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Simulation models are widely employed to make probability forecasts of future conditions
on seasonal to annual lead times. Added value in such forecasts is reflected in the information
they add, either to purely empirical statistical models or to simpler simulation models.
An evaluation of seasonal probability forecasts from the Development of a European
Multimodel Ensemble system for seasonal to inTERannual prediction (DEMETER) and
ENSEMBLES multi-model ensemble experiments is presented. Two particular regions are
considered: Nino3.4 in the Pacific and the Main Development Region in the Atlantic;
these regions were chosen before any spatial distribution of skill was examined. The
ENSEMBLES models are found to have skill against the climatological distribution on
seasonal time-scales. For models in ENSEMBLES that have a clearly defined predecessor
model in DEMETER, the improvement from DEMETER to ENSEMBLES is discussed. Due
to the long lead times of the forecasts and the evolution of observation technology, the
forecast-outcome archive for seasonal forecast evaluation is small; arguably, evaluation data
for seasonal forecasting will always be precious. Issues of information contamination from
in-sample evaluation are discussed and impacts (both positive and negative) of variations
in cross-validation protocol are demonstrated. Other difficulties due to the small forecast-
outcome archive are identified. The claim that the multi-model ensemble provides a ‘better’
probability forecast than the best single model is examined and challenged. Significant
forecast information beyond the climatological distribution is also demonstrated in a
persistence probability forecast. The ENSEMBLES probability forecasts add significantly
more information to empirical probability forecasts on seasonal time-scales than on decadal
scales. Current operational forecasts might be enhanced by melding information from both
simulation models and empirical models. Simulation models based on physical principles
are sometimes expected, in principle, to outperform empirical models; direct comparison
of their forecast skill provides information on progress toward that goal.
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1. Introduction

Skillful probabilistic forecasting of seasonal weather and climate
statistics would be of value in many fields, including agriculture,
health and insurance. Since the late 1990s, seasonal forecasting
using dynamical models that simulate the coupled atmosphere,
ocean and land surface system has become common in operational
weather forecasting centres around the world. In recent years,
multi-model ensembles have become popular tools to investigate
and account for shortcomings due to structural model error in
these simulation-model-based predictions on time-scales from
days to seasons and centuries (Palmer et al., 2004; Wang et al.,

2009; Weisheimer et al., 2009). The potential for using large single-
simulation model ensembles or multi-model ensembles depends
critically on the forecast information that simulation models add
beyond empirically based statistical approaches. Van Den Dool
(2007) provides a summary of these empirical models, sometimes
referred to as surrogate prediction generators (Smith, 1992) or
empirical benchmarks (Suckling and Smith, 2013). Contrasting
the skill of empirical models with simulation models can also be
informative regarding structure model error in the simulation
models.

The need for a consistent experimental design for the
assessment of skill in multi-model seasonal forecasting has been
embraced by two large European projects in the last decade. These
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projects provided the basis for subsequent multi-model designs
for operational seasonal-to-decadal forecasting (Vitart et al., 2007;
Kirtman et al., 2013). The earlier European project, initiated in
2000, was Development of a European Multimodel Ensemble
system for seasonal to inTERannual prediction (DEMETER:
Palmer et al., 2004; Doblas-Reyes et al., 2005; Hagedorn et al.,
2005), in which a consistent framework was developed to
conduct multi-model seasonal forecasting with a set of general
circulation models (GCMs). A similar framework was adopted in
ENSEMBLES (Hewitt and Griggs, 2004; Weisheimer et al., 2009;
Doblas-Reyes et al., 2010), which produced the next generation
of seasonal hindcast (or retrospective forecast) simulations, using
updated model versions. Further details of the ENSEMBLES and
DEMETER experiments can be found in Tables S1 and S2 in
File S1.

The multi-model ensemble simulations from these projects
provide a basis for the quantification of skill in GCM forecasts
and an opportunity to assess the benefit of using multi-model
ensembles (Weisheimer et al., 2009; Alessandri et al., 2011) over
other approaches, such as forecasts based on statistical models
(Smith, 1992; van Oldenborgh, 2005; Coelho et al, 2006; Van
Den Dool, 2007; Suckling and Smith, 2013). Furthermore, the
consistency between the experimental design of the DEMETER
and ENSEMBLES seasonal forecasts makes it possible to quantify
the improvement of skill or, in other words, the additional
information gained from the forecasts due to model development
in the intervening period between the two projects. While
evaluations of skill between individual model versions may exist
in-house at forecast centres, the authors are unaware of any
systematic comparison across centres and model versions. The
analysis presented below allows direct comparisons between the
relative performance and improvement in different models.

Two particular regions are considered. As a coupled
atmospheric and oceanic phenomenon, the El Niño/Southern
Oscillation (ENSO) in the tropical Pacific is the dominant
mode of seasonal and interannual climate variability. Sea-surface
temperatures (SSTs) in the Nino3.4 region at seasonal time-
scales provides an indicator for the ENSO phenomenon. SSTs in
the Main Development Region (MDR) over the North Atlantic
provide an indicator for hurricane activity over the coming
season. This article focuses on probability forecast skill in these
two regions.∗ Probabilistic skill of seasonal forecasts from both
DEMETER and ENSEMBLES are evaluated and contrasted. In
each case, ensembles of GCM simulations are transformed into
probabilistic distributions via kernel-dressing (see Bröcker and
Smith, 2007) and blended with the climatological distribution to
provide calibrated seasonal forecasts; this approach has influenced
operational forecasting (Hagedorn and Smith, 2009; Met Office,
2013). Evaluating probability forecasts as probability forecasts,
rather than computing summary statistics of the ensemble mean,
allows clearer consideration of the uncertainties sampled by the
multi-model ensemble. It is also more easily interpreted in terms
of the value, or information content, of the forecast from a
decision-maker’s perspective.

An overview of the DEMETER and ENSEMBLES multi-model
experiments used to evaluate seasonal forecast skill over the
Nino3.4 and MDR regions is given in section 2 and the approach
to generating probabilistic forecasts and evaluating them is
described in section 3. In section 4, probabilistic skill above
that of the climatological distribution is demonstrated up to a
lead time of 7 months for SSTs over the Nino3.4 region and up
to a lead time of 2 months for SSTs over the MDR. In section 5,
forecasts from the ENSEMBLES models show improvements in
skill compared with those from DEMETER for each of the models
common to both projects. Broadly speaking, these results are

∗Attention was restricted to these two regions, prior to examination of forecast
skill in any other regions. This approach eases interpretation of the statistical
significance of the results obtained over studies that examine the entire globe
and then focus analysis on areas with ‘significant’ skill.

consistent with previous evaluations of skill from the DEMETER
and ENSEMBLES projects (Weisheimer et al., 2009; Alessandri
et al., 2011), in which improvements in the anomaly correlation,
root-mean-square error (RMS) and Brier scores from DEMETER
to ENSEMBLES were reported for SSTs over the tropical Pacific
and some other regions up to 6 months ahead. Section 6 shows
that, somewhat surprisingly, competitive results can be formed
from purely empirical probability forecasts based on persistence.
A similar result has been found for decadal forecasts (specifically,
probability forecasts of annual mean values on lead times of
1–10 years) by Suckling and Smith (2013), who demonstrate
that some empirical models often outperform the ENSEMBLES
models on these decadal scales. The illustrations presented in
section 7 suggest that increasing the ensemble size of future multi-
model experiments could provide an efficient way of improving
forecast skill, while sections 8 and 9 highlight the motivation
for using proper scoring rules and the challenges involved in
model combination to produce multi-model ensemble forecasts,
respectively. Section 10 discusses the issues of information
contamination when data are precious. The key results and
conclusions are summarized in section 11.

