of the precipitation in the first 30min of the

squall line passage, which typically lasts 2–4 h (Milford

and Dugdale 1984). Hence, the high-frequency TIR

imagery allows TAMSAT to sample at the time and

space scale of individual storms, improving its repre-

sentation of the temporal and spatial variation in rain-

fall, including the contribution of short-duration events.

Although the long-term Meteosat TIR record consists of

data acquired by instruments on the Meteosat First

Generation (Meteosat-2–7 ) and Meteosat Second Gen-

eration (Meteosat-8–10) platforms, the calibration in-

formation supplied by the EuropeanOrganisation for the

Exploitation ofMeteorological Satellites (EUMETSAT)

yields a stable TIR record adequate for generating rain-

fall estimates. Moreover, the TAMSAT algorithm was

found to be insensitive to small changes in cloud-top

temperature because of the use of Meteosat radiances

from different satellite instruments in rainfall estimation

(Maidment et al. 2014).

2) RAIN GAUGE DATA ARCHIVE FOR

CALIBRATION OF THE TAMSAT RAINFALL

ESTIMATION ALGORITHM, 1983–2010

Previous versions of the TAMSAT rainfall estimates

were based on temporally varying calibrations derived

only for the main rainy season months in northern

(May–October) and southern/eastern (November–

April) Africa using varying subsets of local gauge data

from the 1986–2000 time period. Over regions such as

the Sahel and eastern and southern Africa, these local

gauge datasets were obtained in a series of workshops

conducted in cooperation with African national mete-

orological agencies (NMAs) since the early 1980s. These

datasets are not necessarily reported on the Global

Telecommunication System (GTS) network of the

World Meteorological Organization (WMO).

Data from local, proprietary gauge archives were first

subjected to quality control when used by NMA staff in

African countries for calibrating the TAMSAT algorithm

in a series of local and regional workshops. For the pur-

poses here, the TAMSAT gauge archive was expanded to

include data over Africa for all months and over a time

period that overlapswith the quality controlled TIR image

archive from January 1983 to December 2010, fromwhich

contemporaneous dekadal CCD fields were derived. As

new gauge datasets from multiple sources were added to

the existing TAMSAT archive, duplicate records were

eliminated and dekadal sequences with fewer than 10 days

of precipitation reporting have been excluded. The data

records that passed the above tests were ingested into the

newTAMSATgauge archive. The archive contains nearly

350000 dekadal gauge records in total fromapproximately

4300 locations, which were used in the climatology-based

calibrations. Figure 1 shows the total density of gauges in

the newly compiled archive on a 18 3 18 latitude–longitude
grid over the 1983–2010 time period.

A summary of the number of wet and dry dekads in

the gauge archive is presented in Fig. 2 by month for the

first decade (1983–92), second decade (1993–2002), and

the remaining 8 years in the archive (2003–10). Figure 2a

highlights that during 1983–92 the gauge archive consists

mainly of data for May–October (the rainy season in the

Sahel region). This is due to data that were made

available for rainy season calibrations through a series of

field workshops carried out by TAMSAT in the 1980s

and 1990s. In the second decade (1993–2002), the archive

is the most complete for all months from the three time

periods under consideration (Fig. 2b). This is due to the

regular contribution of gauge data from WMO’s GTS

network from1993 to present, as thesewere recentlymade

available to TAMSAT by the European Commission

(EC)’s Joint Research Centre (JRC) in the framework of

a service contract to improve rainfall estimation for food

security monitoring and early warning in Africa. Figure 2

shows that, overall, between 11 300 and 26 200 (approxi-

mately 59%and 79%, respectively) of station dekadswere

wet across Africa for any given month. It is worth noting

that the calibrations represent a 1983–2010 climatological

average, and the majority of the gauge observations

originated from the 1993–2002 time period (Fig. 2).

Figure 3a shows the number of gauges used in the

TAMSAT pan-African calibration. It is evident that sub-

stantially more gauge records are used in a climatology-

based calibration (varyingmonthly but not interannually)

than are available for any given month. Figure 3b illus-

trates the varying number of gauges over time that are

used in a method such as the Global Precipitation Cli-

matology Project (GPCP) dataset (Huffman et al. 1997;

Adler et al. 2003), which relies mainly on gauge data from

the Global Precipitation Climatology Centre (GPCC). It

is furthermore clear from Fig. 3b that there has been

a substantial loss of gauge data during the last decades in

the GPCC records over the past three decades.

3) NEAR-REAL-TIME RAIN GAUGE DATA FOR

OPERATIONAL VALIDATION OF THE TAMSAT
DEKADAL RAINFALL ESTIMATES, 2011–PRESENT

Data from the weather stations that are part of

WMO’sGTSnetworkwere used to develop a new system

for operational validation of the 10-day TAMSAT rain-

fall estimates. Independent dekadal gauge observations

DECEMBER 2014 TARNAVSKY ET AL . 2807



were compiled from quality-checked daily synoptic re-

ports with a maximum of 1-day latency after the end of

a given dekad and are made available to TAMSAT for

operational validation in near–real time. Only data from

January 2011 to present are included in the validation as

the data up to December 2010 were used in the cali-

bration. The near-real-time data are used to produce

monthly validation reports for internal evaluation and

for distribution to the user community from the website

of TAMSAT (www.met.reading.ac.uk/;tamsat). Gener-

ally, about 20%–25% of over a thousand stations report

each dekad, rendering any effort for a comprehensive

validation less complete than might be desirable from

a user perspective.

