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ABSTRACT

With movement toward kilometer-scale ensembles, new techniques are needed for their characterization.

A new methodology is presented for detailed spatial ensemble characterization using the fractions skill score

(FSS). To evaluate spatial forecast differences, the average and standard deviation are taken of the FSS

calculated over all ensemble member–member pairs at different scales and lead times. These methods were

found to give important information about the ensemble behavior allowing the identification of useful spatial

scales, spinup times for themodel, and upscale growth of errors and forecast differences. The ensemble spread

was found to be highly dependent on the spatial scales considered and the threshold applied to the field. High

thresholds picked out localized and intense values that gave large temporal variability in ensemble spread:

local processes and undersampling dominate for these thresholds. For lower thresholds the ensemble spread

increases with time as differences between the ensemble members upscale. Two convective cases were in-

vestigated based on the Met Office United Model run at 2.2-km resolution. Different ensemble types were

considered: ensembles produced using the Met Office Global and Regional Ensemble Prediction System

(MOGREPS) and an ensemble produced using different model physics configurations. Comparison of the

MOGREPS and multiphysics ensembles demonstrated the utility of spatial ensemble evaluation techniques

for assessing the impact of different perturbation strategies and the need for assessing spread at different,

believable, spatial scales.

1. Introduction

It has been long known that at small spatial scales

forecast errors grow more rapidly (Lorenz 1969;

Ehrendorfer 1997; Palmer 2000 and references therein)

possibly resulting in rapid upscale error growth in high-

resolution models. In recent years this subject has again

come under discussion as increases in computer power

allow models to be run at higher and higher resolutions

(Mass et al. 2002 and references therein; Lean et al.

2008). Hohenegger and Schär (2007a) compared the

predictability at large (around 80 km) and convection-

permitting (2.2 km) scales and found error doubling

times around 10 times shorter for the higher-resolution

simulations. Further work has investigated the links

between mesoscale processes and error growth with

a focus on moist dynamics (Zhang 2005; Hohenegger

et al. 2006) and the separation of equilibrium and trig-

gered convection to distinguish different modes of pre-

dictability in convective events (Keil and Craig 2011;

Zimmer et al. 2011; Craig et al. 2012; Keil et al. 2014).

Ensemble prediction systems strive to represent the

meteorological uncertainty present in a particular fore-

cast and have been widely used to assess error growth in

a variety of high-resolution situations (Walser et al. 2004;

Walser and Schär 2004; Hohenegger and Schär 2007b;
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Hanley et al. 2011, 2013). Further investigations have been

conducted into different ensemble perturbation strategies

for high-resolution ensembles including initial condition

perturbations (Migliorini et al. 2011; Caron 2013;Kühnlein
et al. 2014), physics perturbations (Stensrud et al. 2000;

Hacker et al. 2011; Gebhardt et al. 2011; Vié et al. 2012;
Baker et al. 2014), perturbation of boundary layer pa-

rameters (Martin and Xue 2006; Leoncini et al. 2010;

Done et al. 2012), and the use of different physics schemes

(Berner et al. 2011; Leoncini et al. 2013).

The aim of this paper is to provide a newmethodology

for evaluating, thoroughly, the differences between

members of a convection permitting ensemble and the

dependence of these differences on spatial scale. These

methods are based on the fractions skill score (FSS;

Roberts and Lean 2008; Roberts 2008). Various consid-

erations are discussed including the forecast evolution

through different lead times, the effect of considering

different threshold values for the fields used to calculate

the FSS, and the comparison of different forecast vari-

ables. For the demonstrative purposes of this paper two

convective cases are considered using ensembles pro-

duced as part of the Met Office Global and Regional

Ensemble Prediction System (MOGREPS; Bowler et al.

2008, 2009). The spatial spread of the ensemble mem-

bers is characterized and the realism of the ensemble

spread is tested by comparing with the skill against

radar-derived precipitation accumulations. Radar data

are necessary as a verification source because of their

high spatial coverage.

The technique used to determine spatial differences

between members can also be used for the comparison

of different model formulations within the ensemble. To

demonstrate this, different model physics configurations

were considered in addition to the MOGREPS ensem-

ble members for the second case study. This specific

example is provided to demonstrate the utility of spatial

evaluation techniques in the comparison of different

ensemble formulations. Note, however, that a complete

systematic evaluation comparing different types of

physics configuration is outside the scope of this paper.

To do this it would be necessary to consider a large

number of cases with different convective forcing as

detailed by, for example, Stensrud et al. (2000) and Keil

et al. (2014). The spatial ensemble spread produced by

different physics configurations strategies is evaluated

and compared to that of the MOGREPS ensemble. In

operational frameworks, different physics configurations

are often considered in addition to initial and boundary

condition perturbations and so the spatial spread pro-

duced by an ensemble with different MOGREPS mem-

bers combined with different physics configurations is

also investigated.

To evaluate convection permitting ensembles in a

sensible way it is necessary to choose a verification ap-

proach that considers multiple spatial scales and does

not suffer from the double penalty problem where spa-

tial errors are penalized twice: once for being a near

miss, and again for begin a false positive. Many possible

spatial verification approaches have been proposed in

recent years; for an overview the reader is referred to the

review papers of Ebert (2008), Gilleland et al. (2009),

and Johnson andWang (2013). The spatial approach has

also been applied to ensembles (Clark et al. 2011;

Johnson et al. 2014; Surcel et al. 2014). Here we have

chosen to focus on the FSS of Roberts and Lean (2008)

and Roberts (2008). The FSS is a fuzzy verification

measure used to compare two fields within a given

square neighborhood.

Since its original formulation the FSS has been used

for different applications and several further de-

velopments have been proposed. Schwartz et al. (2010)

consider circular neighborhoods to calculate the field of

fractions at each grid point and then produce probabi-

listic guidance using the field of fractions as a neighbor-

hood probability. Duda and Gallus (2013) also use the

circular neighborhood approach, verifying the pre-

cipitation of mesoscale convective systems. In this paper

the FSS is considered over a square neighborhood as

detailed inRoberts and Lean (2008) andRoberts (2008).

Duc et al. (2013) extend the FSS to include temporal and

ensemble dimensions to give a single FSS value repre-

sentative of the ensemble. A single field of fractions

including spatial, temporal, and ensemble information is

then compared with observations. This is useful for

providing an overview of model performance but does

not provide information regarding the spread–skill re-

lationship of the ensemble or the spatial differences

between individual pairs of ensemble members.

