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In the debate on acceptable levels of climate change, and for planning adaptation 39 

measures, stakeholders need regional-scale climate projections including the range of 40 

plausible warming rates. To assess the benefits of mitigation, it is important to 41 

understand whether some locations may see disproportionately high or low warming 42 

from additional forcing above targets such as 2 K1.  There is an urgent need to narrow 43 

uncertainty2 in this nonlinear warming, which requires understanding how climate 44 

changes as forcings increase from medium to high levels.  However, quantifying and 45 

understanding regional nonlinear processes is challenging.  Here we show that 46 

regional-scale warming can be strongly super-linear to successive CO2 doublings, 47 

using five different climate models.  Ensemble-mean warming is super-linear over 48 

most land locations.  Further, the inter-model spread tends to be amplified at higher 49 

forcing levels, as nonlinearities grow – especially when considering changes per K of 50 

global warming. Regional nonlinearities in surface warming arise from nonlinearities 51 

in global-mean radiative balance, the Atlantic Meridional Overturning Circulation, 52 

surface snow/ice cover and evapotranspiration. In quantifying and understanding the 53 

benefits of mitigation, potentially-avoidable climate change (the difference between 54 

business-as-usual and mitigation scenarios) and unavoidable climate change (change 55 

under strong mitigation scenarios) may need different treatments. 56 

 57 

Linear assumptions affect stakeholder advice in various ways1,3-7. Fast simplified 58 

models1,5,7 (especially integrated assessment models), for quantifying climate change 59 

under many policy scenarios, often assume climate change is the same for each CO2 60 

doubling.  Some studies make a less strong assumption: that regional climate is linear 61 

in global warming3,4,6.  Also, studies of physical mechanisms often explore just one 62 

time period of one forcing scenario. An implied linear assumption here is that the 63 
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physical mechanisms are similar under other scenarios or for other time periods (not 64 

necessarily true in a nonlinear system). 65 

 66 

To quantify nonlinearities, the linear response must first be carefully defined.  Even in 67 

a linear system the spatial patterns of climate change (per CO2 doubling or per K of 68 

global warming) can be different in different forcing scenarios or evolve during a 69 

given scenario.  This is because of different timescales of response within a system8-70 

10.  For example, warming over the Southern Ocean lags the global mean10. Therefore, 71 

the spatial pattern of warming just after a CO2 change is different than that several 72 

decades later. 73 

  74 

Our experimental design is chosen to separate linear and nonlinear mechanisms.  We 75 

use abruptCO2 experiments, initialized from a pre-industrial control experiment.  The 76 

CO2 concentration is changed abruptly, then held constant for 150 years, revealing the 77 

model response over different timescales.   The abrupt4xCO2 experiment (with CO2 78 

quadrupled from pre-industrial levels) has similar forcing magnitude as a business-as-79 

usual scenario by 210011.  The abrupt2xCO2 experiment is identical to abrupt4xCO2 80 

but with half the CO2 concentration (with forcing between that reached under RCP2.6 81 

and RCP4.5 scenarios by year 210011).  A transient forcing experiment (‘1pctCO2’), 82 

where CO2 is increased by 1% per year, is also used.  We start with results from the 83 

HadGEM2-ES climate model. 84 

   85 

The abruptCO2 experiments are highly idealised. Therefore, we first show that their 86 

behaviour is comparable to the more policy-relevant 1pctCO2 experiment, and detect 87 

nonlinearities in the 1pctCO2 response.  It is possible to use a simple linear 88 
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combination of abruptCO2 responses to estimate climate change under a transient 89 

forcing experiment12,13.  This linear method performs well when the end of the 90 

1pctCO2 experiment (near 4xCO2) is reconstructed from the abrupt4xCO2 response 91 

(Figure 1b). This shows that the abrupt4xCO2 experiment features realistic physical 92 

mechanisms.  It does not mean that temperature responses are linear (conceptually, it 93 

is like a local linear approximation to a curve).  The importance of nonlinearity is 94 

revealed in the relatively poor performance when the abrupt2xCO2 response is used 95 

instead (Figure 1a); while for the middle of 1pctCO2 (near 2xCO2), the reconstruction 96 

using abrupt4xCO2 is much worse than that using abrupt2xCO2 (compare Figures 97 

1c,d). The linear method is only accurate for periods in the transient experiment with 98 

forcing matching that of the abruptCO2 experiment: climate patterns are therefore 99 

different for different CO2 concentrations – which is evidence of nonlinearity. 100 

