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Abstract12

Stochastic methods are a crucial area in contemporary climate research and are increasingly being used in13

comprehensive weather and climate prediction models as well as reduced order climate models. Stochastic14

methods are used as subgrid-scale parameterizations as well as for model error representation, uncertainty15

quantification, data assimilation and ensemble prediction. The need to use stochastic approaches in weather16

and climate models arises because we still cannot resolve all necessary processes and scales in comprehensive17

numerical weather and climate prediction models. In many practical applications one is mainly interested in18

the largest and potentially predictable scales and not necessarily in the small and fast scales. For instance,19

reduced order models can simulate and predict large scale modes. Statistical mechanics and dynamical systems20

theory suggest that in reduced order models the impact of unresolved degrees of freedom can be represented21

by suitable combinations of deterministic and stochastic components and non-Markovian (memory) terms.22

Stochastic approaches in numerical weather and climate prediction models also lead to the reduction of model23

biases. Hence, there is a clear need for systematic stochastic approaches in weather and climate modelling. In24

this review we present evidence for stochastic effects in laboratory experiments. Then we provide an overview of25

stochastic climate theory from an applied mathematics perspectives. We also survey the current use of stochastic26

methods in comprehensive weather and climate prediction models and show that stochastic parameterizations27

have the potential to remedy many of the current biases in these comprehensive models.28
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1 Introduction29

The last few decades have seen a considerable increase in computing power which allows the simulation of30

numerical weather and climate prediction models with ever higher resolution and the inclusion of ever more31

physical processes and climate components (e.g. cryosphere, chemistry). Despite this increase in computer32

power many important physical processes (e.g. tropical convection, gravity wave drag, clouds) are still not33

or only partially resolved in these numerical models. Despite the projected exponential increase in computer34

power these processes will not be explicitly resolved in numerical weather and climate models in the foreseeable35

future120,171. For instance, Dawson et al.24 have demonstrated using the ECMWF integrated forecast system36

that extremely high resolutions (T1279, which corresponds to a grid spacing of about 16km) are required to37

accurately simulate the observed Northern hemispheric circulation regime structure. This resolution, typical38

for limited area weather and climate models used for short term prediction, remains unfeasible for the current39

generation of high resolution global climate models due to computational and data storage requirements. Hence,40

these missing processes need to be parameterized, i.e. they need to be represented in terms of resolved processes41

and scales153. This representation is important because small-scale (unresolved) features can impact the larger42

(resolved) scales84,162 and lead to error growth, uncertainty and biases.43

At present, these parameterizations are typically deterministic, relating the resolved state of the model to a44

unique tendency representing the integrated effect of the unresolved processes. These “bulk parameterizations”45

are based on the notion that the properties of the unresolved subgrid-scales are determined by the large-scales.46

However, studies have shown that resolved states are associated with many possible unresolved states22,144,167.47

This calls for stochastic methods for numerical weather and climate prediction which potentially allow a proper48

representation of the uncertainties, a reduction of systematic biases and improved representation of long-term49

climate variability. Furthermore, while current deterministic parameterization schemes are inconsistent with50

the observed power-law scaling of the energy spectrum5,142 new statistical dynamical approaches that are un-51

derpinned by exact stochastic model representations have emerged that overcome this limitation. The observed52

power spectrum structure is caused by cascade processes. Recent theoretical studies suggest that these cascade53

processes can be best represented by a stochastic non-Markovian Ansatz. Non-Markovian terms are necessary54

to model memory effects due to model reduction19. It means that in order to make skillful predictions the55

model has to take into account also past states and not only the current state (as for a Markov process).56

We first review observational evidence of stochasticity in laboratory geophysical fluid experiments (section57

2), then discuss stochastic climate theory in fast-slow systems (system 3). In section 4 we present statistical58

physics approaches and in section 5 we review the current state of stochastic-dynamic weather and climate59

modelling. We close with an outlook and challenges for the future of weather and climate modelling (section 6).60

2 Laboratory Evidence of Stochasticity61

Research on the climate system is somewhat hindered by the obvious difficulties of performing reproducible62

experiments on the atmosphere and ocean in different parameter regimes. For example, an optical physicist63

studying the nonlinear response of isolated atoms to intense electromagnetic waves can easily change the incident64

wavelength110. In contrast, climate scientists cannot (and arguably should not!) change the rotation rate of65

the planet or the intensity of the incoming solar radiation. To some extent, numerical simulations come to the66

rescue, by allowing us to perform virtual experiments. However, the grid spacing in climate models is orders of67

magnitude larger than the smallest energized scales in the atmosphere and ocean, introducing biases.68

Fortunately, there is another option available to us. It is possible to exploit dynamical similarity30 to study69

analogues of planetary fluid flow in bespoke laboratory experiments. The traditional set-up is the classic rotating70

annulus, which has been used for decades to study baroclinic instability and other large-scale phenomena61.71

