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Site-specific meteorological forcing appropriate for applications
such as urban outdoor thermal comfort simulations can be obtained
using a newly coupled scheme that combines a simple slab convec-
tive boundary layer (CBL) model and urban land surface model
(ULSM) (here two ULSMs are considered). The former simulates
daytime CBL height, air temperature and humidity, and the latter
estimates urban surface energy and water balance fluxes accounting
for changes in land surface cover. The coupled models are tested at a
suburban site and two rural sites, one irrigated and one unirrigated
grass, in Sacramento, U.S.A. All the variables modelled compare well
to measurements (e.g. coefficient of determination = 0.97 and root
mean square error = 1.5 �C for air temperature). The current version
is applicable to daytime conditions and needs initial state condi-
tions for the CBL model in the appropriate range to obtain the
required performance. The coupled model allows routine observa-
tions from distant sites (e.g. rural, airport) to be used to predict air
temperature and relative humidity in an urban area of interest. This
simple model, which can be rapidly applied, could provide urban
data for applications such as air quality forecasting and building
energy modelling, in addition to outdoor thermal comfort.
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1. Introduction

Heat waves, such as the ones which occurred in Eastern Europe in 2010, North America and
Australia in 2012, and China in 2013, are expected to have a large impact on human health, well-being
and economic burden in the future (IPCC, 2012). Urban areas are particularly vulnerable to such effects
given the density of urban populations and the compounding effect of the urban heat island, which
will grow with increased population and greater urbanisation (McMichael et al., 2006; Pascal et al.,
2006). To inform climate sensitive planning, intra-urban climate conditions at local (102–104 m, e.g.
a district) and micro-scales (10�1–103 m, e.g. a street canyon) need to be predicted for building energy
applications and for estimating outdoor human thermal comfort in cities.

The thermal comfort at the neighbourhood to street level scale is chiefly influenced by urban struc-
tures. It varies greatly within short distances due to shadow patterns generated by urban surface
geometry and radiative properties related to materials and urban density (Lindberg and Grimmond,
2011a). For the estimation of thermal comfort, micro-scale modelling of mean radiant temperature
(Tmrt) is essential (Lindberg et al., 2008; Matzarakis et al., 2010). The Tmrt, which describes the radiant
(short-wave and long-wave) heat exchange between a person and his or her surroundings, is defined
as the ‘uniform temperature of an imaginary enclosure in which the radiant heat transfer from the
human body equals the radiant heat transfer in the actual non-uniform enclosure’ (ASHRAE, 2001).
It is considered to be one of the most important meteorological variables governing the human energy
balance and thermal comfort outdoors, especially during clear and calm summer days (Mayer and
Höppe, 1987).

Generally, in order to model Tmrt for the area of interest, the required meteorological variables
(short-wave radiation, air temperature, and humidity) are obtained from observations or models.
However, they are often not specific for the site (e.g. they are often derived from an airport), or rely
on the use of long-term mean variables rather than typical sequences of conditions. When data from
other areas are used (Erell and Williamson, 2006; Lindberg et al., 2013), often it is assumed that both
areas are exposed to the same regional conditions and land surface effects on the meteorological vari-
ables are ignored. As a result, these local-scale land cover and land use characteristics systematically
impact the accuracy of Tmrt calculations. If data are derived from atmospheric numerical simulation,
sometimes with coupled urban land surface schemes (Miao et al., 2009; Flagg and Taylor, 2011;
Loridan et al., 2013), this requires large computational cost.

Currently, only a few urban land surface models (ULSMs) are set up to rapidly calculate site-specific
air temperature within or above the canopy layer (Swaid and Hoffman, 1990; Erell and Williamson,
2006; Bueno et al., 2012; Bueno et al., 2013; Stewart et al., 2013). Of these, only Bueno et al. (2013)
and Stewart et al. (2013) take feedback from the land surface to the meso-scale atmosphere into
account. Both use the Town Energy Balance (TEB) scheme (Masson, 2000) coupled to different bound-
ary layer models.

In order to investigate daytime human thermal comfort in cities, simple methods to obtain more
site-specific input meteorological variables need to be explored. In this study a scheme is developed
to provide daytime meteorological variables representative of an urban area for a micro-scale urban
radiation model to simulate Tmrt. A meso-scale slab convective boundary layer (CBL) model is coupled
to two local-scale ULSMs (Section 2). Of interest is the ability of the combined model to simulate
meteorological variables, accounting for land surface changes, using minimal computer resources
(e.g. a personal computer), and simple inputs around meteorology, land surface cover, and initial state
conditions. The number of meteorological inputs is reduced compared to those required for the sep-
arate models included in the coupled scheme. The coupled models are tested at three sites (suburban,
irrigated sod-farm and unirrigated grassland) in Sacramento, CA (Sections 3 and 4). They replicate well
the local-scale urban meteorological variables (air temperature and relative humidity) from those
measured at rural sites (Section 6). Here the focus application is to obtain Tmrt, one of most critical
components of outdoor human comfort, by calculation with a micro-scale urban radiation model –
the SOlar and Long Wave Environmental Irradiance Geometry model (SOLWEIG) (Lindberg et al.,
2008; Lindberg and Grimmond, 2011b). SOLWEIG determines three-dimensional radiation fluxes
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and Tmrt. To ensure that the coupled model can provide robust input for this application, sensitivity
tests are undertaken with SOLWEIG (Section 5.1 and 6). The coupled model scheme developed is
applicable to urban climate sensitive planning issues such as the effect of land cover changes on intra
urban temperature variations; building energy applications; air quality forecasting; and dispersion
modelling.