2. The seasonal multi-model ENSEMBLES forecasts

The ENSEMBLES multi-model ensemble experiment for
seasonal-to-annual forecasting comprises global coupled atmos-
phere–ocean climate models from the UK Met Office (UKMO),
Météo-France (MF), the European Centre for Medium-Range
Weather Forecasts (ECMWF), the Leibniz Institute of Marine
Sciences at Kiel University (IFM-GEOMAR) and the Euro-
Mediterranean Centre for Climate Change (CMCC-INGV) in
Bologna (Doblas-Reyes et al., 2010). In each case, the ensem-
ble simulations include all the major radiative forcings; none of
the coupled models has flux adjustments (Hewitt and Griggs,
2004; Weisheimer et al., 2009; Doblas-Reyes et al., 2010). A set
of seasonal hindcast simulations cover the 46 year period from
1960–2005. For each launch date, the atmosphere and ocean
for each model were initialized using realistic estimates of their
observed states, providing an ensemble consisting of nine initial
condition ensemble members for each model. Hindcast simula-
tions were launched on the first days of February, May, August
and November each year over the hindcast period and run for 7
months. This set of 46 seasonal forecasts for each launch date is
analyzed below. Additionally, each model, with the exception of
CMCC-INGV, was run for an extended period up to a lead time
of 14 months from the November launch.

Improvements made in the ENSEMBLES multi-model
forecasting system include a better representation of subgrid-
scale physical processes in the simulation models, the inclusion
of interannual variability in the greenhouse gas forcing and
the use of improved ocean data assimilation, based on quality-
controlled in situ ocean temperature and salinity profiles for the
construction of the initial conditions (Ingleby and Huddleston,
2007; Weisheimer et al., 2009). Given two simulation models
from the same modelling centre, the experimental designs are
sufficiently consistent to allow a direct comparison between the
skill of seasonal forecasts from each version of the system. Further
details of the models used for the DEMETER and ENSEMBLES
projects are provided in Tables S1 and S2 of File S1.

3. Defining probabilistic forecast skill

Simulations from dynamical models are often used to make
probabilistic predictions with the aim of providing useful
information for decision support. Evaluating the performance
of these predictions, as well as understanding the sources of skill,
is crucial for guiding decision-makers in understanding in which
regions and on which time-scales of interest the models are likely
to be informative and, perhaps more importantly, clarifying when
they are likely to be misinformative. Only proper scoring rules

c© 2014 The Authors. Quarterly Journal of the Royal Meteorological Society
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Figure 1. Probabilistic forecast distributions for the IFS (ECMWF) hindcast simulations from ENSEMBLES for the Nino3.4 index, launched in November over the
period 1995–2000. The blue shaded regions indicate the forecast percentiles between 1 and 99% and the red line shows the observed outcome from the ERA40
reanalysis. The grey shaded intervals show the percentiles for the climatological distribution.

offer appropriate, clear measures of probabilistic forecast skill
(Bröcker and Smith, 2006; Wilks, 2005).

I. J. Good’s logarithmic score (Ignorance: see Good, 1952;
Roulston and Smith, 2002; Bröcker and Smith, 2006) is unique
among several scoring rules (Wilks, 2005) designed for evaluating
the skill of probabilistic forecasts. It is the only proper and local
score† for continuous variables (see Bernardo, 1979; Raftery et al.,
2005; Bröcker and Smith, 2006). The Ignorance Score is defined by

S(p(y), Y) = − log2(p(Y)), (1)

where Y is the observed outcome and p(y) is the density function
of the forecast distribution. Ignorance has a clear interpretation in
terms of gambling returns (see Good, 1952; Kelly, 1956; Roulston
and Smith, 2002): under a certain betting scenario, ‘Kelly Betting’
(Kelly, 1956), the Ignorance describes the expected rate at which
the forecaster’s wealth changes with time. Through its close
relation to Shannon’s information entropy, Ignorance can also
be related to the amount of information expected from a forecast
(see Roulston and Smith, 2002). It is easily communicated as an
effective interest rate (see Hagedorn and Smith, 2009).

In practice, given K forecast-outcome pairs, (pi, Yi, i =
1, . . . , K), the empirical Ignorance score is

SE(p(y), Y) = 1

K

K∑
i=1

− log2(pi(Yi)). (2)

Relative Ignorance reflects the performance of (a set of) forecasts
p from one model relative to those of a reference forecast pref :

Srel(p(y), Y) = 1

K

K∑
i=1

− log2[(pi(Yi))/pref (Yi)]. (3)

The Relative Ignorance of two forecast systems quantifies the
information gain (in terms of bits) that the model forecast system
provides over the reference system. In other words, Ignorance
reflects the (average) increase in probability density that the model
forecast placed on the outcome relative to that of the reference
forecast. By convention, Ignorance is a negatively oriented score,

†‘Proper’ meaning that it cannot be optimized by hedging the probabilistic
forecasts toward other values against the forecaster’s true belief (Bröcker and
Smith, 2006; Weigel et al., 2008). ‘Local’ meaning that the score depends solely
on the probability assigned to the outcome, rather than being rewarded for
other features of the forecast distribution, such as its shape.

which means that the smaller the score, the more skilful the
forecasts. An Ignorance score of Srel = −1 means that, on average,
forecasts from the model assign twice the probability density to the
outcome compared with the reference forecast, while Srel = −2
indicates a fourfold (22) increase. Suitable references could
include the climatological distribution, a probability forecast
from a statistical model or forecasts from another GCM. The
climatological distribution provides the primary benchmark for
seasonal forecast skill in this article; see however section 6.

Probability forecasts are generated from the DEMETER and
ENSEMBLES simulations via kernel-dressing and are blended
with climatology to produce seasonal probability forecasts (for a
full description, see Bröcker and Smith, 2007 and Appendix A).
The climatological distribution is estimated by kernel-dressing
all available historical observations under cross-validation (see
Appendix B). Figure 1 shows an example of the kernel-dressed
and blended probabilistic forecast distributions for a subset (over
the period 1995–2000) of the IFS (ECMWF) hindcast simulations
from ENSEMBLES for the Nino3.4 index, launched in November.
The blue shaded regions indicate the forecast percentiles between
1 and 99% and the red line shows the observed outcome (from
the ERA40 reanalysis) for comparison. The grey shaded bands
show the percentiles between 1 and 99% for the climatological
distribution.

The empirical Ignorance score of the dressed and blended GCM
forecasts is then computed as a function of lead time (in months)
for SSTs over the MDR and Nino3.4 regions, relative to the
climatology in section 4. Forecasts from each of the ENSEMBLES
models are contrasted with those of DEMETER in section 5.

4. ENSEMBLES seasonal forecast skill

Figures 2 and 3 show the skill of probability forecasts from each
of the models and launch dates available in the ENSEMBLES
seasonal forecast project. Figure 2 shows empirical Ignorance
scores for forecasts of the Nino3.4 index as a function of lead
time in months, relative to climatology. Each of the four panels
corresponds to a different forecast launch month (as indicated).
In general, at short lead times all the models are substantially more
skilful than climatology (i.e. a negative relative Ignorance) for all
four initialization dates. This result is generally consistent with
Weisheimer et al. (2009), who reported that anomaly correlation
skill for the multi-model ensemble mean was found to decay with
lead time over the Nino3 region, to ∼0.5 up to 14 months ahead.
At longer lead times, ENSEMBLES models show systematically less
skill than at early lead times, as expected. In each case, however, the

c© 2014 The Authors. Quarterly Journal of the Royal Meteorological Society
published by John Wiley & Sons Ltd on behalf of the Royal Meteorological Society.

Q. J. R. Meteorol. Soc. (2014)



L.A. Smith et al.

