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Abstract. Catastrophe risk models used by the insurance in-
dustry are likely subject to significant uncertainty, but due to
their proprietary nature and strict licensing conditions they
are not available for experimentation. In addition, even if
such experiments were conducted, these would not be re-
peatable by other researchers because commercial confiden-
tiality issues prevent the details of proprietary catastrophe
model structures from being described in public domain doc-
uments. However, such experimentation is urgently required
to improve decision making in both insurance and reinsur-
ance markets. In this paper we therefore construct our own
catastrophe risk model for flooding in Dublin, Ireland, in or-
der to assess the impact of typical precipitation data uncer-
tainty on loss predictions. As we consider only a city re-
gion rather than a whole territory and have access to de-
tailed data and computing resources typically unavailable
to industry modellers, our model is significantly more de-
tailed than most commercial products. The model consists
of four components, a stochastic rainfall module, a hydro-
logical and hydraulic flood hazard module, a vulnerability
module, and a financial loss module. Using these we un-
dertake a series of simulations to test the impact of driving
the stochastic event generator with four different rainfall data
sets: ground gauge data, gauge-corrected rainfall radar, me-
teorological reanalysis data (European Centre for Medium-
Range Weather Forecasts Reanalysis-Interim; ERA-Interim)
and a satellite rainfall product (The Climate Prediction Cen-
ter morphing method; CMORPH). Catastrophe models are
unusual because they use the upper three components of the
modelling chain to generate a large synthetic database of un-

observed and severe loss-driving events for which estimated
losses are calculated. We find the loss estimates to be more
sensitive to uncertainties propagated from the driving pre-
cipitation data sets than to other uncertainties in the hazard
and vulnerability modules, suggesting that the range of un-
certainty within catastrophe model structures may be greater
than commonly believed.

1 Introduction and literature review

The repeated occurrence of high-profile flood events across
the British Isles, such as Carlisle in January 2005, Glouces-
tershire in July 2007 and Dublin in October 2011, has re-
sulted in sustained public, commercial, political and scien-
tific interest in flood risk. Recent catastrophic flood events in
other countries, such as the Indus floods in Pakistan (2010),
the Australian and Thai floods (2011), and the Central Euro-
pean Floods (2013), have further raised the profile of flood
risk through extensive global news coverage. The economic
cost associated with flooding is often high. It is estimated that
the October and November 2000 floods in the UK caused
insured losses of GBP 1.3 billion (Pall et al., 2011), whilst
household losses resulting from the summer 2007 floods
reached GBP 2.5 billion, with business losses accounting for
a further GBP 1 billion (Chatterton et al., 2010; Pitt, 2008).
The reinsurance firm Munich Re estimates that total eco-
nomic losses from the Australian and Thailand events were
USD 2.8 billion and USD 40 billion respectively (Munich Re,
2012), whilst the reinsurance firm Swiss Re estimates these
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figures at USD 6.1 billion and USD 30 billion (Swiss Re,
2012). Much of the total insured loss was from business inter-
ruption and contingent business interruption claims, demon-
strating the global impact of such events.

Due to the scale of potential losses the insurance and rein-
surance industries require accurate flood risk estimates, and
the current accepted approach is to use calculation chains
comprising linked stochastic and physically based models.
These calculation chains, known as catastrophe or “CAT”
models, are at the core of a methodological framework em-
ployed by the insurance industry to produce probabilistic es-
timates of natural catastrophe risk. First developed in the late
1980s to model earthquake risk, the methodology was widely
adopted throughout the 1990s to model a range of hazards
such as tropical cyclone windstorms and storm-surge floods
(Wood et al., 2005). Today, such models are relied upon by
the insurance and risk management industries to guide a wide
range of financial decisions (Grossi et al., 2005). Whilst be-
ing applicable to a wide range of hazards, commercial “ven-
dor” CAT models typically share a common structure that
can be broken down into four component parts:

i. Stochastic module. The stochastic module is used to
generate a database of plausible event-driving condi-
tions. In the case of flooding, this could be a database of
extreme precipitation events over the catchment(s) that
drive fluvial or pluvial risk where the insured assets are
located. The stochastic module is typically trained on
historically observed data. As observational records of
natural hazards are typically short (101 years) relative to
return periods of interest to the insurance industry (102

to 104 years), the module must be capable of simulat-
ing events whose magnitude exceeds that of the largest
observed event.

ii. Hazard module. The hazard module is used to simu-
late a selection of events from the database generated
by the stochastic module. The hazard module needs to
produce an estimate of damage-driving characteristics
across the area where insured assets are located. In the
case of flooding this is likely to take the form of a map
of water depths.

iii. Vulnerability module. The vulnerability module calcu-
lates the expected damage to assets as a result of the
event modelled by the hazard module. These damages
are expressed as a damage ratio that varies between 0
(no damage) and 1 (total loss). Factors influencing the
susceptibility of an asset to damage may include terms
such as building age, occupancy type, construction ma-
terials or height. These parameters are typically uncer-
tain, and thus vulnerability may be represented by an
uncertain measure that maps the expected damage to a
particular asset against a continuously variable hazard
module output such as water depth and/or velocities.

This is often done using a beta distribution with non-
zero probabilities for damage ratios of 0 and 1.

vi. Financial module. The financial module transforms the
per-event damage estimates produced by the vulnerabil-
ity module into an estimate of insured loss. Estimates of
insured losses are generated by aggregating the losses
from all assets being considered and applying policy
conditions such as limits and deductibles to the total
estimate of loss. The financial module resamples the
database of simulated events to produce a large num-
ber of different time series realisations from which time-
aggregated loss curves are produced.

As with any study that involves the modelling of environ-
mental processes, it is important to address the presence of
uncertainty within the system. Previous studies that consider
flood risk using a model cascade framework have found the
“driving” component at the top of the cascade to be the most
significant source of uncertainty (Kay et al., 2008; McMil-
lan and Brasington, 2008). Cloke et al. (2012) also highlight
the problem of uncertainty propagating from global and re-
gional climate models when attempting to assess flood haz-
ard on the River Severn in the UK. Due to their focus on low-
frequency, high-magnitude events, the stochastic component
of a CAT model inevitably has to extrapolate to event scales
beyond those in the observational record. As a result, the loss
estimates produced by CAT models may be particularly sen-
sitive to the propagation of uncertainty in the data used to
drive the stochastic component. If true, this will indicate that
CAT model cascades are even more sensitive to driving un-
certainties than other previously studied hydrological model
cascades. As the stochastic module forms the driving com-
ponent of a CAT model, this study attempts to assess the un-
certainties derived from the choice of data used to calibrate,
and therefore govern, the behaviour of the stochastic mod-
ule. In order to provide context for this analysis, further lim-
ited analysis of the effect of parametric uncertainty within
the hazard module and uncertainty within the vulnerability
model were performed.

When developing a CAT model, it is important to bear in
mind that the recent Solvency II legislation in Europe (Euro-
pean Parliament and European Council, 2009) requires that
model users are able to understand and communicate how
their models function. Many users will not be specialists in
the field of environmental sciences and thus such legisla-
tion favours simpler model structures. A further reason to
favour simpler model structures lies in their ease of applica-
tion. Simpler models typically require less data than complex
models and therefore should be easier to apply to the wide ar-
ray of locations that are of interest to insurance markets. It is
also important to minimise the computational requirements
of the cascade due to the extremely large number of events
that may need to be modelled in order to estimate losses at
very high return periods. The model structure used for this
study was developed with such operational concerns in mind,
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and, as such, simple methods capable of delivering adequate
performance against historical observations were favoured.

The following section of the literature review briefly ex-
plains the choice of model components employed in this
study. The methodology that follows explains in more detail
how each component functions within a CAT model frame-
work.

1.1 Stochastic module

Stochastic rainfall models are data-based approaches that
use statistical information extracted from observations to
parameterise a mechanism used to generate synthetic rain-
fall records. Such approaches are attractive in this con-
text due to their relative simplicity and low computational
costs. Stochastic rainfall models can generally be split into
two methodological groups, namely profile-based and pulse-
based, although there have been attempts to test alternative
approaches including chaotic (Rodriguez-Iturbe et al., 1989;
Sivakumar et al., 2001), artificial neural networks (Burian
and Durran, 2002), simulated annealing (Bárdossy, 1998)
and multiplicative cascade disaggregation (Gaume et al.,
2007). Profile-based models typically use statistical distribu-
tions to characterise storms in terms of intensity, duration and
inter-arrival time, whereas pulse-based models use statistical
distributions to define rain cells occurring within larger storm
units characterised by duration and inter-arrival time distribu-
tions. The rain cells take the form of pulses with individual
durations and intensities, and the total storm intensity at a
given time can therefore be calculated through summation of
all active cell intensities at that time.

