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Abstract. We present combined observations made near
midnight by the EISCAT radar, all-sky cameras and the
combined released and radiation efects satellite (CRRES)
shortly before and during a substorm. In particular, we
study a discrete, equatorward-drifting auroral arc, seen
several degrees poleward of the onset region. The arc
passes through the Þeld-aligned beam of the EISCAT
radar and is seen to be associated with a considerable
upßow of ionospheric plasma. During the substorm, the
CRRES satellite observed two major injections, 17 min
apart, the second of which was dominated by Ò ions. We
show that the observed arc was in a suitable location in
both latitude and MLT to have fed O` ions into the
second injection and that the upward ßux of ions asso-
ciated with it was su¦cient to explain the observed injec-
tion. We interpret these data as showing that arcs in the
nightside plasma-sheet boundary layer could be the
source of Ò ions energised by a dipolarisation of the
mid- and near-Earth tail, as opposed to ions ejected from
the dayside ionosphere in the cleft ion fountain.

1 Introduction

A number of authors (e.g. Bakeret al., 1982) have dis-
cussed the possible role of ionospheric Òions in trigger-
ing substorm onset. The presence of increasing amounts of
O` in the magnetospheric plasma can increase the growth
rate of the ion-tearing mode instability, and this instability
has been invoked to explain the sudden disruption of the
cross-tail current prior to substorm onset (Bu¬ chner and
Zelenyi, 1987). The concentration of Ò in the magneto-
sphere has also been observed to increase during the early
growth phase of substorms. Dagliset al. (1991), using
AMPTE-CCE ion data, showed that the partial pressure
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of all the major ion species, H̀ , O` and He2̀ , increases
during the stretching of the tail Þeld, but that while H̀
remains the dominant ion of the three, the largest relative
increase in pressure is seen in O` . A further study by
Daglis et al. (1994) showed the excellent correlation be-
tween Ò energy density and AE, and in particular be-
tween Ò energy density and AU, which increases in the
growth phase, prior to onset. Given the almost complete
absence of Ò from the solar wind (Bameet al., 1970;
Prange, 1978; Johnson, 1979), the ionosphere must be
active in feeding the magnetosphere during the growth
phase. Since auroral electron precipitation and in particu-
lar auroral arcs are associated with upward beams of Ò
ions (Shelleyet al., 1982), auroral arcs provide one means
of populating the near-Earth plasma sheet with Ò .

Ionospheric O` ions ßow into the magnetosphere as
beams (the result of Þeld-parallel acceleration) or conics
(due to transverse acceleration). Beams are associated
mainly with outward Þeld-aligned currents. Some beams
are composed entirely of Ò and some entirely of H̀
(Kintner et al., 1979). According to Franket al. (1977),
a ßux of 1012m~2s~1 of O` must leave the topside
auroral ionosphere to explain ßuxes of Ò observed at
35RE, an estimate which is consistent with observations of
outßow (with energies E' 5 eV) made by the ISIS-2
spacecraft below 1RE(Klumpar, 1979). Auroral oxygen-
ion outßow is most profuse at low energies (0Ð100 eV), as
demonstrated by observations of thermal Ò upßows
deduced from topside proÞles by Lockwood (1982) and
observations of thermal magnetospheric plasma by the
RIMS experiment on DE-1 (Chappell, 1982; Mooreet al.,
1984; Chandler, 1991). Above 550 eV, the ßux of O` in
auroral ion beams can exceed that of H̀ by a factor of
5 (Ghielmetti et al., 1979; Gorneyet al., 1981; Collinet al.,
1981).

Upward ßows of ionospheric ions have been conÞrmed
by EISCAT radar studies (Joneset al., 1988; Winseret al.,
1989; Keatinget al., 1990; Wahlundet al., 1992). Keating
et al. (1990) performed a statistical survey of high-ßux
Þeld-aligned ßows seen by EISCAT and showed that they



were most likely to occur in the winter between 1900and
0400UT, with their occurrence peaking at about 2100UT.
At least two distinct types of ion outßow have been found.
One is associated with frictional heating events caused by
enhanced DC electric Þelds (Winseret al., 1989) and is
characterised by an increase in Þeld-aligned ion velocity
and ion temperature but no signiÞcant increase in electron
density at E-region altitudes. The large ion temperatures
and temperature anisotropy (To ' TE) in these events
indicate the existence of high electric Þelds. Another class
of event (Wahlundet al., 1992) is associated with electron
precipitation (indicated byE-region density increases) and
large electron-temperature increases without a large in-
crease in ion temperature.

