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s u m m a r y

Satellite-based (e.g., Synthetic Aperture Radar [SAR]) water level observations (WLOs) of the floodplain
can be sequentially assimilated into a hydrodynamic model to decrease forecast uncertainty. This has
the potential to keep the forecast on track, so providing an Earth Observation (EO) based flood forecast
system. However, the operational applicability of such a system for floods developed over river networks
requires further testing. One of the promising techniques for assimilation in this field is the family of
ensemble Kalman (EnKF) filters. These filters use a limited-size ensemble representation of the forecast
error covariance matrix. This representation tends to develop spurious correlations as the forecast-as-
similation cycle proceeds, which is a further complication for dealing with floods in either urban areas
or river junctions in rural environments. Here we evaluate the assimilation of WLOs obtained from a
sequence of real SAR overpasses (the X-band COSMO-Skymed constellation) in a case study. We show
that a direct application of a global Ensemble Transform Kalman Filter (ETKF) suffers from filter diver-
gence caused by spurious correlations. However, a spatially-based filter localization provides a substan-
tial moderation in the development of the forecast error covariance matrix, directly improving the
forecast and also making it possible to further benefit from a simultaneous online inflow error estimation
and correction. Additionally, we propose and evaluate a novel along-network metric for filter localization,
which is physically-meaningful for the flood over a network problem. Using this metric, we further eval-
uate the simultaneous estimation of channel friction and spatially-variable channel bathymetry, for
which the filter seems able to converge simultaneously to sensible values. Results also indicate that fric-
tion is a second order effect in flood inundation models applied to gradually varied flow in large rivers.
The study is not conclusive regarding whether in an operational situation the simultaneous estimation of
friction and bathymetry helps the current forecast. Overall, the results indicate the feasibility of stand-
alone EO-based operational flood forecasting.
� 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

While there are recent advances in low-cost telemetered
networks for long-life flood monitoring and warning applications,
oriented to be deployed over large areas (e.g., Marín-Pérez et al.,
2012), the actual number of operational gauges is actually declin-
ing in the world (Vörösmarty et al., 2001). On the other hand, in
recent times, the technology of earth observation (EO) has begun
to be adopted to improve flood visualization and reduce flood
modeling uncertainties (e.g., Raclot, 2006, Schumann et al., 2007,
2011, Mason et al., 2010a). EO techniques for flood detection
include, for example, high resolution Synthetic Aperture Radar
(SAR) (such as TerraSAR-X), altimetry (such as RA-2 on Envisat,
or Poseidon 3 on Jason-2), though the footprints are such that they
are limited to level measurements in rivers >1 km wide, or even
gravimetry (GRACE) for very large flood events. Specifically, in
real-time mode, the assimilation of water level observations
(WLOs) derived from EO may serve to keep forecasts obtained from
flood simulations on track and, in hindcast mode, to obtain better
estimates of the dynamic footprints of past flood events. The fore-
cast mode may be used by civil protection services and industry for
operational uses, while the post-flood mode may be used in dam-
age assessment and flood defence design studies (Mason et al.,
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2014). In both modes, the key variable to forecast is the water level
(and hence flood extent) (e.g., Hostache et al., 2010; Biancamaria
et al., 2011). However, the assimilation of EO-based WLOs for the
water level estimation problem, mostly in a forecast situation, is
plagued by problems derived from errors in (a) inflows (discharge)
into the modeled domain, and (b) model parameters (mostly fric-
tion) and bathymetry. Thus, the estimation and correction of (a)
and (b), in a data assimilation (DA) context, have become them-
selves a major or secondary objective in recent studies. In an alter-
native scenario, with a focus on large rivers and longer timescales,
discharge estimation, in itself, is a important objective for land sur-
face water budget analyses (e.g., Andreadis et al., 2007; Balsamo
et al., 2013). Overall, the estimation of water levels, water dis-
charge and model parameter estimation are all inter-related in
the abovementioned contexts. For example, Neal et al. (2009) con-
ducted a case study of simultaneous water level and inflow estima-
tion from EO-based WLOs, in a 10-km river reach. Also, Matgen
et al. (2010) and Giustarini et al. (2011), in a synthetic case and a
real case respectively, showed that the simultaneous correction
of inflow errors led to improved water level forecast in a 19-km
river reach. García-Pintado et al. (2013) conducted a synthetic sen-
sitivity analysis of the flood forecast skills at different time hori-
zons to satellite-based SAR acquisitions (first visit and revisit
times) in order to support the scheduling of satellite imaging for
operational uses. There is not real dataset yet available to conduct
a similar kind of study.

Regarding bathymetry estimation, Durand et al. (2008), in a
proof-of-concept study, indicated that bathymetry is a significant
source of uncertainty in estimating discharge. They conducted
two synthetic experiments to assimilate EO-based WLOs, assuming
known inflows, in order to estimate a mean bathymetric slope and
bathymetric depth at 5 specific locations in a 250-km reach in the
Amazon river. Specifically, they used synthetic observations of the
proposed Surface Water and Ocean Topography (SWOT) mission.
The experiments were successful, and they concluded that model
errors will likely dominate over SWOT-like WLO errors. Roux and
Dartus (2008) succeeded in calibrating the mean bathymetry in a
channel reach using real satellite-based flood extent data, and
Gessese et al. (2011) directly obtained an explicit partial differen-
tial equation (PDE) for the 1-D inverse problem, and successfully
estimated the depth of a rectangular horizontal channel with a
bump, with known inflow and known downstream slope. Later,
Durand et al. (2014) used real SAR-based WLOs to simultaneously
estimate bathymetry and lateral inflows, along with channel
roughness, for a major out-of-bank flood event in a river. They
treated the river in term of reaches, so that they estimated mean
values for three transects along the river, and assumed the major
upstream inflow was known. Their results suggest that it should
be possible to estimate river discharge via EO. In closely related
work, the estimation of bathymetry in river estuaries through the
assimilation of SAR-based waterlines with morphodynamic models
has also been evaluated (Thornhill et al., 2012; Smith et al., 2013).