 101 

Having detected nonlinearities in the 1pctCO2 experiment, we characterise them more 102 

clearly by analysing the abruptCO2 experiments directly.  This experimental design 103 

has two significant advantages over the 1pctCO2 scenario.  First, temperature 104 

responses in the two abruptCO2 experiments may be compared at the same timescale 105 

after CO2 is changed (eliminating complications due to linear effects from different 106 

timescales of response).  Secondly, noise from internal variability may be reduced 107 

through long-term means. Assuming that the balance of mechanisms should be stable 108 

after the initial ocean mixed-layer warming, we average over years 50-149 of each 109 

experiment (Supplementary Figure 1). For abrupt2xCO2, these 100-year means 110 

correspond roughly to the results for year 2100 of a CO2-only version of rcp4.5 (and 111 

about double this for abrupt4xCO2). 112 

 113 
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We compare temperature responses to a first and second CO2 doubling.  Current 114 

linear methods that parameterise forcing (most integrated assessment and energy 115 

balance models) assume that radiative forcing is exactly linear in log(CO2) – and 116 

equivalently, that each CO2 doubling produces the same forcing change1,5.  In 117 

HadGEM2-ES, the two doublings give very similar forcing changes14.  The response 118 

to the first doubling is given by abrupt2xCO2 minus the pre-industrial control; that for 119 

the second doubling by abrupt4xCO2 minus abrupt2xCO2 (both are averaged over 120 

years 50-149).  We quantify nonlinearities by the 'doubling difference': the response 121 

to the second doubling minus that for the first (Figure 2a); and the 'doubling ratio': the 122 

second doubling divided by the first (Figure 2b).  Current linear models would have 123 

zero doubling difference everywhere. 124 

  125 

The doubling ratio in global-mean warming is 1.18 (the second CO2 doubling 126 

produces more warming than the first). Global-scale nonlinearity has been attributed, 127 

in other models, to changes in water-vapor and cloud feedbacks, opposed by changes 128 

in albedo and lapse-rate feedbacks15-17.  In some climate models, variation in forcing 129 

per CO2 doubling would also affect the global doubling ratio15-17.  Regional variation 130 

in doubling ratio is broad, however: 5% of the land surface has a doubling ratio 131 

outside the range 0.9-1.65 (Supplementary Figure 5a).  Gradients of the doubling ratio 132 

across continents are strong (Figure 2b), notably over the Americas and Europe, 133 

pointing to important regional mechanisms. 134 

 135 

We scale out global-mean nonlinearity (Methods) and then focus on the remaining 136 

features (see Figure 2c) one by one.  The positive area in the north Atlantic, near 137 

Greenland, appears to be associated with a nonlinear response of the Atlantic 138 



 7

Meridional Overturning Circulation (AMOC)18.  In HadGEM2-ES, the maximum 139 

Atlantic overturning near 30N weakens about 35% less under a second CO2 doubling 140 

than under the first (a positive doubling difference).  We can estimate the effect on 141 

surface temperature by scaling the regional temperature response in a separate 142 

freshwater hosing experiment (where freshwater is added to the high-latitude north 143 

Atlantic to induce AMOC weakening).  We multiplied this temperature response 144 

pattern by the ratio: (doubling difference for AMOC index) / (AMOC index response 145 

in the hosing experiment).  The resulting pattern (Figure 2d) features a north Atlantic 146 

anomaly similar to that in Figure 2c. This suggests that the north Atlantic nonlinearity 147 

is indeed driven by the nonlinear AMOC response.  AMOC nonlinearity may arise 148 

from variation in the salt-advection feedback (which affects the AMOC 149 

strength)19.  The AMOC transports heat to the North Atlantic, so a positive doubling 150 

difference in the AMOC causes positive doubling differences in North Atlantic 151 

surface temperatures.   152 

 153 

To reveal other nonlinear mechanisms, we subtract the AMOC pattern (Figure 2d) 154 

from that in Figure 2c.  The residual (Figure 2e) is associated with mechanisms other 155 

than those in the global mean energy balance or the AMOC.  The North Atlantic 156 

positive feature has been effectively removed. 157 

  158 

The remaining high-latitude temperature nonlinearities are largely driven by a 159 

nonlinear albedo feedback18,20 (which is dominated by changes in ice and snow cover).  160 

It is nonlinear21 as it becomes zero when ice/snow is either absent or so thick that its 161 

extent changes little under warming. The patterns in the doubling difference of sea ice 162 

fraction (Figure 2f) match closely the high latitude patterns of temperature doubling 163 
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difference (Figure 2e), with sea-ice albedo feedbacks driving temperature nonlinearity 164 

(supplementary material). 165 

  166 

The final mechanism we study involves land evapotranspiration.   Soil moisture-167 

temperature feedbacks can be nonlinear22: feedback is small when soil moisture is 168 

saturated, or so low that moisture is tightly bound to the soil (in both regimes, 169 

evaporation is insensitive to change in soil moisture)23.  Nonlinear behaviour could 170 

also occur through the response of plant stomata (and hence transpiration) to 171 

increased CO2
24, or through nonlinear precipitation change25,26.  To investigate this 172 

type of effect, we calculate the ratio of mean surface sensible heat and mean surface 173 

latent heat fluxes (the Bowen ratio) in the two abruptCO2 experiments.  Much of the 174 

temperature nonlinearity over mid/low latitude land (Figure 2g) is associated with 175 

change in the Bowen ratio (see Figure 2h).  Regions where the Bowen ratio is 176 

substantially larger at 4xCO2 than at 2xCO2 (red in Figure 2h) have more restricted 177 

evaporation: more incident heat is lost as sensible heat, causing further warming.  This 178 

does not occur where the Bowen ratio is already larger than 1 at 2xCO2 (e.g. the 179 