b. Methods

1) TEMPORALLY CONSISTENT CALIBRATION FOR

DEKADAL RAINFALL ESTIMATION

TAMSAT uses the CCD method of rainfall estima-

tion, which assumes predominantly convective rainfall

and a positive linear relationship between the lengths of

time convective clouds are present (CCD hours) and the

amount of rainfall at the surface (Grimes et al. 1999;

Richards and Arkin 1981). The scientific basis of the

TAMSAT CCD-based approach for near-real-time

rainfall estimation at dekadal (10 day) scale through

local calibrations has not been modified since originally

proposed (Grimes et al. 1999; Milford and Dugdale

1984). This methodology is summarized below.

The CCD method is based on the principle that deep

convective clouds are likely to deliver the most rainfall.

Observational findings, moreover, have demonstrated

a close relationship between CCD from TIR imagery

and the presence of rainfall, especially pronounced in

tropical areas (Arkin 1979; Richards and Arkin 1981).

Dekadal CCD fields are derived at 2308, 2408, 2508,
and 2608C (corresponding to approximately 243, 233,

223, and 213K, respectively), as these have been shown

to discriminate well between rain and no-rain areas. For

each month a set of contingency tables (one for each

temperature threshold T ) are evaluated to select the

FIG. 1. Number of rain gauges in the TAMSAT archive per 18 3 18 latitude–longitude grid.

Note that although rainfall observations from islands (other than Madagascar and the Canary

Islands) are part of the gauge data archive, TAMSAT does not estimate rainfall in these places.
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FIG. 2. Summary of dry (rainfall5 0mm) and wet (rainfall. 0mm) dekadal (10 day) rain gauge observations used for calibration of the

TAMSAT rainfall estimation algorithm and respectivemaps of gauge densities plotted on a 18 3 18 latitude–longitude grid for (a) 1983–92,
(b) 1993–2002, and (c) 2003–10.

DECEMBER 2014 TARNAVSKY ET AL . 2809



optimal regression function, that is, one that shows the

highest level of agreement with the gauge data as to

rainfall occurrence (Grimes et al. 1999). The optimum

T is selected where the number of occasions on which

the satellite and gauge agree is much greater than the

number of disagreements (n11 1 n22 � n12 1 n21) and

the number of occasions for which gauges register rain

but CCD is zero is roughly balanced by the number of

occasions for which the gauge registers no rain but

there is some CCD (n12 ffi n21; see Table 1). If the

contingency tables point to different optimum T, then

the first condition is prioritized to select the threshold,

at which the agreement between gauge and satellite is

maximized.

Once the optimum T is established for each month

and calibration region, suitable calibration parameters

(slope a1 and intercept a0) are derived as follows:

R5

�
a01 a1 3CCD CCD. 0

0 CCD5 0
, (1)

where R is the median of gauge-observed dekadal

rainfall in millimeters, and CCD is the midpoint of the

CCD bin in hours at the optimum T. It has been shown

that brightness temperature from TIR imagery in

approaches such as the Geostationary Operational

Environmental Satellite (GOES) precipitation index (GPI)

(Arkin and Meisner 1987) is not suitable for capturing the

effect of warm rain (Behrangi et al. 2009; Dybkjær 2003).
Thus, the TAMSAT approach uses an intercept term to

account for the warm-rain effect (Dybkjær 2003). A linear

relationship is assumed between dekadal CCD hours and

rainfall total.More sophisticated statisticalmethods such as

multiple regression and logarithmic regression have shown

insignificant improvement over simple linear regression

(Milford et al. 1994). The method for determining the

calibrations optimizes the estimation of the median rather

than the mean rainfall event as relevant for drought de-

tection and monitoring applications. This is because unlike

the mean, the median is not susceptible to rare extremes.

Additionally, rainfall has a nonnormal and skewed distri-

bution, for which the median captures the location better

than themean. The optimumT and calibration parameters

FIG. 3. Total number of gaugesNt (a) used in the TAMSAT climatology-based calibration (varyingmonthly but not interannually) and (b)

in the GPCC archive (varying over time and exhibiting a nearly fourfold reduction from 1983 to 2010).

TABLE 1. Contingency table for determining optimal threshold

temperature from the relationship between collocated dekadal

(10 day) CCD (h) and rainfall observations at gauge locations

G (mm).

CCD 5 0 CCD . 0

RainfallG 5 0 n11 n12
RainfallG . 0 n21 n22
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vary spatially (across calibration regions) and temporally

(across months).

2) EXTENDING THE TAMSAT APPROACH OVER

AFRICA

Extending the TAMSAT approach over Africa

through climatology-based calibrations requires in-

formation on the relationship between cold cloud du-

ration inferred from the TIR imagery and rainfall

observed on the ground throughout the continent.