For the purposes of building a flood catastrophe model,
it is necessary to select a model formulation that is able to
reproduce the extreme events that drive flood risk. Several
comparison studies have noted that while pulse-based mod-
els are able to simulate storm inter-arrival times and precipi-
tation averages well, their ability to capture extreme statistics
is variable and often particularly poor over short timescales
(Cameron et al., 2000; Khaliq and Cunnane, 1996; Onof and
Wheater, 1993; Verhoest et al., 1997). By comparison, the
profile-based models have shown skill at simulating extreme
events (Acreman, 1990; Blazkov and Beven, 1997; Cameron
et al., 2000), although their ability to perform well for such
events is dependent on the length and quality of the his-
torical record used for their calibration. Due to its demon-
strated ability to represent a range of different extreme pre-
cipitation events, this study employs a model developed from
the profile-based Cumulative Distribution Function Gener-
alised Pareto Distribution Model (CDFGPDM) of Cameron
et al. (1999).

1.2 Hazard module

In order to convert the rainfall input from the stochastic mod-
ule into an estimate of water depths across the spatial domain

containing the insured assets, two components are required: a
hydrological rainfall-runoff model to produce an estimate of
river discharge and a hydraulic model to transform the esti-
mate of river discharge into a map of water depths. Hydrolog-
ical models vary in complexity from process-rich, spatially
distributed models, such as the Systeme Hydrologique Eu-
ropeen (Abbott et al., 1986a, b) and the US Department of
Agriculture’s Soil and Water Assessment Tool (Muleta and
Nicklow, 2005), to simple, spatially lumped conceptual mod-
els such as TOPMODEL (Beven and Kirkby, 1979) or Hy-
drologiska Byråns Vattenbalansavdelning (HBV) (Bergström
and Forsman, 1973). Increasing model complexity inevitably
entails increased dimensionality and data requirements, a sit-
uation that is often at odds with the requirements of a CAT
model. Furthermore, the fundamental argument as to how
much complexity is valuable in a model has not yet been con-
clusively answered in the literature (Bai et al., 2009; Beven,
1989; Blöschl and Sivapalan, 1995), and a number of stud-
ies have found that model performance does not necessarily
improve with increased model complexity (e.g. Butts et al.,
2004; Reed et al., 2004). As a result, a simple variant of the
HBV model (Bergström and Forsman, 1973; Bergström and
Singh, 1995; Seibert and Vis, 2012) was chosen here thanks
to its ease of application, low data and computation cost, and
demonstrated performance across a large number of studies
(Cloke et al., 2012; Deckers et al., 2010; e.g. Seibert, 1999).

In order to translate estimates of river discharge into maps
of water depth across a domain, an additional hydraulic mod-
elling component is required. The flow of water in urban ar-
eas is inherently multidimensional and requires a model of
commensurate dimensionality able to run at the fine spatial
resolutions needed to represent urban environments where
vulnerability to losses will be most critical. The compu-
tational expense of such simulations has resulted in a re-
search drive to develop efficient methods of modelling high-
resolution, two-dimensional shallow-water flows. Hunter et
al. (2008) benchmarked a suite of commercial and research
2-D codes on a small urban test scenario and found all to give
plausible results, with predicted water depths typically differ-
ing by less than the vertical error in the topographical error
despite the model-governing equations varying from full 2-
D shallow-water equations to x–y-decoupled analytical ap-
proximations to the 2-D diffusion wave. These results are
supported by further recent studies that have found highly ef-
ficient simplifications of the 2-D shallow-water equations to
be appropriate for a number of urban inundation modelling
(Neal et al., 2012c; Néelz and Pender, 2010). As a result, this
study employs the latest inertial formulation of the highly
efficient 2-D storage cell inundation model LISFLOOD-FP
(Bates et al., 2010). This approach offers a more sophis-
ticated representation of flow dynamics than the methods
adopted by most vendor CAT models; vendor models typi-
cally represent the channel and floodplain using a 1-D model,
with a limited number of models also offering 2-D modelling
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of “off-floodplain” processes (AIR Worldwide, 2013; RMS,
2006).

1.3 Vulnerability module

Flood damage models typically use water depths to predict
damage based on a depth–damage function derived from em-
pirical data (Black et al., 2006; Merz and Thieken, 2009,
2004), synthetic data (Penning-Rowsell et al., 2005) or a
combination of both (ICPR, 2001). Studies have demon-
strated significant variation in the curves produced by each
methodology (Merz and Thieken, 2009; Merz et al., 2010),
with the greater accuracy of empirical data compared to syn-
thetic data (Gissing and Blong, 2004) being countered by the
limited transferability of empirical data between sites (Smith,
1994). Depth–damage functions are inherently uncertain due
to the large number of factors that may influence the level
of damage that results from a water depth. These include,
but are not limited to, building type, building construction
method, building age, building condition and precautionary
measures. Although there is ongoing research into the possi-
bility of accounting for these factors explicitly within multi-
variate depth–damage functions (Kreibich et al., 2010; Merz
et al., 2013), such methods have not been widely adopted
within the insurance market as a lack of observed damage
data in most regions prevents calibration of such complex
functions. Many commercial models instead attempt to rep-
resent much of the total CAT model uncertainty within the
vulnerability module by sampling around the depth–damage
curve. This is typically done using beta distributions to rep-
resent the probabilities of experiencing a range of damage ra-
tios of between 0 and 1 for a given water depth. As the focus
of this study is on the uncertainty due to driving precipita-
tion data, we employ fixed depth–damage curves for most of
our experiments. However, as recent studies (Jongman et al.,
2012; Moel and Aerts, 2010) have suggested that the vulner-
ability module may be the dominant source of uncertainty,
we also undertake a limited analysis using uncertain vulner-
ability curves in Sect. 3.4 in order to provide an indication
of relative contributions to modelled uncertainty. The curves
and distribution parameters were supplied by Willis Global
Analytics and were derived from a combination of synthetic
and empirical data, claims data, and industry expertise.

1.4 Financial module

Due to their proprietary nature, public domain literature de-
scribing the financial component of CAT models is very lim-
ited. Generally the role of financial modules is to transform
damage estimates from the vulnerability module into esti-
mates of insured ground-up loss (i.e. loss before applica-
tion of deductibles and/or reinsurance) before aggregating
the location-specific losses to produce portfolio-wide loss es-
timates for a given event. These can then be transformed into
estimates of gross insured loss by applying policy conditions

such as deductibles, coverage limits, triggers, reinsurance
terms, etc. (Grossi et al., 2005). Where the hazard module
is computationally expensive, the financial module is often
used to fit curves to the loss distributions generated by cal-
culation chain, allowing much larger synthetic databases of
event losses to be generated by subsequent resampling of the
distributions. The primary output of a financial model takes
the form of a curve that describes the probability of exceed-
ing a certain level of loss within a fixed time period (typi-
cally annual). The two most common exceedance probability
(EP) curves are the annual occurrence exceedance probabil-
ity (OEP), representing the probability of a single event loss
exceeding a certain level in a given year, and the aggregate
exceedance probability (AEP), representing the probability
of aggregate losses exceeding a certain level in a given year.
Details of the financial module employed in this study are
shown in Sect. 2.2.4.

2 Study site, data and methodology

2.1 Study site

Dublin, Ireland, was selected as the test site for this study
due to its flood-prone nature and the availability of suitable
data sources. Historically, Dublin has been prone to fluvial,
pluvial and tidal flooding, with fluvial risk being largely con-
centrated along two rivers, namely the River Dodder and the
River Tolka. The River Dodder has its source in the Wick-
low Mountains to the south of the city and drains an area
of approximately 113 km2. High rainfall intensities over the
peaks of the Wicklow Mountains (annual totals can reach
2000 mm) coupled with steep gradients result in the River
Dodder exhibiting flashy responses to storm events, with a
typical time to peak of less than 24 h. The River Tolka has
its source in gently sloping farmland to the northwest of
the city and drains an area of approximately 150 km2; it ex-
hibits a slightly less flashy response than the Dodder with a
time to peak of approximately 24 h. As a result of the short
catchment response times, sub-daily (ideally hourly) rainfall
data are required to drive hydrological models of the rivers.
Both catchments contain a mixture of urban and rural land
use. Figure 1 is a map showing the location of these rivers
and their respective catchment boundaries upstream of their
gauging stations, as well as the boundary of the hydraulic
model, the location of river gauging stations and the loca-
tion of rain gauges. The calculation chain uses hydrological
models of the Dodder and Tolka catchments to drive a hy-
draulic model of the rivers as they flow through the city and
out into Dublin Bay. A third major river, the River Liffey,
is also shown. The Liffey is not modelled in this study as
its flow is controlled by three reservoirs that supply a hydro-
electric generator upstream; serious flooding downstream of
these features has not been observed since their construction
was completed in 1949. River flow records are available from
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Figure 1. Map of the Dublin region. Modelled rivers are shown by
thick blue lines. Hydrological model boundaries are shown in red.
Hydraulic model boundary is shown in yellow. Rain gauge locations
shown by black crosses. River flow gauges are shown by yellow
triangles.