Sahara, where most turbulent heat is sensible even at 2xCO2).  These regions are 180 

masked in Figure 2h.  The most strongly superlinear warming occurs over the 181 

Amazon in this model (doubling ratios of 80% are driven by the response of forest 182 

tree stomata to CO2, with a longer-term response from reduced vegetation 183 

productivity - supplementary material; these mechanisms are highly uncertain).   184 

 185 

Further to our analysis of HadGEM2-ES we find that nonlinearity is similarly 186 

important in four other climate models: NCAR-CESM1, IPSL CM5A-LR, MIROC5 187 

T42 and HadCM3.  These models show doubling ratios over land comparable to those 188 
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in HadGEM2-ES (supplementary Figure 5a).  Over most land locations, the ensemble 189 

mean doubling difference is comparable to the ensemble standard deviation for 190 

warming from the first doubling (supplementary Figure 5b). That is, the range of 191 

warmings simulated by this ensemble is quite different for the first and second CO2 192 

doublings.  The models do show differences in spatial patterns of nonlinear warming. 193 

Consequently, the ensemble mean pattern (Figure 3) is smoother than that of any 194 

individual model.  However, some continental-scale patterns across Europe, North 195 

and South America and tropical Africa are similar between Figures 2b and 3.  196 

 197 

Nonlinearity has implications not just for the ensemble mean, but also for the spread 198 

of model projections.  In general, an increased spread at higher forcing should be 199 

expected: the relative importance of nonlinear mechanisms grows with increasing 200 

forcing, so their contribution to model spread does likewise.  Conceptually, this is like 201 

including an extra uncertain process at higher CO2 concentrations.  This inflation in 202 

model spread at higher forcing is large when nonlinearities are uncertain 203 

(supplementary material), and appears to be especially relevant for change per K of 204 

global warming. We calculated the ensemble standard deviation in regional warming 205 

per K of global warming. Over 30% of land, the ensemble spread is at least 40% 206 

larger for the second doubling than for the first doubling (not driven by internal 207 

variability – Supplementary Material). This corresponds to a doubling of variance - 208 

driven by uncertain nonlinear mechanisms.  This finding is important for work 209 

quantifying and reducing model uncertainty. It implies that the additional regional 210 

warming under a business-as-usual scenario (over and above that in a mitigation 211 

scenario) may be more uncertain than the warming under a mitigation scenario - a fact 212 

missed by previous linear impacts assessments1,3,4. Secondly, different techniques 213 
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may be needed to reduce model uncertainty in these two aspects of climate change: 214 

uncertainty from nonlinear mechanisms being relatively more important at higher than 215 

at lower forcing levels. 216 

 217 

The mechanisms of nonlinear warming identified in HadGEM2-ES also operate in the 218 

other four models studied.  All have a positive global-mean temperature nonlinearity 219 

(Supplementary Table 1).  As done for HadGEM2-ES, we scale this global-mean 220 

nonlinearity out and discuss regional patterns.  Most of the remaining temperature 221 

nonlinearities over North-West Europe are associated with the AMOC: the magnitude 222 

of this nonlinearity is predicted simply by scaling the HadGEM2-ES hosing 223 

experiment by the AMOC doubling difference from each model (Figure 4a).  While 224 

there is significant model spread in sea-ice nonlinearity (Supplementary Figure 6), 225 

Arctic temperature doubling differences averaged across the four extra models align 226 

closely with the sea-ice albedo doubling differences (Figure 4b,c), with patterns 227 

similar to those for HadGEM2-ES (Figure 2f).  Similar comments apply to the 228 

evaporation mechanism at lower latitudes (Figure 4d,e; Supplementary Figure 7), 229 

especially over the Americas, Africa and Arabia, although not all of the pattern is 230 

explained this way (nonlinear dynamical processes and internal variability may also 231 

contribute). 232 

 233 

The implications of nonlinearity for individual studies will be application-specific, 234 

and should be considered alongside other issues, such as impacts model uncertainty. 235 

Further differences in patterns of 'potentially-avoidable' and 'unavoidable' warming 236 

may arise from linear mechanisms.  The abruptCO2 experiments are powerful for 237 

separating mechanisms and identifying where nonlinearity is largest or smallest.  238 
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Where available, transient projections from state-of-the-art climate models remain 239 

preferable for direct policy advice. 240 

 241 

Work is needed to reduce uncertainty in these nonlinear mechanisms.  Our 242 

experimental design could usefully be applied to other models.  Some policy advice 243 

based on linear methods3 may need to be reconsidered, while studies of physical 244 

processes controlling both temperature and precipitation25,26 should account for a 245 

different balance of mechanisms under different forcing scenarios or for different time 246 

periods. 247 

 248 

Methods 249 

 250 

HadGEM2-ES model and experiments 251 

 252 

The Hadley Centre Global Environmental Model version 2 Earth System 253 

configuration (HadGEM2-ES) 27,28 has an atmospheric resolution of 1.25x1.875o and 254 