However, because of the complexities of convective

rainfall, both the temperature threshold and the linear

regression relationship depend on the local character-

istics of the area under consideration (Todd et al. 1995,

1999). This makes such empirical approaches applicable

to the space–time domain, for which they have been

derived (Richards and Arkin 1981). The statistical re-

lationship between CCD and ground-based rainfall ob-

servations might be extended to other areas and times

depending on the similarity of meteorological condi-

tions. Results from a calibration of the CCD algorithm

over the Sahel region using a latitude-dependent cor-

rection to account for the varying climatic conditions

caused by the movements of the intertropical conver-

gence zone (ITCZ) demonstrated that the use of con-

stant calibration zones in the Sudan–Sahel region is

inadequate (Dybkjær 2003). Additionally, Chadwick

et al. (2010) showed that using a single calibration over

West Africa is inappropriate even for a multispectral

satellite rainfall estimation product, as the relationship

between satellite-observed radiances and rainfall varies

substantially over the region.

To accommodate the variability of the African cli-

mate, the continent was split into 25–30 calibration

subregions for each month, taking into account zones

defined through several TAMSAT-led calibration

workshops carried out in the 1980s and 1990s. The cal-

ibration region boundaries vary monthly, reflecting the

movement of the ITCZ as well as regional topography

and distance to the coast, ensuring that every climato-

logically homogeneous region is covered in every month

by sufficient gauge data for a statistically reliable cali-

bration. Figure 4 shows an example of the calibration

region boundaries for May.

The uneven distribution of gauges across Africa has

implications for defining climatologically meaningful

calibration zones. It was determined that approxi-

mately 30–40 gauges (or at least 100 gauge–CCD data

pairs) are required for reliable calibration, although

this criteria for data sufficiency depends on the area

and local characteristics of the calibration region

(Milford et al. 1994; Thorne et al. 2001). For example,

in countries such as Angola, South Sudan, Democratic

Republic (DR) of the Congo, Madagascar, as well as

most countries above 208N, the gauge coverage is far

from optimal and calibration parameters are inferred

from an enlarged calibration region that includes areas

with gauge observations. Since we use a 28-yr-long

gauge archive, reasonable calibrations were obtained

in many instances even in areas of sparser gauge net-

work coverage.

The use of calibration zones inevitably introduces

spatial discontinuities into the TAMSAT rainfall esti-

mates that tend to be most accentuated in long-term

monthly climatologies and less so in operational

dekadal and seasonal products. Hence, as a final step,

before applying the calibrations to derive rainfall esti-

mates, smoothing by spatial averaging is applied to the

optimum T, slope, and intercept values along the bor-

ders of calibration regions to avoid sharp discontinuities

and to account for the transition between meteorologi-

cal zones (Milford et al. 1994). A large smoothing filter

(;1.08) is used in most regions and a smaller filter

(;0.58) is used for calibration regions that are narrower

than 28 in latitude or longitude directions. The final set of
optimumT, slope, and intercept parameters is applied to

the TIR archive data to generate the 30-yr TARCAT

dataset and in near–real time to build up a consistent

time series of rainfall estimates and derived products.

Although this still can leave some visual lines along

boundaries of some calibration regions for some

months, it makes best use of data from sparsely dis-

tributed gauge networks across Africa. More impor-

tantly, the extended coverage of the TAMSAT rainfall

monitoring products allows for pan-African analysis of

rainfall and drought conditions in near–real time and for

the evaluation of dryness and wetness signals relative to

a temporally consistent, long-term record—a feature

that is not available for products that blend in gauge

data.

3) OPERATIONAL VALIDATION OF DEKADAL

RAINFALL ESTIMATES

The purpose of the operational validation is to en-

hance the usefulness of the dekadal TAMSAT rainfall

estimates through direct comparisons with independent

gauge observations in near–real time. The near-real-

time validation presented here is a useful indication of

algorithm performance across Africa and relative to

independent gauge observations from January 2011 to

present.

Validation reports are compiled shortly after the end

of each month for the three dekads of that month and

disseminated via the TAMSAT website. The sparse GTS

network and the varying number of reporting gauges in

each dekad across the continent [see section 2a(3)] do not
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allow for robust implementation of spatial interpolation

methods such as geostatistical kriging or local validation

reports over small regions. Hence, the operational val-

idation is based on pixel-to-point comparison of

satellite-based rainfall estimates against ground-based

rainfall observation, and statistics are spatially averaged

across Africa. As gauges measure rainfall at a point and

satellite-based rainfall estimates represent an areal av-

erage, it is to be expected that satellite-based rainfall

estimates will differ from rainfall observed on the

ground at gauges. Despite the best efforts at quality

control, some gauges will still be inaccurate, and despite

careful algorithm calibration, rainfall estimates (in-

directly inferred from satellite data) will still be imper-

fect. Agreement in absolute terms is not to be expected;

the validation is a useful indication of the difference

between the rainfall observed at a point in space and

that estimated over satellite pixels.

The validation reports include a combination of bi-

nary (dichotomous) and summary statistics (Table 2)

that quantify relative and absolute differences between

rainfall estimates and observations and include a set of

exploratory plots (maps and scatterplots). The binary

statistics are based on contingency tables constructed for

each dekad’s satellite-based estimate and collocated

gauge observation of rainfall. These include the proba-

bility of detection (POD), false-alarm ratio (FAR), ratio

bias (BIAS), and three commonly used skill scores: the

Heidke skill score (HSS), Hanssen–Kuipers skill score

(HKSS), and equitable threat score (ETS). The sum-

mary statistics for each dekad are calculated for point–

pixel collocated pairs, for which rainfall above

1mmdekad21 was detected (category D in Table 2).