On the other hand, the chosen DA method itself may have
intrinsic problems. Specifically, in recent years there has been a
growing interest in DA ensemble schemes for flood studies. From
these, the various methods derived from the Kalman filter are
generically known as Ensemble Kalman Filters (EnKFs) (Evensen,
1994). These filters use a limited-size ensemble representation of
the forecast error covariance matrix. This is updated as each set
of observations is assimilated. The ensemble-based error covari-
ances tend to underestimate the forecast error variance and devel-
op physically unrealistic or spurious correlations. This may lead to
ensemble collapse and filter divergence. Filter localization is often
used to reduce the problem of spurious correlations. This increases
the degrees of freedom available to fit nearby observations in the
analysis by decreasing the weight given to observations far from
the physical location of the estimated state variable (Hamill
et al., 2001).

While previous experiments are encouraging regarding EO
capabilities for flood and river flow monitoring and forecasting,
they focus on specific single river reaches, albeit ones that are
sometimes very large or subject to secondary lateral inflows. Our
new contribution is to carry out a case study assimilating real EO
data for the sequential monitoring and forecast of a flood develop-
ing on a river network with tributaries. In our case, uncertain fore-
casts from upstream rainfall-runoff models provide the discharge
at seven catchments contributing to the flood. The case is based
on possibly the best example of sequential monitoring of a flood
extent by high-resolution Synthetic Aperture Radar (SAR) images
currently available in the world. This is a 7-image set from the
COSMO-Skymed constellation, which was acquired during a flood
that occurred in November 2012 around the confluence of the Sev-
ern and Avon catchments in the western UK.

The assimilation is conducted via a Local Ensemble Transform
Kalman Filter (LETKF) (Hunt et al., 2007) applied to a 2-D flood
model. Our objective is to evaluate a number of strategies for
real-time flood forecasting by assimilating high-resolution EO-
based WLOs with the flood simulations assuming uncertain model
parameters. That is, we want (a) to evaluate if localization is strict-
ly required for avoiding problems arising from spurious correla-
tions; (b) to evaluate if the flood forecast improves by jointly
estimating inflow boundary condition errors simultaneously with
the water level; and (c) to evaluate if, with an imminent flood
situation, it is better to focus on state estimation (water levels),
joint state-inflow estimation, or joint state-parameter estimation,
where at the same time uncertain friction and bathymetry are
estimated.

Regarding objective (a), it is noted that filter localization
requires a distance metric for moderating the weights given to
the observations. In this paper we introduce an along-network dis-
tance metric for filter localization, which is new to the DA lit-
erature. The proposed metric is physically meaningful for the
flood over a network problem and, accordingly, we evaluate its
influence on the forecast. Regarding objective (b), it is noted that
the online correction of inflow errors into the flood model domain
does not affect the hydrologic simulations of the upstream catch-
ment-scale rainfall-runoff processes.
2. Methods

2.1. Study domain

This study focuses on an area of the lower Severn and Avon riv-
ers in the South West United Kingdom, over a 30:6� 49:8 km
(1524 km2) domain. Fig. 1 depicts the study area for the flood mod-
el. Four our investigation, we used a real case based on an event
that occurred in November 2012. We used a previous event in July
2007 in the same location as a calibration scenario. In the calibra-
tion event, the two major rivers suffered a substantial degree of
overbank flooding, and a maximum water depth of 5.90 m was
recorded at the Saxon’s Lode gauge near Tewkesbury. The event
of 23 November–4 December 2012 recorded a maximum water
depth of 5.21 m at the Saxon’s Lode. Also both the Severn and Avon
were in flood in this event. Tewkesbury lies at the confluence of the
Severn, flowing from the Northwest, and the Avon, flowing from
the Northeast.
2.2. Rainfall-runoff model and inflow generation

In the experimental setup we emulated a real forecast scenario,
in which the precipitation data came from a network of tipping-



Fig. 1. Flood model domain. OSGB 1936 British National Grid projection; coordi-
nates in meters. Gray labels indicate the three larger rivers (thick black lines). The
red polygon surrounds the Tewkesbury urban area. Orange labels/dots refer to the 7
inflow boundary conditions, some of them on smaller tributaries (thin black lines).
The yellow line to the South indicates a free-surface boundary condition, with the
label indicating the prior mean bed slope. Red labels/green dots show locations with
available stage observations, just used for validation in the forecast mode. The
background is the 75 m resolution DEM used for the model, obtained by upscaling
the 5 m NEXTMAP British digital terrain model. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)
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bucket gauges sparsely distributed in a 190 km W–E � 120 km S–N
rectangular area covering 7 catchments discharging as inflow
boundary conditions into the flood domain (i.e., we did not use a
Numerical Weather Prediction model). In both the calibration
and the forecast scenarios we estimated catchment-average pre-
cipitation in each of the seven catchments by Ordinary Kriging
(OK) (Deutsch and Journel, 1998) the tipping bucket data over an
1 km resolution grid, at hourly timesteps, and integrating the dis-
tributed rainfall maps on the corresponding catchment areas. We
treated the OK quantitative precipitation estimates as certain, so
that all uncertainty in the discharge ensemble came from the para-
meters in the hydrologic models.

We used a lumped catchment-scale rainfall-runoff hydrologic
model for each catchment, the Hydrologic Simulation Program-
Fortran (HSPF) model (Donigian et al., 1995). HSPF is a US EPA pro-
gram for simulation of watershed hydrology, with a long history
and that is still the subject of active research (e.g., Ryu, 2009;
Schultz et al., 2013; Kim and Ryu, 2014). Each of the seven major
catchments used an independently calibrated HSPF model.
Remaining minor point flows and lateral discharge were neglected
in both the calibration and forecast stages.

2.3. Hydrodynamic model

We used the flood simulation model LISFLOOD-FP, a coupled
1D/2D hydraulic model based on a raster grid (Bates and De Roo,
2000) with 75 m grid-spacing (664� 408 pixels). After each
assimilation step, the model is re-initialized with the updated state
vector (water stage). LISFLOOD-FP has several formulations. Here,
we apply the so-called ‘‘sub-grid’’ approach described by Neal
et al. (2012), which uses a finite difference numerical scheme
adapted from the reach scale inundation model of Bates et al.
(2010), and utilises gridded river network data, assuming a rectan-
gular channel geometry. García-Pintado et al. (2013) used the same
domain, and provide some more details and a previous application
of this model in a synthetic scenario.