Recent observations of small-scale inertia-gravity waves embedded within a large-scale baroclinic wave85,172,17372

have allowed the scale interactions between these two modes to be studied in a laboratory fluid for the first73
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time. The experimental apparatus consists of a two-layer isothermal annulus forced by a differentially rotating74

lid, which drives a shear across the internal interface and represents the mid-latitude tropospheric wind shear.75

The large-scale baroclinic wave in these laboratory experiments exhibits regime behavior, equilibrating at76

finite amplitude with a zonal wavenumber of typically 1, 2, or 3. These simple wave modes are regarded as77

prototypes of the more complicated regime behavior in the atmosphere, such as mid-latitude blocking160,164.78

A notable finding from repeated experiments using this apparatus is that small-scale inertia–gravity waves can79

induce large-scale regime transitions, despite the separation of wavelengths by an order of magnitude168. An80

example of this process is illustrated in Figure 1. A wavenumber 2 mode without co-existing inertia-gravity81

waves (upper row) remains a wavenumber 2 mode indefinitely, drifting around the annulus with the zonal-mean82

flow. In contrast, with the same parameter values, a wavenumber 2 mode with co-existing inertia–gravity waves83

(lower row) is found to have a finite probability of transitioning to a wavenumber 1 mode. The amplitude of84

the inertia–gravity waves is controlled here without directly affecting the large-scale mode, by slightly varying85

the interfacial surface tension between the two immiscible fluid layers.86

The laboratory transitions discussed above are reminiscent of noise-induced transitions between different87

equilibrium states in a meta-stable dynamical system158. To test this interpretation, a quasi-geostrophic nu-88

merical model that captures the meta-stability of the large-scale flow in the rotating annulus174 was run with89

and without weak stochastic forcing added to the potential vorticity evolution equation for each fluid layer.90

The stochastic forcing was an approximate representation of the inertia–gravity waves, which are inherently91

ageostrophic and are therefore forbidden from the quasi-geostrophic model. Consistent with the laboratory92

experiments, only when the noise term was activated did the numerical simulations exhibit large-scale wave93

transitions in the equilibrated flow169. In further numerical experiments, the noise was found to be able to94

influence wavenumber selection during the developing baroclinic instability.95

In summary, the above laboratory experiments constitute the first evidence in a real fluid that small-scale96

waves may trigger large-scale regime transitions. In a numerical model in which the small-scale waves were97

absent, the transitions were captured through the addition of stochastic noise. Note that the small-scale waves98

satisfy the dispersion relation for inertia–gravity waves and are therefore coherent in space and time, and yet99

apparently they are ’sensed’ by the large-scale flow as if they were random fluctuations. These results have led100

to a possible interpretation of sudden stratospheric warmings as noise-induced transitions9. Furthermore, these101

laboratory results help to motivate the development of stochastic parameterizations in climate models and a102

more general development of stochastic climate theory.103

3 Stochastic Climate Theory104

Climate is a multi-scale system in which different physical processes act on different temporal and spatial105

scales69. For instance, on the micro-scale are turbulent eddies with time scales of seconds to minutes, on106

the meso-scale is convection with time scales of hours to days, on the synoptic scale are mid-latitude weather107

systems and blocking with time scales from days to weeks, on the large-scale are Rossby waves and teleconnection108

patterns with time scales of weeks to seasons. And there is the coupled atmosphere-ocean system with time109

scales of seasons to decades. The crucial point here is that all these processes acting on widely different temporal110

and spatial scales, interact with each other due to the inherent nonlinearity of the climate system. We have111

shown an illustrative laboratory example for this in the previous section.112

For many practical applications we are only interested in the processes on a particular scale and not in113

the detailed evolution of the processes at smaller scales. Often the scales of interest are linked to inherently114

predictable processes, while the smaller scales processes are unpredictable. For instance, in the above laboratory115

experiment we are interested in the regime behavior and not in the detailed evolution of the inertia–gravity116

waves. In numerical simulations the fastest scales, which are typically also the smallest scales, use up the bulk117

of computing time, slowing down the computation of the processes of actual interest. In numerical weather and118

climate prediction many of the small scale processes are currently not explicitly resolved and won’t be in the119
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foreseeable future. This neglect of these processes can lead to biases in the simulations. Because of that the120

unresolved processes need to be parameterized as demonstrated in the previous section.121

Stochastic climate theory is based on the concept of scale separation in space or time. Hasselmann 56 was122

the first to propose to split the state vector ~z into slow climate components ~x and fast weather fluctuations ~y123

and then to derive an effective equation for the slow climate variables only. In this equation the effect of the124

now unresolved variables is partially represented as a noise term. The physical intuition behind this idea is,125

for example, that the aggregated effect of ’fast’ weather fluctuations drives fluctuations in the ’slower’ ocean126

circulation. To first order such a model can explain the ’red’ spectrum of oceanic variables36,64. It has to be127

noted that there is no scale separation in the climate system. This lack of time-scale separation introduces128

non-Markovian (memory) effects and complicates the derivation of systematic parameterizations.129

Rigorous mathematical derivations for this approach have been provided by Gottwald and Melbourne 52 ,130