38 vertical levels, and a 1o ocean (reaching 1/3o near the equator) with 40 vertical 255 

levels.  NCAR CESM1, HadCM3, IPSL CM5A-LR and MIROC5 are described in 256 

supplementary Table 2.  257 

 258 

All models ran a fixed-forcings pre-industrial control, and both abruptCO2 259 

experiments.  Each abruptCO2 experiment was initialised from the same point in the 260 

control run, and CO2 was abruptly changed (to twice pre-industrial levels for 261 

abrupt2xCO2 and four times for abrupt4xCO2), and then held constant for 150 years. 262 

 263 
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The hosing experiment, run for HadGEM2-ES only, involved addition of 0.1Sv 264 

freshwater near the coast of Greenland for 100 years. This produced a modest (30%) 265 

slowdown in the AMOC (measured by maximum overturning near 30N).  Results 266 

from this experiment were averaged over years 50-149. 267 

 268 

Scaling the global-mean nonlinearity out of the regional temperature doubling 269 

differences 270 

 271 

Figure 2c shows doubling differences after the global-mean nonlinearities (except 272 

those due to the AMOC) are scaled out.  The calculation of doubling differences with 273 

global non-linearities scaled out (denoted noglobalDD ) is described below.  The small 274 

global-mean nonlinearity associated with the AMOC is not scaled out here.  This is 275 

because the global-mean AMOC effect is included in Figure 2d (the scaled hosing 276 

response), and is therefore removed when Figure 2d is subtracted from Figure 2c: to 277 

give the residual in Figure 2e.  noglobalDD  is given by: 278 

 279 

scalednoglobal TTDD ,2142 −=  280 

 281 

where 42T  is the warming from the second doubling, and: 282 

 283 

( )
21

21
21,21

T

DDT
TT noAMOC

scaled

+
⋅=  284 

 285 

where 21T  is the warming from the first doubling. The overbar indicates a global 286 
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mean.  noAMOCDD  is the global mean doubling difference from processes other than 287 

the AMOC: 288 

 289 

AMOCnoAMOC DDDDDD −=  290 

 291 

DD is the global mean of Figure 2a and AMOCDD  is the global mean of Figure 2d. 292 

 293 

 294 

295 
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Figure legends 415 

 416 

Figure 1.  Regional nonlinearity in the transient-forced 1pctCO2 experiment.  417 

Warming (K) simulated directly by HadGEM2-ES (y-axis) is compared with that 418 

predicted from the linear reconstruction12,13 using (left column) abrupt2xCO2 and 419 

(right column) abrupt4xCO2 responses.  Good performance of the linear 420 

reconstruction is indicated by the points lying close to the red line (each point 421 

represents one model grid cell).  Results are averaged over (top row) years 120-139 of 422 

the 1pctCO2 experiment (near 4xCO2), and (bottom row) years 61-80 (near 2xCO2).   423 

 424 

Figure 2.  Mechanisms of nonlinear regional warming in HadGEM2-ES.  Left 425 

column: doubling differences (K);  a) unscaled; c) after global-mean nonlinearity is 426 

scaled out (Methods); e) as c), but with nonlinearity associated with the AMOC (panel 427 

d) subtracted; g) as e) but latitude range matches that of panel h).  b) doubling ratio.  428 

d) estimated nonlinearity associated with the AMOC. f) doubling difference in sea ice 429 

fraction.  h) Bowen ratio at 4xCO2 divided by Bowen ratio at 2xCO2.  All based on 430 

means over years 50-149 of the abrupt2xCO2, abrupt4xCO2 or hosing experiments. 431 

 432 

Figure 3.  Doubling ratio of ensemble mean warming.  Ensemble means are taken for 433 

each of the first and second CO2 doublings first, then the doubling ratio calculated. 434 

 435 

Figure 4.  Multi-model mechanisms of temperature nonlinearity. All panels: ‘scaled 436 

temperature doubling differences’ have had the global mean nonlinearity scaled out.  437 

a) AMOC influence, averaged over NW Europe (land, 10W-20E, 45-70N).  Y-axis: 438 

scaled temperature doubling difference for each model; x-axis: the HadGEM2-ES 439 
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hosing temperature response scaled using the doubling difference in AMOC index for 440 

each model (as Figure 2d; Pink: HadGEM2-ES; dark blue: HadCM3; light blue: 441 

MIROC5; yellow: NCAR CESM1; red: IPSL CM5A-LR). b,c) Sea-ice influence. 442 

Ensemble means (excluding HadGEM2), of b: scaled temperature doubling difference 443 

and c: albedo doubling difference. d,e) Evaporation influence. d: Ensemble mean 444 

(excluding HadGEM2) scaled temperature doubling difference; e: Bowen ratio of 445 

ensemble mean surface heat fluxes at 4xCO2, divided by the equivalent at 2xCO2 (as 446 