2.4. Satellite observations

Satellite SAR observations of the event were acquired by the
COSMO-SkyMed (CSK) constellation. The 4-satellite polar orbiting
C-band CSK constellation was tasked by the authors. A sequence
of 7 CSK Stripmap images giving good synoptic views of the flood-
ing was acquired on a roughly daily basis covering the period 27
November–4 December 2012 (Fig. 2). Unfortunately the rising edge
of the hydrograph was not imaged, though the first image in the
sequence was acquired just before the flood peak in the Severn
(see Fig. 3). Although the river went back in bank on 30 November,
we continued the imaging as a substantial amount of water
remained on the floodplain. It is worth noting that water levels
on the floodplain at the end of the event were much higher than
those in the channel. All CSK images were HH polarization, provid-
ing good discrimination between flooded and non-flooded regions.
Details of the overpasses are given in Table 1. The look direction
can be determined knowing the SAR is right-looking and the pass
direction (descending/ascending). The latency (time from the CSK
SAR image acquisition to the product availability at the User
Ground Segment [UGS] plus the delivery time to us) was around
15 h as an average.

Processing level was 1C-GEC, which meant that the images
were geo-corrected to �100 m. It was necessary to register the
images to British National Grid coordinates using ground control
points and a digital map, when a registration accuracy of better
than 2 pixels (of size 2.5 m) was obtained.

In the absence of significant surface water turbulence due to
wind, rain or currents, flood water generally appears dark in a
SAR image because the water acts as a specular reflector, reflecting
backscatter away from the satellite. Detection of the flood extent in
each image was performed using the segmentation technique
described in Mason et al. (2012a), which groups the very large num-
bers of pixels in the scene into homogeneous regions. As there was
no flooding of urban areas, only the rural flood detection algorithm
was used. The scale parameters for the segmentation were the same
as those used in Mason et al. (2012a), and also in a number of SAR
images of other floods around the world, from several different high
resolution SAR sensors. A critical step is the automatic determina-
tion of a threshold on the region mean SAR backscatter, such that
regions having mean backscatter below the threshold are classified
as flooded, and others as un-flooded. The threshold determined was
checked manually and corrected if necessary.

The initial rural flood classification was improved by refining it
in a number of ways. For example, emergent vegetation adjacent to
the flood such as hedgerows may produce a high rather than low
SAR backscatter even though they are flooded. This is due to double
scattering, whereby radar rays transmitted from the sensor to the
water are reflected first to the hedgerow then back to the sensor
(or vice versa). Regions of high backscatter that are long, thin, fairly
straight and adjacent to flooding were thus reclassified as flooded.
The backscatter threshold was also raised to include in the flood
category regions of flooding adjacent to the flood class that had
slightly higher mean backscatter than the original threshold (e.g.,
due to wind ruffling the water surface in more exposed parts of



Fig. 2. Flood extents (blue) for the forecast event (November 2012), overlain on SAR in flood model domain. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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Fig. 3. Inflows into the flood domain for the forecast event, in November 2012. As a reference, blue lines are inflows as measured by standard gauges (not used as data input
here). Gray lines are the 150-member forecast ensemble from the hydrologic models, used as input by the flood model. Dashed red lines are the ensemble means. Vertical
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the floodplain). Flood regions were also deleted if their mean
height was above 14 m above ordnance datum (AOD).

The accuracy of the flood inundation maps in rural areas using
the algorithm has been determined to be about 90% (Mason et al.,
2012a). This is similar to the accuracies achieved by other
researchers (e.g., Martinis et al., 2011). Note that the more accurate
a flood inundation map is, the more accurate will be the WLOs
derived from it.

Heights were obtained from an image constructed from 24
2� 2 km UK Environment Agency (EA) LiDAR tiles covering the
hydrodynamic model domain (Fig. 1). Fig. 2 shows the flood
extents detected in the images, overlain on the SAR data in the



Table 1
Details of COSMO-SkyMed overpasses.

Timestamp (UTC) Pass Incidence angle (�)

27/11/12 19:20 Descending 49
28/11/12 18:01 Descending 51
29/11/12 18:20 Descending 32
30/11/12 19:32 Descending 53
01/12/12 05:38 Ascending 26
02/12/12 05:56 Ascending 48
04/12/12 18:14 Descending 40
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hydrodynamic model domain. The sequence shows the flood wave
moving down the river, and the flood at Tewkesbury gradually
dying away, starting on the Avon. In general terms, regarding the
spatial coverage of the images, the Severn was imaged up to the
Latitude of Worcester, the Teme up to the Longitude of Bransford,
and the Avon up to the Longitude of Besford Bridge. Also, the first
image (2012-11-27) just covered up to �2 km downstream from
Kempsey.

WLOs were extracted from the flood extent waterlines by inter-
secting the extents with high resolution floodplain topography
(airborne LiDAR of 1 m or 2 m pixel size) using the method
described in Mason et al. (2012b). The method selects candidate
waterline points in flooded rural areas having low slope and
vegetation, so that small errors in waterline position have little
effect on waterline level. The waterline levels and positions are
corrected for the effects of double reflections between the water
surface and emergent vegetation at the flood edge, wherever pos-
sible. At each pixel on the flood edge, the direction perpendicular
to the edge moving away from the flood is calculated. A transect
of backscatter values is constructed along this direction, traversing
from inside the flood, across the waterline and across the region in
which emergent vegetation might be expected. Along this transect,
backscatter generally increases from low to high then decreases to
a stable value between these where the vegetation emerges from
the water. If found, the point where this occurs is taken as the
waterline position, and the height of this point is the corrected
water level. Further details are given in Mason et al. (2012b). The
resulting points were not thinned to reduce spatial autocorrelation
at this stage as in Mason et al. (2012b), this step being held over
until the Quality Control (QC) stage of the assimilation is done.