The ionosphere provides several other, seemingly con-
tinuous, sources of ions to the magnetosphere, namely the
polar wind and the cleft ion fountain. The polar wind
(Banks and Holzer, 1969) consists of H̀ and He` ions,
expelled from the ionosphere by the ambipolar Þeld gener-
ated by the charge separation of the Ò gas and the
lighter electron gas. The classical theory of the polar wind
predicted that the heavier Ò ions would be gravitation-
ally bound, but data from the DE-1 satellite showed that
high-altitude ion ßows sometimes consist almost entirely
of O` at low energies. Yauet al. (1984) found that the
occurrence probability of O` above 10 eV could be as
large as 30% in the polar cap. Likewise, the RIMS instru-
ment on DE-1 showed that Ò ions could be dominant in
the polar cap in the energy range 0Ð50 eV (Waiteet al.,
1985). Waiteet al. found further that in several of the cases
that they studied, the Ò ions originated from a restricted
part of the polar cap and had subsequently been carried
towards the nightside by anti-sunward convection. Lock-
wood et al. (1985a) identiÞed this persistent source of
upßowing ionospheric ions (including Ò ) in the energy
range 1Ð20 eV as coming from the cleft, and subsequently
coined the term ÔÔcleft ion fountainÕÕ (Lockwoodet al.,
1985b).

Ionospheric ion upßows bear a complex relationship to
actual O` outßow into the magnetosphere. Ion upßow in
the ionosphere consists mainly of Ò ions, but this sup-
ports in part the escape of H̀ via charge exchange. The
ßux of H` escaping into the magnetosphere has a max-
imum value and Ò escape is often inferred from low-
altitude upßows which exceed this value. It is also unclear
how much of the Ò upßow simply falls back to the Earth
at a later time under gravity (Chandler, 1995). Further-
more, upßows can be part of a thermal expansion of the
ionosphere, the ions subsequently returning when it con-
tracts again. However, the elevation of ions to an altitude
where transverse or parallel acceleration can act to give
them su¦cient velocity to overcome gravity will enhance
O` escape ßuxes. Ions with the greatest parallel velocity
are carried farthest down the tail by high-latitude convec-
tion. Since the velocity of Ò ions is four times less than
that of protons of the same energy, the time of ßight of Ò
ions along a given Þeld-aligned path is four times larger
than that of H` , and the distance moved by the convect-
ing Þeld line is likewise that much larger. This means that
convection inßuences Ò trajectories far more than H̀
trajectories, and that Ò from the nightside auroral oval

Fig. 1. A schematic illustration of the respective paths into the
magnetosphere of Ò ions from the dayside cleft and the nightside
auroral ionosphere. Theempty arrowrepresents the dipolarisation
convection surge. X marks the tail reconnection neutral line. Recon-
nection at X allows cleft-ion-fountain plasma to cross the
open/closed Þeld line boundary closer to the Earth (at A)

will tend to be deposited in the near-Earth tail
(GSM/GSE X"! 5 to ! 10RE).

