
Analysis of the regional pattern of sea 
level change due to ocean dynamics and 
density changes for 1993-2099 in 
observations and CMIP5 AOGCMs 
Article 

Published Version 

Open Access 

Bilbao, R. A. F., Gregory, J. M. ORCID: https://orcid.org/0000-
0003-1296-8644 and Bouttes, N. (2015) Analysis of the 
regional pattern of sea level change due to ocean dynamics 
and density changes for 1993-2099 in observations and 
CMIP5 AOGCMs. Climate Dynamics, 45 (9). pp. 2647-2666. 
ISSN 0930-7575 doi: 10.1007/s00382-015-2499-z Available at 
https://centaur.reading.ac.uk/39128/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .

To link to this article DOI: http://dx.doi.org/10.1007/s00382-015-2499-z 

Publisher: Springer 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://centaur.reading.ac.uk/licence


www.reading.ac.uk/centaur   

CentAUR 

Central Archive at the University of Reading 
Reading’s research outputs online

http://www.reading.ac.uk/centaur


1 3

DOI 10.1007/s00382-015-2499-z
Clim Dyn

Analysis of the regional pattern of sea level change due to ocean 
dynamics and density change for 1993–2099 in observations 
and CMIP5 AOGCMs

Roberto A. F. Bilbao · Jonathan M. Gregory · 
Nathaelle Bouttes 

Received: 8 October 2014 / Accepted: 24 January 2015 
© The Author(s) 2015. This article is published with open access at Springerlink.com

sea level change, and that the pattern is very similar under 
the different RCPs for a given model. We determine that the 
forced signal will be detectable above the noise of unforced 
internal variability within the next decade globally and may 
already be detectable in the tropical Atlantic.

Keywords Regional sea level change · Pattern scaling · 
Times of emergence

1 Introduction

Tide-gauge observations show that global mean sea level 
has risen by about 0.19 m since 1901 (Church and White 
2011; Ray and Douglas 2011; Rhein et al. 2013). Global 
mean sea level rise results principally from thermal expan-
sion of sea water and from increase in the mass of the 
oceans due to reduction of the mass of land ice (Church 
et al. 2011, 2013; Gregory et al. 2013). Projections based 
on results from Atmosphere–Ocean General Circulation 
Models (AOGCMs) indicate that global mean sea level 
will continue to rise throughout the twenty-first century 
(Meehl et al. 2007; Church et al. 2013). According to the 
Fifth Assessment Report of the Intergovernmental Panel 
on Climate Change, global mean sea level rise by 2100 
with respect to the 1996–2005 mean will likely amount to 
between 0.3 and 1.0 m, depending on scenario; in all sce-
narios, thermal expansion is the largest contribution, and 
accounts for about 30–55 % (Church et al. 2013).

Recent sea level change has strong regional variations, 
as is revealed by the continuous near-global satellite altim-
etry observations by the TOPEX/Poseidon and JASON 
missions since 1993 (Cazenave and Nerem 2004; Meyssig-
nac et al. 2012). Predicted future sea level rise is likewise 
not spatially uniform, but models show disagreement in 
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its geographical pattern for the next century (Meehl et al. 
2007; Yin 2012; Bouttes et al. 2012; Church et al. 2013; 
Slangen et al. 2012, 2014).

The geographical pattern of sea level change (with 
respect to the geoid, which is the surface of constant geo-
potential that would describe sea level if the ocean were 
at rest) results from the superposition of ‘fingerprints’ 
resulting from different processes with various time-scales 
(Mitrovica et al. 2001; Bamber and Riva 2010; Kopp et al. 
2010; Tamisiea 2011; Slangen et al. 2012, 2014; Perrette 
et al. 2013). Local sea level change is due to changes in 
density of the ocean from changes of temperature and 
salinity (thermosteric and halosteric sea level change, 
respectively), changes in the ocean circulation (which are 
strongly related to changes in density by ocean dynamics), 
water and ice redistribution between the land and ocean 
(leading to changes in the Earth’s gravitational field and 
rotation and to flexure of the lithosphere), and changes 
in atmospheric pressure (Mitrovica et al. 2001; Tamisiea 
2011; Bamber and Riva 2010; Kopp et al. 2010; Perrette 
et al. 2013; Lyu et al. 2014).

The physical processes which determine global-mean 
sea level rise and regional sea level change are not identi-
cal, although they are related. We therefore treat them sepa-
rately, as is done in most models and model-based analyses 
(Church et al. 2013). Our focus throughout this paper is on 
regional sea level change with respect to global mean sea 
level. Because sea level rise can threaten coastal popula-
tions (Nicholls et al. 2011), the most relevant information 
to anticipate future impacts and needs for adaptation is pre-
diction of regional sea level change with respect to its pre-
sent level, which is the sum h + η of global mean sea level 
rise h, and the difference of regional sea level change η 
from global mean sea level rise. The spread among models 
in projections of η is substantial compared with h (Church 
et al. 2013). This is a serious drawback for predicting 
regional sea level change. Hence it is important to reduce 
the uncertainty in η.

One way to make progress is by enquiring whether 
observed regional sea level change is a consequence of cli-
mate change forced by anthropogenic or natural (volcanic 
and solar) influences, or whether it is due to unforced vari-
ability generated spontaneously within the climate system, 
associated with phenomena such as the El Niño Southern 
Oscillation (ENSO) or the Inter-decadal Pacific Oscillation 
(IPO), i.e. whether the forced climate change signal can be 
‘detected’ in the sea level change observations. If it can, we 
would have greater confidence in projections made using a 
model which simulates forced patterns of sea level change 
in agreement with observations.

Much work has been done to detect the signal of forced 
climate change in many other areas of the climate system 
relevant to sea level change, especially ocean warming 

(Bindoff et al. 2007; Palmer et al. 2007). Yet little has been 
done in detection and attribution of sea level change itself, 
for two reasons. First, it has been problematic to account 
for observed global mean sea level change over the past 
century in terms of known contributions; this is a pre-req-
uisite for confidence in physical understanding. Therefore 
many recent studies have focused on closing the global sea 
level budget, and progress has been made (Church et al. 
2011; Gregory et al. 2013). Second, the patterns of sea 
level rise before the altimeter period are known from tide 
gauge records, which are relatively few in number and only 
along coastlines, whereas for other climate variables such 
as surface air temperature, precipitation and ocean interior, 
observational records with widespread coverage extend-
ing back several decades are available. The short record of 
regional sea level change imposes a limit on the statistical 
significance of detection and attribution.

In this work we use AOGCM simulations from the Cou-
pled Model Intercomparison Project Phase 5 (CMIP5) to 
study the pattern of sea level change resulting from den-
sity and circulation changes in the ocean, which are in turn 
driven by surface fluxes of momentum, heat and fresh water 
(Lowe and Gregory 2006; Pardaens et al. 2011; Bouttes and 
Gregory 2014). This contribution to the pattern is currently 
dominant, though in the latter part of the twenty-first cen-
tury it is likely that the fingerprint of land ice change will 
become more important and perhaps dominant, depending 
on the magnitude of land ice loss (Bamber and Riva 2010; 
Kopp et al. 2010; Perrette et al. 2013; Church et al. 2013).

We address three questions related to the pattern of sea 
level change due to forcing of the climate system. First, is 
the forced pattern detectable in observations to date? Sec-
ond, is sea level change in future decades expected to have a 
constant pattern (with an increasing amplitude)? If the pat-
tern is constant, observed change can be used to refine the 
estimates of future change, making this a question of practi-
cal significance. Third, when will local sea level change be 
detectable above the background of unforced local variabil-
ity? This is referred to as the time of emergence (Hawkins 
and Sutton 2012; Lyu et al. 2014), and is the relevant time-
scale for implementing local adaptation measures.

To address the latter two questions we apply the method 
of pattern scaling to sea level change (Santer et al. 1990; 
Mitchell et al. 1999; Mitchell 2003; Collins et al. 2013; Per-
rette et al. 2013). We investigate a variety of predictors of 
sea level change and analyse the accuracy of the method. 
The main advantage of this method is that it provides a 
way to estimate the pattern of forced sea level change with 
negligible unforced internal variability. An application for 
this method is that it can be used to estimate local sea level 
change for model scenarios where an AOGCM experiment is 
not available, provided that there are means to estimate the 
predictor variable and the pattern is independent of scenario.
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2  The pattern of sea level change since 1993

Observed (TOPEX/Poseidon and Jason) sea level change 
trends from 1993–2012, from linear regression of local sea 
level change against time (Fig. 1a), show several character-
istic features such as an East–West dipole in the Pacific, a 
meridional dipole in the North Atlantic, and enhanced sea 
level rise around 45°N in the Southern Ocean. Understand-
ing whether these features are the result of anthropogenic 
climate change or unforced internal variability is of major 
importance for understanding ocean dynamics and future 
projections of sea level change.

The East–West dipole in the Pacific Ocean is the most 
prominent feature of the observed sea level trends and has 
been associated with the dominating negative phase of 
the IPO in recent decades (Meehl and Hu 2013) and trade 
wind intensification (Carton et al. 2005; Timmermann et al. 
2011; Merrifield 2013; Merrifield et al. 2011). Several stud-
ies have shown that forcing climate models with observed 
winds results in the observed pattern (Merrield and Maltrud 
2011; McGregor and Sen Gupta 2012; England et al. 2014; 
Griffies et al. 2014). Negative wind stress curl anomalies in 
the Western Tropical Pacific lead to downwelling of warm 
waters, deepening of the thermocline and thermosteric sea 
level rise, while the opposite occurs in the Eastern Tropical 
Pacific (Griffies et al. 2014).

Meyssignac et al. (2012) considered whether the 
observed sea level trend pattern in the tropical Pacific ocean 
is an externally forced response or unforced internally gen-
erated variability by comparing satellite altimetry observa-
tions (1993–2009) with past sea level reconstructions and 
with CMIP3 pre-industrial controls and twentieth century 
runs. Their study concludes that the period 1993–2009 is 
too short to detect an externally forced signal and that the 
pattern is consistent with unforced internal variability as 
exhibited by reconstructions of historical sea level change 
and by pre-industrial simulations using AOCGMs of the 
Coupled Model Intercomparison Project Phase 3 (CMIP3).