Figure 2h). 447 

 448 

449 
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  450 

 451 
  a          b 452 

 453 
  c          d 454 
 455 
Figure 1.  Regional nonlinearity in the transient-forced 1pctCO2 experiment.  456 
Warming (K) simulated directly by HadGEM2-ES (y-axis) is compared with that 457 
predicted from the linear reconstruction12,13 using (left column) abrupt2xCO2 and 458 
(right column) abrupt4xCO2 responses.  Good performance of the linear 459 
reconstruction is indicated by the points lying close to the red line (each point 460 
represents one model grid cell).  Results are averaged over (top row) years 120-139 of 461 
the 1pctCO2 experiment (near 4xCO2), and (bottom row) years 61-80 (near 2xCO2).   462 

463 
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a  b  464 
 465 

c  d  466 
 467 

e  f  468 
 469 

g  h  470 
 471 
Figure 2.  Mechanisms of nonlinear regional warming in HadGEM2-ES.  Left 472 
column: doubling differences (K);  a) unscaled; c) after global-mean nonlinearity is 473 
scaled out (Methods); e) as c), but with nonlinearity associated with the AMOC (panel 474 
d) subtracted; g) as e) but latitude range matches that of panel h).  b) doubling ratio.  475 
d) estimated nonlinearity associated with the AMOC. f) doubling difference in sea ice 476 
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fraction.  h) Bowen ratio at 4xCO2 divided by Bowen ratio at 2xCO2.  All based on 477 
means over years 50-149 of the abrupt2xCO2, abrupt4xCO2 or hosing experiments. 478 
 479 
 480 
 481 
 482 
 483 
 484 
 485 
 486 

 487 
 488 
Figure 3.  Doubling ratio of ensemble mean warming.  Ensemble means are taken for 489 
each of the first and second CO2 doublings first, then the doubling ratio calculated. 490 
 491 

492 
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 493 

        a  494 
 495 

 496 
b 497 

 498 
c 499 

 500 
d 501 

 502 
e 503 
 504 
Figure 4.  Multi-model mechanisms of temperature nonlinearity. All panels: ‘scaled 505 
temperature doubling differences’ have had the global mean nonlinearity scaled out.  506 
a) AMOC influence, averaged over NW Europe (land, 10W-20E, 45-70N).  Y-axis: 507 
scaled temperature doubling difference for each model; x-axis: the HadGEM2-ES 508 
hosing temperature response scaled using the doubling difference in AMOC index for 509 
each model (as Figure 2d; Pink: HadGEM2-ES; dark blue: HadCM3; light blue: 510 
MIROC5; yellow: NCAR CESM1; red: IPSL CM5A-LR). b,c) Sea-ice influence. 511 
Ensemble means (excluding HadGEM2), of b: scaled temperature doubling difference 512 
and c: albedo doubling difference. d,e) Evaporation influence. d: Ensemble mean 513 
(excluding HadGEM2) scaled temperature doubling difference; e: Bowen ratio of 514 
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ensemble mean surface heat fluxes at 4xCO2, divided by the equivalent at 2xCO2 (as 515 
Figure 2h). 516 
 517 
 518 
 519 

 520 
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 24 
 25 
Supplementary Figure 1.  Illustrating the doubling difference and doubling ratio 26 
calculations.  The main results are averaged over years 50-149 – see vertical dotted 27 
lines.  The red and blue curves show global mean warming timeseries for illustration.  28 
The doubling difference is given by T42 – T21, the doubling ratio by T42 / T21. 29 
 30 

31 
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 32 

1. Interpreting averages over years 50-149 of the abruptCO2 33 
experiments 34 

 35 

Our analysis focuses on averages over years 50-149 of each abruptCO2 experiment. 36 

This section discusses how these results may approximately be related to policy-37 

relevant scenario projections.  This does not mean that the results are substitutes for 38 

scenario projections (in particular, the distinct effects of non-CO2 forcings are 39 

absent): it just gives a rough context.  The main paper states that, "For abrupt2xCO2, 40 

these 100-year means may roughly be interpreted as the results for year 2100 of a 41 

CO2-only version of rcp4.5."  This statement arises from the method behind Figure 1, 42 

as follows. 43 

 44 

Supplementary Figure 2 shows the timeseries of global mean radiative forcing for 45 

rcp4.5 (blue).  It also shows an idealised transient scenario (black line) that is roughly 46 

similar to rcp4.5.  We show below that the mean over years 50-149 of the 47 

abrupt2xCO2 experiment represents an estimate of the response at year 2100 of the 48 

scenario represented by the black line. 49 

 50 

As demonstrated in the main paper (Figures 1b,c) and in previous literature1-3, it is 51 

possible to use a simple linear combination of abruptCO2 responses to estimate 52 

climate change under a transient forcing experiment. This method works well (Figures 53 