1986 to present on the River Dodder and 1999 to present on
the River Tolka.

In Sect. 2.1, the four types of precipitation data (ground
rain gauge, radar, meteorological reanalysis and satellite)
used to drive the model are introduced along with the meth-
ods used to derive a catchment-average precipitation se-
ries from each type of data. This step was required as
using the stochastic module to generate extremely long
(> 500 000 years) spatial rainfall fields on an hourly time step
would not have been computationally feasible, nor was it
necessary given the input requirements of the simple hydro-
logical model used here. The four types of precipitation data
were chosen to represent the range of rainfall products avail-
able, from the high-resolution localised gauge and radar data
to the coarser (but globally available) reanalysis and satel-
lite products. The record lengths of the different data sources
were variable, but all four were available for the period Jan-
uary 2002–May 2009; for experiments comparing the differ-
ent data sources, this was the period used.

In Sect. 2.2, the components and data used to build and
calibrate the stochastic, hazard, vulnerability and financial
modules are presented.

2.1.1 Rain gauge record

The catchments surrounding Dublin are relatively well
served by a network of rain gauges operated by Dublin City

Council and the Irish weather service, Met Éireann. The
gauges are primarily daily, with hourly weather stations sited
at Dublin airport and Casement Aerodrome. However, the
network is subject to the usual limitations of gauge data,
which include missing data and inconsistent recording peri-
ods across the network. While some of the daily rain gauges
have been operating for over 100 years, others were recently
installed or retired. The gauges shown in Fig. 1 are the ones
selected for use in this study following a significant pre-
processing effort to check the availability of uninterrupted
records from each gauge for periods coinciding with the
available river flow records.

The daily catchment-average time series were constructed
by generating a gridded precipitation record at 50 m resolu-
tion for each of the catchments; the relatively fine grid was
chosen due to the negligible computational cost of this pro-
cess. The contribution of each daily gauge within a catch-
ment to a given grid cell was calculated using an inverse dis-
tance weighting function. The difference in altitude between
a given gauge and grid cell was also accounted for by cor-
rection using a precipitation–altitude gradient derived from
the gauge record. Once the precipitation in all cells within
a catchment was calculated, the catchment-average precipi-
tation was obtaining by averaging the value across all cells.
The daily record was then distributed according to the nearest
hourly station (Casement Aerodrome in the Dodder; Dublin
Airport in the Tolka) to produce an hourly catchment-average
record.

2.1.2 Radar record

The radar rainfall data were provided by Met Éireann from
a C-band radar located at Dublin Airport. A number of dif-
ferent products are produced for this radar, and the 1 km pre-
gridded 15 min precipitation accumulation (PAC) product is
used in this study. The PAC product estimates the rainfall in-
tensity at 1 km above the topographical surface, and the data
were supplied for the period 2002–2009. Preprocessing was
required to remove an echo signal present over mountain-
ous parts of the Dodder catchment that was expressed in the
data as anomalous near-continuous low-intensity rainfall. An
hourly timestep catchment-average series was generated by
averaging the cells that fell within the boundaries of a catch-
ment. Whilst radar data are able to provide an estimate of the
spatial distribution of precipitation, correction using ground-
based observations is required in order for reasonable esti-
mates of rainfall intensities (Borga, 2002; Germann et al.,
2006; O’Loughlin et al., 2013; Steiner et al., 1999). Adjust-
ment factors were therefore used to match the radar-derived
catchment rainfall volume to the gauge-derived catchment
rainfall volume on a three-monthly basis. The adjustment
factor values were assumed to be time invariant for the dura-
tion of each three-month period (Gjertsen et al., 2004).

www.hydrol-earth-syst-sci.net/18/2305/2014/ Hydrol. Earth Syst. Sci., 18, 2305–2324, 2014
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2.1.3 ECMWF ERA-Interim reanalysis

ERA-Interim is a global atmospheric reanalysis produced by
the European Centre for Medium-Range Weather Forecasts
(ECMWF) (Dee et al., 2011). The reanalysis covers the pe-
riod 1979–present and produces gridded surface parameters.
The ERA-Interim configuration configuration has a spectral
T255 horizontal resolution, which corresponds to approxi-
mately 79 km spacing on a reduced Gaussian grid. The verti-
cal resolution uses 60 model levels with the top of the atmo-
sphere located at 0.1 hPa. ERA-Interim data have been used
in a wide range of applications such as mapping of drought,
fire, flood and health risk (Pappenberger et al., 2013). Precip-
itation data are available in the form of 3 h rainfall accumula-
tion totals. Three-hourly timestep catchment-average precip-
itation time series were produced using a weighted average
of the ERA-Interim cells that covered the catchment, where
weights were assigned based on the fraction of the catchment
covered by each cell.

2.1.4 CMORPH satellite precipitation

The Climate Prediction Center morphing method
(CMORPH) precipitation record is produced by us-
ing motion vectors derived from half-hourly interval
geostationary-satellite infrared imagery to propagate passive
microwave precipitation estimates (Joyce et al., 2004). Data
are available from 1998 to the present day at a three-hourly
timestep on a 0.25-degree spatial grid. Three-hourly timestep
catchment-average precipitation time series were produced
in the same way as with the ERA-Interim reanalysis data.

2.2 Catastrophe model framework

The CAT model framework employed in this study replicates
the logic used by proprietary commercial models but uses
detailed and transparent components that allow us to exper-
iment in a controlled and repeatable fashion. The stochastic
event generator creates a long time series of rainfall events
that are used to drive the hazard module. When a flood event
occurs, the predicted water depths are input into the vulner-
ability module to produce an estimate of loss. The event ID
and loss ratio (event loss expressed as a percentage of the to-
tal sum insured across the portfolio) are recorded in an event
loss table. The number of events occurring in each year is
also recorded. Finally, the financial module resamples the
event loss table in order to produce an aggregate annual loss
exceedance probability (AEP) curve. Table 1 summarises the
implications of a number of key uncertainties and assump-
tions present in the four modules.

As we demonstrate in Sect. 3, the sampling uncertainty
associated with extreme events can be large. This is because
different realisations of events with a common return period
produce different losses and multiple stochastic model runs
of a given length may generate very different sets of extreme

events. Whilst it is possible to handle this uncertainty by pro-
ducing an extremely large stochastic event set, using the haz-
ard module to simulate every small-scale event that occurs in
such a large event set is not computationally feasible. This
computational restraint requires that a simple event similar-
ity criterion based on hydrograph peak and hydrograph vol-
ume is used to test for similar previously simulated events.
Events are only simulated with the hydraulic model if the
hydrograph peak or hydrograph volume on either river dif-
fers from a previously simulated event by more than a preset
threshold of 10 %. If this requirement is not met, then it is
assumed that a similar event has already been simulated, and
the calculated loss from this earlier simulation is selected and
added again to the event loss table.

2.2.1 Stochastic rainfall module

The Cumulative Distribution Function Generalised Pareto
Distribution Model employed here uses statistical distribu-
tions to define storms in terms of mean durations, intensities
and inter-arrival times. The CDFGPDM is a profile-based
stochastic rainfall model that generates a series of indepen-
dent rainstorms and “inter-arrival” periods (dry spells) via a
Monte Carlo sampling procedure. The model retains the Ea-
gleson (1972) approach of characterising a storm in terms
of inter-arrival time, duration and mean intensity whilst in-
corporating a profiling component to distribute the total pre-
cipitation throughout the duration of the storm. Storms in
the observational record are classed by duration and their
intensities are recorded using empirical cumulative distribu-
tion functions (CDFs). In order to enable the simulation of
storms of greater duration or intensity than in the observa-
tional record, the tails of the CDFs are modelled using maxi-
mum likelihood generalised Pareto distributions (GPDs). The
threshold above which the GPD was fitted depended on the
number of observations in each class and ranged from the
75th to 95th quantile. The empirical CDFs are then combined
with their modelled GPD tails to generate hybrid distribu-
tions from which storm characteristics can be sampled. Pre-
vious studies have argued that rainfall runoff models can be
realistically driven by such a model structure as the shape
parameter within the GPD allows a wide range of upper
tail shapes to be adequately captured (Cameron et al., 2000,
1999). Following Cameron et al. (1999), we here define a
rainstorm as any event with an intensity of≥ 0.1 mm h−1, a
duration of≥ 1 h and an inter-arrival time of≥ 1 h, where no
zero-rainfall periods are permitted within a storm. It should
be noted that for the ERA-Interim- and CMORPH-driven
models, the minimum duration and inter-arrival times were
3 h due to the 3 h timestep of these products. This definition
encapsulates all recorded precipitation in the 1 h interval his-
torical records available for Dublin, making it appropriate
for characterisation and subsequent generation of continu-
ous rainfall records. The rainstorm generation procedure is
identical to the method detailed in Cameron et al. (1999). In
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Table 1.Table showing the required data sources for each module, along with key uncertainties, assumptions and their respective implications
for modelled losses. DEM: Digital Elevation Model, PET: Potential Evapotranspiration, ISA: Impervious Surface Area.