The North Atlantic meridional dipole is characterised 
by increased sea level around Greenland and decreased 
sea level in the Gulf Stream. A qualitatively similar feature 
is predicted by most AOGCMs for future decades (Bryan 
1996; Lowe and Gregory 2006; Pardaens et al. 2011; 
Bouttes et al. 2013a; Church et al. 2013), and is associ-
ated with changes in heat flux and the Atlantic meridional 
overturning circulation (AMOC), due to changes in surface 
buoyancy fluxes (freshwater and heat) (Yin 2012; Bouttes 
et al. 2013a).

Observed sea level change in the Southern Ocean is 
characterised by a band of rising sea level approximately 
at 45°S, and steady or falling sea level further south. 
Understanding this feature of sea level change is of major 
importance as it is the dominant and most robust feature of 

AOGCM projections for the twenty-first century (Meehl 
et al. 2007; Pardaens et al. 2011; Bouttes et al. 2012; Yin 
2012; Church et al. 2013). It is probably associated with 
changes in westerly winds in the Southern Ocean (Thomp-
son et al. 2000), and hence in the wind driven overturning 
circulation and the meridional sea level gradient associated 
with the Antarctic Circumpolar Current (Frankcombe et al. 
2013).

Our first question is whether a forced pattern of sea level 
change is detectable in observations to date. This question 
has two aspects. First, are observed sea level trends consist-
ent with unforced variability of the climate system? Sec-
ond, are they consistent with forced climate change?

To address the first aspect, we compare the trends in 
annual mean sea level observed by satellite altimetry (from 
the TOPEX/Poseidon and Jason missions) for the period 
1993–2012 with trends in annual mean sea level for peri-
ods of the same length (20 years) simulated in pre-indus-
trial control simulations of 21 CMIP5 models (see Table 1). 
Trends in the control simulations can be due only to varia-
bility generated internally by the simulated climate system, 
because all forcing agents (anthropogenic and natural) are 
held constant.

Sea level change from satellite altimetry includes all the 
processes that lead to geographical changes in sea level, 
including the effect on the geoid of ongoing change in land 
ice, and Glacial Isostatic Adjustment (GIA) in response to 
land-ice changes over millennia (Peltier 2004; Church et al. 
2013). For the satellite altimetry period, the former is neg-
ligible (Kopp et al. 2010), however the GIA contribution is 
significant in some regions. Since we are interested in the 
sea level change as a result of ocean circulation and den-
sity change only, we correct the observed sea level change 
by subtracting sea level change pattern resulting from the 
geoid change due to GIA estimated by Peltier (2004). 
Applying the GIA correction varies the observed pattern of 
sea level change very slightly.

Since the gridded dataset of satellite altimeter observa-
tions has a significantly higher resolution than most CMIP5 
models and shows small-scale features not simulated in 
models, the data from both observations and models were 
first averaged onto a common 5° × 5° grid.

Because the deep ocean requires millennia to reach a 
steady state, there are typically non-zero long-term trends 
in the control experiment of an AOGCM, despite the con-
stant boundary conditions. These drifts are small for the 
surface climate in CMIP5 pre-industrial control simula-
tions, but substantial for quantities affected by the state of 
the deep ocean, including local and global mean sea level 
(Sen Gupta et al. 2013). Therefore we remove the drift in 
local sea level in the CMIP5 pre-industrial control runs, 
caused by insufficient spin-up, by the method described in 
“Appendix”.
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We computed longitude-latitude fields of trends from the 
observational dataset and from each drift-corrected 20-year 
model control segments by linear regression against time, 
and for each model we computed a distribution of trends 
at each gridbox from the set of segments. To maximise the 
amount of information regarding variability on all time 
periods the 20 years segments of control begin in consecu-
tive years and thus overlap. From the trend distributions 
for each model, we calculate the 2.5 and 97.5 percentiles 
at each gridbox. If the observational trend at a gridbox lies 
outside these limits, we conclude that it differs significantly 
from unforced variability (at the 5 % level), according to 
the model used.

Figure 1a indicates the regions where the trend is signifi-
cant in at least 2/3 of CMIP5 pre-industrial control simu-
lations analysed. Regions where the observed trends are 
significant are the tropical Pacific, the Equatorial Atlantic, 
and parts of the Southern Pacific, Indian Ocean and South-
ern Ocean. Where the observed trend is not consistent with 
simulated unforced variability, we conclude either that 
the simulated unforced variability is unrealistically small 
i.e. larger unforced trends are generated in the real world 
than in the models, or that the observed trend has a forced 
contribution.

The tropical Pacific is of particular interest. Meyssignac 
et al. (2012) conclude that the observed trends in this region 
are consistent with the geographical patterns and power 
spectra of unforced variability in AOGCM pre-industrial 
control simulations. Our analysis, however, shows that the 
magnitude of the trends is significantly larger than, and 
therefore not consistent with, simulated unforced variability 
in AOGCMs. We reach a different conclusion from theirs 
because our focus is on the magnitude of trends rather than 
their spatiotemporal characteristics. However, we note that 
inconsistency with control variability does not mean that 
observed trends can be attributed to external forcing, which 
we consider next.

We determine whether the forced pattern of sea level 
change can be detected in observations by comparing with 
historical simulations of CMIP5 AOGCMs for 1993–2005 
(Fig. 1b, c), which is the longest period possible (the 
CMIP5 projections under RCP scenarios begin in 2006). 
In a similar way to previously described, we calculate 
the linear trend patterns for sea level change observations 
and CMIP5 historical simulations by linearly regressing 
against time. Historical runs of CMIP5 AOGCMs show a 
range of spatial patterns of sea level trends for the period 
1993–2005. Where the observed pattern of sea level change 
is dominated by unforced internal variability, we would not 
expect the CMIP5 historical experiments to simulate it. On 
the other hand, a forced response should be consistent in 
the models and should show agreement with observations. 
The CMIP5 multi-model ensemble mean shows that trends 
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Fig. 1  a Observed sea level change trends (mm/year) from satellite 
altimetry between 1993–2012. The hatching indicates trends that are 
significant (at the 5 % level) with respect to at least 2/3 of CMIP5 
pre-industrial control simulations. b Observed sea level change 
trends (mm/year) from satellite altimetry (1993–2005). c Ensemble 
mean sea level trends (mm/year) from CMIP5 historical simulations 
between 1993–2005 and d CMIP5 ensemble spread (mm/year). All 
figures have been re-gridded by averaging on a 5° × 5° grid
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average out in large parts of the world (Fig. 1c); this sug-
gests that the observed sea level trends in those regions are 
dominated by internal variability.

The East–West dipole in the Pacific, which is the 
dominant feature of the observed trends, is not simu-
lated in the CMIP5 historical experiments (1993–2005), 
except for one ensemble member of HadGEM2-ES and 
CanESM2, and does not appear in the multi-model mean. 
The observed pattern however is not unusual in climate 
model simulations; decades with a similar pattern have 
been associated with a hiatus in the rate of global warm-
ing (Meehl and Hu 2013). Yet the observed magnitude is 
outside the range of simulated unforced variability. We 
think it likely that the recent Pacific sea level trends are 
due to unforced variability, not external forcing, but that 
CMIP5 models are deficient in simulating the magnitude 
of unforced decadal variability in the tropical Pacific. This 
in turn is probably associated with an underestimation of 
the unforced variability in the trade winds (cf. England 
et al. 2014).

In the North Atlantic, there is a large spread of trends 
across the models (Fig. 1d). Most models simulate a 

meridional dipole, although with varying shape, indicat-
ing a common cause, presumably related to the heat flux 
and Atlantic Meridional Overturning Circulation (AMOC) 
(Katsman et al. 2008; Bouttes et al. 2012). In some mod-
els, and in the model mean, the sign of the dipole is 
reversed compared to observations, but this is unprob-
lematic because the simulated and observed trends in this 
region are consistent with unforced decadal variability 
(Fig. 1a).

Almost all CMIP5 AOGCMs analysed (Table 1) simu-
late the Southern Ocean meridional dipole, with increased 
sea level change band at approximately 45°S, although this 
feature also varies in shape, magnitude and location among 
the models. The agreement among historical simulations, 
and the fact that the observed trend significantly exceeds 
simulated unforced variability in some regions and mod-
els, suggest that the observed Southern Ocean dipole is a 
forced response. It is likely that this feature is of anthropo-
genic origin, because ozone depletion over Antarctica and 
increasing greenhouse gas concentration in the atmosphere 
could have caused the intensification and poleward shift of 
the westerly winds (Cai 2006; Fyfe et al. 2007).

Table 1  List of CMIP5 AOGCMs analysed in this work, with the number of ensemble members available and the percentage area where the last 
20 years residuals and pre-industrial control 20-year variability are significantly different (5 % significance level)

Models Num. of  
Ensemble  
Members

RCP2.6 RCP4.5 RCP8.5

RCP2.6 pattern 
(%)

All-RCP pattern 
(%)

RCP4.5 pattern 
(%)

All-RCP pattern 
(%)

RCP8.5 pattern 
(%)

All-RCP pattern 
(%)

ACCESS1-0 1 – – 12 – 14 –

ACCESS1-3 1 – – 7 – 14 –

CNRM-CM5 1 4 14 2 6 1 13

CSIRO-Mk3-6-0

 (method 1) 10 12 – 5 – 6 –

 (method 2) 35 34 33 34 32 65

CanESM2

 (method 1) 5 8 34 10 27 6 29

 (method 2) – – 5 – 9 –

GFDL-ESM2M 1 8 34 10 27 6 29

HadGEM2-CC 1 – – 5 – 9 –

HadGEM2-ES

 (method 1) 4 8 – 5 – 5 –

 (method 2) 27 27 28 42 30 63

IPSL-CM5A-LR 1 23 53 6 16 5 33

IPSL-CM5A-MR 1 4 28 5 16 7 31

MPI-ESM-LR 1 3 41 4 10 3 23

MPI-ESM-MR 1 13 40 3 13 3 25

MRI-CGCM3 1 7 17 3 15 7 25

NorESM1-M 1 12 29 5 27 11 34

NorESM1-ME 1 9 27 8 14 14 33

inmcm4 1 – – 3 – 2 –
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3  Estimating the pattern of future sea level change

In this section we analyse the forced pattern of sea level 
change in CMIP5 AOGCM projections relative to the 
global mean change, in order to address the second ques-
tion: is the pattern constant in time? Following the method 
of pattern scaling (Santer et al. 1990; Mitchell et al. 1999; 
Mitchell 2003; Collins et al. 2013; Perrette et al. 2013), we 
assume that η (sea level change relative to the control, with 
the global mean subtracted and drift removed following 
“Appendix”) can be decomposed into a spatial pattern P(x),  
which is a function only of location x, and amplitude S(t),  
which is a function only of time t, and unforced internally 
generated variability (ε) regarded as random noise with a 
stationary Gaussian distribution,

In previous studies, it has been shown that this assumption 
is reasonable for other variables of the climate system; in 
particular, that local surface air temperature change scales 
well with global-mean surface air temperature change 
(Hawkins and Sutton 2012; Collins et al. 2013). To obtain 
accurate results from the method of pattern scaling for sea 
level change we have to determine the best choice for the 
sea level predictor S, which is a global-mean variable indi-
cating the magnitude of local sea level change relative to 
global mean sea level change.