2. The convective boundary layer and urban land surface models

The convective boundary layer (CBL) is strongly influenced by daytime momentum, heat, moisture
and air pollutant exchanges in the urban environment. The depth of this mixing layer determines the
volume for dilution of heat, water, carbon, and other atmospheric pollutants and their dispersion
downwind of the city. The CBL is capped at its top by a temperature inversion and an entrainment
zone (Fig. 1). Here, a simple approach to derive the growth of the CBL, the so-called ‘‘slab’’ model based
on thermodynamic processes is used. The rate of change of air temperature and humidity within the
CBL are determined from the turbulent heat fluxes and the net fluxes from the entrainment zone
(Raupach, 2000). Formulated at the meso-scale (103–105 m), the slab model determines the height
of the CBL (zi), potential temperature (h), and specific humidity (q) through time (t), using the conser-
vation equations of heat and water vapour (e.g. Cleugh and Grimmond, 2001):
Fig. 1.
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where QH and QE are turbulent sensible and latent heat fluxes at the surface, qCp is the heat capacity of
air, Lv is the latent heat of vaporization, h+ and q+ are the potential temperature and specific humidity
just above zi, and ws is the subsidence velocity of air. The rate of change of h and q within the CBL is
derived from temporally integrating the conservation equations. The CBL changes its height, zi, in
response to changes in surface heat fluxes and entrainment across the capping inversion at the top
of the CBL. A number of different encroachment and entrainment schemes exist (e.g. Tennekes,
Relation between boundary layer scales, the models and observations in this study: the convective boundary layer (CBL),
energy balance (SEB) and micro-scale radiation environment (SOLWEIG), urban land surface model (ULSM).
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1973; Tennekes and Driedonks, 1981; McNaughton and Spriggs, 1986; Rayner and Watson, 1991),
including Tennekes and Driedonks (1981):
Fig. 2.
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where b1 and b2 are constants, w⁄ and u⁄ convective and friction velocities, hv and Dhv virtual potential
temperature and the temperature difference across the capping inversion.

In this study, to determine the surface fluxes QH and QE, two ULSMs are used: the Surface Urban
Energy and Water balance Scheme (SUEWS) (Järvi et al., 2011) and the Large-scale Urban Meteorolog-
ical Parameterization Scheme (LUMPS) (Grimmond and Oke, 2002; Loridan et al., 2010). Both calculate
the urban surface energy balance (Oke, 1988):
Q � þ Q F ¼ QH þ Q E þ DQ S ½W m�2� ð4Þ
where Q⁄ is the net all-wave radiation, QF the anthropogenic heat flux, and DQS the net storage heat
flux. SUEWS uses a surface resistance based Penman Monteith approach, whereas LUMPS uses the
de Bruin and Holtslag (1982) simplification of Penman Monteith to calculate QH and QE. The ULSMs
are local-scale models (Fig. 1) applicable to a horizontal spatial extent of the order 102–104 m. The ver-
tical extent is from the depth where there is no net exchange of heat over the period of interest to the
top of the roughness sub-layer (which is approximately the lowest atmospheric layer for meso-scale
boundary layer models). Both ULSMs require land cover information and meteorological data (air tem-
perature, air humidity, incoming short-wave radiation, wind speed, and air pressure) at the local-scale.

In this study, the models have been coupled so that the CBL model calculates h and q using QH and
QE from the ULSMs, while SUEWS and LUMPS estimate the surface heat fluxes using air temperature
(Ta) and relative humidity (RH) obtained from the CBL modelled h and q in the previous time step
(Fig. 2). The combined model is forced by incoming short-wave radiation (K;), atmospheric pressure
(P) and wind speed (u), and the need for h (and Ta), q (and RH), QH and QE are eliminated. However, as
the CBL model is for convective growth, it is limited to daytime conditions only. The entrainment
schemes require initial values of h, q, and zi (i.e. h0, q0, and zi0) and the vertical gradients of h and q
(@h/@z and @q/@z) allow the estimation of the net fluxes from the entrainment zone for each time step
(second term on right-hand-side of Eqs. (1) and (2)). The initial data, @h/@z and @q/@z require vertical
information which may be obtained from radiosonde measurements (Section 3.1), re-analysis data
(e.g. ERA-interim) or model output (e.g. numerical weather prediction, NWP). Radiosonde data are
generally sparse, especially so in urban areas. h0 and q0 can be assessed from fixed measurements
at the height of inertial sublayer. However, zi0, @h/@z, and @q/@z are difficult to assess as measurements
at the top of zi are needed. Therefore the parameterizations or default values of zi0, @h/@z and @q/@z
Core structure with forcing input data (grey) and output (grey) from the coupled CBL model and SUEWS/LUMPS models
ia h, q, QH and QE. For definition of notation see Appendix.



S. Onomura et al. / Urban Climate 11 (2015) 1–23 5
may be required to apply the coupled models in practice. To address this, we present a sensitivity test
of zi0, @h/@z and @q/@z (Section 5.2).

The CBL model and ULSMs potentially have different horizontal scales (Fig. 1). Here, the surface
parameters for the ULSMs are assumed to be representative of the same horizontal scale as the scale
of the CBL model. An alternative approach would be for the CBL model to use regionally averaged heat
fluxes calculated by the ULSMs for several local-scale areas.
3. Procedures for model evaluation

3.1. Observation data

To evaluate the performance of the coupled models, meteorological data measured at a suburban
site (SU) as well as dry and wet rural sites (referred to as DR and WR, respectively) in Sacramento
(Fig. 3) California, U.S.A. between 20th and 29th August 1991 are used (Grimmond et al., 1993). The
observation period was characterised by clear skies and warm weather. The DR area was unused
and covered with tall, extremely dry grass, whereas WR was an extensive sod farm with short, irri-
gated grass.

At the three sites basic meteorological variables (Ta, RH, u, P, etc.), net all-wave radiation and heat
fluxes were measured. The heat fluxes were determined by eddy covariance techniques. The measure-
ment heights for each variable at each site are given in Table 1. Details of the measurement techniques
and data processing are provided in Grimmond et al. (1993) and Grimmond and Oke (1995). During
22nd–24th and 26th–28th August, free flying radiosondes were released at SU (see Table I in
Cleugh and Grimmond, 2001) from which initial values of @h/@z, @q/@z, and zi were derived. Here zi

is defined by a potential temperature inversion. As K; was not directly measured at SU, it is obtained
from data produced for Sacramento Metropolitan Airport (AP), 9.3 km away, using the METSTAT solar
radiation model (NREL, 2012). These data are used for all periods except for the morning of 24th
August, when the METSAT K; appeared to be unusually small compared to the observed Q⁄, suggesting
Fig. 3. Location of suburban (SU), dry rural (DR), wet rural (WR) and airport sites on a satellite image of Sacramento on 10th
August 2006 (Landsat, 2006). Red line delimits the urban area. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)



Table 1
Model options and parameter values used. For definitions of notation see Appendix A.