These include regression coefficients (slope and offset),

Pearson correlation, bias (additive bias or mean error)

calculated as the mean difference between the TAMSAT

estimate and the gauge observation across Africa, and

percent bias calculated relative to gauge values. Addi-

tionally, for each dekad, we calculate the root-mean-

square deviation (RMSD) and normalize the RMSD by

the range of gauge observations to produce the nor-

malized RMSD (NRMSD).

For the comparison of satellite-based estimates and

gauge observations in absolute terms, bands of dekadal

FIG. 4. Example map of TAMSAT pan-African calibration regions for May.
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rainfall totals are not to be narrower than 10–20-mm

rainfall because this is the accuracy with which gauges

provide estimates of the average rainfall over a pixel

(Milford et al. 1994). Thus, for visualizing absolute dif-

ferences in themaps and scatterplots of the bias, we have

selected the following ranges of dekadal rainfall totals:

below2100-mm, from2100- to250-mm, from250- to

210-mm, from210- to 10-mm, from 10- to 50-mm, from

50- to 100-mm, and above 100-mm difference. As dif-

ferences are calculated for the TAMSAT rainfall esti-

mate S minus the gauge observation G (Table 2),

negative values indicate relative underestimation and

positive values indicate relative overestimation of rain-

fall by TAMSAT. Although differences between point

and pixel rainfall over larger 10-day totals decline sub-

stantially and are verymuch dependent on the particular

storm characteristics, these are shown to be as much as

35% (12.5 in 36mm) in a case study in Niger (Flitcroft

et al. 1989). The 210- to 10-mm difference thus repre-

sents the difference expected from the point-to-area

comparison, although this can be much higher depend-

ing on the frequency distributions of particular storms

(Flitcroft et al. 1989).

The statistics compiled during the validation process

are also collated over time to give an indication of how

well the TAMSAT method performs when applied

continent-wide. The results of this analysis are described

in the next section.

3. Results

For the first time, TAMSAT has generated pan-

African, temporally consistent time series of dekadal

rainfall estimates and derived products and compared

TABLE 2. Summary of validation statistics. Here, S is the satellite-based rainfall estimate,G is the gauge-based rainfall observation,N is

the number of gauge locations, i is the location index, and s is the standard deviation. VariablesA–D form a contingency table: ForG,
1 mm dekad21, A corresponds to S, 1 mm dekad21 and B corresponds to S$ 1 mm dekad21; forG$ 1 mm dekad21, C corresponds to

S , 1mm dekad21 and D corresponds to S $ 1 mm dekad21.

Equation Range Interpretation

Dichotomous statistics

POD D

C1D
[0, 1] 1: perfect

FAR
B

B1D
[0, 1] 0: no false detection

BIAS
B1D

C1D
[0, 1‘) 1: perfect

,1: underforecast

.1: overforecast

HSS
2(AD2BC)

(A1B)(B1D)1 (C1D)(A1C)
(2‘, 1] 1: perfect

0: no skill

HKSS
AD2BC

(A1B)(C1D)
[21, 1] 1: perfect

0: no skill

ETS
D2DR

B1C1D2DR
, where [21/3, 1] ,0: no skill

DR 5
(C1D)(B1D)

A1B1C1D

Summary statistics

Pearson correlation (2)
1

N2 1
�
N

i51

�
Si 2S

sS

��
Gi 2G

sG

�
[21, 1]

(Additive) bias (mmdekad21)
1

N
�
N

i51

(Si 2Gi) (2‘, 1‘)

Percent bias (%)

�
N

i51

(Si 2Gi)

�
N

i51

Gi

3 100 (2‘, 1‘)

RMSD, RMSD . 0 (mmdekad21)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
�
N

i51

(Si 2Gi)
2

s
[0, 1‘)

NRMSD, NRMSD . 0 (%)
RMSD

Gmax 2Gmin
3 100 [0, 1‘)
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these against independent gauge observations in near–

real time. Figure 5 shows examples of the extended

spatial coverage of the dekadal rainfall estimates for the

dekads 3 of April and August 2008 from the old (rainy

season, regional) and the new (all season, spatially

contiguous) calibrations. The new quick-look images

used as an example here are plotted using the same color

scheme as the old images for comparison. It is worth

noting that the spatial patterns of rainfall are very sim-

ilar over the areas that overlap. The algorithm based on

local calibrations can result in spatial discontinuities

along the boundaries of some calibration regions in some

months especially where very few gauge data are avail-

able (e.g., DR Congo, top-right panel in Fig. 5), but that

spatial continuity is improved over regions with good

data coverage (e.g., West African Sahel, bottom-left

FIG. 5. Example of dekadal (10 day) TAMSAT rainfall estimates for dekad 3 for (top) April and (bottom) August of 2008 based on the

(left) old (rainy season only, regional) and (right) new (all season, spatially contiguous) calibrations.
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panel in Fig. 5). As would be expected, in regions where

warm rain persists, TAMSATwill tend to underestimate

rainfall, or it will miss warm rain completely, if CCD is

0 h [Eq. (1)]. However, within a given calibration zone,

this would happen on extreme occasions at the 10-day

temporal aggregation scale, considering that many pairs

of gauge–CCD data are analyzed to derive the rainfall

estimates.