1 2 3 4 5 6 7
−3

−2.5

−2

−1.5

−1

−0.5

0

Lead time

Ig
n

o
ra

n
c
e
 r

e
la

ti
v

e
 t

o
 c

li
m

a
to

lo
g

y

 (a) 

Feb

IFS(ECMWF)

HadGem2(UKMO)

ECHAM5(IFMK)

ECHAM5(INGV)

ARPEGE(CNRM)

1 2 3 4 5 6 7
−3

−2.5

−2

−1.5

−1

−0.5

0 (b)

May

Lead time

Ig
n

o
ra

n
c
e
 r

e
la

ti
v

e
 t

o
 c

li
m

a
to

lo
g

y

IFS(ECMWF)

HadGem2(UKMO)

ECHAM5(IFMK)

ECHAM5(INGV)

ARPEGE(CNRM)

1 2 3 4 5 6 7
−3

−2.5

−2

−1.5

−1

−0.5

0

Lead time

Ig
n

o
ra

n
c
e
 r

e
la

ti
v

e
 t

o
 c

li
m

a
to

lo
g

y

 (c)

Aug

IFS(ECMWF)

HadGem2(UKMO)

ECHAM5(IFMK)

ECHAM5(INGV)

ARPEGE(CNRM)

2 4 6 8 10 12 14
−3

−2.5

−2

−1.5

−1

−0.5

0

Lead time

Ig
n

o
ra

n
c
e
 r

e
la

ti
v

e
 t

o
 c

li
m

a
to

lo
g

y

 (d)

Nov

IFS(ECMWF)

HadGem2(UKMO)

ECHAM5(IFMK)

ARPEGE(CNRM)

Figure 2. Ignorance score of each model from ENSEMBLES for the Nino3.4 index relative to climatology as a function of lead time in months. The four different
panels show the hindcasts initialized in (a) February, (b) May, (c) August and (d) November. Zero Ignorance indicates that a model has no skill relative to climatology
and negative relative Ignorance scores suggest that a model is more skilful than climatology. Bootstrap resampling intervals (the vertical bars) reflect the 5–95%
range as estimated from 512 resamples. All models show significantly more skill than climatology up to a lead time of 5 months, regardless of when the forecasts are
launched. For (d) the November launch, the bootstrap resampling intervals often cross the zero skill line beyond a lead time of 6 months.

simulation models demonstrate skill above the climatology up to
a lead time of 7 months. For the hindcasts launched in November,
some skill appears up to a lead time of 14 months (although an
alternative cross-validation protocol casts some doubt on this
result: see section 10). At longer lead times, relative Ignorance
scores of approximately −0.25 are found for most models, which
translates into the simulation models placing, on average, ∼ 19%
more probability density on the outcome compared with the
climatological distribution. The IFS (ECMWF) and HadGEM2
(UKMO) models often score slightly lower (are more skilful) than
the other three models. The sampling uncertainty across forecast
launches is represented by a bootstrap resampling procedure,
which resamples the set of forecast Ignorance scores for each
model, with replacement. The bootstrap resampling intervals are
shown as vertical bars in each of the figures as a 5–95% interval.

Figure 3 shows the Ignorance score as a function of lead
time for SSTs over the MDR relative to climatology. Compared
with the Nino3.4 index, hindcasts of SSTs in the MDR are less
informative at all lead times, particularly for the forecasts launched
in November, the performance of which decreases significantly
within the first 2 months. Despite the higher Ignorance scores
(lower skill), the GCM hindcasts for the MDR demonstrate
significant skill relative to climatology up to 7 months ahead
for most models and launch dates, with the exception of the
November launch. Comparison with alternative benchmarks,
like the persistence forecast, shows much larger variation than
altering the cross-validation scheme.

In Figures 2 and 3, two models with similar bootstrap
resampling intervals might be misinterpreted to suggest that
neither model is significantly better than the other. Bootstrap
resampling skill against climatology is misleading if interpreted
incorrectly. One model can systematically outperform a second
model on every forecast, yet the resample ranges in the skill relative
to climatology may overlap. The relative Ignorance between two
models, on the other hand, provides a clear result reflected in
bootstrap resampling from the model–model relative scores.

Figure 4 shows the Ignorance of each of the ENSEMBLES
models for the Nino3.4 index relative to the IFS (ECWMF)
model. There are indeed some cases where the IFS (ECMWF)
model outperforms all other models despite the overlapping
bootstrap resampling intervals in Figure 2. For example, the
IFS (ECMWF) model systematically outperforms the ARPEGE
(CNRM), ECHAM5 (INGV) and ECHAM5 (IFMK) models,
particularly at early lead times for most launch dates. In the case
analyzed above, there is substantial information in the forecasts
from the ENSEMBLES models for the Nino3.4 index, even at
longer lead times; the IFS (ECMWF) model shows higher skill
(often exceeding 0.5 bits in the first 6 months) relative to the
other seasonal forecast models used in ENSEMBLES.

5. Contrasting skill of ENSEMBLES and DEMETER

The methods and models used for the seasonal hindcast
experiments in the ENSEMBLES project were developed in light of
the experience gained and models available from the DEMETER

c© 2014 The Authors. Quarterly Journal of the Royal Meteorological Society
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Figure 3. Ignorance score of each model from ENSEMBLES for the MDR index relative to climatology as a function of lead time in months. The four different panels
show the hindcasts initialized in (a) February, (b) May, (c) August and (d) November. Zero Ignorance indicates that a model has no skill relative to climatology and
negative relative Ignorance scores suggest that a model is more skilful than climatology. Bootstrap resampling intervals (the vertical bars) reflect the 5–95% range
as estimated from 512 resamples. Significant skill above climatology is demonstrated for most models and launch dates at early lead times (up to 6 months for the
February launches, for example), with the exception of the November forecast launches, where the bootstrap intervals overlap the zero-skill climatology beyond a lead
time of 2 months.

project. The DEMETER seasonal hindcasts and ENSEMBLES
hindcasts for the same verification period provide an opportunity
to measure the improvement of forecast skill after 4 years of model
development. Such an evaluation is aided by the similarities in
the experimental design between the two projects.

Figure 5 shows the Ignorance score of each of the DEMETER
model forecasts for the Nino3.4 index relative to climatology.
With the exception of ECHAM5 (MPI), each model appears
substantially more skilful than climatology at all lead times and
for all four initialization dates. The lack of skill demonstrated
by the ECHAM5 (MPI) model reflects the fact that when its
ensemble members are dressed and blended with climatology
(see Appendix A), they are assigned relatively little weight (i.e. the
forecast is virtually the climatological distribution). There is little
or no contribution from the ECHAM5 (MPI) model ensemble to
the calibrated forecast beyond a lead time of 3 months. This is
particularly true for the November launch, in which the forecast
blending parameter as a function of lead time, α, takes values
[α = 0.90, 0.81, 0.02, 0.00, 0.00, 0.00], respectively.

In order to measure the improvement of forecast performance
due to model development from the DEMETER to the
ENSEMBLES project, the Ignorance of the forecast distributions
derived from pairs of model simulations from each project is
compared. Although seven European simulation models were
used in the DEMETER project, only those models that correspond
to earlier ‘versions’ of those used in ENSEMBLES are considered.

Figure 6 shows the Ignorance for seasonal forecasts of the
Nino3.4 index forecasts from the ENSEMBLES models relative
to those of the corresponding DEMETER models. In general, the
relative Ignorance scores in Figure 6 demonstrate improvements
for ENSEMBLES (negative relative Ignorance scores) for most
lead times and for most models. The ECHAM5 (INGV) model
is an exception to this finding; the reduction in skill for this
model is consistent with Alessandri et al. (2010), who showed
that subsurface data assimilation for ocean initialization degraded
prediction skill over the tropical Atlantic. The ECHAM5 (IFMK)
model shows substantial improvements, up to one bit, at early lead
times, particularly for forecast launches in February and May (the

c© 2014 The Authors. Quarterly Journal of the Royal Meteorological Society
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Figure 4. Ignorance score of the ENSEMBLES model forecasts for the Nino3.4 index relative to the IFS (ECMWF) model as a function of lead time in months. Zero
Ignorance indicates that a model has no skill relative to the IFS (ECMWF) model and negative relative Ignorance scores suggest that a model is more skilful than the
IFS (ECMWF) model. Bootstrap resampling intervals (the vertical bars) reflect the 5–95% range as estimated from 512 resamples. All models shown are typically less
skilful than IFS (ECMWF) at all lead times and for most forecast launch dates. For launch dates in August, however, the IFS (ECMWF) model is shown to perform
neither significantly better nor significantly worse than HadGEM2 (UKMO) and ECHAM5 (INGV).