It has been suggested that ions from the cleft may
contribute to substorm onset (Cladis and Francis, 1992).
To be seen in the energetic particle injection associated
with the substorm expansion phase, the Ò must already
be present in the magnetosphere on the Þeld lines which
dipolarise in the convection surge. Ions that come from
the cleft are initially on open Þeld lines and stay frozen on
to the Þeld lines along which they were ejected as the Þeld
lines convect across the polar cap. Therefore, for cleft-ion-
fountain ions to gain access to the onset region, they must
Þrst cross the open/closed Þeld-line separatrix (A in Fig. 1)
which can only happen if there is ongoing closure of open
ßux at the neutral line during the growth phase. The only
alternative to this is through violation of the frozen-in
approximation, such as Þnite gyro-radius e¤ects. How-
ever, it is unlikely that these can on their own give rise to
large-scale transport of ions across the separatrix. With-
out growth phase reconnection at the neutral line, cleft-
ion-fountain ions travel down the tail lobe and have no
access to the onset region (an alternative trajectory, which
is also shown in Fig. 1). Since the travel time from the cleft
to the onset region is typically several hours (as demon-
strated by the convection time in the ionosphere; see also
simulations by Cladis and Francis, 1992), there is insu¦-
cient time for O` leaving the cleft in the growth phase to
reach the onset region by the time of onset at the end of
that growth phase. This is true even if tail reconnection
does take place during the growth phase. It is now be-
lieved that substorm onset occurs on closed Þeld lines at
the inner edge of the plasma sheet (Elphinstoneet al.,
1991; Samsonet al., 1992a, b, Murphreeet al., 1993;
Lopez et al., 1993; Gazeyet al., 1995); the evidence for this
has recently been reviewed by Lockwood (1995). Ions
which have been ejected into the magnetosphere from the
closed Þeld-line region, e.g. by an arc equatorward of the
open/closed Þeld-line boundary, but poleward of the onset
region, already Þnd themselves on closed Þeld lines and
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Fig. 2. The magnetogram recorded at Tromsù
Auroral Observatory on 7 March 1991.
Negative H indicates a westward electrojet.
Positive Z indicates that the electrojet is to the
south of Tromsù. The dotted linesspan the
interval (2120Ð2230UT) covered by the
EISCAT and magnetometer data given in Figs.
7, 8 and 6, respectively

therefore have direct access to the onset region without
the need for any pre-onset reconnection to take place. The
two possible sources of Ò are illustrated in Fig. 1.

2 Observations

The interval under discussion in this paper is 2120Ð2230
UT on 7 March 1991. From the magnetogram recorded at
Tromsù (Fig. 2), we see that this interval encompassed the
third in a sequence of substorms that occurred on that
evening and, as for the previous two, the electrojet signa-
ture indicates a westward electrojet, centred to the south
of Tromsù. Data on the interplanetary magnetic Þeld
(IMF) from the IMP-8 satellite (Fig. 3) show that the
Z component had been negative (at the spacecraft) since
about 2020UT, and thus that open magnetospheric ßux is
likely to have been generated for at least an hour and
a half before this substorm occurred.

We also call upon data from the combined release and
radiation e¤ects satellite (CRRES) (Wilkenet al., 1992),
which ßew in a geosynchronous transfer orbit, inclined at
180 to the equatorial plane, with apogee at 6.3RE. The
spin period was about 27 s. From December 1990 until
April 1991, a period which encompassed the observations
presented here, apogee was within a few hours of local
midnight. With CRRESÕ orbit being nearly geostationary
near apogee, it was well placed to measure nightside
substorm phenomena. Figure 4a pictures orbit 548 of the
satellite, with the interval covered by Fig. 4b (2120Ð2320
UT, 7 March 1991) marked in bold. The nightside of the
Earth is coloured black and the axes are measured in units
of Earth radii in the GSM coordinate system. In the upper
panel, the orbit is shown from the viewpoint of the dawn
sector of the equatorial plane, while in the lower panel one
looks down upon the equatorial plane from above
the north pole. During the period 2120Ð2230UT, CRRES

was quite near to the magnetic equatorial plane and also
west of EISCAT, although it was on an¸ -shell (̧ " 6.6)
close to EISCATÕs. Figure 4b traces CRRESÕ northern
magnetic footprint. CRRES was within the domain of
the EarthÕs internal magnetic Þeld during the period of
interest.

Figure 5 shows data from the magnetospheric ion com-
position spectrometer (MICS) instrument which mea-
sured atomic mass and charge states of ions in the range
1Ð425 keV/Q(Wilken et al., 1992). Ions entering the instru-
ment passed through three detector stages: the electro-
static analyser, in which only ions of particular energy-to-
charge ratio (E/Q) could traverse the full length of the
analyser (voltage varied in 32 logarithmic steps from
1Ð425 keV); the time-of-ßight detector which allowed the
energy-to-mass ratio (E/m) to be measured; and a solid-
state detector which measured the total energy (E) of ions
above 40 keV which had made it there. This triplet of
measurements yieldsE, m and Q. The colour contours of
Fig. 5 show spin-averaged count rates, which are nearly
proportional to di¤erential number ßux (m~2s~1sr~1).
The top panel (DCR) shows all counts which registered
a time of ßight in the MICS instrument. The next two
panels show counts of alpha particles (He2̀ ) and oxygen
ions (O` ), respectively. Note that most of the counts
which Þgure in the DCR panel are due to hydrogen ions
(H` ), not He2̀ or O` .