Figure 6 presents an example of validation maps and

plots of absolute differences between satellite-based

estimates and corresponding gauge observations of

rainfall for dekad 3 of April and August 2013. The

contingency tables (see scatterplots in Fig. 6) show that

TAMSAT generally agrees with gauge observations in

the detection of wet dekads (rainfall . 1mmdekad21)

with POD of approximately 0.69 and 0.82, and a low

FIG. 6. Example validation maps and scatterplots showing absolute differences between dekadal (10 day) TAMSAT rainfall estimates

and rain gauge observations for dekad 3 of (top) April and (bottom) August of 2013. Blue circles show where TAMSAT is higher and

orange circles show where TAMSAT is lower than the gauge observation; open circles indicate no rainfall.
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FAR of approximately 0.25 and 0.12 for April and

August, respectively. The BIAS is above 0.92 for both

April and August, and the HSS, HKSS, and ETS show

good skill of TAMSAT with score values slightly higher

for August than for April in this example (Fig. 6).

Although summary statistics are computed as spatial

averages, for locations identified as wet in both TAMSAT

estimates and gauge observations (N 5 65 in April and

N 5 122 in August), the bias is relatively low

(;24mmdekad21), RMSD is within the error bound-

aries of gauge observations (;21mmdekad21 for April

and August), and NRMSD is approximately 12% and

13% for April and August, respectively (Fig. 6). Accord-

ing to the scatterplots presented in Fig. 6, TAMSAT tends

to underestimate rainfall above 70–100mmdekad21.

This partially relates to the optimizing of TAMSAT

calibrations for detecting the median rainfall event,

whereas point-to-pixel validation effectively compares

rainfall estimates against mean gauge observations.

Although the point-to-pixel validation method used

here introduces a dry bias, which is representative of the

point-to-pixel mismatch in estimating rainfall over an

area, using the median is more appropriate than the

mean for deriving area-averaged rainfall estimates

(Flitcroft et al. 1989). Figure 6 highlights that TAMSAT

has skill outside the main rainy season over parts of

southern Africa in both April and August, which is im-

portant because in some African regions there can be

a secondary rainy season and/or rain events during the dry

season that are crucial for crop growth. Thus, skill outside

the main rainy season provides valuable information.

Figure 7a shows the Pearson correlation coefficient

collated over time for the dekads under consideration

here from January 2011 to December 2013 (N 5 108

dekads) where gauge and satellite detected a wet dekad.

Although calculated as a spatial average across Africa

and over the entire time period considered (i.e., in-

cluding dry and rainy seasons), the mean Pearson cor-

relation is approximately 0.6 (black dashed line, Fig. 7a),

which shows a moderate positive relationship with

ground-based rainfall observations. The minimum cor-

relation value was approximately 0.2 in dekad 1 of

February and April 2012 (and dekad 2 of November

2013), and the maximum correlation was approximately

0.85 in dekad 1 of January 2012. This is within the wide

range of reported correlations for previous versions of

TAMSAT rainfall estimates from case studies focused

on Uganda, that is, 0.17–0.55 (Maidment et al. 2013) and

0.68–0.92 (Asadullah et al. 2008). Although the latter

studies have been done at different spatial scales, this is

still a useful indication of skill and robustness over time.

Figure 7b shows the bias and percent bias fields col-

lated over time for wet dekads over the validation time

period. On average across Africa, TAMSAT un-

derestimates rainfall by up to 15–17mmdekad21 (black

line, Fig. 7b) with a mean underestimation of approxi-

mately 4mmdekad21 (black dashed line, Fig. 7b) over

the time period considered. Previous studies reported

bias values from 22.78 to 3.64mm for monthly rainfall

over Uganda (Maidment et al. 2013) and 1–4mm for

monthly rainfall over the rainy seasons of 2004–06 in the

Sahel (Jobard et al. 2011). As the bias and percent bias

values reported here are based on dekadal (not monthly

and annual) rainfall totals across all Africa (and not over

a subregion), it is not unusual to observe a wider range of

variability reflecting the different rainfall regimes across

the continent. In terms of percentage, the spatially av-

eraged bias over the 3 years of validation reporting is

approximately222% (gray dashed line, Fig. 7b) (min is

approximately 259% in September 2012 and max is

approximately 20% in February 2013). This is within the

range of differences reported for point- and pixel-based

rainfall estimates (see Fig. 3 in Chadwick et al. 2010;

Grimes et al. 1999). It is worth noting that when com-

pared to gauge observations interpolated through geo-

statistical kriging, TAMSAT does not always show a

negative bias—for example, overWestAfrica, TAMSAT

showed a small positive bias (Chadwick et al. 2010), and

here positive bias is observed for January–March 2012

and February–March 2013 (Fig. 7c).