CBL model options
Subsidence velocity �0.01 m s�1 Entrainment scheme Tennekes and

Driedonks (1981)
———————————————————————————————————————————————————————————————————

Time zone (h) �8
(to UTC)

Day light saving time & external
water use (DoY)

97–300

Site-related variables Urban site Dry site Wet site
Period (DoY) 232–241 234–241 234–241
Latitude, Longitude 38�390N, 121�190W 38�330N, 121�100W 38�310N, 121�410W
Asurface (ha) 78 (a 500 m radius

circle area)
10 10

Population density (in ha-1) 18 0 0
Land cover (plan area fraction f): (Grimmond and Oke 1999a)

fauto irrigation 0.0098 0 0
fbuilding 0.351 0 0
fconiferous vegetation 0.064 0 0
fdeciduous vegetation 0.064 0 0
firrigated grass 0.349 0 1
fpavement/impervious 0.115 0 0
fsoil 0.005 0 0
funirrigated grass 0 1 0
fwater 0.052 0 0

Roughness length for momentum:
z0m (m)

Macdonald et al.
(1998)

0.05 0.005

Zero plane displacement: zd (m) Macdonald et al.
(1998)

0.15 0.035

Roughness length for heat and
Water vapour: zov (m)

Kawai et al. (2009) Kawai et al. (2009) Kawai et al. (2009)

Mean building height: zh (m) 5.201 0 0
Mean vegetation height: zhv (m) 8.369 0.5 0.05
Height of the wind speed

measurement: zm (m)a
9 1.8 1.3

Frontal area index: (Grimmond and
Oke 1999b)

Building 0.058 0 0
Tree 0.185 0 0

———————————————————————————————————————————————————————————————————
Submodel option Urban site Dry site Wet site

Q⁄ L; is calculated by using Ta and RH Loridan et al. (2011)
Effective surface albedo of sub-surfaces (Oke, 1987)
abuilding 0.27 aconifer 0.1 adeciduous 0.18 agrass 0.3 apavement 0.2 awater 0.7
QH, QE LUMPS parametersb a = 0.55 b = 3 a = 0.19 b = 3 a = 1.0 b = 20
QE SUEWS conductance air temperature limits (Järvi et al., 2011, Eq. (17))
TH (�C) 50 TL (�C) 0
DQs Objective hysteresis model (OHM) Grimmond et al. (1991) using the modelled Q⁄

OHM coefficients a1 a2 a3

0.83 �0.83 �24.6 Pavedc a1 = 0.21d

a2 = 0.11
a3 = �16.9

a1 = 0.35d

a2 = 0.03
a3 = �26.0

0.1 0.23 �6 Buildingc

0.34 0.31 �31.4 Treec

0.32 0.54 �27.4 Grassc

0.33 0.07 �34.9 Soilc

0.50 0.21 �39.1 Waterc

QF profiles AHDIUPRF1 and 2
(Järvi et al., 2014)

– –

Stability function
Momentum: Unstable Högström (1988) modified from Dyer (1974)
Stable Van Ulden and Holtslag (1985)
Heat Högström (1988) modified from Dyer (1974)
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Initial soil stores 100 mm
(120 mm only for irrigated grass)

1.5 mm for unirrigated grass
(0 mm for the others)

111 mm for irrigated grass
(0 mm for the others)

Initial surface stores 0 mm 0 mm 0 mm
Maximum soil moisture 150 mm 150 mm 150 mm
External water use (Ie) Modelled by Järvi et al. (2011) None Observation
Ie profile 00:00 to 06:00 h 0.036

07:00 to 03:00 h 0.044
04:00 to 19:00 h 0.050
20:00 to 23:00 h 0.036

a Air temperature, relative humidity, and air pressure were also measured at this height. The turbulent heat fluxes and all-
wave radiation were measured at 29 m at SU and at the specified heights at the other two sites. Soil heat flux plates were
installed at �0.068 and �0.07 m from ground surface at DR and WR sites, respectively.

b Note these are the effective parameters that are calculated in LUMPS.
c References are Anandakumar (1999) for pavement, Meyn and Oke (2009) roof, average of all seven sources in Grimmond

and Oke (1999c) tree, Doll et al. (1985) grass, Fuchs and Hadas (1972) soil, Souch et al. (1998) water.
d See Table 2 and Section 3.2/4.
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the flux may be responding to different local sky conditions. Thus for this period only, the K; data are
replaced by:
K#repðtÞ ¼ Q �ðtÞ K #
Q �

� �
ð5Þ
using the mean diurnal relation between observed K; and Q⁄ for the measurement period.
The soil heat flux was measured at the three sites using Campbell Scientific heat flux plates

installed at 0.07 m depth with CSI TCAV temperature sensors above to account for heat divergence.
Corrections are made for soil moisture content using both gravimetric and time domain reflectometry
measurements.

3.2. Model settings

The complete model of the CBL provides results using SUEWS and LUMPS. For clarity we refer to
these as BLUEWS (CBL model + SUEWS) and BLUMPS (CBL model + LUMPS). The model is executed
according to the procedures in the manual (Järvi et al., 2014), using the options summarised in Table 1.
The land cover fraction values (f) are constant for the study period.

Q⁄ is forced by K; (Offerle et al., 2003; Loridan et al., 2010), with incoming long-wave radiation (L;)
determined from Ta and RH. LUMPS a and b parameters for QH and QE shown in Table 1 are calculated
based on the surface type. LUMPS is confirmed to have the same performance for SU as Grimmond and
Oke (2002) (their Table 7). However, we found that b = 20 W m�2 often used for verdant vegetation is
too high for DR, given the extremely dry conditions at that site. This parameter is based on observa-
tions over agricultural land (Hanna and Chang, 1992). Lower b improves the performance of LUMPS for
surface heat fluxes at DR, therefore here b = 3 is used for less vegetated sites in LUMPS. DQS is calcu-
lated as a function of the modelled Q⁄ and surface materials based on the Objective Hysteresis Model
(OHM) (Grimmond et al., 1991; Grimmond and Oke, 1999c). At SU, the OHM coefficients used are
based on characteristics of the plan area surface cover (Table 1). For the rural sites, it is possible to
determine the coefficients (Grimmond and Oke, 1999c) as the observed soil heat flux and net all-wave
radiation data are available (Tables 1 and 2, and Section 4). QF for SU is estimated using the method of
Järvi et al. (2011), with the same diurnal profile as determined from Vancouver data (Grimmond,
1992) (see Table 1 of Järvi et al., 2011).