The dispersive features visible on the plots are termed
drift echoes and arise because ions from a given injection
drift round the Earth at di¤erent speeds due to grad-B
drift, according to their energy per unit charge (E/Q).
Superimposed upon Fig. 5 are simulated drift echoes for
ions in a dipole magnetic Þeld (Grandeet al., 1992). The
drift motion of particles in the energy range of the MICS
instrument arises predominantly from magnetic-Þeld
gradient e¤ects, the e¤ect of electric Þelds being negligible.
In the modelling, ions are assumed to be trapped at the

1034 N. G. J. Gazeyet al.: EISCAT/CRRES observations



Fig. 3. The IMFÕsZ component measured in
the solar wind by the IMP-8 satellite
(position M29.7, 12.3,! 15.1NR

E
in GSM).

The dotted linesspan the interval
(2120Ð2230UT) covered by Figs. 6Ð8

Fig. 4a, b. Orbital parameters for CRRESÕ orbit 548;a in GSM
coordinates. Thesolid line marks the orbit segment for the time
spanned by Fig. 5;b CRRESÕ northern magnetic footprint for orbit
548. Also plotted are the positions of the substorm electrojet as it
progressed westwards. W1 and E1 are the westward and eastward
ends of the current wedge for 2139UT; W2 and E2 are for 2144UT;
W3 and E3 are for 2152UT; and W4 and E4 are for 2156UT

magnetic equator and to drift westwards in circular orbits
with a period proportional to the reciprocal of ion E/Q
and geocentric distance (Lyons and Williams, 1984). The
UT and MLT of each simulated drift echo is varied to
match the observations and the best-Þt injection location
in UT, and MLT is given in the bottom left-hand corner of
Fig. 5. The model reproduces the observed drift echoes
fairly accurately, despite its simplicity. This means that we
can estimate the injection location of Ò and He2̀ ions
observed by MICS, which is crucial in trying to compare
CRRES and EISCAT observations when CRRES was
magnetically west of EISCAT. Figure 5 shows two
simulated drift echoes, one from the Þrst major injection
seen by CRRES (black line) which contained both He2̀
and O` ions and the second (grey line) from a subsequent
oxygen-rich injection. Modelling of the Þrst, He2̀ -rich,
injection places it at 2143UT (2234MLT) while the sub-
sequent Ò -rich injection seems to have taken place at
2200UT (2258MLT). The location of the injection point
in UT is fairly well determined by the modelling, although
the deduced injection MLT may be out by up to about
30 min. Nevertheless, the modelling does show that the
injections occurred at an MLT close to EISCATÕs (\ 2330
MLT) at that UT.

Substorm onset occurred at 2139UT, as deduced from
SAMNET magnetometer data (Fig. 6a) (Yeomanet al.,
1990). Onset is in evidence both as perturbations in the
H components from the various stations (Fig. 6b) and as
Pi2 pulsations in H (Fig. 6c). At all SAMNET sites, with
the sole exception of NOR, the deviation inZ (Fig. 6d) at
onset was negative, suggesting that the onset electrojet
was north of the SAMNET network. Since the Tromsù
magnetogram (Fig. 2) indicates that the onset electrojet
was to the south of Tromsù, we can surmise that the onset
electrojet fell between Tromsù and SAMNET in geomag-
nmetic latitude. We have applied the York electrojet
model (Orr and Craymonson, 1994) to these data. The
movement of the substorm electrojet as deduced by this
model is represented (approximately, in geographic co-
ordinates) in Fig. 4b by a series of dots and crosses
representing the Þeld-aligned currents at the ends of the
electrojet at various times. In geographic coordinates, the
model puts the western end of the onset electrojet at about
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Fig. 5. Particle data from the MICS instrument aboard CRRES for
7 March 1991 (orbit 548). Theblack linessuperimposed upon the
data are simulated injection signatures for the He2̀ -rich injection of

2143UT. The grey linesare simulated injection signatures for the
O` -rich injection at 2200UT which followed it. Note the instrumen-
tal cuto¤ at low energy in the third panel (Ò )