Figure 7c shows RMSD and NRMSD collated over

the validation time period. Average RMSD is approxi-

mately 22mmdekad21 (black dashed line, Fig. 7c). In

terms of percentage, average NRMSD is approximately

10% (gray dashed line, Fig. 7c). Although RMSD does

not indicate the direction of the deviations, it quantifies

the magnitude of estimation error, providing a useful

measure of overall accuracy. Thus, on average the

TAMSAT estimates are within 22mmdekad21 of the

gauge observations, and this represents an average

normalized estimation error (NRMSD) of approxi-

mately 10% relative to the observed rainfall. As dis-

cussed previously, this is in part due to the point-to-pixel

mismatch. NRMSD shows less variability than RMSD

over the time period considered as it removes the in-

fluence of dry dekads. It is worth noting that according

to Fig. 7, there are no apparent seasonal biases present

in the statistical measures used for the routine evalua-

tion of the dekadal TAMSAT rainfall estimates.

Figure 8 shows the binary statistics and skill scores

collated over the validation time period and calculated

on the basis of the contingency tables of wet and dry

collocated TAMSAT pixels and gauges. Average POD

and BIAS are approximately 0.8 and 0.97, respectively.

POD indicates that for a given dekad for approximately

80%of the locations, a dekad is correctly detected as wet
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in the TAMSAT pixel estimates and the collocated gauge

locations. For dekads when BIAS. 1 (e.g., January 2012

and November 2012 and 2013), the rainfall estimation

model exhibits overestimation of wet dekads/locations,

while when BIAS , 1 (e.g., July 2011 and May 2013),

there is underestimation of wet dekads/locations. The

FAR metric is low at approximately 0.2 (Fig. 8). On av-

erage, both HSS and HKSS are approximately 0.6 over

the time period considered, indicating good skill of dis-

crimination between wet and dry dekads/locations. The

ETS score is on average approximately 0.45 and never

below zero, meaning that the TAMSAT rainfall estima-

tion model is never unskilled.

It is worth noting that for other datasets, unlike for

TAMSAT, it might not be possible to isolate the effects

of varying gauge data input for such an independent

comparison, yet the timely and routine delivery of in-

formation on validationmetrics is one of the fundamental

requirements for operational drought monitoring. Based

on the results discussed here, in the next section, we

reflect on the role of TAMSAT as a complementary

dataset.

FIG. 7. (a) Pearson correlation coefficient, (b) bias (difference between the TAMSAT rainfall estimate minus gauge observation) and

percent bias (percent error), and (c) RMSD andNRMSD collated over time for the 108 dekads of the validation time period from January

2011 to December 2013. Note that for each dekad, values are calculated as an average of all reported gauge observations over Africa and

only for locations that are wet in the collocated TAMSAT pixels and gauges.
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4. Discussion of results and applications: TAMSAT
as a complementary approach for pan-African
rainfall estimation

The study of Dugdale et al. (1991) over the Sahel

showed that rain gauge observations alone fail to rep-

resent the spatial structure of rainfall accurately. This

highlights a fundamental difference between gauge ob-

servations (point based; poorly represent the spatial

structure of rainfall) and satellite rainfall estimates

(pixel based; limited to the spatial resolution, at which

they capture rainfall variability). The need for spatially

contiguous data has motivated the development of

several long-term satellite-based rainfall products issued

operationally (Table 3). These products are, in some

cases, designed specifically for Africa, for example, the

National Oceanic Administration Climate Prediction

Center (NOAA-CPC) African Rainfall Climatology

(ARC) dataset (Novella and Thiaw 2013). Other prod-

ucts provide global coverage, for example, the GPI

(Arkin and Meisner 1987), GPCP (Adler et al. 2003;

Huffman et al. 1997), and the Climate Hazards Group

Infrared Precipitation with Station (CHIRPS) dataset

(Funk et al. 2014) released in May 2014 (Table 3). GPI

data are only available monthly as the method works

well for larger time periods and over large areas where

over- and underestimation of spatial and temporal

errors cancel out (Hsu et al. 1997; Arkin and Meisner

1987). Both GPI and GPCP are at too coarse spatial

resolution at 2.58 for operational monitoring of re-

gional and local drought across Africa. The only

comparable datasets to TAMSAT in terms of data

period and resolution are ARC and CHIRPS.

Unlike TAMSAT, ARC and CHIRPS merge gauge

data in real and near–real time, respectively. This means

that where gauge coverage is good, these datasets can

provide information on extreme rainfall on an event

basis. On the other hand, TAMSAT estimates are not

affected by inconsistent gauge data input, which means

that the method is capable of placing rainfall variability

in the context of a long-term climatology. In addition,

ARC and CHIRPS use the 3-h GPI, while TAMSAT

uses the 15-min (30min prior to June 2006) Meteosat

TIR imagery in order to capture short-duration con-

vective storms. The TAMSAT rainfall estimates are

thus suited for detecting unusually wet or dry conditions,

and hence for triggering early warning.

Early warning and end-of-season assessment reports

based on TAMSAT rainfall data are practically used in

deciding food security interventions by international or-

ganizations such as United Nations agencies, including

FIG. 8. POD,BIAS, FAR,HSS,HKSS, andETSmetrics for collocatedTAMSATpixels and gauge locations in each dekad collated over

time for the 108 dekads of the validation time period from January 2011 toDecember 2013. Note that for each dekad, values are calculated

as an average of all reported gauge observations over Africa and where the gauge and pixel values are .1mmdekad21.

TABLE 3. Satellite-based rainfall datasets covering 301 years and issued operationally over Africa.