ENSEMBLES model placing twice the probability density on the
outcome compared with the DEMETER model). Improvements
are also demonstrated at lead times beyond 3 months for forecasts
launched in August, particularly for the ECHAM5 (IFMK) and
HadGEM2 (UKMO) models.

6. Contrasting ENSEMBLES seasonal skill with persistence
forecasts

In the previous sections, the climatological distribution was used
as a benchmark against the performance of the ENSEMBLES and
DEMETER seasonal hindcasts. Whilst comparing skill between
simulations from dynamical models and climatology provides
insight into the information gained from forecasting with those
dynamical models, other simple empirical models can also serve
as appropriate benchmarks to model performance (Smith, 1992;
Suckling and Smith, 2013). A probabilistic persistence forecast
provides an interesting benchmark accounting for the effects
of both physical persistence and any long-term drift in the
temperature of the target region. Whether the additional skill
in the ENSEMBLES models over the Nino3.4 region compared
with the MDR is related to the strong persistence of ENSO
can be investigated by looking at the performance of forecasts

over these two regions relative to a persistence model.‡ The
persistence forecasts generated here use the observed SST value
over the chosen region in the month prior to the forecast launch,
persisted forward in time and transformed into a probabilistic
distribution using kernel-dressing parameters that vary with lead
time (as described in Suckling and Smith, 2013). While more
complex persistence models could be constructed easily, this
simple version is sufficient for our purpose here.

Figure 7 shows the Ignorance score of each of the ENSEMBLES
models for the Nino3.4 index relative to persistence. For forecasts
launched in February, most of the ENSEMBLES models are
significantly more skilful than persistence at all lead times. For
launch dates in August and November, little if any information is
added compared with the persistence forecasts for most models at
any lead time. In fact, at early lead times (up to 3 months ahead),
persistence outperforms the ECHAM5 (IFMK) and ARPEGR
(CNRM) models. At moderate lead times for the August launch
and most lead times in the May launch, on the other hand,
the IFS (ECMWF) and HadGEM2 (UKMO) models outperform
persistence.

‡We are very grateful to an anonymous reviewer for suggesting this comparison.
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Figure 5. Ignorance score of each model from DEMETER for the Nino3.4 index relative to climatology as a function of lead time in months. Zero Ignorance indicates
that a model has no skill relative to climatology and negative relative Ignorance scores suggest that a model is more skilful than climatology. Bootstrap resampling
intervals (the vertical bars) reflect the 5–95% range as estimated from 512 resamples. All models, with the exception of ECHAM5 (MPI), are significantly more skilful
than climatology at most lead times, particularly for forecasts launched in August and November. At lead times beyond 4 months, for forecasts launched in November,
the ECHAM5 (MPI) model is given zero weight when blended with the climatological distribution.

Figure 8 shows the corresponding results for the MDR index
relative to a probabilistic persistence forecast. In this case, the
ENSEMBLES models and persistence have similar skill, with no
one model emerging as significantly better than another. These
comparable levels of skill suggest that blending statistical model
output with simulation model output is likely to add value to
seasonal forecasts.

7. More models or more members?

Knowledge of the relationship between ensemble size and forecast
quality aids forecast system design. The cost of increasing the
number of ensemble members is typically small relative to the
cost of model development. The cost of increasing the ensemble
size increases only (nearly) linearly. It is often true that the quality
of the forecast increases with the number of ensemble members as
well; however, this improvement in forecast skill depends on both
the current ensemble size and the quality of that model’s ultimate
distribution. The seasonal forecasts from the ENSEMBLES project
provide an opportunity to investigate the relationship between
ensemble size and forecast quality. This analysis would be eased,
for example, had one launch date included an increased number

of members so that the value of additional members could be
tested more directly.§

Figure 9 shows the effect of decreasing the number of ensemble
members on the forecast skill for the Nino3.4 index from the
IFS (ECMWF) model launched in November. The skill of two-
member ensembles (red) and four-member ensembles (green)
is shown relative to the full nine-member ensemble (the zero
line), both as a set of random draws from the nine original
members without replacement (Figure 9(a)) and as the average
Ignorance of all two- or four-ensemble member combinations
(Figure 9(b)). In Figure 9(a), most two- and four-member
combinations show less skill than the full nine-member ensemble,
with only a few ensemble member combinations scoring better
than the original ensemble now and then. Figure 9(b) shows
that decreasing the number of ensemble members systematically
decreases the average skill (i.e. increases the Ignorance score)
across all lead times. This result holds both when decreasing from

§Quantifying the value added by including an N + 1st additional ensemble
member requires some subset of forecasts running more than N members.
Although discussed early in the ENSEMBLES project, the decision was taken
to use nine member ensembles throughout.
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Figure 6. Ignorance score of each model from ENSEMBLES for the Nino3.4 index relative to the corresponding DEMETER forecasts as a function of lead time in
months. Zero Ignorance indicates that an ENSEMBLES model has no added skill relative to the corresponding DEMETER model and negative relative Ignorance scores
suggest that the ENSEMBLES model is more skilful than the corresponding DEMETER model. Bootstrap resampling intervals (the vertical bars) reflect the 5–95%
range as estimated from 512 resamples. The ENSEMBLES models typically demonstrate improvements, of up to one bit in some cases, over their corresponding
DEMETER models. ECHAM5 (INGV) is an exception to this improvement and is shown to perform worse in ENSEMBLES than its DEMETER model version.

nine members to four members and when decreasing from four to
two ensemble members. At a lead time of 6 months, where the IFS
(ECMWF) model still has non-trivial skill relative to climatology
(Figure 2), for example, the two-member forecast places ∼ 7%
and the four-member ensemble places ∼ 3% less probability
density on average on the outcome¶ relative to the nine-member
ensemble (Figure 9(b)). This result suggests that increasing the
current ensemble size of nine would further improve the forecast
performance.‖

A larger ensemble could be obtained by either increasing the
number of ensemble members from one particular model or,
alternatively, combining simulations from different models to
form a multi-model ensemble (see Palmer et al., 2004; Weigel
et al., 2008). Of course, developing a new, ideally independent
model is more costly than increasing the number of ensemble
members from an existing model. Combining the output of
different (independent) models might, however, have the added

¶Under true cross-validation (see section 10), the effect increases: a two-
member forecast places ∼ 15% less probability on the observed outcome.
‖Operational systems may typically consist of 40–50 ensemble members.
Without hindcast sets, representative of operational systems, however, it is
impossible to test this hypothesis fully.

advantage of reducing the impact of systematic bias of any
single model.∗∗ One might therefore reasonably expect to obtain
significantly more information by using multi-model outputs
than by increasing the number of ensemble members from a
single model.