1036 N. G. J. Gazeyet al.: EISCAT/CRRES observations



Fig. 6. a The SAMNET magnetometer sites (solid dots) and the
EISCAT sites (black dots on white); b Magnetic H components
observed by SAMNET stations on 7 March 1991. Note that the
Nordli (NOR) magnetometer was saturated between about 2120and

2210 UT; c SAMNET H components Þltered to show Pi2 pulsa-
tions;d Magnetic Z components observed by SAMNET stations on
7 March 1991

65¡N, 10Ð13¡E and the eastern end at 67¡N, 65¡E, its
eastern end therefore stretching well beyond the SAM-
NET chain (Fig. 4b, [W1, E1]). At about 2144UT, a sec-
ond electrojet appeared, west of the Þrst and on a similar
¸ -shell, with its western end at 352¡E and its eastern end
at 12¡E, near the centre of the SAMNET array (Fig. 4b,
[W2, E2]). By 2152UT the two electrojets appear to have
coalesced into one whose western end had moved west-
wards to about 345¡E (Fig. 4b, [W3, E3]). By 2156UT the
single electrojet had moved still further west to 332¡E
(Fig. 4b, [W4, E4]). By 2200UT the current magnitude in
the eastern end of the electrojet was falling and had begun
to sink everywhere at about 2204UT.

Figures 7 and 8 show analysed EISCAT results for the
period 2120Ð2230UT. An increase in ionisation typical of
an arc can be seen at 2127UT (panel 1, Fig. 7), followed by

a more major increase in ionisation between 2149 and
2159UT, when the substorm expanded polewards over the
EISCAT beam. It is clear that the arc at 2127UT was
associated with a large rise in electron temperature, but
not in ion temperature (panels 3 and 4). Also, the Þeld-
aligned velocity (panel 5), both before and after the event
was relatively high, and there was a noticeable ion outßux
during the event itself (panel 6, units of 1012m~2s~1). At
2140 UT, a series of quasi-periodic electron-density en-
hancements with a period of 6Ð8 min and substructure of
period 1Ð2 min began to populate the region of the EIS-
CAT beam at F-region altitudes. This material probably
drifted into EISCATÕs Þeld of view from the dayside
(Lockwood and Carlson, 1992).

Figure 9 shows an accompanying sequence of all-sky
camera pictures taken during the substorm. Tromsù, the
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Fig. 7. EISCAT data for the interval 2120Ð2230UT (7 March 1991).
All panels show their data colour-coded as a function of altitude and
UT for the Þeld-aligned radar beam. TheÞrst panel(log

10
n
e
, mea-

sured in m~3) incorporates multipulse data (90Ð150 km) at 1-min
resolution and long pulse data (150Ð570 km) at 10-s resolution. The
subsequent panels show electron temperature,¹

e
(K), ion temper-

ature, ¹
i
(K), the temperature ratio¹ e/¹ i, the Þeld-aligned ion bulk

ßow velocity (m s~1) and the Þeld-aligned ion ßux (in units of
1012m~2s~1). The data in thenarrow panelscomes from the long
pulse data alone (150Ð570 km) whilepanel1 includes multipulse data
(90Ð150 km). The left-hand colour key inpanel 1 applies to the
multipulse data and the right-hand colour key to the long pulse data
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Fig. 8. Field-perpendicular convection
velocities seen by EISCAT (as deduced
by the tristatic radar technique). No
data is available between 2217and
2230UT

observation site, is at the centre of each plate. At 2122UT
a faint, magnetically east-west aligned arc appeared to the
north of Tromsù (Fig.9a), developing a kink by 2123 30UT
(Fig. 9b). As this arc moved southwards (Fig. 9c, d), the
kink gradually straightened out and the arc was fading as
it passed through the EISCAT beam at approximately
2127UT. As it did so, it caused the arc signatures in the
EISCAT data Ð panel 6, Fig. 7, for example, shows the
clear upßux of ionospheric plasma associated with it. The
arc over Tromsù Þnally faded by 2129UT. At 2140UT
(Fig. 9e), shortly after onset, the poleward edge of the
bulge brightened and moved northwards, eventually en-
gulÞng the scattering volume and causing the expansion
phase signatures in the EISCAT data (Fig. 7).