Khasminsky 66 , Kurtz 76 , Melbourne and Stuart 101 , Papanicolaou 124, Pavliotis and Stuart 125 . For accessible131

reviews see Givon et al. 50 and the text book by Pavliotis and Stuart 125 . This approach has been applied to132

climate models by Majda and coworkers29,37,38,89–94,96. Climate models have the following general functional133

form134

d~z =
(

F̃ + L̃~z + B̃(~z, ~z)
)

dt (1)

where F̃ denotes an external forcing, L̃ a linear operator and B̃ a quadratic nonlinear operator. Eq. (1)135

constitutes the form of the dynamical cores of weather and climate prediction models.136

Now splitting the state vector ~z into slow ~x and fast ~y components (which amounts to assuming a time137

scale separation) and assuming that the nonlinear self-interaction of the fast modes B̃(~y, ~y) can be represented138

by a stochastic process37,38,89,90 leads to a stochastic differential equation. The stochastic mode reduction139

approach37,38,89,90 then predicts the functional form of reduced climate models for the slow variable ~x alone:140

d~x = (F + L~x+B(~x, ~x) +M(~x, ~x, ~x)) dt+ σAd ~WA + σA(~x)d ~WM (2)

Structurally new terms are a deterministic cubic term which acts predominantly as nonlinear damping and141

both additive and multiplicative (state-dependent) noise terms. The fundamentals of stochastic processes and142

calculus are explained in Box 1. The multiplicative noise and the cubic term stem from the nonlinear interaction143

between the resolved and unresolved modes37.144

The above systematic procedure allows also a physical interpretation of the new deterministic and stochastic145

terms37. The additive noise stems both from the nonlinear interaction amongst the unresolved modes and the146

linear interaction between resolved and unresolved modes37.147
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BOX 1

STOCHASTIC PROCESSES
In contrast to deterministic processes stochastic processes have a random component. See the books by
Lemons 86 and Gardiner 49 for intuitive introductions to stochastic processes. Typically stochastic processes
are driven by white noise. White noise is a serially uncorrelated time series with zero mean and finite vari-
ance49.
A stochastic differential equation (SDE) is a combination of a deterministic differential equation and a stochastic
process. In contrast to regular calculus, stochastic calculus is not unique; i.e. different discretizations of its
integral representation lead to different results even for the same noise realization. The two most important
calculi are Ito and Stratonovich. See details in Gardiner49. The physical difference is that Ito calculus has
uncorrelated noise forcing while Stratonovich allows for finite correlations between noise increments. Hence,
physical systems have to be typically approximated by Stratonovich SDEs. On the other hand, it is mathemat-
ically straightforward to switch between the two calculi. So one only needs to make a decision at the beginning
which calculus is more appropriate for modeling the system under consideration and can then switch to the
mathematically more convenient form.
SDEs describe systems in a path wise fashion. The Fokker-Planck equation (FPE) describes how the probability
distribution evolves over time49. Thus, SDEs and the FPE offer two different ways at looking at the same system.
The parameters of SDEs and their corresponding FPE are linked; thus, one can use the FPE to estimate the
parameters of the corresponding SDE3,146.

148

Multiplicative (or state-dependent) noise is important for deviations from Gaussianity and thus extremes.149

The intuition behind multiplicative noise is as follows: On a windless day the fluctuations are very small,150

whereas on a windy day not only is the mean wind strong but also the fluctuations around this mean are large;151

thus, the magnitude of the fluctuations dependent on the state of the system.152

The first practical attempts at stochastic climate modelling were made using Linear Inverse Models (LIM)153

127,128,166,176 and dynamically based linear models with additive white noise forcing26,27,34,35,179. These154

approaches linearise the dynamics and then add white noise and damping166 in order to make the models155

numerically stable (i.e. the resulting linear operator should only have negative eigenvalues to ensure stability156

and reliasability of the solutions). While these models have encouraging predictive skill, especially for ENSO,157

they can only produce Gaussian statistics and, thus, are less useful for predictions of high impact weather.158

Recently there are encouraging attempts in fitting nonlinear stochastic models to data. These include multi-159

level regression70,74, fitting the parameters via the Fokker-Planck equation3,146, stochastic averaging23,103,160

optimal prediction18,154 or Markov Chains21. Most of the previous approaches fitted the parameters of the161

stochastic models without taking account of physical constraints, e.g. global stability. Many studies linearized162

the dynamics and then added additional damping to obtain numerically stable models1,2,166,179. Majda et al. 96163

developed the nonlinear normal form of stochastic climate models and also physical constraints for parameter164

estimation. Recent studies use these physical constraints to successfully derive physically consistent stochastic165

climate models57,97,126.166

Most of the above approaches are based on an implicit assumption of time scale separation. However, the167

climate system has a spectrum with no clear gaps which would provide the basis of scale separation and the168

derivation of reduced order models. Such a lack of time scale separation introduces memory effects into the169

truncated description. Memory effects mean that the equations become non-Markovian and that also past states170

need to be used in order to predict the next state. This can be explained by considering the interaction between171

a large-scale Rossby wave with a smaller scale synoptic wave. At some location the Rossby wave will favor172

the development of the synoptic wave. Initially this synoptic wave grows over some days without affecting the173