Dataset Spatial extent Temporal extent Data input Spatial resolution Temporal resolution

GPI 408N–408S 1986–present TIR 2.58 Monthly

GPCP Global 1979–present TIR, PMW, gauge 2.58 Pentad, monthly

NOAA-CPC ARC 408N–408S 1983–present TIR, gauge 0.18 Daily

208W–558E
CHIRPS 508N–508S 1981–near present TIR, gauge 0.058 Pentad

TAMSAT Africa 1983–present TIR, gauge 0.03758 Dekadal
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the Food and Agriculture Organization (FAO), World

Food Program (WFP), and the United Nations Chil-

dren’s Fund (UNICEF), as well as regional clusters such

as the Food Security and Nutrition Working Group

(FSNWG) based in Nairobi (see online at http://www.

disasterriskreduction.net). For example, the EC JRC

uses the TAMSAT rainfall products in their Africa-wide

monitoring system to assess crop growth and the

drought risk that may affect pasture conditions. In sup-

port of an FAO-led livestock and market assessment

mission in Uganda, TAMSAT rainfall estimates and

anomalies provided supporting evidence of good to very

good pasture conditions (FAO/GIEWS 2014). Some of

the EC JRC reports are available publicly (e.g.,

Vancutsem et al. 2012). A recent ad hoc case study, for

instance, showed that the dekadal TAMSAT rainfall

estimates and anomalies proved more accurate than

other products of similar temporal and spatial resolu-

tions that are available in West Africa and southern

Africa. This was particularly evident in the case of the

drought that hit Angola and Namibia in 2012/13

(Rembold et al. 2013; Hooker et al. 2013). Specifically,

the long-term coverage and temporal consistency of the

new TAMSATAfrican rainfall product made it possible

for the JRC to demonstrate to decision makers that the

2012/13 rainy season in Namibia was the second driest in

the last 25 years (Hooker et al. 2013) and UNICEF re-

ferred to the JRC report on Namibia to decide in which

regions they need to concentrate their interventions (see

online at http://www.unicef.org/appeals/files/UNICEF_

Namibia_Drought_SitRep2_22Aug2013.pdf).

Other applications of the African TAMSAT rainfall

estimates include weather index-based insurance pro-

jects, identification of drought- and flood-prone regions,

and monitoring the progression of the West African

monsoon season. Specifically, Kucera et al. (2013) used

the 2011 TAMSAT rainfall anomaly for March–May to

show areas in East Africa that were prone to drought

and in South Africa that were prone to flooding during

this period. Additionally, the 2011 TAMSAT rainfall

anomaly for June–August documented regionally the

delay of the West African monsoon, prevalent dry

conditions across the Sahel, and flooding due to above-

average rainfall along the Guinea coast (Boyd et al.

2013).

The TAMSAT method is simple and not computa-

tionally intensive; it requires satellite data retrievals, but

does not require a sophisticated operational system ca-

pable of dealing with latency in gauge reporting and the

quality control of real-time gauge data. The simplicity of

the operational method has enabled local meteorological

services in Africa to develop their own TAMSAT sys-

tems, following training provided during calibration

workshops. Local TAMSAT-based rainfall estimates

are derived operationally, for example, for seasonal

agrometeorological monitoring by the Sudan Meteoro-

logical Authority (SMA) using dense, locally available

gauge data. On the basis of these data, seasonal agro-

meteorological bulletins are routinely produced by

SMA from June to September each year and dissemi-

nated more widely via TAMSAT’s website.

The range of applications illustrates the utility of

TAMSAT’s simple approach for rainfall estimation, as

well as the value of its temporal consistency and long

time series. This is not to say, however, that TAMSAT

(or any other dataset) is universally the best choice.

Advanced approaches using passivemicrowave (PMW),

visible, and/or radar data (instead of or in addition to

TIR input) for rainfall estimation have yielded reliable

products, capable of providing near-real-time warning,

for example, of intense rainfall events. A notable ex-

ample is the NOAA Rainfall Estimate (Herman et al.

1997) that is part of the Famine Early Warning System

Network (FEWSNET). Other products make use of

sophisticated algorithms and new sensors to provide

accurate estimates of rainfall intensity—some on sub-

daily time scales. Such data include the Tropical Rainfall

Measuring Mission (TRMM) Multisatellite Pre-

cipitation Analysis 3B42 (TMPA) (Huffman et al. 2007)

and TRMM 3B43 products (Kummerow et al. 2000),

Precipitation Estimation from Remote Sensing In-

formation usingArtificialNeuralNetwork (PERSIANN)

(Hsu and Sorooshian 2008), CPC Merged Analysis of

Precipitation (CMAP) (Xie and Arkin 1997), Estima-

tion of Precipitation by Satellite, second generation

(EPSAT-SG) (Bergès et al. 2010), Rain Estimation using

Forward-Adjusted Advection of Microwave Estimates

(REFAME) (Behrangi et al. 2010), CPC morphing

technique (CMORPH) (Joyce et al. 2004), and Kalman

filter CMORPH (KF-CMORPH) (Joyce and Xie 2011),

among others. However, unlike TAMSAT,CHIRPS, and

ARC, these data do not cover a long enough time period

for robust assessment of climate-related risk, and some of

these products are, moreover, not pan-African.