Figure 10 shows the Ignorance score for a set of multi-model
forecasts, in which ensemble members from each of the different
ENSEMBLES models are treated equally (i.e. each ensemble
member is assigned equal weight). Here, the nine-member IFS
(ECMWF) forecasts define the zero line. Figure 10(a) shows the
Ignorance score for forecasts built from multi-model ensembles
containing four members randomly drawn from the 36 available
ensemble members (nine members from each of four models)
without replacement. Similarly, Figure 10(b) shows the skill
of multi-model ensembles containing nine randomly drawn
members. The blue line in each case shows the skill of the full

∗∗In practice, numerical models developed for weather and climate simulations
are far from independent, because they share common parametrizations and
numerical schemes and are typically tuned towards the same training dataset.
Also, they face the same technological (computational) limitation. This leads to
structural similarities in the models and consequently to common shortcomings
(e.g. in ‘blocking’).
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Figure 7. Ignorance score of each model from ENSEMBLES for the Nino3.4 index relative to persistence forecasts as a function of lead time in months. The four
different panels show the hindcasts initialized in (a) February, (b) May, (c) August and (d) November. Scores below zero indicate that an ENSEMBLES model is more
skilful than the persistence forecasts. Bootstrap resampling intervals (the vertical bars) reflect the 5–95% range as estimated from 512 resamples. ENSEMBLES model
forecasts launched in February are shown to be more skilful than persistence at all lead times, whereas for forecasts launched in August the models are significantly
worse than persistence at early lead times.

multi-model ensemble, containing 36 members from simulations
of the IFS (ECMWF), HadGEM2 (UKMO), ECHAM5 (IFMK)
and ARPEGE (CNRM) models. The four-member multi-model
forecasts are shown to perform substantially worse than the
nine-member IFS (ECMWF) ensemble (indicated by positive
Ignorance scores), particularly over short lead times (up to 8
months). The skill of the nine-member multi-model forecasts is
generally increased compared with the four-member forecasts;
however, the single-model, IFS (ECMWF), forecast is still shown
to be more skilful†† than the multi-model forecast at short lead

††As noted by a referee, in this study the ‘best’ model has been identified
in-sample. In this particular study, the ECMWF model is by far the highest
scoring model across forecasts (see File S1) and is typically ranked first or
second in over half of all skilful forecasts. Rather than resample to show that
ECMWF is the best, the fraction of times it is best or second is shown in File
S1. Note also Table 1 and Table 2 in this context. In practice, determining the
best model a priori, either for a given purpose or in a multidimensional sense,

times. This is also true for the full 36 member multi-model
forecast, although at longer lead times (beyond 8 months) the full
multi-model ensemble is shown to outperform the IFS (ECMWF)
ensemble. This result in this case suggests that increasing the
ensemble size of the ‘best’ model is most likely to improve
forecast skill in these regions.

8. The importance of being proper

It is sometimes said that a multi-model ensemble forecast is
more skilful than any of its constituent single-model ensemble
forecasts. This may be the case in terms of reducing RMS-like
scores (see Palmer et al., 2004; Hagedorn et al., 2005; Bowler et al.,
2008; Weigel et al., 2008; Weisheimer et al., 2009; Alessandri et al.,

is not straightforward (if possible at all). In-sample evaluations of past model
performance over relatively short hindcast periods hinder this task further.

c© 2014 The Authors. Quarterly Journal of the Royal Meteorological Society
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Figure 8. Ignorance score of each model from ENSEMBLES for the MDR index relative to persistence forecasts as a function of lead time in months. The four different
panels show the hindcasts initialized in (a) February, (b) May, (c) August and (d) November. Scores below zero indicate that an ENSEMBLES model is more skilful
than the persistence forecasts. Bootstrap resampling intervals (the vertical bars) reflect the 5–95% range as estimated from 512 resamples. While there is a tendency
for Ignorance score to remain negative for several months in a row, suggesting skill, the upper (95%) resampling bound is almost always greater than zero.

2011). For probability forecasts, the definition of skill should
reflect the characteristics of the forecast problem. While RMS
scores are effectively optimal in linear stochastic systems, they are
misleading in evaluating nonlinear forecast systems, even when
the data are not precious. Indeed, RMS scores can be misleading
even in the limit of an infinite forecast-verification archive (see
McSharry and Smith, 1999). Improvements in RMS skill when
using multi-model ensembles may be due to error cancellation
from independent model contributions (see Hagedorn et al.,
2005; Kang and Yoo, 2006; Bowler et al., 2008). For example, if
some of the single-model ensembles lie below the observations
and some lie above, then the ensemble mean could lie closer to the
observed outcome than any single ensemble member. While such
an error cancellation would reduce the RMS score, rewarding the
multi-model forecast more than any single model contribution,
a proper skill score (Bröcker and Smith, 2006) would not credit
this ‘false’ skill. Similarly, combining ensemble members from
different models may serve to reduce the variance of ensemble
mean statistics, which in turn may lead to a lower RMS score.

Indeed, if the ensemble variance is large, adding ‘information-free’
ensemble members at the mean value will reduce the RMS error
but need not improve a probabilistic score.

It has also been suggested that the multi-model ensemble
forecast outperforms any of the single-model ensemble forecasts
by reducing an apparent overconfidence in any one model (see
Weigel et al., 2008; Weisheimer et al., 2009; Alessandri et al., 2011).
Such ‘improvements’ can easily be overinterpreted, however, as
merely doubling the ensemble size under the same model in
as much as increase the spread of the forecast distribution
significantly. Another way to widen the ensemble spread is
simply to blend (Bröcker and Smith, 2007) the model forecast
distribution with an estimate of the climatological distribution
based on the historical observations (see Appendix A for details).
Two single-model forecasts may be ranked differently before and
after blending with the climatological distribution. The effect of
multi-model combination on seasonal forecast skill is investigated
below.
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Figure 9. (a) Ignorance of the IFS (ECMWF) model as a function of lead time in months for the Nino3.4 index. The green (red) lines represent the skill of a subset of
four-member (two-member) ensemble forecasts relative to the full nine-member ensemble forecast. Each four-member and two-member ensemble consists of random
draws from the original nine-member ensemble. (b) Average Ignorance of all possible combinations of two-member (red) and four-member (green) ensembles. On
average, the four-member ensembles are more skilful than the two-member ensemble, while both ensemble sizes are shown to perform worse on average than the full
nine-member ensemble (i.e. Ignorance scores are all above zero).
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Figure 10. Ignorance of multi-model forecasts as a function of lead time in months for the Nino3.4 index, launched in November, relative to the nine-member
IFS (ECMWF) forecast. The blue line represents the multi-model forecast using all 36 ensemble members from the four ENSEMBLES models, equally weighted.
The red lines are multi-model forecasts using randomly drawn combinations of (a) four members and (b) nine members from the full ensemble. The four-member
multi-model forecasts are shown to perform substantially worse than the nine-member IFS (ECMWF) ensemble (i.e. Ignorance scores are often above zero) and worse
than the full 36 member multi-model ensemble. The nine-member multi-model forecasts perform better in general than the four-member forecasts and to a similar
level of skill to the nine-member IFS (ECMWF) ensemble at lead times beyond 8 months.

9. Multiple models ensembles when data are precious

There are many ways in which forecast distributions, generated

from ensembles of individual model runs, can be combined to

produce a single probabilistic multi-model forecast distribution.

One approach may be to assign equal weight to each model

and simply sum the distributions generated from each model to

obtain a single probabilistic distribution (see Hagedorn et al.,

2005). When different forecast models do not provide equal

amounts of information, one may want to weight the models

according to some measure of past performance: see, for example,

Krishnamurti et al. (1999), Rajagopalan et al. (2002) and Doblas-
Reyes et al. (2005). The combined multi-model forecast is the
weighted linear sum of the constituent distributions:

pmm =
∑

i

ωipi, (4)

where pi is the forecast distribution from model i and ωi its
weight, with

∑
i ωi = 1. The weighting parameters may be chosen

by minimizing the Ignorance score, for example, although fitting
ωi in this way can be costly and is typically complicated by
different models sharing information. Of course, the weights of
individual models are expected to vary as a function of lead time.
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Another, perhaps more fundamental problem of such a weighting
procedure is that ωi are likely to be over- or underfitted when the
forecast-outcome archive is small (Peng et al., 2002, L. A. Smith
et al., 2014; personal communication).