Once S is chosen, the sea level change pattern P(x) is 
calculated as the gradient of the linear regression of η(x, t) 
against S(t) at each location x. In the regression, we do 
not allow for a non-zero intercept (that is, we force η = 0 
when S = 0) because the scaling method (as shown by 
Eq. 1) implies that there is no offset. When carrying out 
the regression, we express both η and S as differences from 
the time-mean of a reference period. The regression is done 
using ordinary least squares with S as the independent vari-
able, implying that all variations in S predict variations in 
η, but in addition there are unpredictable variations in η, 
characterized by ε, which emerge as the residual from the 
regression.

We can then use pattern scaling to estimate the expected 
sea level change fields according to ηPS(x, t) = P(x)S(t). 
This estimate has small or negligible unforced variability, 
because the pattern was determined from many years of 
data, and the predictor is a global variable.

3.1  Spatial standard deviation as a time-dependent 
indicator of the magnitude of local sea level change

Because the global mean is used as the predictor in pat-
tern scaling studies of surface air temperature change, 
analogy might suggest the global-mean of η as our pre-
dictor, but by construction η has zero global mean and 

(1)η(x, t) = P(x)S(t) + ε(x, t)

gives no information on the time evolution of sea level 
change. Therefore, we adopt the time-series of the area-
weighted spatial variance of sea level change as a measure 
of the magnitude of local sea level change relative to the 
global mean, and use this information to determine what a 
suitable predictor might be on the basis of temporal cor-
relations. Taking the area-weighted spatial variance of 
Eq. (1):

since ε is random noise and not correlated with P or S. Re-
writing Eq. (2):

where here SD is the area-weighted spatial standard devia-
tion. The left-hand-side of Eq. (3) is proportional to S(t) 
because std(P(x)) is a constant. The unforced variability ε 
at any time in the scenario experiment is an unknown part 
of η. We assume unforced variability to be independent of 
the state of the climate, and use the time-mean of the area-
weighted interannual standard deviation of local sea level 
in the drift-subtracted (see “Appendix”) pre-industrial con-
trol simulation as a time-independent estimate of std(ε). 
For this purpose, we use the entire length of the control 
run.

We calculate the left-hand side of Eq. (3) for annual 
means from the CMIP5 historical + RCP experiments 
shown in Table 1, which all branch from the control simula-
tion. They have historical forcings from the mid-nineteenth 
century up to 2005, then for 2006–2100 follow three rep-
resentative concentration pathways (RCP): 2.6, 4.5 and 8.5 
(Taylor et al. 2012). We consider sea level change relative 
to 1993–2012 i.e. the satellite observational period.

Subtracting ε in quadrature from η in Eq. (3) may result 
in the square root of a negative value when the unforced 
internal variability dominates. This happens until the 1980s 
and therefore we consider the time-series starting from the 
year after the latest year in which SD [ε] > SD[η]. Since 
we are interested in estimating the forced pattern of sea 
level change, time-periods where internal variability domi-
nates are not relevant.

With unforced variability subtracted, the histori-
cal + RCP simulations show that area-weighted spatial 
standard deviation of sea level change is flat up to approxi-
mately the year 2000, and then increases steadily until the 
end of the twenty-first century (blue lines in Fig. 2). Before 
subtracting the unforced variability, the spatial standard 
deviation is larger, and increases more slowly in the early 
decades of the century (red lines in Fig. 2). In some of 
the models and experiments the rate of increase decreases 
towards the end of the twenty-first century suggesting a sta-
bilisation, especially under RCP2.6 (Fig. 2a).

(2)var[η(x, t)] = var[P(x)S(t)] + var[ε(x, t)]

(3)
√

SD[η(x, t)]2 − SD[ε(x, t)]2 = SD[P(x)]S(t)
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3.2  Choice of global variable to predict the magnitude 
of local sea level change

The pattern of regional sea level change is affected by 
changes in temperature and salinity, which are themselves 
affected by changes in surface fluxes of momentum, heat 
and freshwater (Lowe and Gregory 2006; Bouttes and 
Gregory 2014). For pattern scaling to be satisfactory, we 
must assume that all of these changes scale together and 
are proportional to a single variable that represents the 
magnitude of all aspects of global climate change which 
affect sea level. Global mean surface air temperature (SAT) 
is commonly used for pattern scaling, and we also con-
sider global mean sea surface temperature (SST) because 
climate change over the ocean might be a better predictor 
of regional sea level change. Sea level change does not 
depend only on surface climate change, because interior 

redistribution of heat affects the density gradients (Lowe 
and Gregory 2006). Temperature and salinity change pen-
etrate to different depths in different regions (Pardaens 
et al. 2011). We therefore also consider as a possible pre-
dictor the ocean volume mean temperature integrated from 
the surface down to 300, 700, 2,000 m and the total depth 
(using the closest level to the nominal depth in each mod-
els to avoid vertical interpolation). Since density change 
depends on the thermal expansion coefficient, which is 
dependent on both temperature and pressure, and hence 
on the three-dimensional temperature field in the model 
simulation, we consider global mean thermal expansion as 
another predictor, evaluated to the same depths as volume 
mean temperature change.

Figure 3 shows these possible predictor time series for 
historical + RCP4.5. This scenario is shown as an exam-
ple. Change in all quantities is expressed with respect to the 
time-mean of 1993–2012. Ocean volume mean temperature 
and global-mean thermosteric sea level averaged over dif-
ferent depths show differences in the time-series shapes. 
In particular, the time-series integrated over the first 300 m 
tend to stabilise towards the end of the twenty-first century, 
like surface temperature, whereas the time-series integrated 
over deeper layers do not, because deep-ocean temperature 
change is approximately a time-integral of surface temper-
ature change (Bouttes et al. 2013b). Ocean volume mean 
temperature and global-mean thermosteric sea level time-
series for the same depth ranges are almost identical in 
shape (Fig. 3), as shown by Kuhlbrodt and Gregory (2012) 
for the full depth.

The global-mean SST and SAT time-series are charac-
terised by larger unforced interannual variability. Averaging 
over deeper layers results in a gradual decrease in variabil-
ity (Gregory 2000; Palmer et al. 2007; Winton et al. 2010). 
Similarly, the area-weighted spatial standard deviation of 
sea level shows high-frequency variability of similar (frac-
tional) size to surface temperature.

To determine the best possible scaling factor we corre-
late the left-hand-side of Eq. (3) with the various possible 
predictors. A better predictor would have a higher correla-
tion. Under historical + RCP4.5, all the global-mean pre-
dictors analysed, for all the models, show a high correlation 
with the left-hand-side of Eq. (3), ranging between 0.85 
and 0.99 (Fig. 4). The correlations for the ocean volume 
mean temperature and global-mean thermosteric sea level 
are similar when averaged over the same depths, and gen-
erally have higher correlations than global mean SAT and 
global mean SST. The main differences between models 
relates to the depth to which ocean volume mean tempera-
ture and global-mean thermosteric sea level are averaged.

Since the correlations are affected by the high-frequency 
variability in the area-weighted spatial standard devia-
tion, SAT and SST time-series, they were reevaluated after 
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Fig. 2  CMIP5 ensemble mean area-weighted spatial standard 
deviation of sea level change η (red lines) [mm] for (a) histori-
cal + RCP2.6, b historical + RCP4.5 and c historical + RCP8.5. The 
forced component of η (black lines) is calculated by subtracting the 
estimate of unforced internal variability ε (from pre-industrial control 
simulations) in quadrature—see Eq. (3). For both lines the shading 
represents the CMIP5 ensemble spread as ±1 SD. The time-series are 
relative to the 1993–2012 mean
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smoothing these time-series using a 10-year running mean. 
This results in an increase in correlation for all possible 
predictors but does not improve consistently any in particu-
lar (not shown).

For the RCP2.6 and RCP8.5 scenarios we considered 
as possible predictors SAT, ocean volume mean tempera-
ture for the full depth and global mean thermometric sea 
level for the full depth. RCP2.6 gives results with similar 
characteristics to RCP4.5, but SAT is consistently the best 
predictor for RCP8.5. We hypothesise that this is because 
towards the end of the twenty-first century the radiative 

forcing under RCP8.5 accelerates, which tends to enhance 
surface warming relative to deep warming, so the temporal 
evolution of global sea level change is better described by a 
predictor including only surface information. On the other 
hand in RCP4.5 and RCP2.6 the forcing increases steadily 
or at a declining rate, allowing time for penetration of heat 
to greater depth.