The SUEWS surface resistance coefficients used are the Järvi et al. (2011) median values (50th per-
centile) based on a number of urban and suburban locations. The stability functions for momentum,
heat and moisture used are those of Högström (1988), modified from Dyer (1974) and Van Ulden and
Holtslag (1985). Roughness length for momentum (z0m) and zero plane displacement length (zd) are
calculated within SUEWS for SU based on morphometric characteristics (Macdonald et al., 1998;



Table 2
Objective hysteresis model coefficients (a1, a2 and a3) for unirrigated and irrigated grassed areas determined from fitting Eq. (3) in
Grimmond and Oke (1999c) using observed net all-wave radiation to observed soil heat fluxes at the dry rural and wet rural sites in
Sacramento. N is the number of hours of data used.

Description Coefficients Statistical performance

a1 [–] a2 [s] a3 [W m�2] N Slope Intercept R2 RMSE [W m�2]

Dry, long grass 0.214 0.114 �16.85 189 0.838 1.4 0.84 20.7
Short irrigated grass 0.348 0.033 �26.0 181 0.874 28.8 0.89 39.2
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Grimmond and Oke, 1999b) and based on estimates using observed mean grass height (Grimmond
et al., 1993) for the rural sites (Table 1). Roughness lengths for heat and water vapour are calculated
based on Kawai et al. (2009).

Irrigation is regulated in Sacramento with alternating (odd/even) properties allowed to irrigate on
6 days of the week, with no irrigation permitted on Sundays (25th August) (Grimmond et al., 1993).
The external water supply (or irrigation, Ie) is modelled for SU using Eq. (5) of Järvi et al. (2011) for
the daily total and within day Ie profile (Table 1). The sod-farm (WR) Ie is based on the patterns
observed during the fieldwork. As it has been demonstrated that urban land surface models, like their
rural counterparts, need to ensure appropriate soil moisture conditions (Best and Grimmond, 2013), a
spin up period of three times the study length was used. This is assumed to be most critical for SU and
WR, as the natural grassland (DR) had extremely low (<2%) soil moisture, so an initial value of 1.5 mm
was used. This proposed model has the advantage, compared to more complex models, that the addi-
tional computer time is insignificant, whereas for others the constraint of inadequate spin up time
may need to compromise performance.

The subsidence velocity across the capping inversion of the entrainment zone for the CBL growth is
set to �0.01 m s�1 (Cleugh and Grimmond, 2001). The Tennekes and Driedonks (1981) entrainment
scheme, as recommended by Cleugh and Grimmond (2001), is used. The initial evaluation (Section
4) uses the @h/@z and @q/@z values based on the measured profiles, but during the sensitivity tests (Sec-
tion 5) the effect of constant values based on the radiosonde measurements is assessed.

The model is run continuously (20th–29th August for SU; 22th–29th August for DR and WR) with
the CBL model during the day and the ULSMs forced by observations at night. By using h0, q0, zi0, @h/@z,
and @q/@z (see Sections 2 and 3.1), the CBL model is initialized based on the calculated sun zenith angle
(>85�) and modelled sensible heat flux (>0 W m�2). All calculations are conducted using local apparent
time. Initial values of h0 and q0 for the rural sites use measured air temperature and humidity. For zi0,
@h/@z and @q/@z, the SU radiosonde measurements are used for all the three sites given they are not
available for the rural sites. However, these values are expected to be different at the rural sites; nota-
bly zi0 is expected to be lower and to differ between the rural sites. To evaluate SUEWS/LUMPS with
the flux observations, a 1 h time step is needed. The ULSMs use a smaller time step (e.g. 5 min) to
ensure an appropriate response relative to the water inputs (precipitation, irrigation). However, the
CBL takes a longer time to adjust its properties at the meso-scale, over ca. 10–30 min (Cleugh and
Grimmond, 2001). So the CBL calculations of zi, h, and q are performed at 15 min intervals using lin-
early interpolated data to reduce the error when the conservation equations are temporally
integrated.

3.3. Model evaluation

The performance of the model, evaluated using observations from the three sites (SU, DR, and WR),
is assessed without CBL feedback (referred to as SUEWS and LUMPS) and with CBL feedback (BLUEWS
and BLUMPS). One code with different options selected (Järvi et al., 2014) is used with the input data
and parameter settings. The focus is on QH and QE, h and q within the CBL, and zi for 1 h intervals during
the daytime.

The statistics used for evaluation are the root mean square error (RMSE) and the coefficient of
determination (R2). The results for SU are also compared to Cleugh and Grimmond (2001) (referred
to as CG01) model results with the same entrainment scheme (Tennekes and Driedonks, 1981).
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CG01 obtained the friction velocity u⁄ using the logarithmic wind profile with observed u and atmo-
spheric stability functions for momentum (same as Table 1) and roughness parameters (z0, zd,
Grimmond and Oke, 1999b). CG01 obtained the atmospheric stability using the method given in
Grimmond and Cleugh (1994). CG01 initialized CBL calculations when QH became positive after
05:00 and used a time step interval of 15 min for calculations.

4. Performance of the coupled model

The turbulent heat fluxes modelled using BLUEWS and BLUMPS are almost identical to those of
SUEWS and LUMPS for SU and DR, differing only for QH at WR (Fig. 4). Almost all heat fluxes are under-
estimated relative to the observations during periods when these fluxes are large, while they are over-
estimated when fluxes are small. This trend in turbulent heat fluxes is also noted by Järvi et al. (2011).
BLUEWS has a larger RMSE than BLUMPS for SU and WR where evaporation occurs. Larger evaporation
rates are driven by stronger convective mass transfer under unstable conditions if water is available,
e.g. as occurred on 22nd–24th August, compared to 26th–28th (not shown). Thus it is dependent on
the surface water balance, e.g. soil moisture and external water use, which is accounted for in SUEWS
but not in LUMPS. Unfortunately, there is no independent water use data to evaluate these compo-
nents of the SUEWS model. However, specification of soil moisture initial conditions has been found
to be important generally in ULSMs (Best and Grimmond, 2013). As the water availability for evapo-
ration changes with the land surface characteristics, a sensitivity test is conducted (Section 5.2). The
relatively large RMSE of SUEWS /BLUEWS QH results from the variance of QE as QH is calculated as the
residual of the surface energy balance. Järvi et al. (2011), who found this same trend in SUEWS, noted
the QE variance is acceptable compared to the original model of Grimmond and Oke (1991) since
SUEWS reduces the input data so much. For the DR site (Fig. 4e–h), both BLUEWS and BLUMPS model
Fig. 4. Modelled sensible and latent fluxes (QH, QE) (1 h) versus the observations for uncoupled (LUMPS, SUEWS, grey) and
coupled (BLUMPS, BLUEWS, black) runs for (a–d) suburban (e–h) dry rural and (i–l) wet rural. Model statistics (R2, RMSE, linear
regression) are shown.
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QH well, while BLUEWS underestimates and BLUMPS overestimates QE. The extreme environment of
DR results in excessively high surface resistance values in SUEWS/BLUEWS, and thus almost no evapo-
transpiration occurs (observed values less than 70 W m�2). However, since the rate of QE at DR is very
small, it has a very small impact on the modelling of QH and DQS. For the WR site (Fig. 4i–l), both runs
have good performance for QE, but the coupled QH results are poorer than the uncoupled results. The
OHM coefficients used for modelling DQS at the rural sites are calculated using regression analysis for
the observed DQS and Q⁄. The performance of the modelled DQS using these coefficients and the
observed Q⁄ compared to the observations are R2 = 0.84 and 0.88, but RMSE = 20.7 and 39.2 W m�2