The standard deviation for the thinned set of WLOs was 0.25 m
(Mason et al., 2012b). This value was estimated by comparing
waterline levels to those from nearby gauges, and also checking
waterline positions against those determined manually from con-
temporaneous aerial photography. Satellite and aerial photography
used to extract WLOs for the calibration event of July 2007 have
been described previously in Mason et al. (2010b). The distribution
of the WLOs in space and time was consistent with evolution of the
flood.

2.5. River cross sections and bathymetry estimation

The EA provided field surveyed river cross-sections for the study
area, with a total of 35 along the River Severn and 127 along the
River Avon. The available cross-sections had a complete coverage
and were evenly distributed along the Avon within the study area.
However, the cross-sections for the Severn, while evenly distribut-
ed, just covered the transect from the junction with the Avon (near
Mythe Bridge) to�10 km upstream from the Saxons Lode US gauge.

We transformed the surveyed cross-sections into rectangular
equivalents, as required by the chosen flood model to simulate
channel bathymetry, by

arg min
wr ;dr

��1
w

1
2

wc �wrð Þ2 þ ��1
d

1
2

dc � drð Þ2
� �

; ð1Þ
subject to the constraint wrdr ¼ Ac , where Ac is the area of the sur-
veyed cross-sectional area (precalculated by integration); wc and dc

are the maximum of the (within bank) surveyed channel width and
depth, respectively; wr and dr are width and depth of the rectangu-
lar equivalent cross-section; and �w and �d are the error variances in
wc and dc , respectively, assumed proportional to the channel
dimensions as

�w ¼
wc

wc þ dc
; ð2Þ

�d ¼
dc

wc þ dc
: ð3Þ

With the given constraint (wrdr ¼ Ac), the substitution dr ¼ Ac=wr

can be done in (1), which becomes a minimization of a single vari-
able (wr), which we solved by Newton–Raphson iteration. Then, for
both the Severn and the Avon, we interpolated wr and dr along the
river chainages. For the Severn, further than the area covered by the
cross sections (i.e., downstream from Mythe Bridge and from
�10 km downstream from Kempsey up to Bewdley) we extrapolat-
ed the width and depth of the cross-sections at the corresponding
extremes. For the other rivers in the network we assumed a con-
stant rectangular-equivalent width and depth, with widths
obtained from previous studies, and depths obtained from the pow-
er law relationship d ¼ kwc between the channel width (w) and
depth (d), where we used the parameters k ¼ 0:30, and c ¼ 0:78
[further details about these may be found in García-Pintado et al.
(2013)]. Overall, the aim of model bathymetry based on simple rect-
angular (spatially-variable) cross-sections is to speed up processing
times while attempting to simulate the behavior that higher resolu-
tion fully detailed channel cross-sections would have. Our prior
rectangular bathymetry estimates are assumed subject to a reason-
able degree of uncertainty, and local biases are plausible. Hence, we
decided to conduct the experiment with these prior estimates, and
test the forecast under the filter configurations described in Sec-
tion 2.10 to evaluate how the filter could cope with this potential
problem in a real-time flood forecast situation. This decision, in con-
trast to attempting a previous simulation-based off-line calibration
of bathymetry, is also the motivation for recent studies concerning
bathymetry estimation (e.g., Durand et al., 2014), which acknowl-
edge that detailed river bathymetry is unknown across many rivers
in the world.

2.6. The ensemble filter

We conducted synchronous assimilation of the observations.
That is, the flood model simulations were sequentially interrupted
as assimilation was conducted at the time of the corresponding
CSK overpasses. Whenever we simultaneously estimated uncertain
friction, bathymetry, or errors in inflow boundary conditions at the
time of the assimilation, we did so as part of the data assimilation
by using state space augmentation (Friedland, 1969). From the
point of view of the assimilation, here we refer generically to these
three as ‘‘parameters’’, with which the state vector is augmented.
As the model state is augmented with model parameters, the
assimilation scheme is able to take into account correlations
between the errors in the parameters and the errors in the model
variables. In data assimilation schemes using such an approach,
the analysis updates an augmented state vector w 2 Rn,

w ¼
z
b

� �
; ð4Þ

where z is the ns-dimensional model state (water levels in our case)
and b is a generic nb-dimensional vector of parameters (including
instantaneous inflow errors for the cases where these are simulta-
neously estimated). Thus, n ¼ ns þ nb.
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The Ensemble Kalman Filter (EnKF), introduced by Evensen
(1994), is characterized by a two step feedback loop: a prediction
and an observation-based state update. In each step, an ensemble
of augmented state vectors is interpreted as a statistical sample
of the forecast or analysis uncertainty, respectively. Thus if
wif gði ¼ 1; . . . ;mÞ is an m-member ensemble, then the ensemble

mean is the n-vector defined by

w ¼ 1
m

Xm

i¼1

wi: ð5Þ

The ensemble perturbation matrix for the augmented state is
the n�m matrix with columns defined by the ensemble perturba-
tions from the mean as

W ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
m� 1
p w1 � wjw2 � wj . . . jwm � w

� �
: ð6Þ

Then the ensemble error covariance matrix is given by

P ¼ WWT ¼ 1
m� 1

Xm

i¼1

ðwi � wÞðwi � wÞT: ð7Þ

In the prediction phase, each individual ensemble member is
evolved forward in time by the forecast model until the time of
an observation. In our case this means that the model states
(water-levels) are forecast by the hydrodynamic model with
appropriate forecast boundary conditions. The dynamical model
for friction and bathymetry is that they are constant in time. The
treatment of these two and the inflows is described in more detail
in Section 2.10.