Overall, there is no variable which is consistently the 
best predictor of sea level change in all models and experi-
ments, but all the predictors considered give good cor-
relations. We decide to use the same predictor for all 
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Fig. 3  Timeseries of possible predictors of the magnitude of local 
sea level for the historical + RCP4.5 simulations (1993–2100). a 
global mean surface air temperature (SAT) (°C), b global mean sea 
surface temperature (SST) (°C), c ocean volume mean temperature 
(OVMT300) from the surface down to 300 m (°C), d ocean volume 
mean temperature (OVMT700) from the surface down to 700 m 
(°C), e ocean volume mean temperature (OVMT2000) from the 
surface down to 2,000 m (°C), (f) ocean volume mean temperature 
(OVMT Total) for the entire depth (°C), g global mean thermosteric 

sea level rise (GMTSL300) from the surface down to 300 m (mm), 
h global mean thermosteric sea level rise (GMTSL700) from the 
surface down to 700 m [mm], i global mean thermosteric sea level 
rise (GMTSL2000) from the surface down to 2,000 m (mm), j global 
mean total thermosteric sea level rise (GMTSL Total) for the entire 
depth (mm). The lines are the CMIP5 ensemble mean. The shading 
represents the CMIP5 ensemble spread as 1 SD. All the time-series 
are relative to the 1993–2012 mean
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experiments, and therefore we choose ocean volume mean 
temperature over the total depth as our predictor, because it 
gives the highest model ensemble-mean correlation in both 
RCP2.6 and RCP4.5, and it is available for more models 
than thermosteric sea level. It is an advantage for our pur-
pose in that ocean volume mean temperature over the total 
depth has very high signal to noise ratio.

3.3  The pattern of sea level change

The forced pattern of sea level change P(x) was calcu-
lated by regressing the CMIP5 AOGCMs sea level change 
fields η(x, t) against the predictor S(t) (ocean volume mean 
temperature over the total depth) (Fig. 5). In the histori-
cal + RCP scenarios η and S are calculated relative to the 
mean of 1993–2012. Figure 5a shows the model ensemble 
mean pattern of sea level change for historical + RCP4.5. 
There is a zonal dipole in the Southern Ocean, with a band 
of increased sea level north of 50°S and decreased sea level 
to the south relative to the global mean (Bouttes et al. 2012; 
Frankcombe et al. 2013). The North Atlantic also has a 
dipole pattern, with the largest increase of sea level change 
to the North and decreased sea level to the South (Bouttes 
et al. 2013a). There is a large sea level rise in the Beau-
fort Sea. The Pacific Ocean has a weak pattern of increased 
sea level in the North-West and decreased sea level in the 
South-East. The major features are common among CMIP5 
and earlier models (Gregory et al. 2001; Lowe and Gregory 

2006; Landerer et al. 2007; Meehl et al. 2007; Pardaens 
et al. 2011; Yin 2012; Church et al. 2013; Slangen et al. 
2014). The patterns are similar for RCP2.6 and RCP8.5 
(see also Sect. 3.5). Note also the similarity of the pattern 
of sea level change (Fig. 5a) with the pattern estimated 
by Perrette et al. (2013) using surface air temperature as a 
predictor.

For any scenario, there is a large spread among the 
models, as shown by the inter-model standard deviation 
(Fig. 5b). The other RCPs and experiments considered 
show similar spread to Fig. 5b. The regions with the largest 
spread are the Arctic, North Atlantic and Southern Ocean, 
where the strongest forced responses occur (Pardaens et al. 
2011; Bouttes et al. 2012; Church et al. 2013).

3.4  Accuracy of the pattern scaling method for sea level 
change

Having made a best choice for the predictor S(t) and deter-
mined the pattern P(x), we can apply the method of pat-
tern scaling to estimate the sea level change for 1993–
2099 for each model and scenario in response to forcing 
according to ηPS(x, t) = P(x)S(t). To assess the accuracy 
of the method in reproducing the time-dependent forced 
response projected by an AOGCM, we follow a simi-
lar methodology to Mitchell (2003). We calculate annual 
residual fields ∆η = ηGCM–ηPS, where ηGCM is the sea level 
change (relative to global mean sea level rise) given by 

Fig. 4  Temporal correla-
tion coefficients between the 
area-weighted spatial standard 
deviation time-series (mm) and 
the sea level change predic-
tor time series for CMIP5 
historical + RCP4.5 simula-
tions between 1993–2100. The 
diamonds show the mean of the 
correlation coefficients from 
the individual models. Same 
abbreviations as Fig. 3
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the AOGCM, and compute the root mean square of ∆η at 
each gridbox in these fields as an indication of the typical 
size of the error. Figure 6a shows the ensemble mean for 
historical + RCP4.5.

According to Eq. (1), these residuals should be statisti-
cally consistent with unforced internal variability ε. If this 
is not so, the assumption of pattern scaling is not valid, i.e. 
the processes determining local forced sea level change do 
not scale linearly with the global predictor (which we have 
chosen to be ocean volume mean temperature). We quan-
tify ε as the standard deviation of annual means of ηpiC, 
which denotes ηGCM in the pre-industrial control run (drift-
corrected). Figure 6c shows the CMIP5 multi-model mean 
of ε. (Since this quantity has zero time-mean by construc-
tion, its root mean square and standard deviation are equal.) 
In all models, unforced internal variability has the largest 
magnitude in the North Atlantic, Eastern Pacific and South-
ern Ocean. The multi-model deviation also shows the larg-
est inter-model differences to occur in the Arctic Ocean, 
North Atlantic and Southern Ocean (Fig. 5b). There is a 

remarkable similarity between Fig. 6a and c, b and d, even 
in small details. This similarity supports the assumption 
that the differences between the AOGCM and pattern-scal-
ing predictions are mainly due to unforced variability.

Because unforced interannual variability is substantial 
compared with the forced response, to quantify the latter 
it is customary to consider 20-year means (cf. Church et al. 
2013; Slangen et al. 2014) (Fig. 7). Figure 7a, b show the 
CMIP5 ensemble mean ηGCM for the mean of 2080–2099 
simulated by the AOGCMs and the pattern scaling predic-
tion respectively. We assume that these 20 years of the scal-
ing prediction suffer from the largest errors, because the 
forced response is small early in the twenty-first century 
but grows in time, but we see that ηPS nonetheless agrees 
very well with ηGCM in the ensemble mean.

For each model, we compare the 20-year mean of the 
annual residuals ∆η for 2080–2099 (Fig. 7c) with the mag-
nitude of unforced variability ε (Fig. 7d), quantified as the 
standard deviation of the 20-year time-means of ηpiC from 
non-overlapping 20-year segments of the drift-corrected 
pre-industrial control simulations. We test the null hypoth-
esis that the magnitude of the residual at each point is con-
sistent with ηpiC, assuming that the distribution of unforced 
variability in ηpiC is Gaussian, at a significance level of 5 % 
(two-tailed). Table 1 (columns for the pattern for individual 
scenarios) shows the percentage area where the null hypoth-
esis is rejected i.e. the residual is significantly different from 
unforced internal variability, implying that the pattern-scal-
ing method is inaccurate. For models with a single ensem-
ble member, the test fails in less than 15 % of the area. 
The regions with statistically significant errors are model 
dependent, however they tend to be most common in the 
Arctic Ocean, Southern Ocean and tropical Pacific Ocean.

For models with an ensemble of integrations for each 
scenario (CSIRO-Mk3.6.0, CanESM2 and HadGEM2-ES), 
we compare two different methods. In the first method, we 
treat each ensemble member as though it were a model 
by itself, and compute a pattern by regression using that 
ensemble member alone. Then we compute the residu-
als and carry out the significance test for each ensemble 
member, and finally we calculate the ensemble mean of the 
area where the test fails. This method is like the one which 
we use for the models where an ensemble is not available, 
except that each ensemble member gives us a different 
result, and we present the mean. The results are similar to 
the other models; the test fails in less than 15 % of the area 
on average (Table 1).

The second method relies on our knowledge that the 
ensemble members differ only because of unforced vari-
ability, and the forced response is the same. We therefore 
obtain a best estimate of the pattern of the forced response 
by using all the ensemble members together in the linear 
regression. We use this single pattern with each ensemble 
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ocean volume mean temperature (°C) as predictor for the histori-
cal + RCP4.5 simulations between 1993–2099
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member separately to make scaling projections using the 
predictor time-series from that ensemble member. The 
subsequent steps are the same as in the first method. In the 
second method, the test fails in about 30 % of the area in 
HadGEM2-ES, 35 % in CanESM2 and 40 % in CSIRO-
Mk3-6-0 (Table 1), in the same regions as method 1. 
Because the only difference is the pattern, we conclude that 

when using a single ensemble member the pattern given 
by the regression contains some influence of the unforced 
variability that is specific to that ensemble member, and the 
residuals are therefore smaller. This is an important caveat 
for the use of pattern scaling using a single ensemble mem-
ber. Because of this effect, the accuracy of the method may 
appear to be exaggerated.

Fig. 6  a Model ensemble mean 
(mm) and b model ensemble 
standard deviation (mm) of the 
root mean square of the annual 
residuals for 1993–2099 for the 
pattern-scaling prediction of the 
historical + RCP4.5. c Model 
pre-industrial control standard 
deviation multi-model ensemble 
mean (mm) and d standard 
deviation (mm)
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Although the results indicate statistically significant 
errors in pattern scaling, the magnitude of these errors is 
small. The area-weighted root mean square (RMS) of the 
residual ∆η mean for 2080–2099 for each model is tabu-
lated in Table 2. It ranges within 10–15 mm (using method 
1, as described above, to compute the residuals for models 
where there is an ensemble). This typical size for the resid-
ual should be compared with the geographical variation 
of ηGCM for 2080–2099 relative to the 1993–2012, which 
lies in the range 40–60 mm for RCP2.6 and 80–110 mm 
for RCP8.5 (Table 2), except for one model (MRI-CGCM3, 
which predicts smaller sea level changes). Part of the 
residual is due to unforced variability, which the pattern-
scaling method does not reproduce, and part could be due 
to pattern scaling errors. For comparison with RMS(∆η), 
we compute the area-weighted RMSs of 20-year means 
of ηGCM from pre-industrial control simulations (ηpiC) for 
each CMIP5 model, and calculate the mean and standard 
deviation of the results from all 20-year segments. This 
quantity indicates the magnitude of unforced variability 
in 20-year means. These values (Table 2) are generally of 
similar magnitude values to those for the RMS of the resid-
ual fields, suggesting the errors will not be distinguishable 
from internal variability, consistent with the result above 
that the errors are significant in only a small fraction of the 
total area. Furthermore, we note that RMS(∆η) is no larger 
for RCP8.5 than RCP2.6, indicating that it is dominated by 
unforced variability, because we would expect larger pat-
tern-scaling errors for the greater forced response expected 
in RCP8.5.