In summary, the appropriate choice of product is

critical to the success of operational applications. This

requires careful assessment of skill through a range of

standard statistical and application-specific metrics,

along with consideration of the limitations and advan-

tages of the methodological approach used. The above

discussion has highlighted some of the rainfall datasets

available for operational applications in Africa and

has summarized the factors that suit individual data-

sets to particular applications. The examples given of

successful applications of TAMSAT serve to illustrate

its place within this constellation of products.
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5. Conclusions

We described an updated climatology-based calibra-

tion approach that constitutes the TAMSAT opera-

tional system for pan-African rainfall monitoring (see

the appendix), which makes use of a 28-yr archive

(1983–2010) of harmonized rain gauge data from mul-

tiple sources and a quality-controlled TIR imagery. The

climatology-based calibrations use more years and a

greater mixture of wet and dry years than was previously

achievable. The availability of considerably more gauge

data has enabled the definition of a new set of homoge-

neous (in rainfall climatology terms) regions at finer spa-

tial scale than was previously achievable with the more

limited and sparse rain gauge datasets. The updated op-

erational calibrations presented here were used in the

development of the internally consistent 30-yr TARCAT

dataset. This helps to extend the application of the

TAMSAT rainfall estimates to drought monitoring for

famine early warning in more regions than previously

feasible and to put these estimates in the context of long-

term rainfall climatology.

We presented a new methodology for consistent and

routine validation of the dekadal TAMSAT rainfall es-

timates in near–real time and within the context of

drought monitoring, including the reporting of validation

results to the user community. Consistent, to an extent,

with previous validations, TAMSAT showed an un-

derestimation (negative) bias and good performance in

dry–wet dekad and location detections across Africa as

evaluated through binary performance measures (prob-

ability of detection, ratio bias, and false-alarm ratio) and

three commonly used skill scores (Heidke skill score,

Hanssen–Kuipers skill score, and equitable threat score).

Our validations confirm that different environments

are not equally suited for CCD-based rainfall estimation

and that spatial continuity can be an issue in some data-

sparse regions. In this respect, the systematic routine

evaluations presented here can help to define more

precisely the limits of the CCD-based algorithm by

identifying regions where further improvements in the

calibration may be useful, provided that new gauge data

become available in the future. Thus, future work will

aim to (i) establish the relative importance of pre-

cipitation type (convective or frontal/cirrus clouds) in

different regions and seasons; (ii) improve the rainfall

estimation model to better relate cold cloud duration

to rainfall from different storm types, evaluating the

relevance of using calibration regions; and (iii) quantify

the uncertainty of near-real-time rainfall estimates

through validation case studies using independent gauge

datasets. Finally, we gave an overview of applications,

which demonstrate TAMSAT’s complementary role in

robust systems of early warning, climate risk manage-

ment, and decision making in food security contexts.
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APPENDIX

Operational TAMSAT Rainfall Estimates and
Derived Products

As part of the TAMSAT rainfall monitoring system,

dekadal rainfall estimates become available within

amaximum of 48 h from the end of a dekad where dekad

1 products are produced on the eleventh of the month,

dekad 2 products are produced on the twenty-first, and

dekad 3 products are produced on the first day of the

following month. At the end of each month, a monthly

rainfall estimate is produced as the sum of the three

dekads’ rainfall estimates. To facilitate a comparison of

the TAMSAT rainfall estimates with numerical weather

prediction (NWP) model outputs, seasonal rainfall to-

tals are produced as follows: December–February

(DJF), March–May (MAM), June–August (JJA), and

September–November (SON). Additionally, 30-yr

rainfall climatologies are produced over the time pe-

riod from 1983 to 2012 and dekadal, monthly, and sea-

sonal anomalies are calculated against the respective

climatology product. The TAMSAT rainfall estimates

and derived products are routinely made available

through TAMSAT’s website and (with the exception of

seasonal rainfall totals and anomalies) in near–real time

via the GEONETCast data broadcasting service of

EUMETSAT.
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TAMSAT also issues rainfall tercile estimates oper-

ationally for verification of seasonal forecast model

outputs. Seasonal forecasts of rainfall over Africa (both

dynamical and statistical), such as those issued by the

MetOffice (UKMO), are commonly disseminated to users

in the form of a map of tercile probabilities. These are

available from the UKMO website (www.metoffice.gov.

uk/research/climate/seasonal-to-dekadal/gpc-outlooks/

glob-seas-prob). The information conveyed is how

likely rainfall is to be below (0–33rd percentile), above

(66th–100th percentile) or near normal (33rd–66th

percentile) for a particular season when compared with

climatology. For an independent evaluation of tercile

forecasts at the UKMO, TAMSAT estimates are com-

pared with the 1983–2012 TAMSAT monthly climatol-

ogy to produce rainfall tercile estimates, indicating

whether rainfall has been estimated to be below-, near-,

or above-normal rainfall for each month and location.

These estimates are available from the TAMSAT web-

site and in the monitoring section of the Climate Science

Research Partnership website (www.metoffice.gov.uk/

csrp/results-products/monitoring). They are used for

evaluation of seasonal forecasts over Africa by the

UKMO and their partners in African NMAs. At pres-

ent, the seasonal forecast evaluations are carried out

internally and in a qualitative manner, and there are

plans at the UKMO to undertake a routine quantitative

evaluation in the future.
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