Key data Key uncertainties Key implications Additional assumptions Key implications

Stochastic module – Rainfall
– DEM

Short observational record lengths Limited data to constrain GPD fits
to tails of rainfall intensity/duration
distributions

Uniform rainfall pattern Likely overestimation of modelled
losses

Precipitation intensities vary
between data sources

Modelled losses highly sensitive to
chosen data source

Hazard module:
hydrological model

– Rainfall
– Temperature
– PET

Parametric uncertainty Modelled losses sensitive to
parameterisation and calibration

River Dodder artificial reservoirs
not modelled

Overestimation of losses, especially
when antecedent conditions are dry
and reservoir level would be low

– Discharge
Small number of flood events in dis-
charge records

Observed flood discharges uncertain

Choice of
behavioural performance measure

Uncertainty range dependent on
performance measure

Hazard module:
hydraulic model

– Discharge
– Flood extents

Errors in observed extents Unknown sensitivity of modelled
losses to hydraulic model structure

No significant flood defence
additions since observed events

Model may simulate losses in newly
defended areas

– River channel Observed flood discharges uncertain
geometry

Roughness coefficients Choice of which events to simulate
based on hydrograph peak and
volume

Relationship between hydrograph
properties and loss may be
oversimplified

– DEM

Unrepresented channel features

DEM resolution Flood extents and depths influenced
by DEM; losses not grid indepen-
dent

Depth in building cell assumed to be
mean of surround cell depths

Likely overestimation of modelled
losses

Vulnerability
module

– Water depths
– Postcode areas

ISA data is low resolution Likely errors in loss calculation as
true location of assets is unknown

Fixed damage for a given flood
depth

Loss for a given depth would really
vary depending on building type

– Depth–damage
curves

– ISA data

Depth–damage curves highly uncer-
tain

Loss estimates vary depending on
choice of depth–damage curve

Period of inundation not considered Possible over/underestimation of
losses for short/long duration events
respectively

Financial module – Event loss table – – Policy terms such as deductibles and
limits not included

Overestimation of losses compared
to “real” portfolios

order to evaluate the model’s ability to recreate the extremes
seen in the observed series, a total of 50 synthetic series of
40 years’ length were simulated using the rain-gauge-derived
series for the Dodder catchment. The annual maximum rain-
fall totals (ANNMAX) for each duration class were extracted
from the synthetic series and plotted against their counter-
parts from the observed catchment-average series (Fig. 2).
The reduced variate plots show that the observed ANNMAX
values are well bracketed by those from the 50 synthetic se-
ries, indicating the ability of the model to recreate a rea-
sonable distribution of extreme events suited to a study of
flood risk.

Due to the need to limit model complexity and computa-
tional expense, it was necessary to assume a spatially uni-
form rainfall across the modelled catchments. Such an as-
sumption may be justified for Dublin as the modelled catch-
ments are relatively small (< 130 km2) and floods in this
region are driven by large weather systems such as frontal
depressions and decaying hurricanes rather than by small-
scale convective cells. The gauge-based catchment-average
records produced for the Dodder and Tolka catchments were
tested for correlation, yielding a Pearson’s linear correlation
coefficient of 0.89 and a Kendall tau of 0.69. These val-
ues indicate that rainfall in the two catchments is indeed
strongly correlated; however the lack of perfect correlations
implies that the approach will result in a slight overestima-

tion of domain-total rainfall for a given event. The assump-
tion allows a spatially uniform, time-varying rainfall series
to be generated for all catchments by training the CDFG-
PDM on a single, centrally located observation site. How-
ever, due to significant variation in altitude across the do-
main, it was necessary to correct the rainfall intensities of the
generated series for each catchment as the observed precip-
itation intensity distributions varied between the catchment-
mean records and the central training site. To achieve this, a
quantile–quantile-bias correction method (Boé et al., 2007)
was used on each observed record type in turn, where ad-
justment factors for each quantile bin were obtained by com-
paring the observed time series at the training site to the ob-
served catchment-average rainfall series. Therefore, for each
of the modelled catchments, a different set of adjustment fac-
tor values were generated for the ground gauge, radar, ERA-
Interim and CMORPH data, allowing precipitation time se-
ries to be generated in which the correct precipitation inten-
sity distributions of each individual catchment are preserved
despite all catchments sharing a common temporal rainfall
pattern.

2.2.2 Hazard module

The hazard module consists of a hydrological model and
a hydraulic model. The hydrological model employed here
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Figure 2. Modelled annual maximum rainfall totals for each duration class compared to the observational record for the Dodder catchment.
The annual maxima for each class in the 40 year catchment-average observed record are ranked and plotted using Gringorten plotting
positions (black circles). The process was repeated for 50× 40 year simulated series (grey crosses).

is the widely used conceptual rainfall runoff model HBV
(Bergström and Forsman, 1973; Bergström and Singh, 1995).
While there are many variants of the HBV model, the one
used for this study is most closely related to HBV Light
(Seibert and Vis, 2012). The model uses precipitation, tem-
perature and potential evaporation as inputs, the latter of
which is calculated from extraterrestrial radiation and tem-
perature using the McGuinness model (McGuinness and
Bordne, 1972), to produce an estimate of river discharge at
the gauge station locations shown in Fig. 1 with an hourly
timestep. Model calibration was undertaken to generate be-
havioural parameter sets for each precipitation data source
in each catchment. Initially, the 15-parameter space was ex-
plored using Monte Carlo simulation and parameter ranges
were set by visually identifying upper and lower limits from
the resultant simulations. Where the model did not exhibit
detectable parameter range limits, ranges from previous stud-
ies were employed (Abebe et al., 2010; Cloke et al., 2012;
Shrestha et al., 2009). Once defined, the parameter ranges
were sampled using Latin hypercube Monte Carlo sam-
pling to produce 100 000 parameter sets, a number of sam-
ples which proved computationally feasible whilst provid-
ing adequate exploration of the parameter space. The pa-
rameter sets were then used to simulate discharge during
a period for which observations were available, and those
that failed to produce behavioural simulations, defined by
a Nash–Sutcliffe (NS) score exceeding a threshold of 0.7
(Nash and Sutcliffe, 1970), were discarded. The choice of

performance measure and threshold used to define what con-
stitutes a behavioural simulation is necessarily subjective
(Beven and Freer, 2001); NS was chosen as it is particularly
influenced by high flow performance, and the threshold of
0.7 was selected following visual inspection of hydrographs
generated from a preliminary sample of parameter sets. In
order to assign weights, the behavioural parameter sets were
then ranked and weighted by their ability to minimise error
in the top 0.1 % of the flow duration curve. Due to com-
putational constraints imposed by the subsequent hydraulic
model, the number of behavioural parameter sets was lim-
ited to the 100 highest ranked sets. Weighting was performed
by calculating the inverse sum of absolute errors between the
simulated and observed series in the top 0.1 % of the flow du-
ration curve for each of the behavioural parameter sets. These
values were then normalised to give the best-performing pa-
rameter set a weight of 1 and the worst a weight of 0. This
approach favours behavioural parameter sets that best simu-
late high-flow periods and is therefore appropriate for a study
concerned with flood risk.

Initially, attempts were made to calibrate HBV using each
precipitation data type. However, only those simulations
driven using the gauge-derived precipitation data were able
to satisfy the behavioural NS threshold in all catchments.
Models driven using ECMWF and CMORPH data were es-
pecially poor; this may be explained by their reduced spa-
tial and temporal resolution compared to the gauge and radar
data. As adequate representation of observed catchment flow
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characteristics could only be obtained when using the be-
havioural parameter sets identified using gauge data, it was
decided that these parameter sets should be used for all simu-
lations. The very large number of event simulations required
to produce an EP curve precluded HBV parametric uncer-
tainty from being incorporated directly into the CAT model;
such an approach would have further increased the required
computational resource to an unfeasible level. Due to this
limitation, the highest-ranked parameter set produced using
gauge data was used to generate the EP curves. The impact
of parametric uncertainty is addressed separately on an event
basis in Sect. 3.3, where the weighted behavioural parameter
sets are used to produce uncertain loss estimates with 5–95 %
confidence intervals for four synthetic flood events.