for DR and WR, respectively (Table 2).
When the modelled zi, h and q within the CBL at SU are compared to the radiosonde observations and

the CG01 CBL results, all runs show good overall performance (Fig. 5). The performance of the coupled
runs is good for zi and h (R2 and RMSE), but it is poorer for q. The complex observed q profiles (e.g. for
August 24th, see Fig. 8 in CG01) are almost impossible for a simple slab model to predict. Given that BLU-
EWS performs better than BLUMPS for q (R2 = 0.61, RMSE = 1 g kg�1; R2 = 0.48, RMSE = 1.2 g kg�1,
respectively), the results support the use of the biophysical evaporation model SUEWS.

As expected, at DR larger growth of zi and h and decreasing q (Fig. 6) compared to SU are modelled
(Fig. 5), while smaller growth of zi and h and increasing q at WR are predicted. The BLUMPS q is much
larger than that derived from BLUEWS because QE is overestimated (underestimated) by BLUMPS
(BLUEWS) (Fig. 4).
5. Sensitivity tests

Three sensitivity tests are conducted here. First, given an intended application of the coupled
model is to force the micro-scale urban radiation model SOLWEIG (Lindberg et al., 2008; Lindberg
and Grimmond, 2011a), we assess the impact of Ta and RH on SOLWEIG modelled Tmrt. Second, as
the land cover characteristics influence all the surface energy balance fluxes, the changes in land cover
Fig. 5. Modelled convective boundary layer height (zi), potential temperature (h) and specific humidity (q) during 22nd–28th in
August 1991 using the coupled runs (BLUEWS, BLUMPS) for suburban Sacramento with the Cleugh and Grimmond (2001)
results and the radiosonde observations also shown. Modelled results plotted hourly.



Fig. 6. Hourly modelled convective boundary layer height (zi), potential temperature (h) and specific humidity (q) using the
coupled runs (BLUEWS, BLUMPS) for dry rural and wet rural sites (DR, WR) in Sacramento. Wet rural is not modelled on 24th
August as the forcing data are missing due to irrigation.
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and height of the roughness elements are explored. Third, as the coupled runs require the not easily
obtained (Section 2) initial values of zi0, @h/@z and @q/@z (Eqs. (1) and (2)) as forcing data for the CBL
model, the parameterizations or default values may be required to apply the coupled models in prac-
tice. The impact of the alternative options on the modelled Ta and RH are explored.

5.1. SOLWEIG

SOLWEIG is run for the period 11:00–14:00 local apparent time with a standing person whose cen-
tre of gravity is at a height of 1.1 m (this equates to an ‘average’ person of 1.80 m height and 75 kg
weight), located within a simple canyon with a sky view factor of 0.6.

For the base run (S0), observed Ta, RH, and K; are compared to changes to the observed values of Ta

± 10 �C (S1) and RH ± 20% (S2) (Table 3a). Changes in calculated mean radiant temperature (DTmrt)
indicate the model is more sensitive to Ta than RH (Fig. 7). Therefore for simplicity, the variations of
RH associated with the changes of Ta are ignored. The change in DTmrt for Ta is nearly linear, with a
1 �C error in Ta producing a 0.84 �C impact on Tmrt. This is equal to the effect caused by about a 28%
error in RH. Considering the small RH impact on Tmrt compared to Ta, the temperature dependency
of RH is ignored in this analysis. Thus, good estimation of Ta is more critical to accurately estimate Tmrt

than good estimate of RH (i.e. q).

5.2. SUEWS land cover characteristics

Section 4 shows that SUEWS modelled QE is sensitive to land surface characteristics. To examine
the influence of land cover changes, sensitivity tests are performed, which include shifting land cover
fractions between buildings and deciduous trees (termed SW1 in Table 3b), as well as shifting between
unirrigated grass and impervious surface (SW2). Additionally, the impact of the heights of buildings
and trees (SW3 and SW4) are compared. For the reference run (SW0, presented in Section 4), 50%



Table 3
Sensitivity tests to evaluate the impact on model performance of (a) SOLWEIG (period 11:00–14:00 h), (b) SUEWS (whole period),
and (c) BLUEWS (daytime). Section 5 provides more details. Appendix A has notation defined. Data used: observed (ob), replaced
with radiosonde data at convective boundary layer height (ra), and mean of the observations (av).

Run code

(a) Variables
SOLWEIG T(�C) RH(%) K;(W m�2)
———————————————————————————————————————————————————————————————————
S0 ob ob ob
S1 ±10 of ob, 2 �C step ob ob
S2 ob ±20 of ob, 2% step ob

(b)
SUEWS

Land surface characteristics

———————————————————————————————————————————————————————————————————
SW0 Average surface characteristics (Table 1)
SW1 Change land cover: building to deciduous trees (±15%, 5% step)
SW2 Change land cover: irrigated grass to pavement (±15%, 5% step)
SW3 Change height: building (±5 m, 0.5 m step)
SW4 Change height: tree (±5 m, 0.5 m step)

(c) Variables
BLUEWS zi0(m) oh/oz(K m�1) oq/oz(g kg�1 m�1)
———————————————————————————————————————————————————————————————————
B0 ob ob + ra ob + ra
B1 ob ob ob
B2 av av av
B3 100–400, 25 step av av
B4 100, 250, 400 0.005–0.09, 0.005 step �0.02 to 0.09, 0.01 step

Fig. 7. Change in calculated mean radiant temperature (Tmrt) for the S0 run to changes in (left) air temperature (Ta) (S1) and
(right) relative humidity (RH) (S2) (see Table 3a and Section 5.1).
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of the 60 min modelled QE have absolute errors (AE50) of less than 8.0 W m�2 (Fig. 8). When the frac-
tion of deciduous trees increases by 15% (from buildings), the AE50 increases to 10.7 W m�2 (Fig. 8a).
Enhancing the irrigated grass by 15% (from pavement) results in AE50 increasing to 11.2 W m�2

(Fig. 8b). With taller (+5 m) buildings and trees, AE50 is 9.7 and 9.0 W m�2, respectively (Fig. 8c and
d). Taller buildings and trees increase z0 and zd, influencing convective transfers. These impacts are
smaller than changes in the grass fraction, as larger grass fraction (from pavement) expands the water
availability for evaporation, which impacts the modelled QE.