At the time of an observation, an ensemble approximation of
the Kalman filter equations (Kalman, 1960) to used to update the
ensemble. The update of the ensemble mean is chosen to satisfy
the following constraint:

wa ¼ w f þ K y �Hw f
� �

; ð8Þ

where the forecast (prior) and analysis (posterior) quantities are
denoted by the superscripts f and a, respectively. The vector of
observations is given by y 2 Rp. Note that the observations may
be indirect or not located at model grid points, so the p� n matrix
H, known as the observation operator (or ‘‘forward’’ operator) is
required to map the state vector to the observation space. The Kal-
man gain,

K ¼ W f ðHW f ÞT HW f ðHW f ÞT þ R
� ��1

; ð9Þ

is an n� p matrix, where the superscript ‘‘T’’ denotes matrix trans-
position, and R is the p� p observation error covariance matrix.
This update may be thought of as a linear combination of the fore-
cast and the observations, weighted by the uncertainty in the given
model and observation data. The term dy ¼ y �Hw f is usually called
the vector of ‘‘innovations’’, indicating the difference between the
observations and the forecast; the Kalman gain, K, contains the
weights given to the innovations to update the system;

dw ¼ wa � w f , is called the vector of ‘‘increments’’ and is the differ-
ence between the analysis and the forecast.

As well as updating the ensemble mean, we must also update
the ensemble perturbations, giving an ensemble estimate of the
analysis error covariance as

Pa ¼ W f � KHW f
� �

W f
� �T

: ð10Þ

There are a number of possible computational implementations for
updating the ensemble. In this work, we used an Ensemble Trans-
form Kalman Filter (ETKF) in an unbiased formulation with a sym-
metric square-root (Ott et al., 2004; Wang et al., 2004; Hunt et al.,
2007; Livings et al., 2008). Regarding notation in this study, being
A a generic matrix, Ai;: means the ith row of A, and Ai;j is the element
at the ith row and the jth column.

2.7. Filter localization

Ensemble size is an important issue in any ensemble Kalman fil-
ter. We can see from Eqs. 8 and 9 that the increments lie in the sub-
space spanned by the ensemble perturbations. Another way to
express this is that the increments are linear combinations of the
columns of the forecast error covariance matrix. Typically the
number of ensemble members is much smaller than the dimension
of the state vector, leading to under-sampling. This often manifests
itself as spurious (unphysical) forecast error correlations and for
example, increments updating the state at locations further from
the location of the observation than is plausible. Localization tech-
niques are often used to ameliorate the problem.

There are a large number of variations on the localization tech-
nique with the principal difference being whether localization is
applied directly to the forecast error covariance matrix (known
as covariance localization, Houtekamer and Mitchell, 1998, 2001)
or by a more indirect method known as domain localization (Ott
et al., 2004; Hunt et al., 2007). In the latter, the assimilation is
applied to independently to a series of disjoint local domains in
physical space. For each local assimilation, only observations with-
in some defined cut-off radius are considered. In this paper we use
observation localization (OL) (Hunt et al., 2007; Nerger and Gregg,
2007), which allows us to obtain a similar effect to covariance
localization while using domain localization. In OL, we construct
a taper matrix from chosen correlation functions of compact sup-
port. The Schur or Hadamard (elementwise) product of the taper
matrix and the inverse of the observation-error covariance matrix
corresponding to a local analysis domain is computed. Thus, the
weight of observations is reduced as a function of their distance
from the local analysis domain by increasing their assumed error
variance. Here we used a fifth-order polynomial (Gaspari and
Cohn, 1999, Eq. (4.10)) for weighting the observations. The study
of localization techniques and parameters is an active area of
research (e.g., Kirchgessner et al., 2014). Our new contribution is
to develop a novel distance metric based on a channel network dis-
tance, which allows us to distinguish between flows in adjacent
channels that may be close together in a Euclidean sense.

For floods developed around a channel network (e.g., a river
network, as in this case study), one could expect the physical con-
nectivity of flows to influence the development of the forecast
error covariance. Thus a localization taking into account the
along-network distance would not only be more physically mean-
ingful than an ‘‘as-the-crow-flies’’-based localization, but also
should lead to an improved forecast skill. To this end, assuming
that the flood is developed around a pre-existing (river/urban) net-
work, the channel network can be vectorised and the chainage of
the network used for calculating along-network distances. Let X
be the set of points of interest for localization, and we denote as
Xc the minimum-distance mapping of X into the channel network.
With this, let us define our along-network metric for localization,
dnðxi; xjÞ, as

dnðxi; xjÞ ¼max deðxi; xjÞ;dsðxc
i ; x

c
j Þ

n o
; ð11Þ

where deð�; �Þ denotes the ‘‘as-the-crow-flies’’ Euclidean distance,
which is evaluated upon X, and dsð�; �Þ is the distance evaluated
along the chainage provided by the vectorised channel network,
which is evaluated upon Xc . The rationale for including deð�; �Þ in
the definition of dnð�; �Þ is to provide a minimum distance threshold
for nearby couple of points ðxi; xjÞ, which might for example fall at
both sides of a flooded channel, and whose ds distance is neglected
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in their corresponding projection ðxc
i ; x

c
j Þ. One might argue that this

can artificially decrease the covariance at some points near
junctions. However, this should be a minor effect, and also one
might well argue that it is sensible to use this metric at those points,
just because they are in junctions, influenced by flows with
different dynamics. The output of this metric is then used by Eq.
(4.10) of Gaspari and Cohn (1999) in the same way that Euclidean
distances would be. Note that this is not a translation invariant
metric.

2.8. Ensemble inflation

Another mechanism to preserve the ensemble variance and
help preventing ensemble collapse is the inflation of the ensemble
perturbations (Anderson, 2001). We used a simple automatic mul-
tiplicative inflation approach applied to the posterior perturba-
tions. For this, we obtained an inflated ensemble Wa;þ by
multiplying each row in the pre-inflated analysed ensemble matrix
Wa;� times the corresponding element of an inflation vector k 2 Rn

(i.e., Wa;þ
i;: ¼ kiW

a;�
i;: ), where for any specific variable in the state vec-

tor the inflation factor ki was obtained as

ki ¼ ð1� apÞ
r f

i

ra
i

þ ap; ð12Þ

where ap is an input inflation parameter, with ap 2 ½0;1�, and r f
i and

ra
i are the background and updated sample (ensemble) standard

deviations, respectively, for the assimilation step. Thus, ap ¼ 0
would recover the variance prior to the assimilation, and ap ¼ 1
would not apply any inflation. As indicated in Table 2, ap can hold
different values for the various types of elements in the augmented
state vector.