Rezacova et al. (2009) use the FSS to calculate the

ensemble spread–skill relationship with the ensemble

skill calculated from the FSS between ensemblemember–

radar comparisons and the ensemble spread from the FSS

between perturbed ensemble members and the ensem-

ble control. Following on from this, Zacharov and

Rezacova (2009) determine a relationship between the

FSS estimates of ensemble spread and skill and use this

to predict the ensemble skill given the spread. Zacharov

and Rezacova (2009) consider together FSS results from

differently sized neighborhoods. This method was cho-

sen because there is no fixed scale that can give an FSS

skill value over different cases. However, as different

physical behavior is apparent at different spatial scales

(e.g., as shown in Roberts 2008) it is informative also to

investigate how the ensemble spread varies with spatial

scale, which is the subject of this paper. Whereas
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Rezacova et al. (2009) and Zacharov and Rezacova

(2009) only consider comparisons between perturbed

ensemble members and the control, in this paper the

FSS between all independent member–member pairs is

considered. Considering all members in this manner is

the best representation of total spread as it includes fully

the intermember variability and does not rely on the

ensemble mean, which is known to lie outside the model

manifold (Ancell 2013). Further work by the authors

(G. Leoncini et al. 2014, unpublished manuscript) con-

siders other possible methods of member comparison.

Here we present the following: in section 2 we in-

troduce the two case studies that will provide examples

throughout the paper. The model configuration is also

discussed along with a justification for our method of

using the FSS. Section 3 provides examples of our results

for ensembles with different initial condition (IC) and

lateral boundary condition (LBC) perturbations and

results for different physics configurations are discussed

in section 4. Finally, in section 5 we summarize the

conclusions from this work and discuss areas of further

investigation.

2. Method

a. Cases

Two convective cases were chosen for the demon-

strative purposes of this paper. In these cases convection

occurs in different synoptic situations. The first case, 23

April 2011, was chosen as an example of organized

spring convection over England and will be referred to

as the ‘‘organized spring’’ case. This case has a low

pressure system centered to the northwest of the United

Kingdom and a high pressure system centered over

Scandinavia. A frontal structure stretches down across

the western United Kingdom. As the front moves east-

ward a convergence line forms across eastern England

ahead of the front. This convergence line is shown in the

Met Office analysis at 1800 UTC 23 April (Fig. 1a).

Convective storms developed in the vicinity of this

convergence line with precipitation first seen at 1400UTC

23 April, and continuing until 0300 UTC 24 April. At

1800 UTC a band of frontal precipitation enters the

model domain from the northwest (NW) preceding an

occluded front which enters the domain at 0000 UTC 24

April.

The second case, 8 July 2011, features a number of

convective storms that formed over the United King-

dom in an area of instability within the circulation of

a decaying low pressure system. At 0600 UTC the low

center was situated over Ireland as shown in Fig. 1b.

Throughout the day the low center then moved toward

the northeast reaching the northeast of England by

1800UTC.By 1400UTC thereweremany heavy showers

over Scotland as indicated by the Nimrod radar system

(not shown). Convective clouds associated with these

showers were also seen from visible satellite observations

from the Meteosat Second Generation (MSG) geosta-

tionary satellite. For this case study we focus on one

particular storm that formed over the Edinburgh area of

eastern Scotland and remained stationary for around 4h

producing large rainfall totals (0900–2100 UTC radar-

derived precipitation totals of over 64mm) and flooding.

FIG. 1. Met Office surface analysis valid at (a) 1800 UTC 23 Apr and (b) 0600 UTC 8 Jul 2011. Courtesy of the Met

Office.
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In future discussion this will be referred to as the

‘‘flooding’’ case. Previous analysis of this case by

Leoncini et al. (2011) showed that theMet Office 2.2-km

ensemble on this occasion gave a 30%–40% chance of

a flood-producing storm within 25 km of Edinburgh;

a level of significant risk.

b. Model setup

The Met Office Unified Model (MetUM) runs with

a nonhydrostatic dynamical core with semi-Lagrangian

advection (Davies et al. 2005). A comprehensive set of

parameterizations are used including: surface exchange

(Essery et al. 2001), boundary layer mixing (Lock et al.

2000), radiation (Edwards and Slingo 1996), and mixed-

phase cloud microphysics based on Wilson and Ballard

(1999). Version 7.7 of the global ensemble prediction

system (MOGREPS-G) was run at a resolution of

around 60 km in the midlatitude regions with 70 vertical

levels. MOGREPS-G provided the ICs and LBCs for

the North Atlantic and European (NAE) regional

model run at 18-km resolution with 70 vertical levels.

Perturbations were generated using an ensemble trans-

form Kalman filter and then added to the Met Office

four-dimensional variational data assimilation (4D-Var)

analysis as described by Bowler et al. (2008, 2009). This

perturbation strategy includes a stochastic kinetic en-

ergy backscatter scheme and localization. Model error is

addressed using the ‘‘random parameters’’ scheme for

both ensembles to account for subgrid processes un-

certainty. Both the global and regional ensembles have

23 perturbed members and an unperturbed control.

For the case studies described here a high-resolution

ensemble, run over the Met Office variable-resolution

U.K. domain, was one way nested inside the NAE

model. This domain has a constant resolution 2.2-km

grid over theUnited Kingdomwith the grid stretched up

to 4 km around the domain edges to reduce the jump in

resolution when downscaling from the NAE model. No

further data assimilation was included when downscal-

ing from the NAE toU.K. domain. The global and NAE

models were run with a convection scheme based on

Gregory and Rowntree (1990) but modified since

(Derbyshire et al. 2011). The 2.2-km model has explicit

convection only (no convection scheme). The 2.2-km

U.K. domain is shown in Fig. 2 in light gray and is ap-

proximately 920 km west–east by 1200 km north–south.

For the flooding case 11 perturbed members plus

a control were run over the 2.2-km domain using LBCs

and ICs taken from the first 11 members, and control, of

the NAE regional ensemble (MOGREPS-R). A total of

12 simulations were run because this was the ensemble

size being considered for an operational 2.2-km ensemble

system (MOGREPS-UK, operational since 2013; Mylne

2013). To allow the flood-producing storm over Edinburgh

to be investigated, analysis for this case was also com-

pleted over a small 100-km domain surrounding this

region. This subdomain is highlighted in Fig. 2 in dark

gray.