Rossby wave. Once the synoptic wave has reached a sufficient large amplitude it will start affecting the Rossby174

wave. Now in a reduced order model only resolving the Rossby wave but not the synoptic wave this interaction175

cannot be explicitly represented. However, because the Rossby wave initially triggered the synoptic wave which176

then in turn affects it some days later, this can be modeled with memory terms which takes into account that177
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the Rossby wave has triggered at time t0 an anomaly which will affect it at some later time tn.178

Recently, Wouters and Lucarini177 have proposed to treat comprehensively the problem of model reduction in179

multi-scale systems by adapting the Ruelle response theory136,137 for studying the effect of the coupling between180

the fast and slow degrees of freedom of the system. This theory has previously been used in a geophysical context181

to study the linear and nonlinear response to perturbations87,88, which also allows climate change predictions.182

This approach is based on the chaotic hypothesis48 and allows the general derivation of the reduced dynamics of183

the slow variables able to mimic the effect of the fast variables in terms of matching the changes in the expectation184

values of the observables of the slow variables. The ensuing parametrization includes a deterministic correction,185

which is a mean field result and corresponds to linear response, a general correlated noise and a non-Markovian186

(memory) term. These results generalize Eq. (2). In the limit of infinite time-scale separation, the classical187

results of the averaging method is recovered. Quite reassuringly, the same parametrizations can be found using188

a classical Mori-Zwanzig approach19, which is based on projecting the full dynamics on the slow variables and189

general mathematical results provide evidence that deterministic, stochastic and non-Markovian components190

should constitute the backbone of parameterizations17,178. Recent studies show improvements over approaches191

based on time-scale separation17,177,178.192

Recent studies have shown that stochastic approaches are also important for the prediction of extreme events193

and tipping points40,41,155,156. Sura 156 discusses a stochastic theory of extreme events. He especially focuses194

on deviations from a Gaussian distribution; i.e. skewness and kurtosis, as first measures of extremes. He shows195

that multiplicative noise plays a significant role in causing non-Gaussian distributions. Franzke 40 shows that196

both deterministic nonlinearity and multiplicative noise are important in predicting of extreme events.197

4 Statistical Physics Approaches to Stochastic Climate Theory198

Significant progress has been achieved in the development of tractable and accurate statistical dynamical clo-199

sures for general inhomogeneous turbulent flows that are underpinned by exact stochastic models (see Box 2).200

For an accessible review see the text book by Heinz 58 . The statistical dynamical closure theory, pioneered by201

Kraichnan 71 , has been recognized as a natural framework for a systematic approach to modelling turbulent202

geophysical flows. Closure theories like the Direct Interaction Approximation (DIA),71 for homogeneous tur-203

bulence and the Quasi-Diagonal Direct Interaction Approximation (QDIA),42 for the interaction of mean flows204

with inhomogeneous turbulence have exact generalized Langevin model representations60. This means that205

such closures are realizable; i.e. they have non-negative energy.206

The first major application of turbulence closures has been the examination of the predictability of geo-207

physical flows. Early approaches applied homogeneous turbulence models to predicting error growth77,79,83
208

whereas more recent advances by Frederiksen and O’Kane 46 , O’Kane and Frederiksen 113 , building on the pi-209

oneering studies of Epstein 32 and Pitcher 130 , have enabled predictability studies of inhomogeneous strongly210

non-Gaussian flows typical of the mid-latitude atmosphere. Turbulence closures have also been used for Subgrid-211

Scale Parameterisation (SSP) of the unresolved scales, for example eddies in atmospheric and ocean general212

circulation models. Since it is generally only possible to represent the statistical effects of unresolved eddies213

while their phase relationships with the resolved scales are lost100, statistical dynamical turbulence closures are214

sufficient to allow SSPs to be formulated in a completely transparent way42,43,73,77,80,112,134. Insights gained215

through the development of inhomogeneous turbulence closure theory have motivated the recent development216

of general stochastic forms for subgrid-scale parameterisations for geophysical flows68.217
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4.1 Statistical dynamical closure theory218

BOX 2

CLOSURE PROBLEM

In order to describe the statistical behavior of a turbulent flow the underlying nonlinear dynamical equations
must be averaged. For simplicity we consider a generic equation of motion with quadratic nonlinearity for
homogeneous turbulence, in which the mean field is zero, and the fluctuating part of the vorticity in Fourier
space, ζ̂k, satisfies the equation:

∂

∂t
ζ̂k(t) = Kkpqζ̂−p(t)ζ̂−q(t). (3)

where p and q are the other wave numbers describing triad interactions i.e. k = (kx, ky) where δ(k+p+q) = 1
if k+ p+ q = 0 and 0 otherwise. Here Kkpq are the interaction or mode coupling coefficients. The correlation
between the eddies can now be represented by an equation for the covariance (cumulant in terms of wavenumbers
k and l) which is found to depend on the third order cumulant in Fourier space:

∂

∂t
〈ζ̂k(t)ζ̂−l(t

′)〉 = Kkpq〈ζ̂−p(t)ζ̂−q(t)ζ̂−l(t
′)〉. (4)

Similarly the third order cumulant depends on the fourth order and so on such that we see that an infinite
hierarchy of moment or cumulant equations is produced. Statistical turbulence theory is principally concerned
with the methods by which this moment hierarchy is closed and the subsequent dynamics of the closure equations.
The fact that for homogeneous turbulence the covariance matrix is diagonal greatly simplifies the problem. The
majority of closure schemes are derived using perturbation expansions of the nonlinear terms in the primitive
dynamical equations. The most successful theories use formal renormalization techniques19,58.