The hydraulic model LISFLOOD-FP (Bates and De Roo,
2000) is used to generate flood inundation maps from the
event hydrographs produced by HBV. The configuration em-
ployed here uses a subgrid representation of the channel
(Neal et al., 2012b) coupled to a 2-D floodplain model that
uses a simplified “inertial formulation” of the shallow-water
equations (Bates et al., 2010) solved using the numerical
method of de Almeida et al. (2012). The channel models in-
clude weirs and were constructed using surveyed river cross
sections supplied by Dublin City Council, and the digital el-
evation model (DEM) for the 144 km2 2-D hydraulic model
was constructed from 2 m resolution bare-earth LiDAR data
that was coarsened to 10 and 50 m resolution (1 440 000 and
57 600 cells respectively) using bilinear resampling (Fewtrell
et al., 2008). Where> 50 % of the surface area of a cell was
occupied by building(s), identified through Ordinance Sur-
vey Ireland data, the cell elevation was increased by 10 m
to become a “building cell”. Model calibration of channel
floodplain friction was undertaken by driving the hydraulic
model with observed discharges and comparing the observed
and simulated flood inundation extents for the August 1986
Hurricane Charlie and the November 2002 flood events.
These are the largest events for which observed discharge and
inundation data are available, with the 2002 event generating
USD 47.2 million in unindexed losses (AXCO, 2013), and
they have been attributed with∼ 700 and∼ 100 year return
periods respectively (RPS Consulting Engineers, 2008; RPS
MCOS, 2003). The extent of the larger 1986 event was digi-
tised from hand-drawn post-event flood outline maps, which
included indications of dominant flow directions, although
the completeness of these maps is uncertain. The Novem-
ber 2002 flood outlines were supplied by Dublin City Coun-
cil. Both of these data sets will be subject to considerable un-
certainty as they were constructed from eye witness accounts
and post-event ground-based observations; they should there-
fore be considered as approximations of the true maximum
extents. Observed and simulated flood outlines for the cal-
ibration events are shown in Fig. 3. The quantitative F-
squared performance measure (Werner et al., 2005) was cal-
culated for each calibration run, with the optimised model
yielding values of 0.62 and 0.44 for the 10 and 50 m res-

olution models respectively. Some of the variation between
the observed and simulated extents may be explained by er-
rors in the observed data; some may also be explained by
land development and engineering works that occurred be-
tween the events and the date on which the modern DEM
terrain data were collected; this latter factor may have an es-
pecially strong influence on the 1986 event results. Never-
theless, the F-squared values still compare favourably with
a previous study of urban inundation modelling (Fewtrell et
al., 2008), in which it is noted that performance of models
in urban areas is strongly affected by the ability of the DEM
to represent urban structures; subsequent studies have also
highlighted the influence of detailed terrain features on urban
inundation processes (Fewtrell et al., 2011; Sampson et al.,
2012). These findings are further evidenced here, as the re-
duced representation of buildings on the 50 m DEM removes
flow restrictions and results in an overestimation of flood ex-
tents with a corresponding reduction in water depths near the
channel. Despite this, qualitative assessment of the modelled
dynamics with reference to the observations suggests that,
at both resolutions, the model captures the dominant process
well, with water entering the floodplain in the correct areas.
Unfortunately, the computational expense of the 10 m resolu-
tion model was several orders of magnitude greater than the
50 m model, resulting in simulation times of several hours
compared to∼ 20 s for a 48 h event. Due to this cost, the 50 m
model was adopted for use within the CAT model. Whilst this
will result in some loss of predictive skill relative to the 10 m
model, the representation of 2-D flow both on and off the
floodplain ensures that the model remains more sophisticated
than the 1-D or quasi-2-D approaches typically employed by
vendor CAT models. The implication of this decision for loss
estimates is briefly discussed in Sect. 3.3.

2.2.3 Vulnerability module

A synthetic portfolio of insured properties, modelled on real
data, was provided by Willis Global Analytics for use in this
study. This was necessary to preserve the anonymity of real
policy holders, and the portfolio was built by resampling a
distribution of asset values for the region. As is common
for insurance portfolios, the data were aggregated to post-
code level. The portfolio took the form of an insured sum
for three lines of business (residential, commercial and in-
dustrial) for each postcode area. It is common practice in in-
dustry to disaggregate such data sets using proxy data (Scott,
2009), and the approach adopted here is to use the National
Oceanic and Atmospheric Administration (NOAA) Imper-
vious Surface Area (ISA) data set as a proxy for built area
(Elvidge et al., 2007). This method assumes a linear relation-
ship between the percentage of a grid cell that is impervious
and its insured value and allows the sum insured within each
postcode to be distributed around the postcode area based on
ISA pixel values. From these data we built a simple industry
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Figure 3. Hydraulic model calibration results. Red shaded area
shows observed flood extent. Blue outline shows flood outline from
10 m resolution model. Yellow outline shows flood outline from
50 m resolution model. Underlying DEM is 10 m resolution.

exposure database (IED) that contained the values of insured
assets for each line of business within each grid cell.

When a cell is flooded, the damage sustained within the
cell is calculated using depth–damage functions supplied
by Willis Global Analytics that were derived from histori-
cal data of floods in European cities. In this paper we em-
ploy both a simplified deterministic depth–damage curve ap-
proach and a more sophisticated uncertain vulnerability func-
tion. The simplified approach involves separate curves for the
residential, commercial and industrial lines of business that
relate the water depth within a cell to the percentage of the
cell’s insured value that is lost. These simple curves there-
fore represent a mean damage ratio and were used for all
experiments other than the vulnerability uncertainty analysis
in order to reduce computational cost and better isolate the
subject of each experiment. The more sophisticated functions
used in the vulnerability uncertainty analysis sample around
the fixed curves using modified beta distributions. Here, the
depth in a cell determines the mean damage ratio as well as
the probabilities of zero damage (P0) and total loss (P1). A
stratified antithetic sample of values between 0 and 1 is per-
formed, with all values below P0 being assigned a damage
ratio of 0 and all values above P1 being assigned a damage
ratio of 1. The values between P0 and P1 are rescaled to be-
tween 0 and 1 and used to sample from a beta distribution
whose parameters are calculated based on the mean damage
ratio, P0, P1 and an assumed variance. The result is a sam-
ple of damage ratios, with a mass of values at 0, a mass of
values at 1, and an intermediary range drawn from a beta dis-

tribution. As the water depth in a cell increases, the mass of 0
damages becomes smaller, the mass of total losses becomes
larger and the mean of the intermediary sampled beta distri-
bution moves towards 1 (total loss). This method is currently
used by Willis on an operational basis and therefore repre-
sents industry practice at the date of publication.

2.2.4 Financial module

The financial module employed here is used to aggregate
simulated losses from the hazard module across a speci-
fied aerial unit (here the entire domain) before generating
and resampling occurrence and loss distributions from the
results. The occurrence distribution represents the distribu-
tion of event counts for a given time period (here defined
as one year) using an empirical CDF. The main body of the
loss distribution is modelled using an empirical CDF, with a
GPD fitted to the tail to produce a smooth curve where data
are sparse. A synthetic series can then be rapidly generated
by adopting a Monte Carlo resampling method. This proce-
dure samples first from the occurrence distribution to find
the number (n) of events occurring in a given year. The loss
distribution is then sampledn times to assign a loss to each
event. Finally, the annual aggregate loss is found by sum-
ming the losses for that year. By repeating this process a large
number of times, multiple synthetic series can be generated.
From these series, an annual AEP curve can be generated
that includes confidence intervals derived from the spread of
values at any given return period. The annual AEP curve is
a standard insurance tool that is used to express the expected
probability of exceeding a given level of loss over a one-year
period, i.e. the expected “1-in-100 year loss” is equivalent to
a loss with an annual exceedance probability (AEP) of 0.01.

3 Results – event sampling uncertainty

A known source of uncertainty within a CAT model origi-
nates in the event generation procedure used to build an event
set. This is referred to as “primary uncertainty” by the insur-
ance industry (Guin, 2010). A key difficulty in calculating the
expected loss at a given AEP is that the predicted insured loss
will vary from one model run to another due to the random
component of the stochastic module. One method of reduc-
ing this “sampling uncertainty” is to simulate a series that
is considerably longer than the desired recurrence interval
(Neal et al., 2012a). Alternatively, a large number of reali-
sations can be simulated, and the expected loss can then be
defined by the mean loss across the realisations. The second
method also allows the sampling uncertainty to be investi-
gated by looking at the spread of values across the realisa-
tions. The number of realisations that it is feasible to simu-
late is determined by the required series length and the avail-
able computational resource. Here the stochastic module is
trained using the rain gauge record and used to generate 500
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realisations of a 1000 year rainfall series in order to investi-
gate the effect of sampling uncertainty on the 1-in-1000 year
loss.

The object of this experiment is to determine the number
of realisations required to adequately capture the range of
possible losses at a given event scale. One way to examine
such sampling uncertainty is to assemble batches of realisa-
tions and observe how key descriptors (such as the mean loss
or standard deviation of losses) vary between batches. By al-
tering the number of realisations in each batch, it is possible
to observe how the variation of descriptors between batches
changes as the batch size changes. It is then possible to pre-
dict the expected average variation, in terms of the descrip-
tors, between the simulated batch ofn realisations and any
other batch ofn realisations.