For the three models where we have multiple ensemble 
members, we also compute the ensemble-mean RMS error 
from the residuals using method 2 (above) to make the 
scaling projections, with a single pattern computed from all 
ensemble members. These values (Table 2) are in the range 
20–30 mm, about twice the size as from method 1. This 
indicates that the errors are larger when a single pattern is 
used, consistent with the larger area in which the residu-
als were found above to be significant. This reinforces the 
conclusion that the use of a single ensemble member will 
underestimate the errors in predicting the forced response. 
Nonetheless RMS(∆η) is still less than half the size of 
RMS(ηGCM) in RCP2.6 and less than one-third in RCP8.5 
in these three models.

3.5  Is the pattern of sea level change independent 
of scenario?

We examine whether the forced pattern of sea level change 
is the same in the different Historical + RCP scenarios. 
The spatial correlation between patterns for pairs of scenar-
ios in a given model is about 0.8 or more between RCP2.6 
and the other two scenarios, and about 0.9 or more between 

RCP4.5 and RCP8.5 (Table 3). To determine whether 
the differences in the patterns estimated for the scenarios 
could be due to unforced internal variability, we make use 
of those models with several ensemble members: CSIRO-
Mk3.6.0, CanESM2 and HadGEM2-ES (Table 1). In these 
models, for each scenario, we can determine a pattern 
by regression from each ensemble member individually 
(method 1), as well as for all ensemble members together 
(method 2). For method 1, we report the mean correlation 
between all possible pairs of patterns. The correlations 
in method 1 are similar to those for the models without 
ensembles, whereas the correlations in method 2 are con-
siderably higher (Table 3). This suggests that the differ-
ences in the forced pattern between scenarios is small, but 
that the pattern from a single member contains some finger-
print of unforced variability specific to that member. When 
using method 2 to calculate the patterns a large amount of 
this unforced internal variability is eliminated, increasing 
the correlation between scenarios in general. Some differ-
ences between scenarios remain, as shown by the lower 
correlations between the RCP2.6 and RCP8.5 pattern even 
in method 2.

Although the pattern of sea level change may be not 
completely independent of scenario, it would be practi-
cally useful for the purposes of prediction using the scal-
ing method if it can be treated as such. This is likely to be 
a good assumption only under scenarios with similar time 
forcing profile (Bouttes et al. 2013b).

To test the consequences of this, we computed a single 
pattern for each model using all the ensemble members of 
every RCP in the linear regression at once. Then using this 
pattern we can reconstruct sea level fields and analyse the 
residuals for each RCP using the same method as before. 
The results are shown in Tables 1 and 2 (columns labeled 
all-RCP pattern). The percentage area where the residuals 
are significant and the RMS error are greater than before, 
and are of similar sizes to those we obtained for a single 
RCP using method 2 with the models for which we have 
ensembles. We conclude that the main reason for the 
greater inaccuracy is that influence of unforced variability 
on the estimate of the forced pattern of response has been 
reduced, because the three RCPs together form an ensem-
ble of three independent integrations. It may seem para-
doxical that use of an ensemble gives larger (rather than 
smaller) errors in the scaling predictions for the forced 
response; the reason, as for the comparison between meth-
ods 1 and 2, is that the use of a single ensemble member to 
derive the pattern and then use it to estimate η gives residu-
als which are biased low, because there is some unforced 
variability which affects both the pattern and the predic-
tor in a correlated way. There must be an additional error 
because of the small differences in the forced patterns for 
different scenarios, but this is comparatively unimportant. 
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Hence for practical purposes it is adequate to use a single 
pattern for all RCPs, and one could argue that it is actually 
preferable.

4  Detecting the pattern of sea level change

In this section we address the question of when the forced 
pattern of sea level change due to ocean circulation and 
density changes will emerge from the noise of unforced 
variability i.e. when will it be statistically detectable. To 
do this we use two methods, described in the following 
subsections.

4.1  Global time of emergence

We first consider the global time of emergence, i.e. when 
the global pattern of sea level change emerges from 

unforced internally generated variability. This method 
seeks to detect the pattern of geographical variation as a 
whole.

We calculate the time-series of spatial correlation coef-
ficients between the constant pattern of sea level change P 
(obtained in Sect. 3) and the annual-mean sea level change 
fields ηGCM for a given AOGCM scenario. As in Sect. 2, 
sea level change is taken relative to the time-mean of the 
altimeter period 1993–2012. The correlation coefficient 
increases with time as the forced signal becomes stronger 
(Fig. 8), and it has negative values in the first half of the 
reference period because the forced signal during those 
years is smaller than its time-mean over the whole of the 
reference period, so the anomalies with respect to the time-
mean are anticorrelated with the pattern.

We define the global time of emergence as the earliest 
year starting from which the correlation coefficient per-
manently exceeds the 97.5th percentile of the distribution 

Table 2  CMIP5 AOGCM area-weighted root mean square of η (mm) 
for the time-mean of 2080–2099 and area-weighted root mean square 
of ∆η (mm), the difference between the prediction by the pattern scal-

ing method and the AOGCM simulation of sea level change relative 
to the global mean in the time-mean of 2080–2099 relative to 1993–
2012 for RCP scenarios

The column labelled RMS(ηpiC) show the mean and standard deviation of the area-weighed RMS of sea level fields ηGCM in non-overlapping 
20-year segments of the pre-industrial control simulation

Models RMS (ηpiC) 
(mm)

RCP2.6 RCP4.5 RCP8.5

RMS(ηGCM

) (mm)
RMS (∆η

) (mm) 
RCP2.6

RMS (∆η

) (mm) all-
RCP

RMS 
(ηGCM) 
(mm)

RMS (∆η

) (mm) 
RCP4.5

RMS (∆η

) (mm) all-
RCP

RMS 
(ηGCM) 
(mm)

RMS (∆η

) (mm) 
RCP8.5

RMS (∆η

) (mm) 
all-RCP

ACCESS1-0 14 ± 2 – – – 77 16 – 110 18 –

ACCESS1-3 14  ±  2 – – – 69 15 – 87 20 –

CNRM-CM5 13  ±  4 43 8 18 48 7 11 69 9 19

CSIRO-Mk3-6-0

(method 1) 10 ±  1 57 12 – 71 11 – 100 11 –

(method 2) 23 27 23 23 22 28

CanESM2

(method 1)  11 ±  1 52 12 – 66 11 – 100 11 –

(method 2) 23 23 22 28 24 39

GFDL-ESM2M 17  ±  3 – 15 27 77 15 20 109 13 25

HadGEM2-CC 13  ±  2 – – – 82 15 – 109 17 –

HadGEM2-ES

(method 1) 14 ±  2 56 17 – 66 15 – 93 16 –

(method 2) 23 23 23 25 – –

IPSL-CM5A-LR 11  ±  2 38 15 29 58 15 18 90 13 26

IPSL-CM5A-MR 12  ±  4 43 11 21 61 10 11 94 16 34

MPI-ESM-LR 15  ±  2 47 13 31 58 14 15 91 12 24

MPI-ESM-MR 13  ±  2 48 15 28 63 11 14 99 12 24

MRI-CGCM3 13  ±  2 34 14 17 43 8 13 64 10 19

NorESM1-M 13  ±  2 40 10 18 57 9 14 84 11 18

NorESM1-ME 13  ±  2 57 11 18 67 11 12 89 10 18

inmcm4 14  ±  3 – – – 60 9 – 96 9 –
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of correlation coefficients between the pattern of sea level 
change P and ηGCM in the AOGCM pre-industrial control 
simulation (drift corrected) (Fig. 8). When this threshold 
is permanently exceeded, we conclude that there is a sta-
tistically significant similarity and therefore that the signal 
of the anthropogenic climate change in the pattern of sea 
level would be detectable. As Fig. 8 shows, the model mean 
97.5th percentile of correlation coefficients is approxi-
mately 0.3 for all RCP scenarios, indicating that there is 
weak correlation of the pattern P with unforced internal 
variability. We note that global mean sea level change is 
not included and does not affect the results, since the cor-
relation coefficient of two fields is not changed by adding a 
uniform value to either field.

Table 4 shows the ensemble mean time of emergence of 
local sea level change and its inter-model standard devia-
tion. For the historical + RCP scenarios, the forced pat-
tern of sea level change (relative to the 1993–2012 mean) 
could emerge in the next few years, or has already done so, 
according to the CMIP5 models. The times of emergence 
for the various RCP scenarios are statistically indistin-
guishable, because the CMIP5 spread early in this century 
is dominated by unforced variability and differences among 
models, rather than by the spread of RCP scenarios, which 
do not diverge markedly for several decades (Hawkins and 
Sutton 2012). The divergence is later for sea level change 
than for surface climate parameters, because of the thermal 
inertia of the ocean (Church et al. 2013). Examining the 
spread of the global time of emergence within the ensem-
ble for the three models suggests that differences between 

models are likely to be the dominant cause of the spread 
rather than unforced variability.

The model-mean global time of emergence for histori-
cal + RCP4.5 is 2016, only 3 years after the end of our 
20-year reference period. To test whether this closeness is a 
coincidence, we also evaluate the global time of emergence 
in this scenario using the 10-year reference period 1993–
2002 (Table 4). This is the information which would have 
been available if the same analysis had been done about 
10 years ago. The model-mean global time of emergence is 
6 years after the end of the 10-year reference period i.e. the 
delay is longer.

We also repeat the analysis excluding the Pacific and 
excluding the Southern Ocean (Table 4). Excluding the 
Pacific makes no significant difference, because the models 
do not indicate a strong forced pattern in that region, even 
though the observed trends are not consistent with unforced 
variability (Sect. 2). The Southern Ocean, however, shows 
a forced signal common to the models. Excluding it delays 
the global time of emergence, but only by 3 years on aver-
age. Evidently the signal emerges significantly in other 
regions quite quickly.