219

The development of renormalized turbulence closures was pioneered by Kraichnan’s Eulerian dia
71 for220

homogeneous turbulence. The dia, so named because it only takes into account directly interacting modes,221

can be readily regularised to include approximations to the indirect interactions45,111 which are required to222

obtain the correct inertial range scaling laws. Other homogeneous closures such as Herring’s self consistent223

field theory (scft59) and McComb’s local energy transfer theory (let),99 were independently developed soon224

after. The dia, scft and let theories have since been shown to form a class of homogeneous closures that225

differ only in whether and how a fluctuation dissipation theorem (fdt i.e. the linear response of a system to an226

infinitesimal perturbation as it relaxes toward equilibrium)15,25,44,71 is applied. As noted earlier, a consequence227

of the dia having an exact stochastic model representation is that it is physically realizable, ensuring positive228

energy spectra. This is in contrast with closures based on the quasi-normal hypothesis which require further229

modifications in order to ensure realizability; an example of such a closure is the eddy damped quasi-normal230

Markovian (EDQNM) closure77,109,116 developed as a bets Markovian fit to the DIA. The EDQNM is dependent231

on a choice of an eddy-damping parameter which can be tuned to match the phenomenology of the inertial232

range. This Markovian assumption assumes that the rate at which the memory integral decays is significantly233

faster than the time scale on which the covariances evolve. The relative success of these turbulence closures has234

enabled the further study of the statistics of the predictability of homogeneous turbulent flows77–79,102.235

Frederiksen 42 formulated a computationally tractable non-Markovian (memory effects) closure, the quasi-236

diagonal direct interaction approximation (qdia), for the interaction of general mean and fluctuating flow237

components with inhomogeneous turbulence and topography. The qdia assumes that, prior to renormalisation,238

a perturbative expansion of the covariances are diagonal at zeroth order. In general, very good agreement has239

been found between the qdia closure results and the statistics of dns45,46,111.240

The non-Markovian closures discussed above are systems of integro-differential equations with potentially241

long time-history integrals posing considerable computational challenges, however various ways to overcome242
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these challenges exist44,46,111–115,135 and have been generalised to allow computationally tractable closure mod-243

els for inhomogeneous turbulent flow over topography to be developed42,46,111. An alternative derivation of a244

stochastic model of the Navier-Stokes equations has been put forward by Memin 107 . It is based on a decompo-245

sition of the velocity fields into a differentiable drift and a stochastic component.246

4.2 Statistical dynamical and stochastic subgrid modelling247

Many subgrid-scale stress models assume the small scales to be close to isotropic and in equilibrium such that248

energy production and dissipation are in balance, similar to the eddy viscosity assumption of the Smagorinsky249

model148. Using the dia, Kraichnan 71 showed that for isotropic turbulence the inertial transfer of energy could250

be represented as a combination of both an eddy viscous (on average energy drain from retained to subgrid251

scales) and stochastic back-scatter (positive semi-definite energy input from subgrid to retained scales) terms.252

The nonlinear transfer terms represented by eddy viscosity and stochastic back-scatter are the subgrid processes253

associated with the respective eddy-damping and nonlinear noise terms that constitute the right hand side of254

the dia tendency equation for the two-point cumulant ∂
∂t
〈ζ̂k(t)ζ̂−k(t

′)〉. Leith 77 used the edqnm closure to255

calculate an eddy dissipation function that would preserve a stationary k−3 kinetic energy spectrum for two-256

dimensional turbulence. Kraichnan 73 developed the theory of eddy viscosity in two and three dimensions and257

was the first to identify the existence of a strong cusp in the spectral eddy viscosity near the cutoff wavenumber258

representing local interactions between modes below and near the cusp. Rose 134 argued for the importance of259

eddy noise in subgrid modelling.260

O’Kane and Frederiksen 112 calculated qdia based ssps considering observed atmospheric flows over global261

topography and quantifying the relative importance of the subgrid-scale eddy-topographic, eddy-mean field,262

quadratic mean and mean field-topographic terms. They also compared the qdia based ssps to heuristic263

approaches based on maximum entropy, used to improve systematic deficiencies in ocean climate models62.264