For the organized spring case an ensemble of eight

MOGREPS simulations were run (seven perturbed

members plus a control). This reduction in size allowed

5 different physics configurations to be considered for

each MOGREPS simulation (giving a total of 40 simu-

lations). The different model configurations were the

following:

1) A control ensemble with the standard model settings

labeled ‘‘standard.’’

2) An ensemble with a restricted version of the convec-

tion scheme (Roberts 2003) as would be applied to

the Met Office 4-km deterministic model (labeled

‘‘conv’’).

3) An ensemble with the time step increased from 25 to

50 s labeled ‘‘time.’’ It is interesting to investigate the

effects of a longer time step as increasing the time

step reduces the computational cost of the simulation

but may increase model error.

4) An ensemble with increased time step and restricted

convection scheme labeled ‘‘conv1time.’’

5) An ensemble with modifications to the graupel

labeled ‘‘grp.’’ The graupel modification allows the

FIG. 2. Domains of the U.K. 2.2-km model (light gray), 100-km

subdomain for the summer flooding case (dark gray), and areas of

radar coverage (dotted).
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production of graupel through the capture of rain by

snow and results in an increased graupel mass. This

modification has become a standard option in Met

UM versions 8.0 onward (Wilkinson 2011).

It must be emphasized that these model configura-

tions were chosen to demonstrate the methodology

presented in this paper, not as possible implementations

to theMet Office ensemble prediction system. Note also

that the model variations are neither stochastic nor

designed to represent themodel error, although they do,

nevertheless, represent plausible alternative formula-

tions. The U.K. model for the organized spring case was

started at 0600 UTC 23 April 2011, the flooding case at

1800 UTC 7 July 2011. MOGREPS-G andMOGREPS-R

were initiated 6 and 3 h, respectively, before the U.K.

model. For both cases theU.K. model was run up to lead

times of 36 h.

c. How the FSS is used

The FSS is described in Roberts and Lean (2008) and

summarized here for ease of reading. To calculate the

FSS a threshold is first selected, say for precipitation,

either as a fixed value (e.g., 4mmh21) or as a percentile

(e.g., top 1% of precipitation field). The field is con-

verted to binary form with grid points set to 1 for values

above the threshold and 0 otherwise. A neighborhood

size is then selected and, for each neighborhood cen-

tered upon each grid point, the fraction of grid points

with the value ‘‘1’’ within this square is computed. Two

fields of fractions (denoted A and B), say from a model

and observations, are then compared using the mean

squared error (MSE). For a neighborhood size n and

domain size Nx by Ny grid points this is given by

MSE
(n) 5

1

NxNy

�
N

x

i51
�
N

y

j51

[A
(n)i,j 2B

(n)i,j]
2 . (1)

The FSS is computed by comparing MSE(n) with a ref-

erence MSE, MSE(n)ref:

FSS
(n) 5 12

MSE
(n)

MSE
(n)ref

, (2)

where MSE(n)ref is the largest possible MSE that can be

obtained from fraction fields A and B:

MSE
(n)ref 5

1

NxNy

�
N

x

i51
�
N

y

j51

[A2
(n)i,j 1B2

(n)i,j] . (3)

The FSS varies from zero (complete mismatch between

the fields) to one (perfect match between the fields).

Different neighborhood sizes are considered in order

to evaluate the FSS at different spatial scales. Here we

define the neighborhood size to be the total length of the

square neighborhood in kilometers. The smallest pos-

sible neighborhood is 2.2 km, set by the grid scale. No

bias exists between the binary fields created using per-

centile thresholds as, by definition, the same number of

points exceed the threshold for both fields. Hence, for

percentile thresholds, the maximum possible spatial

disagreement is found for two fields that place the points

of interest at opposite edges of the domain. A perfect

match is only obtained between fields with this maxi-

mum disagreement when they are compared over

a neighborhood of twice the smallest dimension of the

domain. In other words, the FSS will only equal 1 when

the neighborhood size is equal to twice the smallest di-

mension of the domain. This sets the maximum neigh-

borhood size for percentile thresholds. For value

thresholds the fields may be biased and this argument

does not hold. For the examples presented here only

percentile thresholds are considered and the maximum

neighborhood size is 1848 km for the U.K. domain and

200 km for the 100-km subdomain.

The FSS can be calculated at a particular time be-

tween two different forecasts, or between a forecast and

observation, the former giving a measure of spatial

spread, the latter giving a measure of spatial skill. The

ensemble spread is characterized by calculating the FSS

for all independent member–member pairs [Np(N), for

an ensemble of N members] resulting in

Np(N)5N3 (N2 1)/2 (4)

comparisons. Here, and for the remainder of this paper,

the control is treated as an additional ensemblemember.

Hence, for the flooding case we have 12 MOGREPS

members (the 11 perturbed members and unperturbed

control) and for the organized spring case we have 8

MOGREPS members for each physics configuration

(the 7 perturbed members and unperturbed control).

Justification for this method comes from our interest in

the total spatial ensemble spread. In this situation the

spatial location of a feature in the control forecast is not

necessarily at the center of corresponding features in the

perturbed members and, therefore, we do not wish to

assign any special status to the control forecast. Figure 3

demonstrates the advantages of our method: when

considering the control as an additional ensemble

member one can distinguish the different spatial spread

in Figs. 3a,b, whereas when only comparing against the

control the spread in Figs. 3a,b is indistinguishable.

The ensemble skill is assessed by comparing the

model hourly precipitation accumulations with those
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derived from the Met Office Nimrod radar system. The

Nimrod system includes calibration against rain gauge

data and aims to remove the common sources of error

(Golding 1998; Harrison et al. 2000). For the summer

case 1-km Nimrod radar–derived hourly precipitation

accumulations are interpolated onto the 2.2-km model

grid. Nimrod data at 1-km resolution were not available

for analysis of the organized spring case so 5-km data

were used instead. The area of Nimrod coverage differs

slightly from the U.K. 2.2-km domain over which the

model is run and is indicated by the dotted region in

Fig. 2. All analysis involving radar data, or the com-

parison of model and radar data, only considers the area

with radar coverage. We assume the radar data are

representative of the precipitation that occurred and

ignore observational errors, which would have to be

considered within a routine verification framework.