4.2  Local time of emergence of sea level change

Although the global time of emergence is relatively soon, 
the time of emergence could vary locally. We also exam-
ine the local time of emergence, which depends not only 
on the pattern but also on the global mean sea level. The 
local time of emergence is an indicator of when sea level 

Table 3  Spatial correlation between patterns from RCP experiments

The first three columns of results are the mean correlations between ensemble members of the same RCP; this can be computed only for those 
models with ensembles. The following three columns show the correlation between patterns of different scenarios. For the models where we 
have multiple runs the first number is the ensemble mean correlation computing the patterns using method 1, while the second number is the cor-
relation computing one pattern using method 2. The last three columns shows the correlation between patterns for each scenario and the single 
pattern calculated by using all scenarios in a similar way to method 2

Models RCP2.6 RCP4.5 RCP8.5 RCP2.6-RCP4.5 RCP2.6-RCP8.5 RCP4.5-RCP8.5 RCP2.6-All RCP4.5-All RCP8.5-All

CNRM-CM5 – – – 0.94 0.86 0.95 0.94 0.99 0.98

CSIRO-Mk3-6-0 0.85 0.89 0.95 0.86/0.98 0.84/0.93 0.90/0.98 0.97 1.00 0.99

CanESM2 0.83 0.86 0.94 0.86/0.99 0.86/0.95 0.90/0.98 1.00 0.99 0.95

GFDL-ESM2M – – – 0.97 0.90 0.95 0.96 0.99 0.98

HadGEM2-ES 0.82 0.85 0.92 0.82/0.94 0.77/0.85 0.87/0.96 1.00 0.94 0.85

IPSL-CM5A-LR – – – 0.88 0.78 0.94 0.87 0.98 0.98

IPSL-CM5A-MR – – – 0.93 0.78 0.93 0.89 0.98 0.98

MPI-ESM-LR – – – 0.83 0.74 0.95 0.85 0.99 0.98

MPI-ESM-MR – – – 0.91 0.83 0.95 0.91 0.98 0.98

MRI-CGCM3 – – – 0.92 0.84 0.93 0.92 0.98 0.98

NorESM1-M – – – 0.94 0.90 0.95 0.95 0.98 0.99

NorESM1-ME – – – 0.96 0.92 0.96 0.97 0.99 0.99
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change will become of practical significance, because it 
has gone outside the range of unforced variability to which 
infrastructure and ecosystems are adapted. Hawkins and 
Sutton (2012) determined when the signal of anthropo-
genic climate change in surface air temperature emerges 
from unforced variability by calculating a signal to noise 
ratio (S/N). Here we apply a similar methodology to sea 
level change due to the anthropogenic influence on ocean 
circulation and density. Once again we note that we do not 
include the sea level change due to effects such as modi-
fications of the geopotential field and lithosphere flexure 
resulting from loss of land-ice (Slangen et al. 2012, 2014; 
Perrette et al. 2013). (These effects could make the time of 
emergence earlier or later, according to whether they have 
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Fig. 8  Global year of emergence of the forced pattern of sea 
level change, relative to the time-mean of the altimeter period 
(1993–2012), for the historical + RCPs (1993–2099): a Histori-
cal + RCP2.6, b Historical + RCP4.5 and c Historical + RCP8.5. 
The solid increasing line is the model ensemble mean correlation 
between the pattern P of sea level change estimated from pattern scal-
ing with the annual-mean CMIP5 scenario sea level change fields 
ηGCM. The shading shows the model spread (±1 SD). The solid hori-
zontal line represents the ensemble mean 97.5th percentile thresh-
old, calculated by correlating the pattern of sea level change with the 
CMIP5 pre-industrial control simulations. The dashed lines show the 
model spread (±1 SD) in the threshold
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the same or opposite sign to the effects of ocean circula-
tion and density.) Lyu et al. (2014) show that the local time 
of emergence of sea level change is generally earlier when 
they are included.

The local time of emergence is obtained for the histori-
cal and RCP scenarios, for sea level change relative to the 
1993–2012 mean. First, the forced signal is calculated as 
hGCM(t) + ηPS(x, t), where hGCM is the global mean ther-
mosteric sea level change from the AOGCM, which is 
added uniformly to ηPS from the pattern-scaling method. 
The reason for using ηPS (rather than ηGCM) is that that the 
unforced variability is reduced, thus increasing the accu-
racy of the estimate of time of emergence (Hawkins and 
Sutton 2012). Because both hGCM and ocean volume mean 
temperature, the predictor variable in the pattern-scaling 
method, relate to the heat content of the entire ocean, they 
have very little unforced inter-annual variability (Fig. 3). 
Then the signal to noise ratio is calculated by dividing the 
forced signal by the pre-industrial control (drift corrected) 
interannual standard deviation. We define the local time of 
emergence as the year when the signal to noise ratio per-
manently goes outside the 2.5–97.5 % range of unforced 
variability, that is, the threshold values are −1.96 and 1.96. 
If the signal to noise ratio is outside this range, sea level 
change is inconsistent with unforced internal variability 
with 95 % confidence.

The multi-model ensemble mean for the histori-
cal + RCP4.5 (Fig. 9a) shows that the local time of emer-
gence is earliest in the tropical Atlantic Ocean and Indian 
Ocean, consistently among the models, as shown by 
the low ensemble standard deviation (Fig. 9b). In most 
regions the signal of forced sea level change will emerge 
by approximately 2050, with the exception of the South-
ern Ocean (Fig. 9a). Like the global time of emergence, the 
local time of emergence shows small differences between 
scenarios. The main differences occur in regions where the 
local time of emergence is late, especially the Southern 
Ocean and Western Pacific. There are remarkable similari-
ties with the results of Lyu et al. (2014) who use a different 
methodology, although the results are not exactly compara-
ble since they use a different time period.

Not surprisingly, there is substantial similarity between 
the local time of emergence (Fig. 9a) and unforced internal 
variability (Fig. 6c). An earlier time of emergence could be 
explained by either large signal or small noise (or a com-
bination of both). In the tropical Atlantic region, where the 
time of emergence is earliest, and some models even sug-
gest that the forced signal is already detectable, the emer-
gence is early due to the low unforced variability. Hawkins 
and Sutton (2012) made a similar observation for the early 
time of emergence of surface air temperature change in the 
tropics. They investigated whether this occurs as a result 
of grid-cell size (larger grid-cells over the tropics and thus 

may result in smaller internal variability), and concluded 
that this was not a significant effect. We expect the same 
applies to sea level change.

The local time of emergence is earlier in the Eastern 
Pacific than the Western Pacific, matching the pattern of 
unforced internal variability (Fig. 6c). However, as dis-
cussed in previous sections, CMIP5 models may underes-
timate the magnitude of unforced internal variability in the 
tropical Pacific. If so, the local time of emergence should 
be later in those regions than indicated by the models.

In contrast, the local time of emergence of sea level 
change change in the Southern Ocean is later than 2100 
because the signal is small compared with the noise. Most 
models show that sea level will rise least in southern lati-
tudes of the Southern Ocean and in fact it may fall by 
2100. Note that, with respect to the global mean, η is nega-
tive in this region, thus opposing hGCM. Thus, forced local 
sea level change is hard to detect in this region by itself, 
whereas in Sect. 2 we noted that the meridional contrast in 
η across the Southern Ocean is a robust pattern and may 
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Fig. 9  Local year of emergence of the forced pattern of sea level 
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resent regions where forced sea level change will not emerge by 2099 
in at least 1/3 of the models
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be detectable earlier. It is also remarkable how the inter-
model standard deviation of local sea level change is lower 
along the increased sea level band at approximately 45°S; 
all models predict a fairly early time of emergence of the 
signal in these latitudes.

5  Summary and conclusion

Future sea level rise due to ocean density and circulation 
change predicted by AOGCMs is not spatially uniform. For 
instance, the area-weighted standard deviation of local sea 
level change under scenario RCP8.5 for 2080–2099 rela-
tive to 1993–2012 is 80–110 mm, depending on the model, 
which is substantial compared with the global mean sea 
level rise of 190–300 mm due to thermal expansion.

We apply and evaluate the method of pattern scaling for 
historical and RCP simulations from CMIP5 AOGCMs 
of local sea level change relative to global mean sea level 
change. This method assumes that forced sea level change 
has a constant pattern and that its amplitude increases with 
time i.e. η(x, t) = P(x)S(t) + ε(x, t), where P(x) is the pat-
tern, which is a function only of location x, S(t) is a predic-
tor variable, which is a function only of time t, and ε(x, t) 
is unforced variability. The main advantage of this method 
is that it provides a way to estimate local forced sea level 
change with negligible unforced internal variability.

We find that the best choice of predictor S depends on 
model and scenario; for RCP2.6 and RCP4.5 ocean vol-
ume mean temperature or global mean thermosteric sea 
level are best, whereas for RCP8.5 surface temperature is 
better. The differences between the pattern-scaling esti-
mate and the AOGCM results for a single model integration 
are mostly consistent with unforced variability, indicat-
ing that the method is accurate. However, considering the 
cases where we have an ensemble of integrations and using 
them all together to estimate the pattern P, we find that the 
typical size of the difference in η between pattern-scaling 
and AOGCM is approximately doubled, at 20–30 mm. We 
suggest that this is because there is a stronger imprint of 
unforced variability in the pattern estimated from a single 
integration, and evaluating the errors in pattern-scaling 
from a single integration may thus exaggerate the accuracy 
of the method. This caveat may apply to the pattern scaling 
method when applied to other quantities.

The patterns from different RCP scenarios are very 
similar. The major features are the contrast in the Southern 
Ocean between a band of increased sea level north of 50°S 
and decreased sea level to the south, and a dipole in the 
North Atlantic. For practical purposes, computing one pat-
tern from all scenarios is advantageous, because the pattern 
computed from all RCPs together can be expected to be 
less noisy, and the method can then be applied to scenarios 

for which AOGCM results are not available. However, this 
will be accurate only for scenarios with similar temporal 
profiles (cf. Bouttes et al. 2013b), and the patterns com-
puted for the twenty-first century may not be applicable for 
later centuries.