1b,c) when it is used to simulate periods in the transient experiment when the forcing 54 

matches that of the abruptCO2 experiment. 55 

 56 
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The method we use to estimate the response to a transient experiment from an 57 

abruptCO2 experiment is a linear response function approach. It is given simply by 58 

the following equation: 59 

 60 

∑
=

−

∆

∆
=

i

j
j

a

ji
i x

F

F
y

0

     supplementary equation 1 61 

 62 

where yi is the estimated transient temperature response at year i and xj is the 63 

temperature response at year j of the CO2 step experiment.  jiF −∆  is the annual step 64 

change in radiative forcing during year i-j of the scenario.  aF∆  is the radiative 65 

forcing change in the abruptCO2 experiment. (Essentially, this treats the transient 66 

scenario as a series of small annual step changes in forcing: the response to each step 67 

is estimated by scaling the abruptCO2 response). 68 

 69 

The black line in Supplementary Figure 2 represents an experiment where CO2 is 70 

increased by 0.7% per year for 100 years, then held constant for 50 years (reaching a 71 

peak CO2 concentration of double the pre-industrial level).  This corresponds to an 72 

approximately constant rate of forcing increase during the ramp-up period.  As this 73 

experiment takes 100 years to double CO2, the annual change in forcing is equal to 74 

the abrupt2xCO2 forcing divided by 100.  Therefore, the ratio jiF −∆ / aF∆  is set equal 75 

to 1/100 for the first 100 years (i.e. for i-j <= 99 in supplementary equation 1); and 76 

equal to zero for the last 50 years (i.e. for i-j > 99).  To obtain the warming at the end 77 

of the scenario, we set i=149 (the scenario is 150 years long).  Therefore, jiF −∆ / aF∆  78 

is equal to 1/100 for j >= 50; and equal to zero for j < 50.  Using supplementary 79 
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equation 1, therefore, the response at the end of this experiment may be estimated 80 

from the abrupt2xCO2 response as follows: 81 

 82 

∑
=

=
149

50

)22(

100

1

j

xCOabrupt
jxy     supplementary equation 2 83 

(The summation starts from j=50 because jiF −∆ / aF∆  is zero for j < 50).  This is 84 

simply equal to the mean over years 50-149 of the abrupt2xCO2 experiment – as used 85 

in the main paper. 86 

 87 

 88 

Supplementary Figure 2.  Total global-mean radiative forcing timeseries.  Blue: for 89 

rcp4.5, as estimated by the IAM used to produce the scenario forcing dataset4 (from 90 

the RCP database: http://www.iiasa.ac.at/web-apps/tnt/RcpDb).  Black: for a scenario 91 

where CO2 is increased by 0.7% per year for 100 years, then stabilised for 50 years. 92 

93 
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1. Sea-ice non-linearity in HadGEM2-ES 94 

 95 

The patterns of temperature nonlinearities over high latitude oceans (Figure 2e) 96 

correspond closely to nonlinearities in sea-ice cover (Figure 2f).   The scale in Figure 97 

2f is reversed, because reductions in sea-ice cover tend to drive increases in warming.  98 

Here we provide support for the nonlinear albedo feedback being a prominent driver 99 

of high-latitude temperature non-linearity.. 100 

 101 

Supplementary figure 3 shows statistics of the climatological mean and interannual 102 

variability in sea-ice fraction. The blue(red) lines show results when only regions with 103 

sea-ice doubling difference larger than 0.2(smaller than -0.2) are included. Climate 104 

means are shown for the control and each abruptCO2 experiment (panels a-c). Panel d 105 

shows the ratio in variability between the abrupt4xCO2 experiment and the control.  106 

Regions with positive nonlinearities in sea ice cover (with doubling difference > 0.2; 107 

c.f. Figure 2f) have intermediate ice cover in the control experiment (Supplementary 108 

figure 3a, blue line), but (near) zero ice cover in the abrupt4xCO2 experiment 109 

(supplementary figure 3c, blue line).  Correspondingly, the interannual variability in 110 

ice cover is much lower at 4xCO2 than in the control (supplementary figure 3d, blue 111 

line).  This is consistent with the idea of smaller albedo feedback at 4xCO2 due to a 112 

transition from intermediate to negligible ice cover.  113 

 114 

Regions with negative sea ice nonlinearities (doubling difference < -0.2) have much 115 

larger sea ice variability at 4xCO2 than in the control (supplementary figure 3d, red 116 

line), and often have large ice cover in the control (supplementary figure 3a), and non-117 
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zero cover even at 4xCO2 (supplementary figure 3c). This is consistent with the idea 118 

of albedo feedback being higher in the abrupt4xCO2 experiment. 119 

 120 

 121 

 122 

Supplementary figure 3.  Statistics of sea-ice mean (a-c) and variability (d) for regions 123 

with (blue) sea-ice doubling difference > 0.2 and (red) sea-ice doubling difference < -124 