While closure models may be the natural starting place for developing subgrid-scale parameterisations, their265

complexity makes them difficult to formulate and apply to multi-field models like gcms, even though sucessfull266

studies exist68,180.267

5 Stochastic Parametrisation Schemes in Comprehensive Models268

Climate and weather predictions are only feasible because the governing equations of motion and thermody-269

namics are known. To solve these equations we need to resort to numerical simulations that discretize the270

continuous equations onto a finite grid and parameterize all processes that cannot be explicitly resolved. Such271

models can be characterized in terms of their dynamical core, which describe the resolved scales of motion, and272

the physical parameterizations, which provide estimates of the grid-scale effect of processes which cannot be273

resolved by the dynamical core. This general approach has been hugely successful in that nowadays predictions274

of weather and climate are made routinely. On the other hand, exactly through these predictions it has become275

apparent that uncertainty estimates produced by current state-of the art models still have shortcomings.276

One shortcoming is that many physical parameterizations are based on bulk formula which are based on the277

assumption that the subgrid-scale state is in equilibrium with the resolved state118. Model errors might arise278

from a misrepresentation of unresolved subgrid-scale processes which can affect not only the variability, but also279

the mean error of a model129,141. An example in a comprehensive climate model is e.g., the bias in the 500hPa280

geopotential height pattern, which is reduced when the representation of the subgrid-state is refined7 (Fig. 2).281

In recent years, methods for the estimation of flow-dependent uncertainty in predictions have become an282

important topic. Ideally, uncertainties should be estimated within the physical parameterizations and uncer-283

tainty representations should be developed alongside the model. Many of these methods are “ad hoc” and284

added a posteriori to an already tuned model. Only first steps to develop uncertainty estimates from within285

the parameterizations have been attempted20,131.286
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The representation of model-error in weather and climate models falls in one of two major categories:287

Multi-model approaches and stochastic parameterizations. In the multi-model approach each ensemble mem-288

ber consists of an altogether different model. The models can differ in the dynamical core and the physical289

parameterizations55,63,75 or use the same dynamical core but utilize either different static parameters in their290

physical parameterizations151 or altogether different physics packages6,31,106,152. Both approaches have been291

successful in improving predictions of weather and climate over a range of scales, as well as their uncertainty.292

Multi-model ensembles provide more reliable seasonal forecasts122 and are commonly used for the uncertainty293

assessment of climate change predictions e.g., as in the Assessment Report 5 of the Intergovernmental Panel294

on Climate Change (IPCC)157. Stochastic parameterizations are routinely used to improve the reliability of295

weather forecasts in the short-6 and medium-range5,10,123 as well as for seasonal predictions4,28,165.296

In the stochastic approach, the effect of uncertainties due to the finite truncation of the model are treated297

as independent realizations of stochastic processes that describe these truncation uncertainties. This treatment298

goes back to the idea of stochastic-dynamic prediction33,118,130. While the verdict is still open if subgrid-scale299

fluctuations must be included explicitly via a stochastic term, or if it is sufficient to include their mean influence300

by improved deterministic physics parameterizations, one advantage of stochastically perturbed models is that all301

ensemble members have the same climatology and model bias; while for multi-parameter, multi-parameterization302

and multi-model ensembles each ensemble member is de facto a different model with its own dynamical attractor.303

For operational centers the maintenance of different parameterizations requires additional resources and due to304

the different biases makes post-processing very difficult.305

5.1 Stochastic Parameterizations in Numerical Weather Prediction306

Due to the chaotic nature of the dynamical equations governing the evolution of weather, forecasts are sensitive307

to the initial condition limiting the intrinsic predictability of the weather system82,84. Probabilistic forecasts308

are performed by running ensemble systems, where each member is initialized from a different initial state and309

much effort has gone into the optimal initialization of such ensemble systems63,108,161. Nevertheless state-of-310

the-art numerical weather predictions systems continue to produce unreliable and over-confident forecasts14.311

Consequently, the other source of forecast uncertainty – model-error – has received increasing attention117,118.312

Since for chaotic systems model-error and initial condition error will both result in trajectories that will diverge313

from the truth, it is very difficult to disentangle them149.314

The first stochastic parameterization used in an operational numerical weather prediction model was the315

stochastically perturbed physics tendency scheme (SPPT), sometimes also referred to as stochastic diabatic316

tendency or Buizza-Miller-Palmer (BMP) scheme13. SPPT is based on the notion that – especially as the317

horizontal resolution increases – the equilibrium assumption no longer holds and the subgrid-scale state should318

be sampled rather than represented by the equilibrium mean. Consequently, SPPT multiplies the accumulated319

physical tendencies of temperature, wind and moisture at each grid-point and time step with a random pattern320

that has spatial and temporal correlations. In other words, SPPT assumes that parameterization uncertainty can321

be expressed as a multiplicative noise term. Ensemble systems perturbed with the SPPT scheme show increased322

probabilistic skill mostly due to increased spread in short and medium-range ensemble forecasts8,13,132,159.323