We perform a detection study with the objective of 
determining whether the observed geographical pattern of 
sea level change can be explained by unforced internally 
generated variability or whether we can detect the signal of 
an external forcing. By comparing satellite altimeter obser-
vations of sea level change since 1993 with historical and 
pre-industrial control simulations of CMIP5 climate mod-
els, we conclude that the observed pattern of trends is dom-
inated by unforced internal variability in most regions. The 
observed trends in the tropical Pacific Ocean are incon-
sistent with simulated unforced variability, but we suggest 
that the CMIP5 models may underestimate the magnitude 
of unforced sea-level variability in this region (cf. England 
et al. 2014). However, the dipole pattern observed in the 
Southern Ocean is likely to be associated with anthropo-
genic forcing because it is a robust feature of both histori-
cal and future simulations and inconsistent with unforced 
variability.

Using the forced patterns obtained in the pattern-scaling 
method we calculate the global and local times of emer-
gence to determine when sea level change (with respect 
to the time-mean of 1993–2012) will be detectable above 
the noise of unforced internally generated variability in the 
RCP projections. We define the global time of emergence 
as the year when the area-weighted spatial correlation 
coefficient between the annual sea level change field and 
the time-independent forced pattern P becomes inconsist-
ent with unforced variability. By this definition, the forced 
pattern is expected to emerge within the next decade. 
We define the local time of emergence as the year when 
local sea level change due to ocean density and circula-
tion change (the sum of η in global mean thermal expan-
sion) becomes inconsistent with unforced variability. Local 
sea level change will emerge first, and may have already 
emerged, in the northern latitudes of the Southern Ocean, 
and in the tropical Atlantic, where unforced variability is 
small, but it may not emerge until after 2100 in southern 
latitudes of the Southern Ocean, where sea level change 
is projected to be small. The global time of emergence 
is delayed by a couple of years if the Southern Ocean is 
excluded. It is interesting to note that the global and local 
times of emergence are independent of RCP scenario, since 
the signal emerges early in the twenty-first century, when 
the RCP scenarios have not yet significantly diverged.

In this study we consider only the geographical pattern 
of sea level change as a result of density and circulation 
changes. However, by the end of the twenty-first century 
other processes (especially the loss of land ice affecting the 
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geoid and lithosphere) may have a substantial influence on 
the geographical pattern (Perrette et al. 2013; Slangen et al. 
2014), and thus modify the local time of emergence. Net 
loss of land ice is projected to contribute to global mean 
sea level rise, and will make the local times of emergence 
of sea level change earlier everywhere.
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Appendix: Sea level drift removal in the CMIP5 models

The sea level variable ‘zos’ of the CMIP5 models refers to 
sea surface height above the geoid. In the CMIP5 database, 
zos can have a time-dependent geographically uniform 
offset, so we first subtract the global mean of each annual 
field. For scenario experiments, sea level change η is cal-
culated as a difference between its value in the scenario 
experiment and the value estimated from a linear function 
of time fitted to the parallel pre-industrial control simula-
tion, at each gridpoint. A linear fit is subtracted, rather than 
the control time-series itself, in order to avoid increasing 
the temporal variability in η. For the control experiment 
itself, which we use to estimate the magnitude of unforced 
variability, at each grid point we subtract a linear fit to the 
entire length available. A higher order polynomial was not 
used because temporal variability in local sea level is large 
compared with the drift.

The global mean sea level change time series, ‘zostoga’, 
were obtained from the online supplementary dataset of 
(Church et al. 2013), who remove the drift from the control 
timeseries by subtracting a polynomial function of time. 
Global ocean volume mean temperature, ‘thetaoga’, was 
treated similarly.

References

Bamber J, Riva R (2010) The sea level fingerprint of recent ice mass 
fluxes. Cryosphere 4:621–627

Bindoff NL, Willebrand J, Artale V, Cazenave A, Gregory JM, Gulev 
S, Hanawa K, Le Quéré C, Levitus S, Nojiri Y, Shum CK, Tal-
ley LD, Unnikrishnan AS (2007) Observations: oceanic climate 
change and sea level. In: Solomon S, Qin D, Manning M, Chen 
Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate 
change 2007: the physical science basis. Contribution of working 
group I to the fourth assessment report of the intergovernmental 
panel on climate change. Cambridge University Press, Cambridge

Bouttes N, Gregory JM (2014) Attribution of the spatial pattern of 
CO2-forced sea level change to ocean surface flux changes. Envi-
ron Res Lett 9:034004. doi:10.1088/1748-9326/9/3/034004

Bouttes N, Gregory JM, Kuhlbrodt T, Suzuki T (2012) The effect 
of windstress change on future sea level change in the South-
ern Ocean. Geophys Res Lett 39:L23602. doi:10.1029/201
2GL054207

Bouttes N, Gregory JM, Kuhlbrodt T, Smith RS (2013a) The driv-
ers of projected North Atlantic sea level change. Clim Dyn. 
doi:10.1007/s00382-013-1973-8

Bouttes N, Gregory JM, Lowe JA (2013b) The reversibility of sea 
level rise. J Clim 26:2502–2513. doi:10.1175/JCLI-D-12-00285.1

Bryan K (1996) The steric component of sea level rise associated 
with enhanced greenhouse warming: a model study. Clim Dyn 
12:545–555

Cai W (2006) Antarctic ozone depletion causes an intensification 
of the southern ocean super-gyre circulation. Geophys Res Lett 
33:L03712. doi:10.1029/2005GL024911

Carton JA, Giese BS, Grodsky SA (2005) Sea level rise and the warm-
ing of the oceans in the simple ocean data assimilation (SODA) 
ocean reanalysis. J Geophys Res Oceans 110:C09006

Cazenave A, Nerem RS (2004) Present-day sea level change: observa-
tions and causes. Rev Geophys 42:RG3001

Church JA, White NJ (2011) Sea-level rise from the late 19th to the 
early 21st century. Geophys Surv 32:585–602. doi:10.1007/
s10712-011-9119-1

Church JA, White NJ, Konikow LF, Domingues CM, Cogley G, 
Rignot E, Gregory JM, Van den Broeke MR, Monaghan AJ, Veli-
cogna I (2011) Revisiting the Earth’s sea-level and energy budg-
ets from 1961 to 2008. Geophys Res Lett 38:L18601. doi:10.102
9/2011GL048794

Church JA, Clark PU, Cazenave A, Gregory JM, Jevrejeva S, Lever-
mann A, Merrifield MA, Milne GA, Nerem RS, Nunn PD, Payne 
AJ, Pfeffer WT, Stammer D, Unnikrishnan AS (2013) Sea level 
change. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, 
Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate 
change 2013: the physical science basis. Contribution of work-
ing group I to the fifth assessment report of the intergovernmental 
panel on climate change. Cambridge University Press, Cambridge

Collins M, Knutti R, Arblaster JM, Dufresne J, Fichefet T, Friedling-
stein P, Gao X, Gutowski WJ, Johns T, Krinner G, Shongwe M, 
Tebaldi C, Weaver AJ, Wehner M (2013) Long-term climate 
change: projections, commitments and irreversibility. In: IPCC 
WG1 fifth assessment report, chap 12. Cambridge University 
Press, Cambridge, United Kingdom and New York, NY, USA

England MH, McGregor S, Spence P, Meehl GA, Timmermann A, 
Cai W, Gupta AS, McPhaden MJ, Purich A, Santoso A (2014) 
Recent intensification of wind-driven circulation in the Pacific 
and the ongoing warming hiatus. Nat Clim Change 4(3):222–227

Frankcombe LM, Spence P, Hogg AM, England MH, Griffies SM 
(2013) Sea level changes forced by Southern Ocean winds. Geo-
phys Res Lett 40(21):5710–5715

Fyfe JC, Saenko OA, Zickfeld K, Eby M, Weaver AJ (2007) The role 
of poleward-intensifying winds on Southern Ocean warming. J 
Clim 20:5391–5400. doi:10.1175/2007JCLI1764.1

Gregory JM (2000) Vertical heat transports in the ocean and their 
effect on time-dependent climate change. Clim Dyn 16:501–515. 
doi:10.1007/s003820000059

http://dx.doi.org/10.1088/1748-9326/9/3/034004
http://dx.doi.org/10.1029/2012GL054207
http://dx.doi.org/10.1029/2012GL054207
http://dx.doi.org/10.1007/s00382-013-1973-8
http://dx.doi.org/10.1175/JCLI-D-12-00285.1
http://dx.doi.org/10.1029/2005GL024911
http://dx.doi.org/10.1007/s10712-011-9119-1
http://dx.doi.org/10.1007/s10712-011-9119-1
http://dx.doi.org/10.1029/2011GL048794
http://dx.doi.org/10.1029/2011GL048794
http://dx.doi.org/10.1175/2007JCLI1764.1
http://dx.doi.org/10.1007/s003820000059


Analysis of the regional pattern of sea level change for 1993–2099

1 3

Gregory JM, Church JA, Boer GJ, Dixon KW, Flato GM, Jackett DR, 
Lowe JA, O’Farrell SP, Roeckner E, Russell GL, Stouffer RJ, 
Winton M (2001) Comparison of results from several AOGCMs 
for global and regional sea-level change 1900–2100. Clim Dyn 
18:225–240

Gregory JM, White NJ, Church JA, Bierkens MFP, Box JE, Van den 
Broeke MR, Cogley JG, Fettweis X, Hanna E, Huybrechts P, 
Konikow LF, Leclercq PW, Marzeion B, Oerlemans J, Tamisiea 
ME, Wada Y, Wake LM, Van de Wal RSW (2013) Twentieth-
century global-mean sea-level rise: Is the whole greater than 
the sum of the parts? J Clim 26:4476–4499. doi:10.1175/
JCLI-D-12-00319.1

Griffies SM, Yin J, Durack PJ, Goddard P, Bates SC, Behrens E, 
Bentsen M, Bi D, Biastoch A, Bning CW, Bozec A, Chassignet 
E, Danabasoglu G, Danilo S, Domingues CM, Drange H, Farneti 
R, Fernandez E, Greatbatch RJ, Holland DM, Ilicak M, Large 
WG, Lorbacher K, Lu J, Marsland SJ, Mishra A, Nurser AJG, 
Salas y Mélia D, Palter JB, Samuels BL, Schrter J, Schwarzkopf 
FU, Sidorenko D, Treguier AM, heng Tseng Y, Tsujino H, Uotila 
P, Valcke S, Aurore Voldoir QW, Winton M, Zhang X (2014) 
An assessment of global and regional sea level for years 1993–
2007 in a suite of interannual core-II simulations. Ocean Model 
78:35–89 