The land cover changes influence the maximum (absolute) errors (Fig. 8). The AE90 (90% of the
60 min modelled QE have absolute errors) are less than 54.9 W m�2 on average, whereas AE90 is largest
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when grass is increased by 15% (83.1 W m�2) and most improved (AE90 = 50.5 W m�2) when building
height is increased by 4 m (Fig. 8). These results are also consistent with analysis of the modelled
results by wind direction with hourly source area (Cleugh and Grimmond, 2001) derived land cover
characteristics (not shown). This suggests that the source area shape is incorrect in some conditions.

5.3. CBL forcing data

Sensitivity tests are performed to evaluate the impact of using alternatives to zi0, @h/@z and @q/@z on
Ta and RH modelled by BLUEWS (Table 3). The reference analysis (termed B0 in Table 3c, and presented
in Section 4) uses the observed values of zi0, @h/@z and @q/@z given at sunrise and considers the change
of @h/@z and @q/@z with estimated zi at every time step. Thus @h/@z and @q/@z are replaced with the
radiosonde values measured at the height of zi at sunrise. B1 does not consider the change; zi0, @h/
@z and @q/@z are given by the observation at sunrise and are used consistently for all that day. B2 uses
the average of initial values observed for the 6 days; these are zi0 = 241.5 m, @h/@z = 0.043 K m�1 and
@q/@z = 0.009 g kg�1 m�1. Thus, the model runs B0 to B2 become more independent of the radiosonde
measurements. For these three cases (B0, B1, and B2), BLUEWS, BLUMPS and the uncoupled CBL model
are run with all other model settings the same as used in Section 4.

In general, B1 and B2 have larger RMSE and smaller R2 for all variables than B0 (Fig. 9). The larger
error in B1, when radiosonde profile data are unavailable to adjust @h/@z and @q/@z at zi at each time
step, indicates these adjustments improve model performance. The B2 results have a smaller RMSE
and larger R2 for all variables compared to B1. This supports the use of typical values based on bound-
ary layer measurements. Overall, BLUEWS and BLUMPS have similar performance to the CG01 CBL
model, despite slightly poorer performance for heat fluxes for BLUEWS than BLUMPS. For BLUEWS
humidity is better correlated with observations (Section 4). Only BLUEWS is assessed in the following
Fig. 8. Impact of changes in surface land cover characteristics on 60 min absolute latent heat flux errors (modelled (m) –
observed (o)) cumulative (percent of data) for land cover changes from (a) buildings to deciduous trees, (b) irrigated grass to
pavement, (c) building height, and (d) tree height. See key for range of changes used. Dash-line is average used in Section 4.



Fig. 9. Impact (Table 3c) of initial convective boundary layer (zi0), vertical gradients of potential temperature and specific
humidity (@h/@z, @q/@z) on modelled (a) convective boundary layer height (zi), (b) air temperature (Ta), (c) relative humidity
(RH), (d) sensible heat flux (QH), and (e) latent heat flux (QE). Root mean square error (RMSE) (top row) and coefficient of
determination (R2) (lower row) are shown.
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sensitivity tests. BLUEWS has a stronger biophysical base, so it responds to changes in surface water
state, which provides the potential for the application of the coupled model system to a wide range of
cities and surface water conditions.

The impact of zi0 on the modelled Ta and RH is tested with zi0 varied from 100 to 400 m in 25 m
increment steps (Table 3c, B3). The RMSE of Ta and RH change from 1.4 to 2.8 �C (minimum when
zi0 = 200 m) and 5.5% to 7.0% (minimum zi0 = 150 m), respectively (Fig. 10). The impact of zi0 is rela-
tively small on Ta and small enough to ignore on RH. Values of zi0 in the range of 100–400 m are prob-
ably appropriate and supported by measurements. A mean zi0 of around 200 m is observed during
autumn under clear sky conditions by Doppler LiDAR two hours after sunrise in central London, UK
(Barlow et al., 2011); and wind profiler measurements were 250–400 m for 2 days in summer in Nash-
ville, USA (Angevine et al., 2003). However, investigation of the zi profile for each day confirms zi0 is an
important control on the start-up shape of the CBL profiles (not shown).
Fig. 10. Impact of changing initial convective boundary layer (zi0) on modelled air temperature (Ta) and relative humidity (RH)
using average initial vertical gradients of potential temperature and specific humidity for 6 days radiosonde measurements (@h/
@z = 0.043 K m�1 and @q/@z = 0.009 g kg�1 m�1): sensitivity test B3 (Table 3c) of BLUEWS.