A second successful stochastic parameterization scheme, is the so-called stochastic kinetic energy-backscatter324

scheme (SKEBS) whose origin lies in Large-Eddy Simulation modeling98 and has recently been extended to325

weather and climate scales142,143. The key idea is that energy associated with subgrid processes is injected326

back onto the grid using a stochastic pattern generator. This method has been successfully used in a number327

of operational and research forecasts across a range of scales5,6,8,10,11,16,138. Similar to the SPPT scheme,328

ensemble systems with SKEBS increase probabilistic skill by increasing spread and decreasing the root-mean-329

square (RMS) error of the ensemble mean forecast. First results of these schemes at a convection-permitting330

resolution of around 4km report also a positive impact on forecast skill, in particular more reliable precipitation331

forecasts12,133.332
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5.2 Stochastic Parameterizations in Climate Models333

The use of stochastic parameterization in climate models is still in its infancy. Climate prediction uncertainty334

assessments, e.g., IPCC150, are almost exclusively based on multi-models, mostly from different research centers.335

Part of the problem is that on climate timescales, limited data for verification exists. A second reason is that on336

longer timescales, bias is a major source of uncertainty and traditional multi-models are very efficient at sampling337

biases, although such an experiment is poorly designed for an objective and reliable uncertainty assessment.338

However, in recent years first studies have emerged which demonstrate the ability of stochastic parame-339

terizations to reduce longstanding biases and improve climate variability (see Fig. 2 for an example). Jin340

and Neelin81 developed a stochastic convective parameterization that includes a random contribution to the341

convective available potential energy(CAPE) in the deep convective scheme. They find that adding convective342

noise results in enhanced eastward propagating, low-wavenumber low-frequency variability. Berner et al. 7 in-343

vestigate the impact of SKEBS on systematic model-error and report an improvement in the representation of344

convectively-coupled waves leading to a reduction in the tropical precipitation bias. Furthermore, Majda and345

colleagues developed systematic stochastic multi-cloud parameterizations for organized convection47,67,94,95.346

The multi-cloud approach is based on the assumption that organized convection involves three types of clouds347

and the evolution from one cloud type to another can be described by a transition matrix.348

A longstanding systematic error of climate models is the underestimation of the occurrence of Northern349

Hemispheric blocking. Stochastic parameterizations have been demonstrated to be one way to increase their350

frequency4,28,53,165, although, e.g. increasing horizontal resolution, leads to similar improvements7,24. This351

suggests that while it might be necessary to include subgrid-scale variability in some form, the details of this352

representation might not matter. On the other side, Berner et al. 7 argue that this degeneracy of response353

to different subgrid-scale forcings warrants a cautionary note: namely that a decrease in systematic error354

might not necessarily occur for the right dynamical reasons. The opposite holds true, as well: Due to the355

necessary tuning of parameters in the parameterizations of comprehensive climate models, an improvement356

in the formulation of a physical process might not immediately lead to an improved model performance. A357

striking example of compensating model errors is described in Palmer and Weisheimer 119 , who report how an358

inadequate representation of horizontal baroclinic fluxes resulted in a model error that was equal and opposite to359

the systematic error caused by insufficiently represented vertical orographic gravity wave fluxes. Improvements360

to wave drag parameterization without increasing resolution unbalanced the compensating model errors, leading361

to an increase in systematic model bias.362

Williams175 studied the effect of including a stochastic term in the fluxes between the atmospheric and363

oceanic components in a coupled ocean-atmosphere model. He reports changes to the time-mean climate and364

increased variability of the El Nino Southern Oscillation, suggesting that the lack of representing of sub-grid365

variability in air-sea fluxes may contribute to some of the biases exhibited by contemporary climate models.366

On seasonal timescales where sufficient observational data for a probabilistic verification exist, stochastic367

parameterizations have been reported to increase predictive skill. For example, ensemble forecasts of the sea sur-368

face temperatures over the Nino3.4 region showed increased anomaly correlation, decreased bias and decreased369

root mean square error in coupled ocean-atmosphere models4,28,165.370

6 Conclusion371

We postulate the use of stochastic-dynamical models for uncertainty assessment and model-error represen-372

tation in comprehensive Earth-System models. This need arises since even state-of-the-art weather and climate373

models cannot resolve all necessary processes and scales. Here we reviewed mathematical methods for stochas-374

tic climate modeling as well as stochastic subgrid-scale parameterizations and postulate their use for a more375

systematic strategy of parameterizing unresolved and unrepresented processes.376

In the last decade, a number of studies emerged that demonstrate the potential of this approach, albeit377
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applied in an ad hoc manner and tuned to specific applications. Stochastic parameterizations have been shown378

to provide more skillful weather forecasts than traditional ensemble prediction methods, at least on timescales379

where verification data exists. In addition, they have been shown to reduce longstanding climate biases, which380

play an important role especially for climate and climate change predictions.381

Here we argue, that rather than pushing out the limit of skillful ensemble predictions by a few days, more382

attention should be given on the assessment of uncertainty (as already proposed, e.g., Smith 149). Ideally, it383

should be carried out alongside the physical parameterization and dynamical core development and not added384

a posteriori. The uncertainty should be directly estimated from within the parameterization schemes and not385

tuned to yield a particular model performance, as is current practice. For example, Sapsis and Majda 139,140386

propose a statistical framework which systematically quantifies uncertainties in a stochastic fashion.387