3 Discussion

We wish to consider whether Ò ions ejected in the
upßow that was associated with the southward-drifting
pre-onset arc could have appeared in the Ò injections
measured by CRRES, or whether these energetic ions
came from the cleft ion fountain on the dayside. South-
ward convection (Fig. 8) would then have carried the ßux
tube equatorwards until it arrived at the ionospheric onset
location. Consider a nightside ßux tube which crosses the
EarthÕs equatorial plane at about 10RE, which we take to
be the approximate onset location. Ions ejected from the
topside ionosphere must travel approximately 15REalong the ßux tube before reaching the central plasma
sheet. To make an order-of-magnitude estimate of the
ßight time of O` ions along the ßux tube, let us consider
the ions in question to be weakly accelerated in the top-
side ionosphere and have an energy of 25 eV until they
reach a distance of 1REalong the ßux tube, whereupon
they are accelerated to about 1 keV, becoming an ion

beam. Using simple considerations, one arrives at a ßight
time of approximately 15 min. If we reduce the assumed
energy of the Ò below 1RE to 5 eV, we increase the
travel time to approximately 21 min.

For ions ejected via the arc to have entered the onset
region and there to be energised (so as to be detected by
CRRES), the foot of the ßux tube on to which they are
frozen must have reached the ionospheric location of
onsetÐnamely the bright auroral bulge visible to the very
south of the all-sky-camera Þeld of viewÐ by the time
onset occurred. Note that a ßux tube moves with the
plasma velocity, not the arc velocity, and that the arc may,
in fact, move through the background plasma (Haerendel
et al., 1993; Gazeyet al., 1995). The all-sky camera sub-
tends an angle of about 150¡. Elevation can be measured
o¤ the images linearly over this range. At an emission
height of about 120 km, therefore, the Þeld of view has
a span of about 900 km. The southward velocity of the
background plasma before the arc entered the beam was
about 250 m s~1 and after it had passed through the beam
about 500 m s~1 (we cannot tell whether the ßow speed
di¤ered greatly from these values when the arc was away
from the EISCAT beam, but assume that they do not). At
the Þrst of these two speeds, the foot of the ßux tube would
have moved about 350 km (\ 3.1¡ invariant latitude) and
for the second speed about 475 km (\ 4.2¡ invariant lati-
tude) in the F region between the arcÕs appearance to the
north of Tromsù and the arrival of ejected Ò ions in the
plasma sheet. Since the distance in the ionosphere between
the place where the arc appeared and the location of the
onset bulge is 450Ð500 km, it is in either case feasible (to
the accuracy of this calculation), that southward convec-
tive ßow was fast enough to carry the Ò ejected by the
arc into the onset region, i.e. the southward-drifting arc
described here would have been in a suitable location to
act as a source of the Ò seen at onset.
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Fig. 9. A sequence of all-sky camera images showing the motion of
arcs in the growth and expansion phases of the substorm. The plates
are geographically aligned, with north at the top and east to the

right. The mosaic e¤ect on some of the pictures is due to the dynamic
resolution adopted to solve data storage problems

Figure 10a shows the ßux of the ionospheric ions in the
upßow event measured by EISCAT at 2127UT as a func-
tion of UT and altitude. The left-hand panel shows ion
ßux at approximately 10-s resolution. The arc is clearly
visible and delineated by two white lines. The right-hand
panel shows the altitude proÞle of ßux integrated over this
interval. The ßux reaches a maximum value of 4.77]
1014m~2s~1 at about 500 km. The fact that no asymp-
totic value is reached with increasing altitude may mean
that there is an upwelling at F-region altitudes after which
some Ò sinks back down into the ionosphere again