Hawkins E, Sutton R (2012) Time of emergence of climate signals. 
Geophys Res Lett 39:0094–8276. doi:10.1029/2011GL050087

Katsman CA, Hazeleger W, Drijfhout SS, van Oldenborgh GJ, Burg-
ers G (2008) Climate scenarios of sea level rise for the northeast 
atlantic ocean: a study including the effects of ocean dynam-
ics and gravity changes induced by ice melt. Clim Change 
91:351–374

Kopp R, Mitrovica J, Griffies S, Yin J, Hay C, Stouffer R (2010) The 
impact of Greenland melt on local sea levels: a partially cou-
pled analysis of dynamic and static equilibrium effects in ideal-
ized water-hosing experiments. Clim Change 103(3–4):619–625. 
doi:10.1007/s10584-010-9935-1

Kuhlbrodt T, Gregory JM (2012) Ocean heat uptake and its conse-
quences for the magnitude of sea level rise and climate change. 
Geophys Res Lett 39:L18608. doi:10.1029/2012GL052952

Landerer FW, Jungclaus JH, Marotzke J (2007) Ocean bottom pres-
sure changes lead to a decreasing length-of-day in a warming cli-
mate. Geophys Res Lett 34:L06307. doi:10.1029/2006GL029106

Lowe JA, Gregory JM (2006) Understanding projections of sea level 
rise in a Hadley Centre coupled climate model. J Geophys Res 
111:C11014. doi:10.1029/2005JC003421

Lyu K, Zhang X, Church JA, Slangen ABA, Hu J (2014) Time of 
emergence for regional sea-level change. Nat Clim Change 
4:10061010. doi:10.1038/nclimate2397

McGregor S, Sen Gupta A (2012) Constraining wind stress products 
with sea surface height observations and implications for Pacific 
ocean sea level trend attribution. J Clim 25:81648176

Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Greg-
ory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, 
Watterson IG, Weaver AJ, Zhao Z (2007) Global climate projec-
tions. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, 
Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the 
physical science basis. Contribution of working group I to the 
fourth assessment report of the intergovernmental panel on cli-
mate change. Cambridge University Press, Cambridge

Meehl GA, Hu A, AJ M, Fasullo JY, Trenberth KE (2013) Exter-
nally forced and internally generated decadal climate variabil-
ity associated with the interdecadal Pacific Oscillation. J Clim 
26:7298–7310

Merrield MA, Maltrud ME (2011) Regional sea level trends due to a 
Pacific trade wind intensification. Geophys Res Lett 38:L21605. 
doi:10.1029/2011GL049576

Merrifield M (2013) A shift in western tropical Pacific sea level trends 
during the 1990s. J Clim 24:41264138

Merrifield M, Thompson P, Lander M (2011) Multidecadal sea level 
anomalies and trends in the western tropical Pacific. Geophys 
Res Lett 39:L13602

Meyssignac B, Salas y Mélia D, Becker DM, Llovel W, Cazenave 
A (2012) Tropical Pacific spatial trend patterns in observed sea 
level: internal variability and/or anthropogenic signature? Clim 
Past 8:787–802. doi:10.5194/cp-8-787-2012

Mitchell JFB, Johns TC, Eagles M, Ingram WJ, Davis RA (1999) 
Towards the construction of climate change scenarios. Clim 
Change 41:547–581

Mitchell TD (2003) Pattern scaling: an examination of the accuracy 
of the technique for describing future climates. Clim Change 
60:217–242

Mitrovica JX, Tamisiea ME, Davis JL, Milne GA (2001) Recent mass 
balance of polar ice sheets inferred from patterns of global sea-
level change. Nature 409:1026–1029

Nicholls RJ, Marinova N, Lowe JA, Brown S, Vellinga P, de Gusmo 
D, Hinkel J, To RSJ (2011) Sea-level rise and its possible impacts 
given a beyond 4°C world in the twenty-first century. Philos 
Trans R Soc A 369:161181

Palmer MD, Haines K, Ansell TJ, Tett SFB (2007) Isolating the sig-
nal of ocean global warming. Geophys Res Lett. doi:10.1029/20
07GL031712

Pardaens AK, Gregory JM, Lowe JA (2011) A model study of fac-
tors influencing projected changes in regional sea level over 
the 21st century. Clim Dyn 36:2015–2033. doi:10.1007/
s00382-009-0738-x

Peltier WR (2004) Global glacial isostasy and the surface of the 
Ice-Age Earth: the ICE-5G (VM2) model and GRACE. Ann 
Rev Earth and Planet Sci 32:111–149. doi:10.1146/annurev.
earth.32.082503.144359

Perrette M, Landerer FW, Riva R, Frieler K, Meinshausen M (2013) 
A scaling approach to project regional sea level rise and its uncer-
tainties. Earth Syst Dyn 4:11–29

Ray RD, Douglas BC (2011) Experiments in reconstructing twenti-
eth-century sea levels. Prog Oceanogr 91:496–515. doi:10.1016/j.
pocean.2011.07.021

Rhein M, Rintoula S, Aoki S, Campos E, Chambers D, Feely R, 
Gulev S, Johnson G, Josey S, Kostianoy A, Mauritzen C, Roem-
mich D, Talley L, Wang F (2013) Observations: ocean. In: 
Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung 
J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 
2013: the physical science basis. Contribution of working group 
I to the fifth assessment report of the intergovernmental panel on 
climate change. Cambridge University Press, Cambridge

Santer BD, Wigley TML, Schlesinger ME, Mitchell JFB (1990) 
Developing climate scenarios from equilibrium GCM results. 
Tech Rep 47, MPI Hamburg

Sen Gupta A, Jourdain NC, Brown JN, Monselesan D (2013) Climate 
drift in the CMIP5 models. J Clim 26:8597–8615. doi:10.1175/
JCLI-D-12-00521.1

Slangen A, Carson M, Katsman C, van de Wal RK, Stammer D (2014) 
Projecting twenty-first century regional sea-level changes. Clim 
Change 124:317332. doi:10.1007/s10584-014-1080-9

Slangen ABA, Katsman CA, van de Wal RSW, Vermeersen LLA, 
Riva REM (2012) Towards regional projections of twenty-first 
century sea-level change based on IPCC SRES scenarios. Clim 
Dyn 38:1191–1209. doi:10.1007/s00382-011-1057-6

Tamisiea ME (2011) Ongoing glacial isostatic contributions to obser-
vations of sea level change. Geophys J Int 186:10361044

Taylor KE, Stouffer RJ, Meehl GA  (2012) An Overview of 
CMIP5 and the experiment design. Bull Am Meteorol Soc 
93:485–498. doi:10.1175/BAMS-D-11-00094.1

http://dx.doi.org/10.1175/JCLI-D-12-00319.1
http://dx.doi.org/10.1175/JCLI-D-12-00319.1
http://dx.doi.org/10.1029/2011GL050087
http://dx.doi.org/10.1007/s10584-010-9935-1
http://dx.doi.org/10.1029/2012GL052952
http://dx.doi.org/10.1029/2006GL029106
http://dx.doi.org/10.1029/2005JC003421
http://dx.doi.org/10.1038/nclimate2397
http://dx.doi.org/10.1029/2011GL049576
http://dx.doi.org/10.5194/cp-8-787-2012
http://dx.doi.org/10.1029/2007GL031712
http://dx.doi.org/10.1029/2007GL031712
http://dx.doi.org/10.1007/s00382-009-0738-x
http://dx.doi.org/10.1007/s00382-009-0738-x
http://dx.doi.org/10.1146/annurev.earth.32.082503.144359
http://dx.doi.org/10.1146/annurev.earth.32.082503.144359
http://dx.doi.org/10.1016/j.pocean.2011.07.021
http://dx.doi.org/10.1016/j.pocean.2011.07.021
http://dx.doi.org/10.1175/JCLI-D-12-00521.1
http://dx.doi.org/10.1175/JCLI-D-12-00521.1
http://dx.doi.org/10.1007/s10584-014-1080-9
http://dx.doi.org/10.1007/s00382-011-1057-6
http://dx.doi.org/10.1175/BAMS-D-11-00094.1


R. A. F. Bilbao et al.

1 3

Thompson DWJ, Wallace JM, Hegerl GC (2000) Annular modes 
in the extratropical circulation. Part II: Trends. J Clim 
13(5):1018–1036

Timmermann A, McGregor S, Jin FF (2011) Wind effects on past and 
future regional sea level trends in the Southern Indo-Pacific. J 
Clim 23:4429–4437

Winton M, Takahashi K, Held IM (2010) Importance of ocean heat 
uptake efficacy to transient climate change. J Clim 23:2333–
2344. doi:10.1175/2009JCLI3139.1

Yin J (2012) Century to multi-century sea level rise projections 
from CMIP5 models. Geophys Res Lett 39:17. doi:10.1029/201
2GL052947

http://dx.doi.org/10.1175/2009JCLI3139.1
http://dx.doi.org/10.1029/2012GL052947
http://dx.doi.org/10.1029/2012GL052947

	Analysis of the regional pattern of sea level change due to ocean dynamics and density change for 1993–2099 in observations and CMIP5 AOGCMs
	Abstract 
	1 Introduction
	2 The pattern of sea level change since 1993
	3 Estimating the pattern of future sea level change
	3.1 Spatial standard deviation as a time-dependent indicator of the magnitude of local sea level change
	3.2 Choice of global variable to predict the magnitude of local sea level change
	3.3 The pattern of sea level change
	3.4 Accuracy of the pattern scaling method for sea level change
	3.5 Is the pattern of sea level change independent of scenario?

	4 Detecting the pattern of sea level change
	4.1 Global time of emergence
	4.2 Local time of emergence of sea level change

	5 Summary and conclusion
	Acknowledgments 
	References