Visual examination of the radar fields found no obvious

errors.

To assess ensemble skill each model simulation is

separately compared with radar observations, while to

assess ensemble spread we compare all possible pairings

of the model runs. Again consider Fig. 3, but this time

use the filled black circles to represent the location of

precipitation in the radar data. As a measure of en-

semble skill we are only considering the spatial differ-

ences associated with the solid arrows. These measures

of ‘‘spread’’ and ‘‘skill’’ consider different numbers of

member–member ormember–radar pairs, raising questions

about a direct comparison of these metrics. However,

answering these questions is not the subject of this pa-

per, which focuses on the characterization of spatial

ensemble spread, with spatial ensemble skill considered

only to put the spread into context. Further work by the

authors (G. Leoncini et al. 2014, unpublished manu-

script) focuses in more detail on these metrics in the

context of the spread–skill relationship.

Three different comparison strategies were used for

the organized spring case to characterize the differences

between spatial spread in theMOGREPS ensemble and

that produced through considering different physics

configurations. A total of eight MOGREPS ensemble

members (N 5 8), and five different physics configura-

tions (N 5 5), were considered. Additionally results

were produced using a subset of two physics configura-

tions (N 5 2) to allow spatial differences resulting from

individual configurations to be investigated.

1) All independent comparisons were made between

the MOGREPS members for a given physics con-

figuration, with each physics configuration treated

separately. Considering all five physics configura-

tions in this manner gives Np(8) 3 5 5 140

comparisons, a strategy denoted as MOGREPS5.

Considering two physics configurations in this man-

ner gives Np(8) 3 2 5 56 comparisons, denoted as

MOGREPS2.

2) All independent comparisons between the different

physics configurations for a given MOGREPS

member, with each MOGREPS member treated

separately. Considering all five physics configurations

gives 8 3 Np(5) 5 80 comparisons for this strategy

denoted as Physics5. Considering two physics config-

urations gives 83Np(2)5 16 comparisons (Physics2).

3) Comparisons between different MOGREPS mem-

bers that additionally have different physics config-

urations. For example, MOGREPS member 2 with

the standard physics configuration might be com-

pared with MOGREPS members 1, 3, 4, . . . , 12 with

the physics configurations conv, conv1time, time,

and grp. Considering all five physics configurations with

this comparison strategy, referred to as MOGREPS51
Physics5, givesNp(8)3Np(5)5 280 comparisons. Con-

sidering two physics configurations (MOGREPS2 1
Physics2), gives Np(8) 3 Np(2) 5 28 comparisons.

Given the large number of FSS values FSSi (one cal-

culated for each comparison) it is necessary to consoli-

date this information to provide an overview of spatial

ensemble behavior. In this paper the mean is taken over

the relevant set of FSSi. When calculated over member–

member pairs this is referred to as dFSSmean where ‘‘d’’

indicates that this is a measure of ensemble dispersion.

When calculated over member–radar pairs this is re-

ferred to as eFSSmean where ‘‘e’’ indicates that this is

a measure of ensemble error. The dFSSmean gives an

FIG. 3. Two different idealized spatial distributions of pre-

cipitation. Individual ensemblemembers (shown in white) position

the precipitation in different spatial locations. The control simu-

lation (shown in filled black) may produce precipitation (a) in the

center of that produced by individual ensemble members or (b) at

the edge of the ensemble. Considering only the spatial separation

of member–control pairs (solid arrows) indicates that (a) and (b)

have the same spatial ensemble spread. Including both member–

control andmember–member pairs allows the differences in spread

between (a) and (b) to be detected.
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indication of the average spatial agreement within the

ensemble for a given neighborhood size. In other

words, we can select a level of spatial agreement for the

ensemble, represented by the value of dFSSmean,

and ask at what neighborhood size this agreement is

obtained.

As the ensemble members do not necessarily have an

even spatial distribution, a range of FSSi will be ob-

tained from the different ensemble member–member

pairs. For example, if the majority of ensemble mem-

bers place rain at the same spatial location but a small

number of members place the rain far away, this may

produce a similar value of dFSSmean as a situation in

which all ensemble members place the rain at slightly

different spatial locations. Hence, it is also important

to investigate the range of FSS values surrounding

dFSSmean. To do this the standard deviation of

FSS values, dFSSstdev, is used. The dFSSstdev is

closely linked to the standard error in dFSSmean,

dFSSstdev/
ffiffiffiffiffiffiffiffiffiffi

NFSS

p
where NFSS is the number of FSSi

samples used to calculate dFSSmean. As the purpose of

this paper is to focus on the spatial distribution of en-

semble members, we consider dFSSstdev and avoid the

1/
ffiffiffiffiffiffiffiffiffiffi

NFSS

p
dependence on ensemble size. This allows the

spatial distribution of differently sized ensembles to be

compared.

To make a spatial comparison between different en-

sembles it is necessary to find scales that are believable

and have a reasonable level of spatial agreement. For

the purposes of this paper, ‘‘believable’’ scales for the

intercomparison of ensemble members are derived in

an equivalent manner to those scales that would be

considered skillful if the comparison was instead against

observations (assuming that the ensemble is well

spread). This scale is quantified using the methodol-

ogy of Roberts and Lean (2008) where a neighbor-

hood size is considered believable (‘‘skillful’’) if a FSS

value of

FSS$ 0. 51
f0
2

(5)

is obtained for that neighborhood; f0 is equal to the

fraction of the field considered in the FSS calculation

(e.g., considering the top 99th percentile threshold

would give f05 0.01) andEq. (5) simplifies to an equality

when the neighborhood is twice the spatial difference

between two binary fields (Roberts and Lean 2008;

Roberts 2008). Because f0 is small Eq. (5) can be ap-

proximated as FSS $ 0.5.

d. Thresholding

The FSS can be calculated using either fixed value

or percentile thresholds. Following on from the work

of Roberts (2008) and Mittermaier and Roberts

(2010) this paper focuses on the use of percentile

thresholds to allow the spatial distribution of phe-

nomena to be investigated. Higher percentile thresh-

olds are associated with smaller, more extreme

forecast features, and lower percentile thresholds

are associated with larger-scale smoother features

(Roberts 2008). Note that here, and in all future dis-

cussion, the percentile threshold is applied over the

whole domain, including areas both with and without

precipitation.