To do this, the maximum losses recorded in each of the
500 realisations were randomly sampled to produce batches
containing 5, 10, 25, 50, 100 or 250 loss ratios (“batch A”).
The process was repeated to produce a second batch (“batch
B”) of identical size to batch A. The mean and standard devi-
ation of loss ratios in batch A (L̄A andsA) were then calcu-
lated and compared to their equivalent values in batch B (L̄B
andsB), yielding two simple measures:

M =
∣∣L̄A − L̄B

∣∣ , (1)

S = |sA − sB| . (2)

By repeating this process a large number of times (10 000
for each batch size), the expected uncertainty due to sam-
pling variability can be assessed. The results of this experi-
ment are shown in Fig. 4a, whereM is expressed as a per-
centage of the mean 1-in-1000 year loss across all 500 real-
isations andS is equivalently expressed as a percentage of
the standard deviation across all 500 realisations. The plots
show that differences between batches A and B decrease as
the number of samples within a batch increases, with the me-
dian value ofM decreasing from 23.0 to 3.8 % as the batch
size increases from 5 to 250. This finding can be explained
by the underlying distribution of loss ratios being increas-
ingly well represented as the sample size is increased; this
is observed in the diminishing value ofS as sample size in-
creases. By transforming the median values ofM with re-
ciprocal 1/M2 and fitting a linear regression model, the ex-
pected value of M for the 500 realisations was calculated as
2.7 %. This indicates that the mean loss ratio of any 500 sim-
ulated realisations will typically differ from any other batch
of 500 realisations by∼ 3 % of the mean loss ratio itself; the
same process yields a value of 2.3 % for the standard devi-
ations (Fig. 4b). Primary uncertainty is an accepted facet of
catastrophe modelling and, relative to inherent aleatory un-
certainty, uncertainty of this order due to sampling variabil-
ity is reasonable (Guin, 2010). Whilst the uncertainty caused
by sampling variability could be reduced by significantly in-
creasing the number of realisations simulated, the additional
computational cost of such an increase would be large and
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Figure 4. Box plots that show the variation between two batches of
simulations reducing as the number of simulations in each batch in-
creases. The top plot (a) shows the difference between the means of
the two batches, expressed as a percentage of the mean loss across
all 500 simulations. The bottom plot (b) shows the difference be-
tween the standard deviations of the two batches, expressed as a
percentage of the standard deviations across all 500 simulations.

the benefit questionable in the presence of other uncertainties
within the calculation chain. For the purpose of this study we
identify 50 realisations as the minimum required; at this level
the mean and median values ofM andS are< 10 % of the
mean and standard deviation of all 500 realisations respec-
tively. The practical implication of this analysis is that it is
necessary for the hazard module to simulate> 50 time series
of a length equal to the return period of interest.
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3.1 Variability across data sources

The availability and quality of observed precipitation records
varies greatly between sites. In order to investigate how the
use of different types of precipitation data might affect pre-
dicted losses, each of the data types described in Sect. 2.1
was used to train the stochastic module. The training record
length was defined by the longest period for which a con-
tinuous record was available from all data sources; this ran
from the 1 January 2002 to the 1 May 2009. This period is
clearly shorter than ideal and it is likely that the true vari-
ability within each data source is underrepresented as a re-
sult; however, it was necessary to ensure that the records
were of equal length over the same period in order to fairly
compare between data types. All parameters in the hazard,
vulnerability and financial modules were identical across the
simulations. Taking a maximum return period of interest to
be the 1-in-10 000 year event, 500 000 years’ worth of sim-
ulations was performed for each data type (giving the re-
quired 50 realisations of the 1-in-10 000 year event). The an-
nual aggregate EP curves resulting from these model runs are
shown in Fig. 5, with uncertainty bounds that represent the 5–
95 % confidence intervals generated by the financial module.
Also plotted are the modelled losses of two observed histor-
ical floods (August 1986 and November 2002), produced by
driving the hydraulic and vulnerability components with ob-
served river discharges.

It is immediately apparent from Fig. 5 that the different
precipitation data sets produce very different EP curves de-
spite the fact that each record covered the same spatial area
over a common period of time. At certain points the differ-
ence can be as great as an order of magnitude – for exam-
ple, the ERA-Interim-driven model predicts a 1-in-100 year
(AEP= 10−2) loss ratio of 0.02 % whereas the CMORPH-
driven model predicts a loss ratio of 0.17 %. The pronounced
differences between the curves can be explained in terms
of the ability of each of the data sources to represent the
local rainfall patterns. The gauge- and radar-driven mod-
els produced EP curves of similar shape, with losses from
the radar-driven model being slightly lower than from the
gauge record. Their relative similarity compared to the ERA-
Interim- and CMORPH-driven models was expected as both
are detailed local data sources rather than global products.
Furthermore the adjustment factors for radar rainfall inten-
sity were derived from the gauge record so that the two
records had equal three-monthly rainfall volumes. As a re-
sult, storms were usually captured in both records and at-
tributed with similar rainfall totals, yielding similar stochas-
tic model calibrations and therefore similar loss projections.

The curves produced by the ERA-Interim- and CMORPH-
driven models differ greatly from those produced by the lo-
cal gauge and radar data sets. The ERA-Interim curve shows
only gradual growth in losses as the return period increases
to the maximum modelled value of the 1-in-10 000 year
event, and at all return periods the ERA-Interim model un-
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Figure 5. Exceedance probability plots produced by the catastro-
phe model when trained using the four different precipitation data
sets. The grey shaded area denotes the 5–95 % confidence intervals
generated by the financial model. The losses simulated when the
hydraulic and vulnerability modules are driven with observed flows
for two historical events are shown for reference.

derpredicts compared to the other data sources. By con-
trast, the losses predicted by the CMORPH-driven model
are consistently higher than the others, especially at lower
return periods. Figure 6a shows cumulative daily precipita-
tion for all four data types. As previously found by Kidd et
al. (2012) in a study of rainfall products over northwest Eu-
rope, CMORPH is found to consistently underestimate rain-
fall totals compared to the local data whereas ERA-Interim
consistently overestimates rainfall totals. Given the pattern
of cumulative rainfall totals, the opposite pattern found in
the loss projections is initially surprising. However, once
hourly rainfall intensities are considered (Fig. 6b) the find-
ings can be explained. CMORPH is found to underestimate
rainfall totals in this region because of the limited sensitivity
of satellite products to very low intensity rainfall (“drizzle”)
(Kidd et al., 2012). However, it exhibits higher rainfall in-
tensities in the upper (> 95th) quantiles of rainfall intensity
than the other records. Severe storms in the CMORPH record
typically had slightly higher rainfall volumes than the same
storms in other records, the result of which is an increased
expected loss at all return periods. ERA-Interim has the op-
posite problem whereby the frequency of low-intensity pre-
cipitation is overpredicted and high-intensity precipitation is
severely underestimated.
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Figure 6. Top plot (a) shows cumulative precipitation for each
source. Bottom plot (b) shows anomalies in> 90th-quantile pre-
cipitation intensities between gauge and other sources.

3.2 Uncertainty due to record length

A similar approach to the above comparison between data
sources was adopted to examine the sensitivity of projected
losses to the length of the record used to train the stochas-
tic module. For this test the gauge precipitation data were
cropped to produce training records of 5, 10, 20 and 40 years
in length. The training records share a common end date
(September 2011) and therefore the longer records extend
further into the past. As with the data sources test, all other
parameters were held constant across the other components,
and the resulting EP curves are plotted in Fig. 7. The EP
curves demonstrate that altering the training record length
has a significant impact on the projected losses for a given
return period. At AEP= 10−2, the median expected loss ra-
tio ranges from 0.05 to 0.28; at AEP= 10−3, representing
the 1-in-1000 year event, the expected loss ratios vary from
0.12 to 0.60. The relative overestimation of loss ratios by the
5 year training data set demonstrates how the presence of a
large event in a short training set is able to skew the results.
There are two storms that generate exceptionally high pre-
cipitation volumes in the 40 year observed record, and the
second of these falls within the final five years that form the
5 year training record. When trained with this short record,
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Figure 7. Exceedance probability plots produced by the catastro-
phe model when trained using the gauge record cropped to four
different lengths. The grey shaded area denotes the 5–95 % confi-
dence intervals generated by the financial model. The losses simu-
lated when the hydraulic and vulnerability models are driven with
observed flows for two historical events are shown for reference.

the stochastic module inevitably overpredicts the rate of oc-
currence of such storms, leading to an overestimation of ex-
pected flood losses. Modelled uncertainty increases as the re-
turn period increases; in the case of the 10 year training pe-
riod, the range of modelled losses at the 10−4 AEP level is
greater than the median estimate of 0.36 %.