Fig. 11. Root Mean Square Error (RMSE) (left) air temperature (Ta), and (right) relative humidity (RH) for initial convective
boundary layer (zi0) (a, b) 100 m, (c, d) 250 m (e, f) 400 m for different combination of initial vertical gradients of potential
temperature (@h/@z on x-axis) and specific humidity (@q/@z on y-axis): sensitivity test B4 (Table 3c) of BLUEWS. The closest point
to average values of @h/@z (=0.043 K m�1) and @q/@z (=0.009 g kg�1 m�1) is indicated by a black dot (d) and minimum RMSE by a
star (w).
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To find the reasonable range of @h/@z and @q/@z, and to investigate the combination which
minimises RMSE of the modelled variables, different combinations of zi0, @h/@z and @q/@z are shown
for BLUEWS. Three heights are used for zi0: 100, 250, or 400 m (Table 3c, B4). For each zi0, @h/@z is var-
ied from 0 to 0.1 K m�1, with 0.005 K m�1 increment steps, and @q/@z is varied from �0.02 to
0.1 g kg�1 m�1 with 0.01 g kg�1 m�1 increment steps. Thus 819 combinations are tested in total. The
RMSE of Ta and RH for each combination of zi0, @h/@z and @q/@z are plotted in Fig. 11. The closest point
to average values of @h/@z (=0.043 K m�1) and @q/@z (=0.009 g kg�1 m�1), and the minimum RMSE
point, are indicated with a black point and a star, respectively. For all zi0, the combination which gives
the minimum RMSE (star) is not similar to the average (point) values of @h/@z and @q/@z, but the RMSE
is similar, except for Ta when zi0 = 100 m (Fig. 11a). Ta is more sensitive to @h/@z and @q/@z when zi0 is
smaller (Fig. 11a, c, and e). For example, a @h/@z larger than 0.05 K m�1 generates a RMSE greater than
5 �C for the Ta. This can be explained by thermodynamic processes of the CBL model; @h/@z and @q/@z
determine the heat fluxes into the CBL by entrainment and the contribution of heat fluxes to changing
Ta is larger with a shallower CBL. With smaller zi0, @h/@z affects Ta more than @q/@z (Fig. 11a). The RMSE
of RH apparently increases with smaller @h/@z and larger @q/@z for all zi0. Focusing on a particular com-
bination of @h/@z and @q/@z, the RMSE of RH tends to be larger when zi0 is smaller (Fig. 11b, d, and f),
which can be explained in the same way as Ta in terms of thermodynamic processes. The RMSE of RH is
very large for some combinations of @h/@z and @q/@z if the application is to estimate Tmrt, but the error
remains negligible as the RH impact to Tmrt is minimal (Fig. 7).
Fig. 12. Modelled and observed (upper) air temperature (Ta) and (lower) relative humidity (RH) for suburban site in Sacramento
using observed data at (left) DR and (right) WR.
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Consequently, when the initial values are selected for the coupled models to be applied to the Tmrt

estimation, zi0 can be taken from the generally observed range of 100–400 m, but using some
combinations of @h/@z and @q/@z with small zi0, e.g. 100 m will cause a large error in Ta. Given a thresh-
old of RMSE of Ta less than 4 �C, when zi0 is more than 250 m, @h/@z and @q/@z can be taken from most
of the range of measured values at Sacramento. With the smaller zi0, e.g. 100 m shown in this analysis,
Ta is more sensitive to @h/@z. To obtain an accuracy of Ta below the threshold, @h/@z needs to have a
value less than 0.035 K m�1 for whole range of @q/@z.
6. Application to modelling of urban air temperature and relative humidity

BLUEWS and BLUMPS allow urban air temperature and relative humidity at the local-scale to be
calculated from those measured at meteorological stations located elsewhere (non-urban or other
urban areas), and allow prognostic values to be obtained. Here the DR and WR air temperature and
relative humidity values are perturbed prior to calculating the SU values (with Section 4 settings).
Thus, the results include two land cover differences (DR, WR) associated with the meteorological mea-
surements relative to the meteorological information needed.

Fig. 12 shows that the modelled Ta and RH have good correlations with the observation at SU. How-
ever, RMSE of Ta = 1.3 (1.4) �C and RMSE of RH = 6.2 (5.8)% for BLUEWS (BLUMPS) when DR data are
used, and RMSE of Ta = 2.4 (1.5) �C and RMSE of RH = 12.1 (14.3)% when WR data are used. The former
underestimates Ta (Fig. 13), while the latter overestimates (Fig. 14). It is assumed that the measure-
ments that the model is being evaluated against are representative of their upwind fetch. The current
runs used static surface characteristics, rather than taking into account the dynamic changes in the
probable source area characteristics of the SU observations.

The model has been applied with one, rather than multiple steps between the two points of inter-
est. In reality the atmosphere blows downwind (so not necessarily between the two points of interest)
and the upwind conditions of the site of interest may differ (Fig 3). Model improvement may be
obtained by using a sequence of steps or using a 3-D modelling approach. However both would
Fig. 13. Suburban (SU) (upper) air temperature and (lower) relative humidity modelled from dry rural (DR) data using coupled
models (BLUEWS/BLUMPS) in comparison with the observation at suburban and dry rural sites.



Fig. 14. As Fig. 13 but with WR data.
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significantly enhance the modelling complexity and require considerable more information about the
surface and initial state conditions and for 3-D modelling the atmospheric boundary conditions.

As seen in Figs. 13 and 14, observed Ta and RH are different between SU and rural sites during the
daytime, which can systematically cause an error in the modelled Tmrt. For instance, the WR observed
Ta is 0.46 �C lower than the SU observed Ta on average daytime and using the WR data roughly causes
2.1 �C underestimation of Tmrt at SU, which is calculated by using the results of the SOLWEIG
sensitivity test (Section 5.1). The BLUEWS/BLUMPS modelled variables are estimated for the local-
scale, so the SOLWEIG air temperature and humidity are modified with the environmental lapse rate
(0.0064 K m�1) to bring them to the level of interest. Alternatively, the additional resistance between
the local and micro-scale could be used; however, this requires wind data to be transferred. This infor-
mation is not currently needed within SOLWEIG. This new system showcases the potential to improve
the modelling of Tmrt by using meteorological variables more representative of urban areas instead of
using the data from non-urban sites. The SU modelled Ta is 0.36 �C higher than the WR observed Ta on
average during the daytime and results in a 1.7 �C higher Tmrt than the WR used. These results show
that the coupled models can provide more site-specific input data to the Tmrt modelling.

7. Conclusions

The coupled convective boundary layer and land surface models (BLUEWS/BLUMPS) provide
daytime meteorological variables appropriate for outdoor thermal comfort estimations. The
evaluation undertaken here uses observations from radiosonde releases plus three micrometeorolog-
ical sites (suburban, irrigated sod-farm and extensive unirrigated grassland) in Sacramento, to assess
boundary layer height (RMSEBLUEWS,SU = 86 m), potential temperature (RMSEBLUEWS,SU = 1.5 �C), specific
humidity (RMSEBLUEWS,SU = 1.0 g kg�1), sensible (RMSEBLUEWS,SU = 59 W m�2) and latent heat fluxes
(RMSEBLUEWS,SU = 42 W m�2). The coupled model provides estimates for turbulent heat fluxes as good
as the offline versions (SUEWS/LUMPS). The coupled results are similar, but the more biophysically
based BLUEWS performs better for specific humidity even though not for latent heat flux.
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Sensitivity tests of initial values at sunrise (CBL height, vertical gradients of potential temperature
and specific humidity at CBL height) indicate that initial CBL height has a small impact on air temper-
ature and relative humidity. However, combined with the required vertical gradients of potential tem-
perature and specific humidity at lower initial heights (e.g. 100 m), large errors may occur. If an initial
height of more than 250 m is used, the BLUEWS modelled air temperature and relative humidity are
insensitive to the vertical gradients. Use of the observations to adjust the vertical gradients at each
time step by profile (i.e. radiosonde) data improves model performance.