To understand the effect of applying percentile

thresholds it is informative to investigate the values

corresponding to each threshold. Examples for hourly

precipitation values corresponding to the 90th and 99th

percentile thresholds are given in Fig. 4. These percen-

tile thresholds are used as examples throughout this

paper. All ensemble members (gray solid lines) and ra-

dar (black lines) are shown for the organized spring case

(top) and summer flooding case (bottom). From both

cases and thresholds it can be seen that the radar per-

centile thresholds generally correspond to lower pre-

cipitation values than the model. This bias in the model

compared to radar is an important consideration for

model evaluation. However, it is also important to in-

vestigate the spatial distribution of precipitation; using

percentile thresholds allows us to focus on this despite

the model bias.

For the spring case at the 90th percentile threshold

(Fig. 4a) the radar values drop to zero after 16 h. After

this time radar-derived precipitation covers less than

10% of the domain. This demonstrates that the 90th

percentile, and other percentile thresholds below the

90th, are not a suitable threshold for radar precip-

itation accumulations for this case. For all cases (apart

from the unlikely event of 100% coverage) there will be

a limited area covered by precipitation in both the

model and observations, and a corresponding mini-

mum suitable percentile threshold. In an operational

situation this minimum threshold could easily be cal-

culated from the fraction of precipitation coverage. All

FSS results presented in this paper have been cal-

culated using percentile thresholds above this mini-

mum value.

For the spring case the eight MOGREPS members

from the standard physics configuration are shown in

dark gray in Figs. 4a,b and, although differing by up to

2.5mm in accumulation values (for the 99th percentile

threshold), follow the same overall trend throughout the

day. This suggests that the ensemble members produce

precipitation features, such as that associated with

frontal passage, at similar times. The simulations for all

MOGREPS members and the other four physics
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configurations are shown in light gray with the different

physics configurations clustering around the corre-

sponding MOGREPS member. In these experiments

the different physics configurations have little effect on

the precipitation value corresponding to a given per-

centile threshold. Interestingly, Figs. 4a and 4b show

peaks in precipitation values at different times: Fig. 4a

(90th percentile) at a lead time of 20 h and Fig. 4b (99th

percentile) at a lead time of 12 h. The higher threshold

considers only the areas of convective precipitation,

giving a corresponding value that peaks when these

storms are strongest whereas the lower threshold in-

cludes frontal precipitation and peaks where this is

heaviest.

The 12 members for the summer flooding case are

shown for thresholds calculated over the full U.K.

domain (dark gray) and limited-area domain (light

gray). Beyond a lead time of 15 h, when convection oc-

curred over Edinburgh, values for the limited domain

are up to 5 times larger than those over theU.K. domain.

Considering this area separately using percentile

thresholds allows the flood-producing storm to be in-

vestigated. It should be noted that using high value

thresholds over the U.K. domain would also select the

Edinburgh area. However, for this highly variable case

some ensemble members missed the convection over

Edinburgh, and do not produce sufficiently high pre-

cipitation values. It is not possible to choose a value

threshold that is high enough to select only the area of

convection, and yet low enough to include all the en-

semble members. Again, this demonstrates the utility of

percentile thresholds.

FIG. 4. Hourly precipitation accumulation values corresponding to the (a),(c) 90th and (b),(d) 99th percentile

thresholds. (a),(b) Results from all simulations for the organized spring case. To highlight the grouping of members

those with the standard physics configuration are shown in dark gray and those from other physics configurations in

light gray. (c),(d) Results for the flooding case. Percentile thresholds calculated using data for the full U.K. domain

are shown in dark gray, and those for the limited-area domain are shown in light gray. Radar data are shown from the

area of the U.K. domain with radar coverage (black with circles) and, in (c),(d) over the limited-area domain (black

with crosses).
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3. Results for LBC and IC perturbations

a. dFSSmean and eFSSmean

First we consider the realism of the spatial ensemble

spread by comparing dFSSmean and eFSSmean for both

cases. Both dFSSmean and eFSSmean were calculated

over the section of the 2.2-km U.K. domain with radar

coverage (highlighted by the dotted region in Fig. 2).

Figure 5 shows dFSSmean (left) and eFSSmean (right)

for the organized spring case (top) and flooding case

(bottom) calculated for the 99th percentile threshold

over the whole U.K. domain. These results were com-

puted for the 12 members of the flooding cases and 8

MOGREPS members with standard physics for the or-

ganized spring case. To check the validity of comparing

these differently sized ensembles, results were also

produced for the flooding case when only considering

the first eight ensemble members (not shown). These

8-member results differed only in small details from

those calculated from 12 members, and lead to the same

conclusions, so it was decided to show the results from

the full 12-member comparisons.

Comparison of the dispersion measures (dFSSmean)

for the two cases (Figs. 5a and 5c) shows that, although

these cases are synoptically different, with different

convective forcing, the overall behavior is broadly sim-

ilar. At small scales ensemble members are very differ-

ent resulting in low values of FSS. FSS values increase as

the members become more similar when considered at

larger scales. The temporal variability present in the

ensemble spread, as measured by dFSSmean, is also

clear at this threshold with the scale at which FSS 5 0.5

varying between 50 and 500 km for the organized spring

case and 100–250 km for the flooding case. These scales

are large because in both cases there is considerable

uncertainty in the locations of the showers and showery

areas. The temporal variability can be related to the

evolution of physical processes. For example, in Fig. 5a

the area of larger ensemble spread (decrease in

dFSSmean) at lead times 13–20h can be linked to greater

convective activity and the highest rainfall instances (cf.

Fig. 4b) and the increase in dFSSmean (lower spread)

from 20 to 25h can be related to an area of spatially

predictable frontal precipitation moving into the domain.