3.3 Hazard module uncertainty

In order to provide some context for the uncertainty associ-
ated with the choice of driving data, the uncertainty resulting
from the choice of parameter set used with HBV was also
investigated. Due to computational limitations it was not fea-
sible to produce EP curves for a large number of parameter
sets, so instead we focussed on individual events. The largest
event was extracted from each of four 500 year runs of the
stochastic module. Each event was then simulated using the
100 best performing HBV parameter sets, all of which had
previously been selected and assigned weights as described
in Sect. 2.2.2. The resulting hydrographs were then used to
drive the hydraulic model, and the event loss from each sim-
ulation was calculated and weighted according to its respec-
tive parameter set weights. Figure 8 shows each event hyeto-
graph, the range of hydrographs produced by the different
parameter sets on both the Dodder and Tolka rivers, and the
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Figure 8. Plots showing event hyetographs and hydrographs for the
River Dodder (rows 1 and 2) and River Tolka (rows 3 and 4), and
cumulative distribution function plots of modelled losses across the
entire domain (row 5). The number of parameter sets simulating
discharge at or above a given level at timet is represented by the
hydrograph colour, ranging from all 100 (dark blue) to 1 (dark red).
The weighted 5th–95th-quantile values from these plots are shown
in Table 2.

resulting weighted CDF of loss ratios. The weighted 95 %
confidence interval values for peak discharge, hydrograph
volume and loss ratio are shown in Table 2.

The results of this exercise demonstrate the impact of
parametric uncertainty within the hydrological model on
expected losses. For the smallest of the events (event 3),
the ratio of the 95th-to-5th-quantile peak discharges for the
Dodder and Tolka was∼ 1.1. Despite these relatively mod-
est increases, the ratio of 95th-to-5th-quantile losses across
the whole domain was∼ 1.7. For a larger event (event 4),
the equivalent 95th-to-5th-quantile peak discharge ratio in-
creased to∼ 1.2 and yielded a ratio of losses of∼ 3.25.

The high sensitivity of expected losses to relatively smaller
percentage changes in hydrograph peak or volume is due to
the fact that losses are only affected by the part of the hy-
drograph that drives flood inundation – namely the portion
of flow that is out-of-bank. This region of the hydrograph
is clearly sensitive to parametric uncertainty, leading to the
high degree of uncertainty in modelled losses exhibited here.
It should also be noted that these results are sensitive to the
subjective choice of behavioural threshold and performance
measures employed. Had a higher threshold been chosen, the
available parameter space from which behavioural sets could
be selected would be smaller, leading to a reduction in the
modelled loss ratio uncertainty. However, despite paramet-

ric uncertainty clearly being important, in the context of this
study the choice of driving precipitation data source remains
the greater source of uncertainty in modelled losses.

As noted in the hazard module description (Sect. 2.2.2),
the high computational cost of hydraulic simulations on a
10 m grid prevented the finer resolution model from being
adopted. The earlier qualitative assessment of the hydraulic
model at 50 m relative to 10 m indicated that both exhibited
similar first order dynamics, with the coarser model produc-
ing a greater simulation extent with reduced water depths as a
result of the reduced building blockages and terrain smooth-
ing. In order to provide a general indication as to how this
might affect loss estimates, the losses from the 10 and 50 m
calibration simulations were calculated. These calculations
yielded loss ratios of 0.101 and 0.146 respectively, indicat-
ing that areas of deep localised flooding present in the 10 m
simulations were generating high losses not adequately cap-
tured by the 50 m model. However, although a more detailed
study is required before firm conclusions can be drawn re-
garding the importance of hydraulic model resolution in this
context, this result does suggest that the contribution of the
hydraulic model to the total hazard model uncertainty may
be small relative to the hydrological model.

3.4 Vulnerability module uncertainty

Contemporary CAT models typically account for uncertainty
within the vulnerability module by using historical claims
data to develop a distribution of damage ratios for any given
water depth as described in Sects. 1.3 and 2.2.3. In order to
investigate the uncertainty imparted onto the EP curves by
the vulnerability module, the 500 000 years’ worth of hazard
module simulations performed for Sect. 3.1 were coupled to
the uncertain vulnerability module. This process generated
EP curves for each data source in which the 5–95 % confi-
dence intervals are defined by uncertainty within the vulner-
ability module (Fig. 9).

Figure 9 demonstrates that the uncertainty imparted by
the vulnerability module is large relative to uncertainty gen-
erated by the financial model (Fig. 5) for small to moder-
ate event scales (1 in 10 to 1 in∼ 250 years). However, for
the more extreme events the two contribute uncertainty of a
broadly similar magnitude. This is due to the nature of uncer-
tainty within the vulnerability module. At small event scales
the vulnerability module is able to generate a wide range of
loss ratios even when water depths are relatively low. This
produces significant uncertainty within the EP curve relative
to a model that uses fixed depth–damage curves, as loss ratios
from the fixed curves will typically be low when water depths
are shallow. However, during more extreme events where
high loss ratios dominate the curve due to increased water
depths, the relative uncertainty of the vulnerability model is
seen to decrease as both the uncertain and fixed vulnerabil-
ity methods cannot generate losses exceeding 1 (total loss).
This exhibition of asymptotic behaviour highlights the fact
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Table 2.Weighted 5th–95th-quantile values for event-based HBV uncertainty simulations.

Measure Event 1 Event 2 Event 3 Event 4

Dodder
Peak discharge (m3) 212–256 185–226 185–203 250–291
Volume (×107 m3) 1.69–1.89 1.66–1.84 1.76–1.97 1.74–1.92

Tolka
Peak discharge (m3) 125–150 130–147 113–124 118–139
Volume (×107 m3) 1.50–1.64 1.54–1.64 1.49–1.60 1.35–1.47

Entire domain Loss ratio (%) 0.03–0.14 0.04–0.07 0.03–0.05 0.04–0.13
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Figure 9. Exceedance probability plots produced by the model
when trained using the four different precipitation data sets. The
grey shaded area denotes the 5–95 % confidence intervals generated
by uncertainty within the vulnerability model.

that uncertainties vary both in absolute terms and relatively
to each other as the event scale changes.

4 Discussion

The results presented above examine how the loss estimates
produced by a flood catastrophe model are affected by the
choice of data used to drive the model’s stochastic compo-
nent. Parametric uncertainty from the hydrological model
has also been examined on an event basis to contextualise
the scale of uncertainty induced by the stochastic compo-
nent and uncertainty from the vulnerability module has also
been modelled. The findings highlight the difficulty in pro-
ducing robust EP curves using a cascade methodology, as

the uncertainty associated with each component is large and
increases as the event scale increases. Furthermore, not all
sources of uncertainty have been considered – for example
flood defence failure rates. Despite this, the model presented
here is very detailed compared to standard industry practice
and contains detailed local information (such as river chan-
nel geometry and features) that would often be unavailable
under the time and financial constraints of most commercial
catastrophe modelling activities. The required computational
resource would also exceed what is practicably available if
models of this detail were extended to cover entire national
territories. As a result, the uncertainty estimates made in this
study are likely to be conservative. The CMORPH and ERA-
Interim precipitation records have global coverage and are
typical of the kind of product that could be used to drive a
commercial CAT model. However, the hydrological model
was unable to generate behavioural results when driven by
these data sources, indicating their inability to produce re-
alistic storm precipitation and thus runoff in the modelled
catchments. It is therefore unsurprising that they generated
EP curves that were both very different to each other and to
the curves produced using more detailed local records. Ex-
amination of the observed precipitation records reveals that
the precipitation intensity distributions vary significantly be-
tween the data sources. The observed records are relatively
short; a common record across all four data sources was only
available for a little over seven years due to the short length
of radar records and gaps in the ground gauge data. The di-
vergence in estimates of precipitation totals for heavy storms
between the observational records is reflected in the synthetic
series produced by the stochastic module, and this divergence
inevitably continues as the simulated event scale increases.
This results in the pronounced differences in higher return-
period loss estimates produced by the model when trained
with each of the data sources in turn. Whilst access to longer
overlapping records might have reduced the severity of this
divergence, the consistently different storm rainfall intensi-
ties recorded by the four data types means that the stochas-
tic module would still be expected to generate very different
estimates of high return-period rainfall events depending on
which data it was driven with. It is also worth noting at this
point that we did not consider the parametric uncertainty as-
sociated with fitting GPDs to the precipitation intensity and
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duration tails; this source of epistemic uncertainty is likely
to be large given the relatively short rainfall records to which
the GPDs are fitted and therefore the true uncertainty is most
likely greater than reported here. Unfortunately, investigating
the impact of this on modelled losses would have required a
number of runs of the entire model cascade that was compu-
tationally prohibitive.