To avoid complications with fitting model weights, a simple
iterative method to combine models is used below. First, a
reference forecast distribution is derived from the ensemble
members of one particular candidate model, in this case the IFS
(ECMWF) forecasts, which were argued to provide the most
skilful seasonal forecasts for the Nino3.4 index back in section 4.
Each of the other candidate models, in turn, is then combined
with the IFS (ECMWF) model by deriving a forecast distribution
from the ensemble members of both models, equally weighted.
The skill of each two-model combination is computed in terms
of Ignorance relative to the IFS (ECMWF) reference forecast
and is shown in Table 1 for the November launch forecasts of
the Nino3.4 index. Each model combination shows the average
relative Ignorance (negative scores indicate an improvement over
simply using the IFS (ECMWF) forecast). The preponderance
of positive values in the fifth, eighth and eleventh columns of
Table 1 indicates that there is no clear improvement in skill
for any two-model combination in this case. All values at lead
times less than 8 months are positive. (In fact, all but two of
the 42 values in these columns of the entire table are positive.)
Arguably, beyond 8 months the improvements in skill are not
significant; the bootstrap resampling intervals overlap with zero
relative skill in each case. Table 2 shows the corresponding results
when other models are combined with the UKMO model. In
this case, combining with ECMWF tends to improve the average
Ignorance at all lead times (negative values in the fourth and fifth
columns of Table 2), but no other combination does this (all
values in the eighth and eleventh columns are positive). Starting
with ECMWF, combining UKMO has a much smaller effect.
In cases where significant improvements are found from such a
model combination, then further models could be included into
the multi-model forecast by choosing those models that yield the
biggest improvement in skill and adding them into the forecast
one by one with equal weight until no further skill can be added.
In this case, however, results suggest that the most skilful seasonal
forecasts are provided by using ensemble members from a single
model.

10. Establishing skill when data are precious

The DEMETER and ENSEMBLES seasonal hindcast archive
contains merely 46 independent forecast-outcome pairs for each
launch date. At seasonal forecast time-scales and longer, no true
out-of-sample evaluation can be achieved in less than a decade,
if not longer; evaluations today must necessarily be in-sample.
In this case, it is desirable to strike a balance between using
as many of the available data as possible to obtain the best
results and holding back enough data so as to avoid information
contamination (overfitting), which would lead to poor estimates
of real-time operational skill.

The results shown in the previous sections used median cross-
validation protocol as described in Appendix B; no additional
data are held back in the evaluation of probabilistic forecast
distributions beyond those excluded when determining the kernel
parameters. While using median values for u, σ and α seems
unlikely to allow significant information contamination, this
median leave-one-out protocol is not ‘true’ cross-validation. In a
true cross-validation protocol, more than one segment of data at
a time must be removed from the fitting protocol. This reduces
the chance of information contamination; it also reduces the true
quality of the estimation when data are precious. Appendix B
details both protocols.

Figure 11 shows the skill of forecasts from the ENSEMBLES
models using true cross-validation. Figure 11(a) shows the
Ignorance score for forecasts of the Nino3.4 index, launched
in November. Comparing Figure 11(a) with Figure 2(d) clearly

shows a reduction in skill at longer lead times under the
true cross-validation protocol, as well as a widening of the
bootstrap resampling intervals in some cases. Significant skill
above climatology is demonstrated only up to a lead time of 4
months. Similarly, Figure 11(b) shows the skill of the ENSEMBLES
model forecasts for the MDR index. In this case, significant skill
above climatology is shown to vanish beyond a lead time of 2
months.

The preferred cross-validation protocol when the data archive
is small is unclear. The approach taken here is to consider more
than one protocol. The true cross-validation protocol employed
in this section (Figure 11) reflects the expected reduction in the
skill of models simply because fewer data are used to calibrate
the forecasts. The median cross-validation protocol (Figures 2
and 3) runs the risk of overfitting the dressing parameters. Only
out-of-sample evaluation could establish which effect dominates
in this case.

Figure 12 illustrates the effect of the different cross-validation
protocols on the calculated skill of the seasonal forecasts. The
figure shows Ignorance scores for the IFS (ECMWF) model
from ENSEMBLES relative to climatology using the median (x-
axis) and true (y-axis) cross-validation protocols for forecasts
of the Nino3.4 index. Each of the four panels corresponds to a
different forecast launch month (as indicated). As expected, on
average the true cross-validation protocol suggests less skill (i.e.
larger Ignorance scores) relative to median cross-validation. This
improvement on average is not systematic across individual
forecasts. The reduction of skill under true cross-validation
protocol is small in most cases, giving increased confidence
to results using median cross-validation. The most prominent
differences are at the highest values of Ignorance, where the
forecasts have little skill under either protocol. For the November
launch, this typically occurs at longer lead times (beyond 7
months). The argument here is merely that it is important to
consider questions of cross-validation when data are precious.

11. Conclusions

The current generation of seasonal forecasts will retire
before the forecast-outcome archive grows significantly larger:
seasonal verification data are precious! This complicates forecast
calibration, as evaluation must be performed using cross-
validation with only a small sample. Nevertheless, probabilistic
seasonal forecasts based on the ENSEMBLES stream II
experiment demonstrate increased skill in forecasting sea-surface
temperatures in the Nino3.4 region over that of the DEMETER
model simulations. Further analysis suggests that increasing the
ensemble size could potentially improve forecast skill further.
Such evaluations of skill, on the other hand, should be analyzed
with care. RMS-based skill scores can obscure skill in nonlinear
systems. The statistical characteristics reflected in RMS scores
differ from those using strictly proper scoring rules, which are
recommended for evaluations of such nonlinear systems as those
in weather and climate dynamics. The evidence of skill presented,
particularly at moderate lead times, is shown to be robust to
different choices of appropriate (proper) scores (see File S1) and
may prove to have non-trivial value in application. Simulation-
based forecasts clearly outperform climatological probability
forecasts in many cases. The fact that empirical persistence-based
probability forecasts provide a significantly stronger challenge
suggests that, in practice, the skill of operational forecast systems
can be enhanced with information from the richer empirical
models. Distinguishing the limitations of this level of skill
from the limitations of our current skill scores and evaluation
methodologies will also prove of great value, both in terms of
informing future experimental designs for multi-model ensemble
projects and for determining the value of these forecast systems
to decision-makers.
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Table 1. Ignorance of each two-model forecast combination, as labelled, relative to the IFS (ECMWF) forecast for each (monthly) lead time for seasonal forecasts of
the Nino3.4 index, launched in November. In each case, the individual models are also blended with the climatological distribution using blending parameters that
minimize the Ignorance score. Each two-model combination shows the average relative Ignorance and the 5–95% bootstrap resampling intervals, which provide an
estimate of sampling uncertainty of the relative skill score. For comparison, the second column shows the skill of the (single) ECMWF model relative to climatology.

LT ECMWF ECMWF and UKMO ECMWF and CNRM ECMWF and IFMK

5% mean 95% 5% mean 95% 5% mean 95%

1 −2.15 −0.08 0.05 0.16 0.05 0.17 0.28 0.07 0.20 0.30
2 −2.03 −0.29 −0.07 0.10 −0.17 0.04 0.24 0.15 0.33 0.47
3 −1.63 −0.44 −0.16 0.08 −0.21 0.04 0.23 −0.09 0.18 0.37
4 −1.36 −0.17 −0.03 0.10 −0.05 0.11 0.26 0.13 0.29 0.41
5 −1.10 −0.19 0.01 0.16 −0.25 −0.04 0.16 0.09 0.28 0.42
6 −0.73 −0.16 0.01 0.17 −0.04 0.11 0.25 0.03 0.19 0.31
7 −0.53 −0.05 0.09 0.22 −0.07 0.07 0.20 0.09 0.18 0.26
8 −0.34 −0.06 0.05 0.15 −0.04 0.06 0.16 −0.04 0.06 0.15
9 −0.23 −0.14 −0.04 0.05 −0.10 0.00 0.11 −0.14 −0.04 0.04
10 −0.27 −0.16 −0.06 0.03 −0.17 −0.05 0.06 −0.14 −0.04 0.05
11 −0.22 −0.32 −0.17 −0.02 −0.22 −0.08 0.06 −0.33 −0.20 −0.08
12 −0.28 −0.20 −0.09 0.01 −0.17 −0.05 0.07 −0.13 −0.03 0.07
13 −0.35 −0.08 −0.01 0.06 −0.20 −0.03 0.11 −0.14 −0.05 0.05
14 −0.39 −0.12 −0.03 0.07 −0.12 0.00 0.13 −0.31 −0.12 0.03

Table 2. Ignorance of each two-model forecast combination, as labelled, relative to the HadGEM2 (UKMO) forecast for each (monthly) lead time for seasonal
forecasts of the Nino3.4 index, launched in November. In each case, the individual models are also blended with the climatological distribution using blending
parameters that minimize the Ignorance score. Each two-model combination shows the average relative Ignorance and the 5–95% bootstrap resampling intervals,
which provide an estimate of sampling uncertainty of the relative skill score. For comparison, the second column shows the skill of the (single) UKMO model relative

to climatology.