FIG. 5. (a),(c) The dFSSmean and (b),(d) eFSSmean for (a),(b) the organized spring case and (c),(d) the summer

flooding case. The standard physics configuration and the 99th percentile threshold are considered. The white dashed

line at 0.5 represents the believable scale. Results were calculated over the area of the U.K. domain with radar

coverage.
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Overall there is less temporal variability in the FSS for

the flooding case. This can again be related to the me-

teorology of the cases: precipitation in the flooding case

was the result of one mechanism, instability associated

with a decaying low pressure system, whereas pre-

cipitation in the spring case was associated with both

convective showers and frontal passage. Coincidentally,

for both cases, the spatial ensemble spread increases

with a forecast lead time after 20 h. This upscaling of

forecast spatial differences should be expected from

a statistical evaluation of a large number of cases, but

not necessarily from individual case studies where

the physical processes of the day dominate. Using

dFSSmean for individual case studies allows these

processes, and their effect on the spatial ensemble

spread and upscale growth of forecast differences, to be

examined.

The error measures (eFSSmean; Figs. 5b,d) show

a similar structure to the dispersion measures with

a similar magnitude for ensemble spread and skill. There

are times, such as for the spring case at a lead time of 20 h

(Fig. 5b) or the flooding case at lead times of 0–5 h

(Fig. 5d), when the ensemble is clearly underspread. For

the spring case a timing error results from a front passing

into the domain in all members earlier than seen in the

radar; for the flooding case convective showers pres-

ent in the radar have yet to spin up in the model. In

both cases there is little evidence that the ensemble is

overspread.

For the flooding case dFSSmean and eFSSmean have

also been calculated over the 100-km limited-area do-

main containing the flooding event. Selecting a sub-

domain in this manner allows us to focus on the spatial

predictability of a specific event, which can be very dif-

ferent from the U.K. domain–averaged results. Differ-

ences between the domains can also be seen in the

values corresponding to each percentile threshold as

discussed in section 2d. The dFSSmean and eFSSmean,

calculated over the 100-km domain are shown in Figs. 6a

and 6b, respectively, at forecast lead times of 17–26 h

when convection was seen over Edinburgh. Comparison

of Figs. 6a and 6b suggests that the ensemble spread and

skill are similar and that, over this area, the ensemble is

capturing the spatial variability of the precipitation well.

This gives confidence in the ensemble for a spatially

unpredictable flooding event. There are some differ-

ences between dFSSmean and eFSSmean, in particular

that eFSSmean is more variable with time. This may be

partly due to both the smaller number of comparisons in

the error calculation, and also reflects differences be-

tween the model and observations in the temporal

evolution of the storm. Note that, as the 99th percentile

threshold corresponds to different precipitation values

over the U.K. and Edinburgh domains, we cannot do

a direct comparison between Figs. 5 and 6. This also

suggests that we are indeed looking at different pro-

cesses or phenomena with the different domains and

confirms the need to use a suitable domain size to ex-

amine the spatial variability of particular features. The

domain must be large enough to give representative

results, but small enough to focus on the phenomena of

interest. Of course, the same remarks will be true of any

spatial measure.

b. dFSSstdev in addition to dFSSmean

In this section we discuss the benefits of considering

dFSSstdev in addition to dFSSmean. Figure 7 shows

dFSSmean and dFSSstdev calculated for the organized

springcase (top) and flooding case (bottom) when con-

sidering the 99th percentile threshold for hourly pre-

cipitation accumulations. The FSS was calculated over

the whole U.K. domain. The dFSSstdev is shown in

Figs. 7c,d and presents results consistent with those

from dFSSmean. For example, the largest values of

FIG. 6. FSS calculations over the Edinburgh subdomain: (a) dFSSmean and (b) eFSSmean. The 99th percentile

threshold is considered. The white dashed line at 0.5 represents the believable scale.
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dFSSstdev occur in areas where low dFSSmean values

extend to large scales. The greater spatial spread asso-

ciated with low values of dFSSmean results in a wider

range of possible values for FSSi and larger dFSSstdev.

However, there is also some further information given

by the standard deviation. In particular, for the flooding

case (Fig. 7d) there is an area of higher standard de-

viation seen in the first 2 h of the forecast at neighbor-

hood sizes up to 500 km, which is associated with the

spin up of the model. This effect is even more apparent

in results for the 99.9th percentile threshold (not

shown) and is the result of the convection permitting

model having to spin up showers during the first few

hours of the forecast. Because the ensemble members

spin up showers at different locations, lower values of

dFSSmean and a large range of values of FSSi (resulting

in a large dFSSstdev) are obtained. For the spring case

(Figs. 7a,b) convective showers are not present at the

forecast start time and do not need to be spun up from

the initial conditions. Hence, spinup effects are not seen

in the precipitation diagnostics. It is useful to examine

how the standard deviation behaves at different scales.

The smallest values are found at both the grid scale,

where differences are so large that similarly low values

of the FSS are expected for all member pairs, and also at

the largest scales, where all members are effectively the

same.

c. Other fields and thresholds

The use of different percentile thresholds allows more

information to be gained about the ensemble spread for

different ranges of forecast values; for example, a higher

threshold will select more extreme values compared to

a lower threshold, which will select values that are more

widespread. An example is given in Fig. 8 for the orga-

nized spring case where results for the top 99th (lhs) and

85th (rhs) percentiles are compared. This time we show

a different diagnostic field, the 10-m horizontal wind

speed. Like the hourly precipitation accumulations this

field was selected as a suitable candidate for calculation

of the FSS because of its high spatial variability. The

10-m wind speeds are also used by the Met Office for

routine forecast verification.

The 99th percentile threshold selects only the highest

wind speeds in the domain. At lead times of 0–10 h these

are found in areas to the north of the United Kingdom

FIG. 7. (a),(c) The dFSSmean and (b),(d) dFSSstdev for (a),(b) the organized spring case and (c),(d) the flooding

case. The white dashed line in (a),(c) at 0.5 represents the believable scale. To guide the eye, in (b),(d) the white dashed

line at 0.05 represents the neighborhood at which dFSSstdev is an order ofmagnitude smaller than the believable scale.

The 99th percentile threshold is considered and results are calculated over the whole U.K. domain.
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near the low pressure center. The exact placement of the

highest winds varied considerably between the ensem-

ble members, with some placing them to the northwest

and others to the northeast of the United Kingdom.

Hence, there were large spatial differences between the

members resulting in low dFSSmean values extending to

large neighborhoods at a lead time of 10 h as shown in

Fig. 8a. At lead times greater than 10 h there is high

spatial agreement among the ensemble members re-

sulting in high values of dFSSmean. All members place

the highest winds to the northwest of the United King-

dom associated with the frontal feature that enters the

domain at this time.