0.2.  Panel d) shows the ratio: (variability in abrupt4xCO2)/(variability in control), 125 

where variability is quantified as the standard deviation in annual mean sea-ice cover 126 

over years 50-149 of each experiment. 127 

 128 
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 129 

 130 

2. Evaporation over the Amazon in HadGEM2-ES 131 

 132 

The large temperature non-linearities over the Amazon are associated with a 133 

substantially larger Bowen ratio at 4xCO2 compared to 2xCO2 (Figure 2h).  Here we 134 

link this to reduced forest tree stomatal conductance at higher CO2, driven by a direct 135 

stomatal response to CO2, with a secondary effect due to reduced photosynthesis at 136 

high temperature.  We show results averaged over the western Amazon (72-60W, 137 

12S-3N), capturing the main temperature non-linearity.   138 

 139 

Over this region, latent heat flux from evaporation is significantly lower in the 140 

abrupt4xCO2 experiment than in the abrupt2xCO2 experiment (supplementary figure 141 

4a; blue: abrupt2xCO2; red: abrupt4xCO2).  The total turbulent heat flux is relatively 142 

similar in the two experiments (supplementary figure 4b), so the decrease in latent 143 

heat flux is balanced by a corresponding increase in sensible heat flux (supplementary 144 

figure 4c).  This is consistent with the idea of restricted evaporation causing a larger 145 

proportion of surface heat to be lost by sensible heat, with a corresponding increase in 146 

surface temperature. 147 

 148 

Surface evaporation is determined by atmospheric demand divided by net resistance5. 149 

The net resistance quantifies limitations on water supply, accounting for soil moisture, 150 

biophysical control by plants (via stomata) and the process of transferring moisture 151 

from the surface to the lowest atmospheric layer.  The decrease in evaporation (at 152 

4xCO2 compared to 2xCO2) is driven by a relatively large (around 35%) decrease in 153 
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1/(net resistance) – see Supplementary figure 4d.  We plot 1/(net resistance), because 154 

evaporation is proportional to 1/(net resistance), at constant atmospheric demand.   155 

This decrease in 1/(net resistance) is dominated by a decrease in stomatal conductance 156 

associated with the broadleaf tropical forest trees: supplementary figure 4e shows 157 

changes due to stomatal conductance alone, and is similar to supplementary figure 4d.   158 

 159 

The difference in stomatal conductance between the two experiments (seen in 160 

supplementary figure 4e) is largely due to a fast response of stomata to the different 161 

CO2 levels.  This appears in supplementary figure 4e as a difference between the red 162 

and blue lines present from the first year.  Moisture stress is negligible for forest tress 163 

in this region in both experiments (not shown), so regional evaporation is independent 164 

of precipitation change. 165 

 166 

The subsequent decline in conductance in the abrupt4xCO2 experiment 167 

(supplementary figure 4e, red line) is driven in this model primarily by a decrease in 168 

photosynthesis, with stomata closing to maintain near constant leaf internal CO2 169 

concentration.  Evidence for this is given in supplementary figure 4f.  This shows that 170 

a near constant proportionality is maintained between stomatal conductance and gross 171 

primary productivity (GPP, a proxy for photosynthesis, as leaf area is almost constant 172 

in this region for these runs).  The relationship between photosynthesis and stomatal 173 

conductance arises through the transport of carbon through a leaf, which is quantified 174 

by the following equation6: 175 

 176 

*6.1

)(

RT

ccg
A ics −
=  177 

 178 
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A is the leaf photosynthesis rate,sg  the stomatal conductance, )( ic cc −  is the CO2 179 

concentration gradient across the stomata, R the perfect gas constant and T* the leaf 180 

surface temperature in K (the latter is relatively constant in these runs as it is in units 181 

of K).  The near-constant proportionality between stomatal conductance and 182 

photosynthesis (supplementary figure 4f, red line) means that )( ic cc −  is 183 

approximately constant.  That is, the model of stomatal conductance in HadGEM2-ES 184 

acts to keep the internal leaf CO2 concentration (ci) roughly constant during the 185 

abrupt4xCO2 experiment (cc, the external CO2 concentration is approximately 186 

constant during the abrupt4xCO2 run).  It does this by closing stomata (decreasing sg ), 187 

which in turn reduces water loss. 188 

 189 

Large uncertainties exist in the modelling of stomatal responses to CO2 increase7.  190 

HadGEM2-ES does not include photosynthetic acclimation8, which could reduce the 191 

decrease in GPP at high temperature, potentially reducing the decreases in stomatal 192 

conductance. However, the magnitude of this effect is highly uncertain9. 193 

 194 

195 
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 196 

 197 

Supplementary figure 4.  Diagnostics relating to evaporation, averaged over the 198 

Western Amazon, for the abrupt2xCO2 (blue) and abrupt4xCO2 (red) experiments.  199 

See text for description. 200 
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 201 

3. Multi-model statistics of nonlinearity over land 202 

 203 

a)  204 

 205 

b) 206 

Supplementary Figure 5.  a) Cumulative area distribution functions of the temperature 207 

doubling ratio over land, for each model.  b) Cumulative area distribution function of 208 

the ratio: (ensemble mean doubling difference) / (Ensemble standard deviation from 209 

the first doubling). 210 

 211 

 212 
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4. Inflation in model spread for the second CO2 doubling 213 