2.9. Observation quality control

Online data assimilation techniques such as ensemble Kalman
filters and particle filters tend to lose accuracy dramatically when
presented with an unlikely observation. Such an observation may
be caused by an unusually large measurement error or reflect a
rare fluctuation in the dynamics of the system. In general, while
the observations with large measurement errors should be
screened out, those of existing rare fluctuations should be
assimilated. For example, in the case of a flood event in a river
Table 2
Summary of filter configurations for assimilation.a

code h q dsl

ub ic ld u i l u

a T 0.5 F F – – T
b T 0.5 F T 0.0 F T
c T 0.5 deð20Þ F – – T
d T 0.5 deð20Þ T 0.0 deð20Þ T
e T 0.5 dnð20Þ F – – T
f T 0.5 dnð20Þ T 0.0 dnð20Þ T
g T 0.5 dnð20Þ F – – T
h T 0.5 dnð20Þ F – – T
i T 0.5 dnð20Þ F – – T
j T 0.5 dnð20Þ T 0.0 dnð20Þ T
k T 0.5 dnð20Þ T 0.0 dnð20Þ T
l T 0.5 dnð20Þ T 0.0 dnð20Þ T
m T 0.5 dnð20Þ T 0.0 dnð20Þ T

a code is filter configuration, h is distributed water level; q are the 7 inflow boundary
refers to the 2 global Manning coefficients for channels; bat refers to the distributed ba

b u refers to whether the variable/parameter is being updated in the assimilation.
c i refers to the inflation parameter ap (see Section 2.8).
d l is FALSE for no localization, deðrÞ for isotropic ‘‘as-the-crow-flies’’ distance, and dnðr
network, one may consider the, unusual, failure of a small earth
dam in an agricultural plot or terrace, with the purpose for
impounding water. These retention structures can intercept impor-
tant amount of water in agricultural plots, and a sudden failure
would release an additional, relatively small, wave to river net-
work. The anomaly would be higher and more local just after the
failure, with the wave later diffusing into the general flood. In
any case, Kalman filters and particle filters tend to fail when the
system undergoes occasional transitions revealed by an observa-
tion that is inconsistent with the predictive distribution of the sys-
tems state (Vanden-Eijnden and Weare, 2012). Thus we follow
here the practical approach of applying and outlier analysis to
remove any unlikely observation not accounted for in the model
dynamics. This is applicable as floods are a case of data assimila-
tion in a low noise regime and observational noise of SAR-based
WLOs is normally small. An alternative strategy could be to use
specific assimilation schemes based on rare event simulation tools,
as proposed by Vanden-Eijnden and Weare (2012).

Accordingly, we conducted an online Quality Control (QC) of the
observations as follows, based on the innovation values. The inno-
vations (see Section 2.6) are obtained for the complete set of WLOs
(see Section 2.4). An experimental semivariogram is then obtained
with the innovations, and the range of a corresponding adjusted
exponential variogram model is used as the cut-off radius of a spa-
tially moving window, which is sequentially centered at the loca-
tion of each WLO to evaluate if its corresponding innovation is
an outlier according to its neighborhood. An innovation is then
considered an outlier if its value is out of the interval with 95% con-
fidence level obtained from the population of innovations in the
local window. Once the outliers are rejected according to the QC
protocol, a thinning analysis is conducted on the surviving WLOs,
as described by Mason et al. (2012b). The thinned dataset is finally
used by the DA analysis for its assimilation. Our previous tests (not
shown) indicated that QC of the observations, as for example the
one included here, is a necessary step to avoid rare fluctuations,
as indicated above. QC is a standard part of operational assimila-
tion-forecast systems in other applications such as numerical
weather prediction (e.g., Kalnay, 2002, Section 5.8). In our SAR-
based WLOs, no significant bias between the SAR-derived and
gauge levels could be detected (Mason et al., 2012b). For alterna-
tive processing chains, if WLO bias was found significant, and
observation bias-aware DA scheme could potentially deal with this
problem (e.g., Dee, 2005; Pauwels et al., 2013).
gc bat

i l u i l u i l

0.0 F F – – F – –
0.0 F F – – F – –
0.0 deð10Þ F – – F – –
0.0 deð10Þ F – – F – –
0.0 dnð10Þ F – – F – –
0.0 dnð10Þ F – – F – –
0.0 dnð10Þ T 1.0 F F – –
0.0 dnð10Þ F – – T 1.0 dnð10Þ
0.0 dnð10Þ T 1.0 F T 1.0 dnð10Þ
0.0 dnð10Þ T 1.0 F F – –
0.0 dnð10Þ F – – T 1.0 dnð10Þ
0.0 dnð10Þ T 1.0 F T 1.0 dnð10Þ
0.0 dnð10Þ T 1.0 F T 1.0 dnð5Þ

conditions; dsl is the slope of the downstream free surface boundary condition; gc

thymetry. T is TRUE (applied). F is FALSE (not applied). ‘‘–’’ if meaningless.

Þ for along-network distance, being r the localization radius in km (see Section 2.7).
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2.10. Calibration and experimental design

We used a previous event in July 2007 in the same location as a
calibration scenario. With precipitation and potential evapotran-
spiration as input data and flow at the outlet of each catchment
as calibration data (yellow named points in Fig. 1), we calibrated
the HSPF lumped catchment-scale rainfall-runoff hydrologic model
for each of the 7 catchments. Calibration was done with a simple
Monte Carlo run, sampling from prior uniform distributions with
common ranges as indicated in the HSPF model documentation.
From an initial set of 500 samples, we selected the 150 best set
of parameters for each catchment according to the Nash coeffi-
cient. Off-line, we used the calibrated ensemble (size m ¼ 150) dis-
charge of the hydrologic models as input into the flood model
domain, and calibrated the latter using a similar approach that
employed available time-series of water levels at a number of
gauges as calibration data (green points with red labels in Fig. 1).
For model spin-up, in both the calibration event and the evaluation
one, the rainfall-runoff simulations started 1 month before the 2-D
flood simulations. As indicated, the ensemble size was m ¼ 150.