Comparing Figs. 8a and 8b we see the unusual result

that for a lead time of 12 h, and after 28 h, there is more

agreement (larger FSS values) for the 99th than for the

85th percentile for a given neighborhood size. This be-

havior suggests that care must be taken in the in-

terpretation the 99th percentile threshold for the wind

speed field. For the wind speed, local variability is su-

perimposed upon a background gradient from the large-

scale situation. The 99th percentile is likely to include

both local variability from points, where the background

field is moderate, and also larger-scale variability, where

the background field is high. Consequently, unlike for

precipitation, we cannot cleanly examine local features

in the wind speed field simply by selecting a high

threshold value. It is necessary to also consider a lower

threshold that includes features of the larger-scale flow

such as, for this case, the 85th percentile threshold.

Figure 8b shows that, at lead times of 12–20 h, the FSS

values for the 85th percentile are particularly high.

These areas of small spatial spread can be related to the

synoptic situation: at a lead time of 12 h a highly pre-

dictable frontal feature entered the domain from the

NW and the top 15% of wind speeds in the domain were

closely associated with the flow in the vicinity of this

front. Hence, there was very high spatial agreement

between the members at these times. Before the front

entered the domain the highest winds were associated

with a less predictable decaying cold front. Moreover,

after the front had progressed farther into the domain

greater differences between the members emerged at

larger scales for the winds to the south of the occluded

front.

The effect of different thresholds on the FSS for

hourly precipitation accumulations can be seen by

comparing Figs. 5a,c with 9a,b, respectively. The latter

show dFSSmean calculated for the 90th percentile

threshold. In particular, it can be seen that the large

temporal variability seen in Figs. 5a,c for the 99th

threshold has been replaced in the 90th percentile

results by a trend for ensemble spread to increase sys-

tematically with time. This trend is expected climato-

logically as forecast differences grow from small to

larger scales with increasing forecast lead time. The rate

of increase is different for the two cases. For the flooding

case (Fig. 9b) scales at which dFSSmean 5 0.5 increase

gradually from 5 to 100 km over 36 h as forecast differ-

ences grow from small to larger scales. For the spring

case, dFSSmean values greater than 0.5 are seen even at

the grid scale for lead times up to 25 h. After this time

the scale at which dFSSmean 5 0.5 increases rapidly to

225 km. This pattern is in agreement with the behavior

seen for the 99th threshold and has the same in-

terpretation: after 25 h an area of precipitation moves

out of the domain but with timing differences between

the members. Overall, there is better spatial agreement

between the ensemble members at the 90th percentile

threshold than at the 99th: the broader-scale features

selected by the lower threshold are more predictable.

When considering a range of different thresholds from

FIG. 8. Comparison of dFSSmean calculated for the (a) 99th and (b) 85th percentile thresholds for the 10-m

horizontal wind speed field and the organized spring case. Results are calculated over the whole of theU.K. domain and

only the standard physics configuration is considered. The white dashed line at 0.5 represents the believable scale.
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the 99th to 80th percentile (not shown) the transition

from large temporal variability to a trend of upscale

growth of forecast differences with increasing lead time

was found to be smooth: there is no sudden transition. It is

likely that the range of thresholds over which such a tran-

sition occurs will be highly case dependent as the relative

importance of local and large-scale features changes. The

FSS allows such a behavior to be investigated.

4. Results assessing different physics configurations

In this section we present an application of dFSSmean

to the comparison of the multiphysics and MOGREPS

ensembles for the organized spring case. Thus, we

compare the spatial ensemble spread associated with

LBC and IC perturbations to that generated through

different physics configurations as described in section

2c. The examples presented are for the 99th percentile

threshold of precipitation accumulation: lower thresh-

olds showed smaller spatial differences (larger dFSSmean

values) but lead to the same general conclusions. Note

that the purpose is not to evaluate the merits of partic-

ular physics configurations but to show a method that

can be used to examine the behavior of stochastic pro-

cesses or physics changes in ensembles.

Figure 10b shows dFSSmean comparing the configu-

ration with restricted convection scheme and increased

time step (conv1time) to that with the modified treat-

ment of graupel (grp) using the Physics2 comparison

strategy (comparison strategy 2 in section 2c). This

comparison strategy is shown because it gives larger

spatial differences than those found when comparing

any other physics configuration pairs, or considering all

physics configurations (the Physics5 comparison strat-

egy). In Fig. 10b FSS values of 0.5 are reached by

a neighborhood size of 5km, and no spatial differences are

seen forneighborhoodsgreater than100km(whereFSS5 1).

The lowest values of dFSSmean occur between lead times

of 12 and 16 h when the heaviest convective showers

were present: it is during these events that modifications

to the treatment of graupel are most noticeable.

Results from comparing only the MOGREPS mem-

bers from conv1time and grp (comparison strategy

MOGREPS2, 1 in section 2c) are shown in Fig. 10a.

These differ only in minor details from those shown in

Fig. 7a (dFSSmean calculated for the MOGREPS en-

semble with the standard physics configuration). The

MOGREPS2 results show that FSS values of 0.5 are

reached on scales greater than 60 km, scales at which the

Physics2 members are almost identical. In other words,

the spatial variation introduced through different

physics configurations is only seen close to the grid scale.

If we consider FSS values lower than FSS 5 0.5 to rep-

resent fields so different that the forecast is no longer

useful, then the different physics configurations applied

here, for this particular case, are simply moving around

features that are known to be unpredictable from the

MOGREPS ensemble. Of course, this is not to say that

physics changes in general are unimportant for improving

model performance, or that using different physics con-

figurations is not sometimes a valuable component of an

ensemble system, or that adding small-scale perturba-

tions is undesirable, or that, for another case or for other

physics perturbations, the effects might be very different.

Our purpose is simply to demonstrate amethodology that

allows the spatial effects of different ensemble configu-

rations to be thoroughly investigated and set into the

context of other aspects of forecast uncertainty.

It is possible that, although the evaluation of Physics2

only showed forecast differences at small spatial scales,

FIG. 9. The dFSSmean calculated using the 90th percentile threshold of hourly precipitation accumulations for

(a) the organized spring and (b) the summer flooding case. Results are calculated over thewhole of theU.K. domain and

only the standard physics configuration is considered. The white dashed line at 0.5 represents the believable scale.
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combining the different physics configurations with

those from theMOGREPS2 ensemble may lead to large

changes in the growth of spatial differences. To assess

this, the comparison strategy MOGREPS2 1 Physics2

(comparison strategy 3 in section 2c) is employed.