The ability of BLUEWS to use rural data to simulate suburban air temperature and relative humidity
is better for a dry grassland area than a heavily irrigated area (RMSE = 1.3 �C, 6%; 2.4 �C, 12%, respec-
tively). Sensitivity tests of the mean radiant temperature calculations demonstrate that air tempera-
ture is more critical than relative humidity (for SOLWEIG). Use of the modelled air temperature and
relative humidity for the suburban land surface would improve the mean radiant temperature results
from using the rural only data.

With the boundary layer growth model only applicable to daytime convective conditions, further
developments are needed. Although fixed boundary layer heights could be specified, the inclusion of a
nocturnal boundary layer height algorithm related to meteorological conditions will aid continuous
dynamic modelling of air temperature and relative humidity as well as improving the estimation of
nocturnal outdoor thermal comfort. Explicit coupling between BLUEWS/ BLUMPS and the micro-scale
urban radiation model (SOLWEIG) is planned. The model presented here, has the advantage of insig-
nificant computer resources compared to more complex models. The rapid computational time also
has the potential to improve initial conditions for more computationally intense models.
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Appendix A.
Variable
 Unit
 Description
a
 –
 Parameter for turbulent heat fluxes within LUMPS

abuilding
 –
 Effective surface albedo of buildings

aconifer
 –
 Effective surface albedo of coniferous trees

adeciduous
 –
 Effective surface albedo of deciduous trees

agrass
 –
 Effective surface albedo of grass

apavement
 –
 Effective surface albedo of pavement

awater
 –
 Effective surface albedo of water

b
 W m�2
 Parameter for turbulent heat fluxes within LUMPS

h
 K
 Potential air temperature

h0
 K
 Initial potential temperature

h+
 K
 Potential temperature just above the CBL

hv
 K
 Virtual potential temperature

q
 kg m�3
 Density of air

4hv
 K
 Virtual potential temperature difference across the capping

inversion
(continued on next page)
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Appendix A. (continued)
Variable
 Unit
 Description
4Qs
 W m�2
 Storage heat flux

oh/oz
 K m�1
 Vertical gradient of potential temperature at the top of CBL

oq/oz
 g kg�1 m�1
 Vertical gradient of specific humidity at the top of CBL

ai (i = 1, 2, 3)
 –
 Regression coefficients for OHM

bi (i = 1, 2)
 –
 Constants used in the Tennekes and Driedonks (1981) entrainment

scheme

Asurface
 ha
 The surface area of the study grid

BLUEWS
 –
 CBL model + SUEWS

BLUMPS
 –
 CBL model + LUMPS

CBL
 –
 Convective boundary layer

Cp
 J kg�1 K�1
 Specific heat capacity at constant pressure

DoY
 –
 Day of year

DR
 –
 Dry rural site

fauto irrigation
 –
 Plan area fraction of irrigated surface using automatic irrigation

fbuilding
 –
 Plan area fraction of buildings

fconiferous

vegetation
–
 Plan area fraction of coniferous vegetation
fdeciduous

vegetation
–
 Plan area fraction of deciduous vegetation
firrigated grass
 –
 Plan area fraction of irrigated grass

fpavement
 –
 Plan area fraction of pavement

fsoil
 –
 Plan area fraction of bare soil without rocks

funirrigated grass
 –
 Plan area fraction of unirrigated grass

fwater
 –
 Plan area fraction of water

g
 m s�2
 Gravitational acceleration

Ie
 mm h�1
 External piped water use or irrigation

K;
 W m�2
 Incoming short-wave radiation

K;rep
 W m�2
 Incoming short-wave radiation replaced with average values

L;
 W m�2
 Incoming long-wave radiation

Lv
 J g�1
 Latent heat of vaporization

LUMPS
 –
 Local scale Urban Meteorological Parameterization Scheme

OHM
 –
 Objective Hysteresis Model

q
 g kg�1
 Specific humidity

q0
 g kg�1
 Initial specific humidity

q+
 g kg�1
 Specific humidity just above convective boundary layer

Q⁄
 W m�2
 Net all-wave radiation

QH
 W m�2
 Sensible heat flux

QE
 W m�2
 Latent heat flux

QF
 W m�2
 Anthropogenic heat flux

RH
 %
 Relative humidity

RH(DR?DR)
 %
 Modelled relative humidity for DR using initial input data from DR

(Section 6)

RH(DR?SU)
 %
 Modelled relative humidity for SU using initial input data from DR

(Section 6)

RH(obs_DR)
 %
 Observed relative humidity at DR (Section 6)

RH(SU)
 %
 Modelled relative humidity for SU from data at DR/WR (Section 6)

RMSE
 –
 Root mean square error

R2
 –
 The coefficient of determination

SOLWEIG
 –
 Solar and Long Wave Environmental Irradiance Geometry-model
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Appendix A. (continued)
Variable
 Unit
 Description
SU
 –
 Suburban site

SUEWS
 –
 Surface Urban Energy and Water balance Scheme

t
 s
 Time

Ta
 �C
 Air temperature

Tmrt
 �C
 Mean radiant temperature

Ta(DR?DR)
 �C
 Modelled temperature for DR using initial input data from DR

(Section 6)

Ta(DR?SU)
 �C
 Modelled temperature for SU using initial input data from DR

(Section 6)

Ta(obs_DR)
 �C
 Observed temperature at DR (Section 6)

Ta(SU)
 �C
 Modelled temperature from data at DR/ WR (Section 6)

TH
 �C
 Maximum air temperature limit in Eq. (17) of Järvi et al. (2011)

TL
 �C
 Minimum air temperature limit in Eq. (17) of Järvi et al. (2011)

u
 m s�1
 Horizontal wind speed

u⁄
 m s�1
 Friction velocity

ULSM
 –
 Urban land surface model

w⁄
 m s�1
 Convective velocity

ws
 m s�1
 Subsidence velocity

WR
 –
 Wet rural site

z0m
 m
 Roughness length for momentum

z0v
 m
 Roughness length for heat and water vapour

zd
 m
 Zero displacement height

zh
 m
 Mean building height

zhv
 m
 Mean vegetation height

zi
 m
 Boundary layer height

zi0
 m
 Initial boundary layer height
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