LT UKMO UKMO and ECMWF UKMO and CNRM UKMO and IFMK

5% mean 95% 5% mean 95% 5% mean 95%

1 −1.90 −0.35 −0.21 −0.08 −0.02 0.08 0.17 −0.01 0.11 0.22
2 −1.92 −0.41 −0.18 0.01 0.03 0.12 0.21 0.22 0.34 0.44
3 −1.64 −0.33 −0.15 −0.01 0.00 0.13 0.26 0.14 0.28 0.40
4 −1.29 −0.24 −0.13 0.00 −0.09 0.06 0.20 0.13 0.26 0.38
5 −0.87 −0.37 −0.22 −0.09 −0.34 −0.12 0.07 0.06 0.21 0.33
6 −0.43 −0.49 −0.30 −0.11 −0.38 −0.12 0.09 −0.11 0.06 0.20
7 −0.13 −0.45 −0.31 −0.16 −0.30 −0.13 0.02 −0.09 0.00 0.08
8 −0.14 −0.26 −0.15 −0.06 −0.20 −0.05 0.06 −0.24 −0.07 0.06
9 −0.24 −0.15 −0.04 0.05 −0.21 −0.03 0.12 −0.18 −0.06 0.05
10 −0.32 −0.12 −0.02 0.08 −0.10 0.00 0.10 −0.12 −0.02 0.08
11 −0.33 −0.24 −0.05 0.12 −0.15 −0.01 0.13 −0.40 −0.16 0.03
12 −0.32 −0.22 −0.06 0.09 −0.11 0.00 0.10 −0.17 −0.03 0.11
13 −0.31 −0.13 −0.05 0.03 −0.14 −0.02 0.12 −0.17 −0.07 0.03
14 −0.31 −0.24 −0.10 0.03 −0.11 0.00 0.10 −0.39 −0.18 0.01
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Figure 11. Ignorance score of each model from ENSEMBLES relative to climatology as a function of lead time in months using true cross-validation, for (a) forecasts
of the Nino3.4 index and (b) forecasts of the MDR index launched in November. Zero Ignorance indicates that a model has no skill relative to climatology and negative
relative Ignorance scores suggest that a model is more skilful than climatology. Bootstrap resampling intervals (the vertical bars) reflect the 5–95% range as estimated
from 512 resamples. Skill is typically reduced compared with the median cross-validation protocol (Figures 2(d) and 3(d)), particularly at very early lead times over
the MDR. The bootstrap resampling intervals are also widened in some cases.
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Figure 12. Comparison of Ignorance scores for the IFS (ECMWF) model from ENSEMBLES relative to climatology using the median and true cross-validation
protocols for forecasts of the Nino3.4 index, launched in the months as indicated. On average, the true cross-validation protocol shows a reduction in skill (larger
Ignorance scores) compared with median cross-validation, although individual forecasts can score better. The reduction of skill when using the true cross-validation
protocol is most prominent at higher values of Ignorance (when the forecasts are already demonstrating poor skill under the median cross-validation protocol), which
for the November launch typically occurs at longer lead times (beyond 7 months).

Appendix A: From simulation to PDF

An ensemble of simulations is transformed into a probabilistic
distribution function (PDF) by a combination of kernel-dressing
and blending with climatology (see Bröcker and Smith, 2007).
An N-member ensemble at time t is given as Xt = [x1

t , . . . , xN
t ],

where xi
t is the value of a physical quantity (for example the

SST in the MDR region) for the ith ensemble member. For
simplicity, all ensemble members under a given model are treated
as exchangeable. In other words, the ensemble interpretation does
not depend on the ordering of the ensemble members, as long
as they are generated by the same model (Bröcker and Smith,
2007). Kernel-dressing defines the model-based component of
the density as

p(y : X, σ ) = 1

Nσ

N∑
i

K

(
y − (xi − μ)

σ

)
, (A1)

where y is a random variable corresponding to the density function
p and K is the kernel, taken here to be

K(ζ ) = 1√
2π

exp

(
−1

2
ζ 2

)
. (A2)

Thus each ensemble member contributes a Gaussian kernel
centred at xi − μ. Here μ is an offset, which accounts for
any systematic ‘bias’. For a Gaussian kernel, the kernel width
σ is simply the standard deviation determined empirically, as
discussed below.

For any finite ensemble, there remains the chance of ∼ 2
N that

the outcome lies outside the range of the ensemble even when the
outcome is selected from the same distribution as the ensemble
itself. Given the nonlinearity of the model, such outcomes can
be very far outside the range of the ensemble members. In
addition to N being finite, in practice of course the simulations
are not drawn from the same distribution as the outcome, as the
ensemble simulation system is not perfect. To improve the skill
of the probabilistic forecasts, the kernel-dressed ensemble may be
blended with an estimate of the climatological distribution of the
system (see Bröcker and Smith, 2007 for more details; Roulston
and Smith, 2003 for an alternative kernel and Raftery et al., 2005
for a Bayesian approach). The blended forecast distribution is
then written as

p(·) = αpm(·) + (1 − α)pc(·), (A3)

where pm is the density function generated by dressing the model
ensemble and pc is the estimate of climatological density. The
blending parameter α determines how much weight is placed
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in the model. Specifying the three values (kernel width σ ,
kernel offset μ and weight α) at each lead time defines the
forecast distribution. These parameters are fitted simultaneously
by optimizing the empirical Ignorance score, using a cross-
validation protocol‡‡ as described in Appendix B.

Appendix B: Information contamination and cross-validation

Ideally, forecast performance is evaluated ‘out-of-sample’, with
new data unknown at the time the model parameters were
determined (much less data seen by the analyst). Given a large
forecast-outcome archive, cross-validation reduces information
contamination and overfitting when working in-sample (that is,
when evaluating a model on the sample used to fit the parameters
of that model) by dividing the archive into two sets: a training
set, used to build the forecast model and fit the parameters,
and a testing set, used to obtain an estimate of the skill and
likely performance of the model. The process can be repeated to
examine the robustness of the results, but information from the
test set(s) must not be used to ‘‘improve’’ the forecast model.
When the archive is small and will increase only slowly, one does
not have the luxury of this approach. Calibration and evaluation
are at best performed under more complex cross-validation; the
ideal protocol is not clear and the results can be expected to change
with the protocol. A median protocol and a true leave-one-out
protocol are defined below.

First, define the forecast probability distribution to be
p(x, Xt , �), t = 1, . . . , N, where X represents the ensemble
forecast at time t, � represents a vector of parameters (including
the kernel width σ , offset μ and blending parameter α) to be fitted
and N is the number of forecasts. The corresponding outcomes are
defined to be st . For each forecast at time j = 1, . . . , N, leave out
one pair of forecast-outcome data (Xj, sj) and use the remaining
forecast-outcome data pairs to determine the parameter �j by
minimizing the empirical score (in this article Ignorance is used).
The median value, �̄, of the set of N �j is then used in the
forecast model. This ‘median protocol’ maintains a large learning
set with only slight information contamination.