(Lockwood, 1982), but note that the radar is measuring
a net upßux above 300 km. We have also calculated the
ßux of high-energy Ò along each of the two major drift
echoes measured by MICS for comparison, as illustrated
in Fig. 10b, whose Þrst panel shows 2-min (4-spin)
averaged count rates for energy channels covering
72.4Ð101.2 keV, 113.0Ð156.7 keV, 175.4Ð246.6 keV and
275.4Ð382.0 keV, and whose second panel gives the cor-
rected Ò ßux in each of these four energy ranges and for
each of the two drift echoes considered. Converting the
MICS di¤erential count rates to ßux values is acheived
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Fig. 10. a The upward ßux of ionospheric ions, as measured by
EISCAT during transition of the arc through the EISCAT beam at
about 2127UT. The left-hand panelshows ßux (n

e
] vE) as a function

of altitude and UT, with the interval containing the arc bounded by
two white lines. Immediately to its right is a scale showing ßux
values. Theright-hand panelshows the altitude proÞle of ßux integ-
rated over this time interval (roughly 2127Ð2128) spanned by the two
white lines. b O` -ion ßux measured by MICS during the two
primary injections (echos 1 and 2) that are visible in Fig. 5. The
bottom panelshows the uncorrected count rates (120-s averages) in
four energy ranges selected by averaging over a number of the
available 32 energy steps. Thecirclesrepresent the points which lie
along the dispersed echo. These are used in the calculation of the
actual ßux which is shown in thetop panel

using the equation:

j"
dJ
dE

"
C

GáDE ág

where j is the di¤erential number ßux in cm~2s~1
sr~1 keV~1, C is the measured count rate,G is the instru-
mentÕs geometric factor,DE is the respective energy band
andg is the e¦ciency of the sensor. The correctj for sensor

degradation is thus:

j" jmeasA¹ CR
SSDBcalibration

áA¹ CR
SSDBmeasured

where¹ CR stands for the total count rate andSSDstands
for the count rate at the solid-state detector. The e¦cien-
cies and calibration values are available in tabulated form
(personal communication, G. Kettmann, Copernicus-
Gesellschaft, Katlenburg-Lindau). The value of the Ò
ßux (m~2s~1), summed over all four energy bins, in the
Þrst (He2̀ -rich) injection was 3.5] 1010m~2s~1, and the
value of the Ò ßux in the second (Ò -rich) injection was
6] 1010m~2s~1. The strength of the Þeld at CRRES,BC,
was measured to be 140 nT, while the strength of the Þeld
in the ionosphere,BI, is taken to be constant at 50000 nT.
The magnetic ßux in the ßux tube at CRRES,BCAC,
equals that in the ionosphere end of the tube, namely
BIAI, whereA refers to the local cross-sectional area of the
ßux tube. Therefore the ratio of the areas,AC/AI" BI/BC,
and we apply a mapping factor of 50000/140K 360 to
account for the increasing cross-sectional area with alti-
tude of the ßux tube between the Earth and CRRES, i.e.
we require a ßux of 1.25] 1013m~2s~1 from the iono-
sphere to explain the injection signature. The upßux mea-
sured by EISCAT while the arc was in the radarÕs beam
had a maximum value of about 4.77] 1014m~2s~1
(Fig. 10a). The ionospheric Ò outßux is adequate to
explain all the ions seen by CRRES, with the proviso that
not all upßowing ions will escape and MICS does not see
all ions due to its restricted energy coverage.

For the cleft ion fountain to have been the source of the
O` , the ßux tube on which they were situated would have
had to be transported over the polar cap. The polar cap is
situated at approximately \ 80¡ " on the dayside, and
\ 65¡ " on the nightside, such that its diameter at F-
region altitudes is approximately 4000 km. Given a Þeld-
perpendicular plasma velocity of the order of 0.5 km s~1,
the time required for cleft-ion fountain Ò to reach the
onset region is well over an hour.

We would expect both injections to have taken place
within the substorm current wedge. In the injection
modelling, the Þrst, He2̀ -rich injection is put at 2143UT
(2234MLT), roughly 30 min away to the west of EISCAT
in MLT and still within the all-sky cameraÕs Þeld of
view, since this time di¤erence corresponds to about
430 km at ionospheric altitudes. At 2143UT, the western
end of the electrojet was at 352¡E (geographic) and the
injection took a further 2 min to reach CRRES, whose
northern magnetic footprint was at geographic longitude
340¡E. It therefore seems likely that this injection orig-
inated close to the western end of the substorm electrojet.
The second, Ò -rich injection is placed at 2200UT and
2300MLT, i.e. close to EISCATÕs MLT and within the
current wedge.