Again, examples are shown for the physics configura-

tions conv1time and grp that show the largest spatial

differences. The results of MOGREPS2 1 Physics2 are

shown in Fig. 10c. Differences between Figs. 10c and 10a

are very small and hence, to aid interpretation, Fig. 10d

shows the difference between the MOGREPS2 and the

MOGREPS2 1 Physics2 results. The differences are

over an order of magnitude smaller than the dFSSmean

values in Figs. 10a,c. It is interesting that both positive

and negative differences are seen:modifying the different

physics configuration both adds and removes spatial

spread. From Fig. 10d it can also be seen that differences

between MOGREPS2 and the MOGREPS2 1 Physics2

extend, with similar magnitude, across all spatial scales.

However, in terms of the fractional difference relative to

dFSSmean, the differences at small neighborhoods have

more importance. At a lead time of 15h the fractional

difference in dFSSmean varies from 7%at 50km to 3%at

250km. It should be noted that these differences are still

very small, especially at the larger more predictable scales

(as indicated by the point where FSS $ 0.5 in the

MOGREPS ensemble).

Analysis of the combined MOGREPS 1 Physics

comparisons supports the conclusions drawn pre-

viously that the introduction of these differences in the

physics only influences scales much smaller than the

predictable scales of the system (in this particular ex-

periment). In practical terms, the variability of those

scales could be addressed with spatial postprocessing

and without the need for additional ensemble mem-

bers. On the other hand, if the scales of the physics

changes were to upscale to scales greater than the

system’s predictable scales then the performance of the

ensemble might benefit from more perturbed-physics

members. Systematic application of the methods shown

here would provide a sound basis for making these

decisions.

FIG. 10. The dFSSmean comparisons of the restricted convection with increased time step and graupel physics

configurations for the 99th percentile threshold of hourly precipitation accumulations. Results from different

comparison strategies are shown: (a)MOGREPS2, (b) Physics2, and (c)MOGREPS21Physics2. (d) The difference

between (c) and (a). Results are calculated over the whole of the U.K. domain. The white dashed line at 0.5 rep-

resents the believable scale.
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5. Discussion and conclusions

In this paper we have presented, with examples,

a new methodology for the detailed analysis of en-

semble spread for high-resolution forecasts focusing on

spatial variability. In particular we focused on two

different measures of ensemble spread: dFSSmean and

dFSSstdev, the mean and standard deviation of the FSS

calculated over all ensemble member–member pairs.

The dFSSmean gives a measure of the FSS value for

the whole ensemble indicating the average spatial

agreement within the ensemble over a particular size

of neighborhood (i.e., at a given spatial scale), and

dFSSstdev provides some further useful information

about the range of FSS values used in the calculation of

dFSSmean. A large range of FSS values, corresponding

to a large value of dFSSstdev, indicates that the en-

semble members are unevenly distributed.

To demonstrate the utility of these measures, results

were presented from two case studies. It was shown that

dFSSmean and dFSSstdev allowed investigation of, for

example, the temporal evolution of ensemble spread,

model spinup, and saturation of forecast differences.

Considering different percentile thresholds allowed in-

formation to be gained about the spatial spread of the

ensemble for different physical regimes. In particular it

was found that, for hourly precipitation accumulations,

the dFSSmean for the 99th percentile threshold had

high temporal variability. This contrasted with the

dFSSmean for the 90th percentile threshold for which

spatial differences between the ensemble members in-

creased with time.

The realism of the ensemble spatial distribution was

also tested by comparison with another metric, themean

FSS calculated over all member–radar pairs, denoted

eFSSmean. This error measure can be compared with

dFSSmean to investigate the spread–skill relationship of

the ensemble at different times and spatial scales. For

the two cases considered here these measures suggested

that ensemble spread was reasonable. On occasion the

ensemble was underspread; this was linked to timing

errors between the simulations and the observations,

and to the need for the spinup of showers in a convection

permitting model.

For one case study, results were presented for a com-

parison of spread between differently generated en-

sembles, including multiple physics configurations. This

application illustrates a methodology for identifying the

spatial scales that are influenced by modifications to

physical processes. Examining the FSS for different

spatial scales and over a range of times allowed a quan-

tification of the effects of using different physics con-

figurations compared to LBC and IC perturbations. For

the case described here it was concluded that modifying

the physics for this case did not influence the ensemble

evolution at scales where the forecast has skill. These

results are not to be interpreted as general: well-chosen

physics modifications can and do improve forecasts as

demonstrated by, for example by Stensrud et al. (2000)

and Keil et al. (2014). The key point is that evaluation

techniques presented here allow clear statements about

the impacts of physics modifications to be made since

different ensemble configurations can be thoroughly

investigated and the spatial impact of the changes

quantified.

The work presented here provides a framework

through which spatial ensemble spread can be analyzed.

There are some limitations to this study: in particular the

consideration of two cases only and the limited consid-

eration of physics perturbations. It is left to future work

to apply these methods to a larger sample of cases, and

different, more realistic, multiphysics ensembles or

other model error inclusion schemes. Another limiting

factor is the methodology of calculating a single value of

the FSS that is representative of a comparison across

a whole domain. As discussed above this can mean that

different meteorological phenomena, such as convective

and frontal precipitation, are compared together, when

each individually may have an inherently different pre-

dictability and ensemble spread. It is possible to select

a smaller domain to consider events of interest, as

highlighted with respect to Fig. 6, although this is only

useful in hindsight once the event has occurred. Hence,

future work is intended to develop a spatially varying

and scale-dependent measure of ensemble spread that

does not suffer from this drawback.

Despite these limitations there are some important

conclusions from this work. In particular, we have

stressed how the ensemble spread is highly dependent

on the scales considered for evaluation. Consequently,

to investigate the ensemble behavior thoroughly it is

necessary to consider multiple scales, and be mindful of

the different expectations for skill at these scales.

Forecasts should be verified, and the benefits of fore-

cast model changes assessed, at scales that are believ-

able. This paper has provided a methodology for

determining such believable scales and their temporal

evolution. With future movement to higher and higher

resolution models the distinction between the grid

scale and the believable scales is becoming increasingly

important.
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