The leave-one-out protocol described in the previous
paragraph is not pure cross-validation, as �̄ arguably contains
information from every (Xj, sj) when the median is taken. To
achieve pure cross-validation, the following protocol is adopted.
For each forecast at time j, first leave out (Xj, sj), then for
the remaining set apply the median cross-validation protocol
described above to obtain N parameter values �̄j. The value

�̄j at each time j is then independent of (Xj, sj). The forecast

empirical Ignorance is then given by
∑N

j=1 − log2 p(sj, Xj, �̄j).
This protocol ensures that the parameters �j have no explicit
dependence on the datum used to evaluate them, at the cost of
smaller learning set(s). Even in this case, the datum was known to
the analyst. Indeed, use of a common archive in DEMETER and
in ENSEMBLES (Stream Two) clouds the possibility of assigning
clear statistical significance to estimates of expected skill.
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Bröcker J, Smith LA. 2007. From ensemble forecasts to predictive distribution
functions. Tellus A 60: 663–678.

Coelho CAS, Stephenson DB, Balmaseda M, Doblas-Reyes FJ, van Oldenborgh
GJ. 2006. Towards an integrated seasonal forecasting system for South
America. J. Clim. 19: 3704–3721.

Doblas-Reyes FJ, Hagedorn R, Palmer TN. 2005. The rationale behind
the success of multi-model ensembles in seasonal forecasting. Part II:
Calibration and combination. Tellus A 57: 234–252.

Doblas-Reyes FJ, Weisheimer A, Palmer TN, Murphy JM, Smith D. 2010.
Forecast Quality Assessment of the ENSEMBLES Seasonal-to-decadal Stream
2 Hindcasts, Technical Memorandum 621. ECMWF: Reading, UK.

Good IJ. 1952. Rational decisions. J. R. Stat. Soc. XIV: 107–114.
Hagedorn R, Smith LA. 2009. Communicating the value of probabilistic

forecasts with weather roulette. Meteorol. Appl. 16: 143–155.
Hagedorn R, Doblas-Reyes FJ, Palmer TN. 2005. The rationale behind the

success of multi-model ensembles in seasonal forecasting. Part I: Basic
concept. Tellus A 57: 219–233.

Hewitt CD, Griggs DJ. 2004. Ensembles-based predictions of climate changes
and their impacts. Eos Trans. Am. Geophys. Union 85: 566.

Ingleby B, Huddleston M. 2007. Quality control of ocean temperature
and salinity profiles –historical and real-time data. J. Mar. Syst. 65:
158–175.

Kang I-S, Yoo J. 2006. Examination of multi-model ensemble seasonal
prediction methods using a simple climate system. Clim. Dyn. 26: 285–294.

Kelly JL Jr. 1956. A new interpretation of information rate. Bell Syst. Tech. J.
35: 917–926.

Kirtman BP, Min D, Infanti JM, Kinter JL III, Paolino DA, Zhang Q, van
den Dool H, Saha S, Mendez MP, Becker E, Peng P, Tripp P, Huang
J, DeWitt DG, Tippett MK, Barnston G, Li S, Rosati A, Schubert SD,
Rienecker M, Suarez M, Li ZE, Marshak J, Lim Y-K, Tribbia J, Pegion K,
Merryfield WJ, Denis B, Wood EF. 2013. The North American Multi-Model
Ensemble (NMME): Phase-1 seasonal to interannual prediction, phase-2
toward developing intra-seasonal prediction. Bull. Am. Meteorol. Soc. 95:
585–601.

Krishnamurti TN, Kishtawal CM, LaRow TE, Bachiochi DR, Zhang Z,
Williford CE, Gadgil S, Surendran S. 1999. Improved weather and
seasonal climate forecasts from multimodel superensemble. Science 285:
1548–1550.

McSharry PE, Smith LA. 1999. Better nonlinear models from noisy data:
Attractors with maximum likelihood. Phys. Rev. Lett. 83: 4285–4288.

Palmer TN, Alessandri A, Andersen U, Cantelaube P, Davey M, Délécluse
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S, Guérémy J-F, Hagedorn R, Hoshen M, Keenlyside N, Latif M, Lazar
A, Maisonnave E, Marletto V, Morse AP, Orfila B, Rogel P. 2004.
Development of a European multimodel ensemble system for seasonal-
to-interannual prediction (DEMETER). Bull. Am. Meteorol. Soc. 85:
853–872.

Peng P, Kumar A, van den Dool H, Barnston AG. 2002. An analysis of
multimodel ensemble predictions for seasonal climate anomalies. J. Geophys.
Res. 107: 4710, doi: 10.1029/2002JD002712.

Raftery AE, Gneiting T, Balabdaoui F, Polakowski M. 2005. Using Bayesian
model averaging to calibrate forecast ensembles. Mon. Weather Rev. 131:
1155–1174.

c© 2014 The Authors. Quarterly Journal of the Royal Meteorological Society
published by John Wiley & Sons Ltd on behalf of the Royal Meteorological Society.

Q. J. R. Meteorol. Soc. (2014)



L.A. Smith et al.

Rajagopalan B, Lall U, Zebiak SE. 2002. Categorical climate forecasts through
regularization and optimal combination of multiple GCM ensembles. Mon.
Weather Rev. 130: 1792–1811.

Roulston MS, Smith LA. 2002. Evaluating probabilistic forecasts using
information theory. Mon. Weather Rev. 130: 1653–1660.

Roulston MS, Smith LA. 2003. Combining dynamical and statistical ensembles.
Tellus 55A: 16–30.

Smith DM, Eade R, Dunstone NJ, Fereday D, Murphy JM, Pohlmann H, Scaife
AA. 2010. Skilful multi-year predictions of Atlantic hurricane frequency.
Nat. Geosci. 3: 846–849.

Smith LA. 1992. Identification and prediction of low-dimensional dynamics.
Physica D 58: 50–76.

Smith LA. 1997. In Proceedings International School of Physics ‘Enrico Fermi’,
Course CXXXIII, Cini G. (ed.): 177–246. Societa Italiana di Fisica: Bologna,
Italy.

Suckling EB, Smith LA. 2013. An evaluation of decadal probability forecasts
from state-of-the-art climate models. J. Clim. 26: 23.

The Met Office. 2013. 3-month Outlook for Contingence Planning: User
Guidance, HM Government document. The Met Office: Devon,
UK. http://www.metoffice.gov.uk/media/pdf/g/o/3-month Outlook User
Guidance-150.pdf (accessed 10 July 2014).

Van Den Dool HM. 2007. Empirical Methods in Short-term Climate Prediction.
Oxford University Press: Oxford, UK.

van Oldenborgh GJ, Balmaseda MA, Ferranti L, Stockdale TN, Anderson DLT.
2005. Did the ECMWF seasonal forecast model outperform statistical ENSO
forecast models over the last 15 years? J. Clim. 18: 3240–3249.

Vitart F, Huddleston MR, Déqué M, Peake D, Palmer TN, Stockdale TN, Davey
MK, Ineson S, Weisheimer A. 2007. Dynamically-based seasonal forecast of
Atlantic tropical storm activity issued in June by EUROSIP. Geophys. Res.
Lett. 34: L16815, doi: 10.1029/2007GL030740.

Wang B, Lee J-Y, Kang I-S, Shukla J, Park CK, Kumar A, Schemm J, Cocke
S, Kug JS, Luo JJ, Zhou T, Wang B, Fu X, Yun WT, Alves O, Jin E,
Kinter J, Kirtman B, Krishnamurti T, Lau N, Lau W, Liu P, Pegion P,
Rosati T, Schubert S. 2009. Advance and prospectus of seasonal prediction:
Assessment of the APCC/CliPAS 14-model ensemble retrospective seasonal
prediction (19802004). Clim. Dyn. 33: 93–117.

Weigel AP, Liniger MA, Appenzeller C. 2008. Can multi-model combination
really enhance the prediction skill of probabilistic ensemble forecasts? Q. J.
R. Meteorol. Soc. 134: 241C260.

Weisheimer A, Doblas-Reyes FJ, Palmer TN, Alessandri A, Arribas A, Déqué
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