The EP curves were also found to be sensitive to the length
of record used to train the stochastic module. Unfortunately,
satellite and model reanalysis precipitation records are typ-
ically short (CMORPH runs from the mid-1990s; ERA-
Interim from 1979) and the results presented here demon-
strated significant differences between the EP curves pro-
duced by records of 5, 10, 20 and 40 years in length. Lack of
available data prevented longer records from being tested, but
our results do indicate that extra care is required when using
short (< 10 years) records due to the ability of a single ex-
treme observation to skew results. Furthermore, the fact that
there is an appreciable difference between the 20 and 40 year
curves suggests that records of at least 40 years in length
should be used where possible. Future reanalysis products
hoping to extend records further back in time may help to
alleviate this issue; the European Reanalysis of Global Cli-
mate Observations (ERA-CLIM) project aims to provide a
100 year record dating back to the early 20th century. The
impact of parametric uncertainty within HBV should also be
of concern to practitioners. The model in this study was cal-
ibrated with detailed precipitation and discharge records and
might therefore be considered tightly constrained compared
to commercial models that will have to operate at national
scales. Despite this, the variation in predicted loss ratios over
a range of behavioural parameter sets for individual events
was very large. Due to computational constraints we were
unable to also consider uncertainty in the hydraulic model
component of the hazard module, although it is believed that
the hydraulic model is a relatively minor source of uncer-
tainty in this context (Apel et al., 2008a). Former studies
have indicated that topography is the dominant driver of un-
certainty within hydraulic models if we consider the inflow
boundary condition uncertainty to be associated with the hy-
drological model (Fewtrell et al., 2011; Gallegos et al., 2009;
Schubert et al., 2008; Yu and Lane, 2006), and given the dif-
ferences seen between the calibration runs at 10 and 50 m
resolution (Fig. 3), it is very likely that the uncertainty re-
ported in this study is an underestimate of the total uncer-
tainty present within the hazard module.

The final uncertainty source considered was the vulnera-
bility module. This module was found to contribute signifi-
cantly to the uncertainty at smaller event scales but, due to
the inherently asymptotic nature of a damage function, its
relative contribution was shown to decrease as event scale
increased. Of particular interest is the fact that, in contrast
to some previous studies (e.g. Moel and Aerts, 2010), the
vulnerability module uncertainty is smaller than the uncer-
tainty resulting from choice of data used to drive the hazard

module. This is likely due to such studies using relatively
constrained event scenarios in which hazard uncertainty is
more limited than in a stochastic model. Studies which con-
sidered a wider range of events (Apel et al., 2008b; Merz and
Thieken, 2009) have found uncertainty in the features con-
trolling the occurrence and magnitude of events (e.g. stage
discharge relationships, flood frequency analysis) to be simi-
lar to or greater than the vulnerability uncertainty, especially
at larger event scales.

Spatial scales are an important consideration in the con-
text of this study. The catchments modelled in this study are
relatively small, and it is reasonable to suggest that the rela-
tively coarse reanalysis and satellite products might perform
better for major rivers where fluvial floods are driven by rain-
fall accumulations over longer time periods and large spatial
areas. Some of their inherent traits, such as tendency for the
reanalysis product to persistently “drizzle” while underesti-
mating storm rainfall accumulations, will negatively impact
their applicability to flood modelling across most catchment
scales although the severity of the effect may reduce as catch-
ment sizes increase. However, it is wrong to assume that the
dominant driver of flood risk is always represented by large
events on major rivers. A significant proportion of insurance
losses resulting from the 2007 UK floods and 2013 central
European floods can be classified “off-floodplain” – that is
to say they occurred either as a result of surface water (plu-
vial) flooding or as a result of fluvial flooding in small catch-
ments (Willis, personal communication, January 2014). This
suggests that even when considering large events, the abil-
ity to produce realistic hazard footprints in small catchments
remains critical and thus, for practitioners concerned about
such events, the findings of this paper remain relevant.

When considered together, the above findings make it dif-
ficult to commend a stochastic flood model driven by pre-
cipitation data as a robust tool for producing EP curves for
use in portfolio analysis. The sensitivity of the stochastic
component to the driving data is of fundamental concern
due to the high degree of uncertainty in observed precipi-
tation extremes, suggesting that alternative driving mecha-
nisms such as flood frequency analysis should be evaluated
in this context. Furthermore, the results demonstrate sensi-
tivity to model parametric uncertainty that will be difficult
to overcome. However, these shortcomings do not mean that
such a model has no value. Although it may be difficult to
use such a system to project accurately how often events
of a certain magnitude will occur, and thus estimate prob-
able losses over a given time window, the model could still
be used to assess the relative risk of assets within a portfo-
lio. We argue that understanding and quantifying the uncer-
tainties generated by the stochastic and hazard modules for
a given portfolio may be important to managing assets ef-
fectively. Although the computational demand of the hazard
module in particular will likely render this unfeasible on an
operational basis, studies such as this may be used to inform
judgments regarding the total uncertainty within such model
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structures. A valuable exercise for users of commercial mod-
els may be to compare such findings to the uncertainty gen-
erated by their own models, many of which may attempt to
account for hazard uncertainty via sampling widened distri-
butions within the vulnerability module.

5 Conclusions

In this study, stochastic, hazard, vulnerability and loss mod-
ules have been assembled into a cascade framework that fol-
lows the same principles as an insurance catastrophe model.
The model operates by generating a large synthetic series of
events in the stochastic component which is then simulated
by the hazard component. The vulnerability component as-
sesses the damage and loss caused by each event, building
up a database of occurrence intervals and event losses. Fi-
nally, the loss component resamples from the modelled oc-
currence and loss distributions, producing exceedance proba-
bility curves that estimate the expected annual aggregate loss
for a range of return periods. The model simulates fluvial
flood risk in Dublin, Ireland, and the components were cali-
brated using local historical observations where appropriate
data were available.

A number of different precipitation data sets were tested
with the model, including high-resolution local gauge and
radar records, model reanalysis records (ERA-Interim) and
satellite records (CMORPH). The exceedance probability
curves produced by the model were found to be very sensi-
tive to the choice of driving precipitation data, with different
driving data sets producing loss estimates that varied by more
than an order of magnitude in some instances. Examination
of the observational records reveals that the precipitation in-
tensity distributions over a common period vary markedly
between the different data types. These differences are in-
evitably reflected in the output produced by the stochastic
module and result in large differences in the modelled mag-
nitude of high return-period events. The calculation chain
was also found to be sensitive to the length of observational
record available, with the presence of a large event in a short
training set resulting in severe overestimation of losses rela-
tive to models driven by a longer record. The sensitivity of
the model to parameterisation of the hydrological model was
tested on an event basis. Modelled loss ratios were found
to be highly sensitive to the choice of parameter set. De-
spite all being classified as behavioural, the loss ratios for
one event varied by up to six times dependent on the pa-
rameter set selected. Finally, uncertainty in the vulnerabil-
ity module was considered. Due to the asymptotic nature of
damage functions it was found to be a larger relative contrib-
utor at small event scales than at large, although even at large
scales its contribution remained high. However, the impact
of both hydrological parameter uncertainty and vulnerability
uncertainty were both smaller than the impact of uncertainty
within the driving precipitation data.

Considered together, the results of this study illustrate the
difficulty in producing robust estimates of extreme events.
The uncertainty in the observed record, along with the short
length of records relative to return periods of interest, is
of particular concern as observed differences diverge when
the event scale is extrapolated far beyond what has histori-
cally been observed. A lack of suitable observational data for
model calibration makes it challenging to envisage how sim-
ilar methods to those employed in this study could be used
to produce the national-scale models required by industry
without uncertainty bounds becoming unmanageably high.
Further issues that will compound these problems are the
scarcity of data relating to the condition and location of flood
defences, another important source of uncertainty (Gouldby
et al., 2008), and the requirement to build models in data-
poor developing regions where insurance market growth is
greatest. The results of this study have emphasised the dra-
matic impact of data uncertainties on loss estimates, and it is
important that the users and developers of catastrophe mod-
els bear such results in mind when assessing the validity of
the uncertainty mechanisms within their models. At present,
the combination of short record lengths and highly uncertain
precipitation intensities during storm events make it difficult
to recommend the use of rainfall-driven model cascades to
estimate fluvial flood risk, especially where estimates of re-
turn period are necessary. Looking forward, increased resolu-
tion regional reanalysis products with improved rainfall pro-
cess representation may help to reduce these uncertainties as
may the assimilation of local data into global observational
data sets to produce improved regional calibrations for rain-
fall products (Dinku et al., 2013). Further effort should also
be concentrated on developing alternative means of charac-
terising the loss-driving properties of river basins. One such
alternative may be to revisit methods based on geomorphol-
ogy and flood frequency analysis (Leopold and Maddock,
1953; Meigh et al., 1997) in conjunction with modern obser-
vational databases (such as the Global Runoff Data Centre)
and remotely sensed data. As supercomputing power contin-
ues to grow exponentially, large ensemble stochastic frame-
works that combine such approaches will likely become ten-
able projects over the coming decade.
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