With the cascaded calibrated hydrologic-flood models we con-
ducted the assimilation with a number of filter configurations for
the November 2012 event in forecast mode. Table 2 summarizes
the assimilation conditions for each filter configuration. The first
six configurations are focused on evaluating the effect of localiza-
tion and inflow estimation on the assimilation and forecast. These
configurations have fixed values for both friction and bathymetry:
(a) a global ETKF, (b) as (a) with inflow error estimation and correc-
tion, (c) a local ETKF (LETKF), (d) as (c) with inflow error estimation
and correction, and (e) and (f), which are respectively as (c) and (d)
but with an along-network metric for localization (described in
2.7). Another six configurations support the evaluation of the effect
of friction and bathymetry estimation, and all of them use an
along-network metric for localization: (g), (h) and (i) do not esti-
mate and correct inflow errors, so that (g) estimates friction, (h)
estimates bathymetry, and (i) estimates both friction and bathy-
metry. Then, (j), (k) and (l), are respectively as (g), (h) and (i) but
with simultaneous inflow error estimation and correction. A fur-
ther configuration m) is as (l) but with a smaller localization radius
for bathymetry, to provide a minimal analysis of the influence of
the localization radius on the distributed bathymetry estimation
and the general estimation process.

Regarding the parameter spatial support, friction was consid-
ered as two global parameters described by the Manning’s coeffi-
cient: one scalar value for the three larger rivers (Severn, Avon
and Teme) [with prior gc1 � Nð0:035;1:00e� 06Þ], and another
scalar value for the other smaller rivers in the domain [with prior
gc2 � Nð0:040;1:00e� 06Þ]. This is a parsimonious friction para-
meter set, while the priors still acknowledge that smaller rivers
tend to have more vegetated riverbanks, leading to higher friction
in high flow conditions. The prior means seem reasonable given
our previous experience on the study area (e.g., García-Pintado
et al., 2013). Bathymetry was considered as local and spatially dis-
tributed along the channel network. That is, bathymetry was just
uncertain for channels and every channel pixel had an indepen-
dently updated bathymetry, without any further constraint. The
distinction between ‘‘local’’ and ‘‘global’’ here refers to whether
the parameters or variables to be estimated may be assigned a
point location, and so be directly subject to localization in the filter.

Several methods have been proposed for correcting the errors in
river discharge predictions, as these degrade the quality of the
downstream flood forecasts (e.g., Bogner and Pappenberger,
2011). For example, Andreadis et al. (2007) used a first order
autoregressive error forecast model for a 3-month case synthetic
experiment in the context of discharge estimation based on
assimilating EO-based water levels. However, for the context of
storm-flood events (our focus here), the sparse satellite overpasses
in relation with the duration of the event make it impractical (if
possible) to estimate the parameters of error models more com-
plex than a simple stationary model (i.e., to assume a constant bias
between satellite overpasses). Thus whenever the inflow errors
were estimated and updated (in the seven inflow boundary condi-
tions), we assumed a constant bias forecast error model for the
inflows, as previous studies in the field (Matgen et al., 2010;
García-Pintado et al., 2013). In addition, in all the filter configura-
tions, we included simultaneous estimation of the downstream
free surface slope boundary condition, as a local parameter where
the prior distribution was dsl � Nð3:32e� 03;2:25e� 10Þ (see
mean as yellow label in Fig. 1), the mean value being obtained from
the calibration for the July 2007 event, and the variance represent-
ing the reasonable degree of uncertainty we had on the prior mean.
See Section 2.5 for a description of the prior estimates of bathyme-
try, and rationale for the distributed online updating approach.

In the filter configurations with parameter updating [(c), and
(d)], we added a spatially correlated error to the prior bathymetry.
For this, we selected an unconditional Gaussian error simulation to
generate the ensemble of 2D random error fields, which we
masked with the channel network. The selection of the parameters
for the Gaussian simulation, and the assumption that all errors
come from bathymetry (i.e. perfect hydraulic structures) is some-
how arbitrary. Specifically, we assumed the bathymetry errors �b

were proportional to the prior estimates of channel depth, with
c.v. = 0.15, and having a spatial correlation length of 5000 m,
defined as the range parameter of an exponential variogram model.

2.11. Validation approach

We used gauge water level time series from the network shown
in Fig. 1 (red labels). For validation we conducted a visual examina-
tion of the ensemble time series along the event, and RMSE as gen-
eral statistics. All level gauges indicated in Fig. 1 are in the major
three rivers, except for Shuthonger, which is in a small tributary,
close to its junction with the Severn and likely affected by backwa-
ter effects.

3. Results and discussion

3.1. Structure of results and discussion

We structure the results and discussion around three major
topics: (i) influence of localization on the system updating and
flood forecast, (ii) capability of inflow estimation and its influence
on the flood forecast, and (iii) capability of model parameter esti-
mation (friction and bathymetry) and its influence of the flood
forecast. This structure is to ease discussion. We will see however
that the three topics are strongly inter-related, and we include
cross-references as needed.

3.2. Influence of the metric for localization

In this study we propose an along-network metric for localiza-
tion, based on the understanding that it should be sound for the
flood forecast problem in river/channel networks. In accordance
with Section 2.7, here we test and discuss the use of a global ETKF
vs. filtering schemes with localization (LETKF), with either a stan-
dard ‘‘as-the-crow-flies’’ Euclidean distance (de) or an along-net-
work distance (dn). Note we have arbitrarily chosen localization
parameters which seem relevant to the problem, so that it is
unlikely we have selected the optimum in either filter
configuration.
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We will use Fig. 4, as a base example for discussion. This depicts
a symbolic representation (square symbols) of the elements Ki;: in
the Kalman gain for several filter configurations. Here, i is the row
corresponding to the updating of the water level at Bredon, in the
river Avon catchment. The symbols are plotted at locations corre-
sponding to the jth element of the observation vector, with the
WLOs obtained from the 7th CSK overpass. While it is important
to remember that the increment is the sum of the matrix–vector
product between the Kalman gain and the vector of innovations,
a consideration of the individual elements of the Kalman gain pro-
vides information about the relative influence of different observa-
tion locations on the analysis.