The fact that according to the last two assessment reports (AR) of the IPCC (AR4147 and AR5150) the388

uncertainty in climate predictions and projections has not decreased may be a sign that we might be reaching389

the limit of climate predictability, which is the result of the intrinsically nonlinear character of the climate390

system (as first suggested by Lorenz 82).391

Recently Palmer121 argued that due to limited computational and energy power resources, predictable scales392

should be solved accurately, while the unpredictable scales could be represented inaccurately. This strategy is at393

the core of the systematic mode reduction reviewed here, but has only recently been considered for comprehensive394

Earth-System Models. Stochastic models focus on the accurate simulation of the large, predictable, scales, while395

only the statistical properties of the small, unpredictable, scales are captured. This has been demonstrated,396

e.g, by Franzke and Majda 38 , Kravtsov et al. 74 , who successfully applied mode reduction strategies to global397

atmospheric circulation models. They showed that these reduced models consisting of only 10-15 degrees of398

freedom reproduced many of the important statistics of the numerical circulation models which contained a few399

hundreds degrees of freedom. Vanden-Eijnden 163 proposed numerical approaches for multi-scale systems where400

only the largest scales are explicitly computed and the smaller scales are approximated on the fly.401

The recent result of Wouters and Lucarini177,178 provide a promising path towards a general theory of402

parametrizations for weather and climate models, and give theoretical support that parameterization schemes403

should include deterministic, stochastic and non-Markovian (memory) components. Moreover, Wouters and404

Lucarini’s results suggest that there is common ground in developing parameterizations for weather and climate405

prediction models. Optimal representations of the reduced dynamics based on Ruelle’s response theory and406

the Mori-Zwanzig formalism coincide, thus, providing equal optimal representations of the long-term statistical407

properties and the finite-time evolution of the slow variables.408

One exciting future research area is the use of stochastic methods for use in data assimilation, which is already409

an active field of research51,54,65,104,114,115,133. Stochastic methods have been shown to increase the ensemble410

spread in data assimilation, leading to a better match between observations and model forecasts54,105,133.411

A cutting-edge frontier is the use of order moments and memory effects in Kalman filter data assimilation412

schemes115. Another emerging field is the use of stochastic parameterizations in large climate ensembles, which413

would allow the comparison of uncertainty estimates based in multi-models to that of stochastically perturbed414

ones.415

Our hope is that basing stochastic-dynamic prediction on sound mathematical and statistical physics con-416

cepts will lead to substantial improvements, not only in our ability to accurately simulate weather and climate,417

but even more importantly to give proper estimates on the uncertainty of these predictions.418
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List of Figures760

1 Regime transitions in a rotating two-layer annulus laboratory experiment, viewed from above.761

Different colours correspond to different internal interface heights, through the use of a sophisti-762

cated visualisation technique170. In the upper row, small-scale inertia–gravity waves are absent,763

and large-scale regime transitions do not occur. In the lower row, small-scale inertia–gravity waves764

are present locally in the troughs of the large-scale wave, and a large-scale regime transition does765

occur. From the laboratory experiments of Williams et al.168,169,172,173. . . . . . . . . . . . . . . 22766

2 Mean systematic error of 500 hPa geopotential height fields (shading) for extended boreal winters767

(December–March) of the period 1962-2005. Errors are defined with regard to the observed mean768

field (contours), consisting of a combination of ERA-40 (1962-2001) and operational ECMWF769

analyses (2002-2005). (a) Systematic error in a numerical simulation with the ECMWF model770

IFS, version CY32R1, run at a horizontal resolution of TL95 (about 210km) and 91 vertical771

levels. (b) Systematic error in a simulation with a stochastic kinetic-energy backscatter scheme772

(SKEBS). Significant differences at the 95% confidence level based on a Student’s t-test are773

hatched. After Berner et al.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23774
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Figure 1: Regime transitions in a rotating two-layer annulus laboratory experiment, viewed from above. Dif-
ferent colours correspond to different internal interface heights, through the use of a sophisticated visualisation
technique170. In the upper row, small-scale inertia–gravity waves are absent, and large-scale regime transitions
do not occur. In the lower row, small-scale inertia–gravity waves are present locally in the troughs of the
large-scale wave, and a large-scale regime transition does occur. From the laboratory experiments of Williams
et al.168,169,172,173.
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Figure 2: Mean systematic error of 500 hPa geopotential height fields (shading) for extended boreal winters
(December–March) of the period 1962-2005. Errors are defined with regard to the observed mean field (con-
tours), consisting of a combination of ERA-40 (1962-2001) and operational ECMWF analyses (2002-2005). (a)
Systematic error in a numerical simulation with the ECMWF model IFS, version CY32R1, run at a horizontal
resolution of TL95 (about 210km) and 91 vertical levels. (b) Systematic error in a simulation with a stochas-
tic kinetic-energy backscatter scheme (SKEBS). Significant differences at the 95% confidence level based on a
Student’s t-test are hatched. After Berner et al.7.
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