4 Conclusions

Due to CRRESÕ favourable location with respect to EIS-
CAT, we are able to suggest a link between EISCAT
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measurements of oxygen outßow and CRRES measure-
ments of oxygen injections at substorm onset. The injec-
tions that have been modelled in this paper form a rela-
tively unusual double injection Ð He2̀ followed by O`
Ðof the type recently revealed by CRRES data (Grandeet
al., 1992). It appears that the southward-drifting pre-onset
arc visible near Tromsù could well have been a source of
O` particles observed by CRRES in the particle injections
at onset.

We do not completely rule out the cleft ion fountain as
a source of Ò , since the growth phase of this substorm
lasted for over an hour. The arrival of patches of density in
the nightside ionosphere at about the time of onset might
mean that cleft-ion-fountain ions ejected upwards at the
start of the growth phase reached the onset region in the
magnetosphere by the time of onset. However, for Òions
from the cleft ion fountain to have had access to the onset
region, there would have had to have been reconnection at
the distant neutral line prior to onset. Growth phase
reconnection in the tail is not a requirement for the south-
ward-drifting arc source, which was on closed Þeld lines,
so these ions would have had direct access to the onset
region, which was also on closed Þeld lines (see summary
by Kennel, 1992).
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polar-cap boundary, J. Geophys. Res., 90, 4099Ð4116, 1985a.

Lockwood, M., M. O. Chandler, J. L. Horwitz, J. H. Waite, T. E.
Moore, and C. R. Chappell,The Cleft Ion Fountain, J. Geophys.
Res., 90, 9736Ð9748, 1985b.

Lopez, R. E., H. E. J. Koskinen, T. Pulkkinen, T. Bo~singer, R. W.
McEntire, and T. A. Potemra,Simultaneous observation of the
poleward expansion of substorm electrojet activity and the tail-
ward expansion of current sheet disruption in the near-earth
magnetotail, J. Geophys. Res., 98, 9285Ð9295, 1993.

1042 N. G. J. Gazeyet al.: EISCAT/CRRES observations



Lyons, L. R., and D. J. Williams, Quantitative aspects of magneto-
spheric physics, D. Reidel, Dordrecht, 1984.

Moore, T. E., J. H. Waite, M. Lockwood, M. O. Chandler, C. R.
Chappell, M. Sigiura, D. R. Weimer, and W. K. Peterson,Upwell-
ing O` ions, a case study. Poster paper, Fall AGU meeting (see
EOS ¹ ransactions of the AGº , 65, 1056), 1984.

Murphree, J. S., R. D. Elphinstone, M. G. Henderson, L. L. Cogger,
and D. J. Hearn,Interpretation of optical substorm onset obser-
vations, J. Atmos. ¹ err. Phys., 55, 1159Ð1170, 1993.

Orr, D., and M. Craymonson, The location of substorms using
mid-latitude magnetometer arrays, inSubstorms2, Proceedings of
the 2nd International Conference on Substorms, ICS-2, 435Ð438,
1994.

Prange, R., Energetic (keV) ions of ionospheric origin in the
magnetosphere, a review,Ann. Geophysicae, 34, 187Ð213,
1978.

Samson, J. C., L. R. Lyons, P. T. Newell, F. Creutzberg, and B. Xu,
Proton aurora and substorm intensiÞcations,Geophys.Res. ¸ ett.,
19, 2167Ð2170, 1992a.

Samson, J. C., D. D. Wallis, T. J. Hughes, F. Creutzberg, J. M.
Ruohoniemi, and R. A. Greenwald,Substorm intensiÞcations and
Þeld-line resonances in the nightside magnetosphere,J. Geophys.
Res., 97, 8495Ð8518, 1992b.

Shelley, E. G., W. K. Peterson, A. G. Ghielmetti, and J. Geiss,The
polar ionosphere as a source of energetic magnetospheric
plasma,Geophys. Res. ¸ ett., 9, 941Ð945, 1982.

Wahlund, J.-E., H. Opgenoorth, I. Ha~ggstro~m, K. J. Winser, and
G. O. L. Jones, EISCAT observations of topside ionospheric
outßows during auroral activity, revisited,J. Geophys. Res., 97,
3019Ð3035, 1992.

Waite, J. H., T. Nagai, J. F. E. Johnson, C. R. Chappell, J. L. Burch,
T. L. Killeen, P. B. Hays, G. R. Carignan, W. K. Peterson, and
E. G. Shelley,Escape of suprathermal Ò ions in the polar cap,J.
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