 214 

The main paper reports that, over about 30% of the land area, the model spread in 215 

warming per K of global warming is more than 1.4 times larger for the second 216 

doubling than for the first.  In this section, we will address the possibility of the 217 

inflation of model spread being an artifact of internal variability. 218 

 219 
A difference in the standard deviation between two datasets can arise simply from 220 

internal variability.  This is because the climate state for each model is estimated from 221 

the mean over a finite period.  Even though 100-year means are used in this study, 222 

internal variability may still play a role.  223 

 224 

We denote the ratio between the standard deviation for the second doubling, and that 225 

for the first, as R: 226 

 227 

21

42

σ

σ
=R , 228 

where 42σ , the ensemble standard deviation for the second doubling (where CO2 229 

changes from 2x to 4x pre-industrial levels) is given by: 230 

 231 

)(
2

)(
4

)(
4242

iim VVV ++=σ , 232 

 233 

where )(
42

mV  is the variance due to model differences alone; )(
4

iV  is the variance from 234 

internal variability in the climate at 4xCO2; and )(
2

iV  the equivalent at 2xCO2. 235 

Similarly, 21σ , the standard deviation for the first doubling, is given by: 236 
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 239 

Therefore, R is given by: 240 

 241 
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 243 

)(
2

iV  appears on both top and bottom of this ratio. This means that if )(
2

iV  was much 244 

larger than the other variances, R would tend to 1 everywhere.  This cannot explain 245 

our finding of large areas with R > 1.4.  246 

 247 

If )(
4

iV  (the internal variability in the mean at 4xCO2) was increased, however, R 248 

would increase everywhere (and so the area with R > 1.4 would increase).  We tested 249 

the importance of )(
4

iV  by artificially increasing it: by calculating the climate means 250 

for abrupt4xCO2 using shorter averaging periods (but centred on the same year as the 251 

100-year means).  This has minimal effect on our result: the fraction of land with R > 252 

1.4 is still 32% even if this averaging period is reduced to 20 years (compared to 30% 253 

for 100 year means).  This suggests that, for the 100-year means used in the main 254 

paper, internal variability has minimal effect on our estimate for the area with R > 1.4   255 

 256 

258 
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5. Drivers of nonlinearity from individual models 259 

 260 

The main paper (Figure 4) shows results for the albedo and evapotranspiration drivers 261 

averaged over the four additional climate models (NCAR-CESM1, IPSL CM5A-LR, 262 

MIROC5 T42 and HadCM3).  Here we show results for individual models 263 

(Supplementary Figures 6,7).  We also give doubling ratios for global-mean warming 264 

(Supplementary Table 1).  The spread in the AMOC nonlinearity is illustrated in 265 

Figure 4a of the main paper. 266 

 267 

As reported in the main paper, the patterns in albedo and evapotranspiration drivers 268 

show significant spread across the models.  Therefore, their contribution to the overall 269 

uncertainty in warming for the second doubling may be substantial in the relevant 270 

regions (see discussion on how nonlinearity influences uncertainty in the main paper).  271 

The spread in the albedo driver (Supplementary Figure 6) may partly be associated 272 

with errors in simulated pre-industrial sea-ice cover (we show above that the sign of 273 

the nonlinearity is linked with the control sea-ice cover), so there may be potential for 274 

reducing uncertainty using observations.  Similarly, the spread in the 275 

evapotranspiration driver (Supplementary Figure 7) may partly be associated with 276 

errors in pre-industrial soil moisture. 277 

 278 

 279 
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 280 

Supplementary Figure 6.  Albedo doubling differences: as Figure 4c of the main paper, 281 

but for individual models. 282 

 283 

Supplementary Figure 7.  Bowen ratio of ensemble mean surface heat fluxes at 4xCO2, 284 

divided by the equivalent at 2xCO2: as Figure 4e but for each model. 285 
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Model Doubling ratio in global mean warming 

NCAR CESM1 1.21 

IPSL CM5A-LR 1.05 

MIROC5 T42 1.27 

HadCM3 1.19 

HadGEM2-ES 1.18 

 286 

Supplementary Table 1.  Doubling ratio in global-mean warming for each model. 287 

 288 

5. Model descriptions 289 

 290 

Model and 

citation 

Resolution Citation 

NCAR CESM110 0.9° longitude x 1.25° latitude, 26 

vertical levels 

Gent et al., 2011 

IPSL CM5A-

LR11 

3.75° longitude x 1.875° latitude, 39 

vertical levels 

Dufresne et al., 2013 

MIROC5 T4212 T42, 40 vertical levels Watanabe et al., 2010 

HadCM313,14 3.75° longitude x 2.5°  latitude, 19 

vertical levels 

Gordon et al., 2000, Pope 

et al., 2000 

 291 

Supplementary Table 2. Descriptions of models used (HadGEM2-ES is described in 292 

Methods of main text). 293 

294 
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