In Fig. 4 the updated forecast error covariance between level at
Bredon and levels elsewhere is also shown as the background for
Fig. 4. Updated error covariance between the state variable (water level) at Bredon a
overpass). Plot labels (b, d, f, and l) refer to the corresponding filters (see Table 2). The red
the corresponding observation location, is a symbolic representation of Ki;: (being i t
assimilation step and filter. The side length of each square is proportional to the correspon
in filter [b]). The sum of the absolute Kalman gain values in the row is indicated by

Pp
j¼1

references to color in this figure legend, the reader is referred to the web version of thi
each configuration. Note that both the color scales and the symbol-
ic representation of Ki;: are independent for each plot to ease visu-
alization. For this figure we have selected filters with inflow
updating, as these tend to behave better than similar ones without
inflow estimation (see Section 3.3 below). Also, we focus here on
the situation pertaining to the assimilation of WLOs from the last
CSK overpass, as this summarizes the cumulative feedback of the
different filters along the sequential assimilation in the event.

Filter (b), the global filter, leads to sparsely distributed non-neg-
ligible Ki;j values throughout the domain, with many distant obser-
vations influencing the updating at Bredon. Not only are there
many significant gain values along the whole Severn, but also the
highest value (max Ki;:

	 

¼ 0:023) at this last overpass (t ¼ 7) is

in a tributary of the Severn, a significant distance away from Bre-
nd the state vector (water level elsewhere) at the last assimilation step (7th CSK
circle indicates the location of Bredon. The set of squares, with each one centered at

he state vector index corresponding to water level Bredon) at the corresponding
ding Ki;j value, where the biggest square in each plot relates to max Ki;:

	 

(e.g., 0:023

jKi;jj. Green/red squares are positive/negative gain values. (For interpretation of the
s article.)
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don. Also, the gain values have a skewed distribution with a just a
few WLOs having high gain values and then many other observa-
tions gathering around low, albeit non-negligible, values. In gener-
al, the situation is far from what one would expect from a properly
constructed assimilation system, and it is also likely to hamper the
robustness of the filter to possible anomalous (outlying) innova-
tions. This situation arises from the assimilation sequence through-
out the event, in which spurious correlations are not properly
damped. Thus the global filter ends up with a system in which the-
se spurious correlations have a dominant effect, leading to rela-
tionships which are unlikely to happen in the real physical
system. Moreover, at this stage in the event the water levels at
observation locations surrounding Bredon have a negative correla-
tion with the level at Bredon, leading to negative gain values (red
squares), which do not have any physical reason to happen. A
strongly-related problem is the collapse of the variance, as the
development of spurious correlations leads in turn to too much
weight being put onto the observations in the early stages of the
event and promotes variance collapse. As the assimilation pro-
ceeds, the global filter leads to a general underestimation of the
variance and filter divergence, here exemplified via the over-flat-
tened map of the forecast error covariance with Bredon, and its
low sum of absolute values of the corresponding Kalman gain val-
ues (

Pp
j¼1jKi;jj ¼ 0:3).

On the other hand, filter (d), with de-metric localization, shows
a very different situation, with a much higher variance and higher
spatial variability in the model error covariance with Bredon water
levels. Significant values in the corresponding Ki;: row in are much
closer to Bredon, and more observations share a fair contribution
to the updating, making the filter more robust to outliers in the
observations. Overall, the spurious correlations have been quite
effectively filtered out, and this seems a much better situation than
that from filter (b). Also the situation that the most influencial gain
values are clustered downstream from Bredon has some physical
basis, as this situation corresponds to the recession of the flood
event, and the bulk of the flood wave has now passed Bredon. Thus
the variance of water levels is higher downstream and lower
upstream, while the standard deviation of the WLOs is set to
0.25 m everywhere. This naturally maps into higher/lower Kalman
gain values for those observations with higher/lower variance in
the corresponding background water levels. However, one would
still expect higher Kalman gain values to be closer to Bredon, and
to have some influence, even if minor, from upstream observations
in the updating.

Filter (f), with dn-metric localization seems an improved version
of (d). It does not contain any negative gain values, and there is also
a good number of observations with roughly equally high gain val-
ues leading to a robust situation with respect to outliers existence
in the WLOs. The distant WLOs in the Severn now have lower gain
values, and the highest gain values are closer to Bredon. Also WLOs
upstream from Bredon now have a relatively higher gain values.
Overall, this seems the best filter of the three, among which the
only difference is the localization approach.

The influence of simultaneous parameter estimation is dis-
cussed in Section 3.4. However, we include filter (l), which is simi-
lar to (f) but with simultaneous estimation of global channel
friction and distributed bathymetry, to summarize that it leads to
a situation which seems even more physically sound than that
from (f) from the point of view of the spatial distribution and share
of the Kalman gain values. The higher gain values are now very
well distributed around Bredon, and with slightly higher weights
given to those WLOs downstream from Bredon. The situation
seems very close to ideal, with properly developed forecast error
covariances, with respect to what one could expect at this stage
of the event. There are a few distant minor negative gain values
in the row, but given their relative values these become insignifi-
cant in the updating. Other aspects of the case are discussed in
Section 3.4.

3.3. Inflow estimation

As indicated in Section 2.4, the satellite sequence was not cov-
ering the boundary condition locations for the major inflows to the
flood model domain. For the three major rivers, the coverage was
up to �20 km downstream from Bewdley (inflow to the Severn),
�10 km downstream from Evesham (inflow to the Avon), and
�8 km downstream from Knightsford bridge (inflow to the Teme).
In fact, Besford bridge (inflow to the Bow brook) was the only
inflow location within the SAR coverage. Thus this case is an
extrapolation situation regarding the online estimation and correc-
tion of inflow errors. Table 2 shows a number of filter configura-
tions which performed simultaneous estimation of inflow errors
at the assimilation times, and used these error estimates to correct
the inflows from the hydrologic models, assuming a constant bias
as error forecast model. Table 3 indicates the root mean squared
error (RMSE) for these filter configurations, where the RMSE is
evaluated against the gauged inflows (blue lines in Fig. 3) for the
time between the 1st CSK overpass (2012-11-27 19:20:00 UTC)
and about one day after the last overpass (2012-12-05 23:00:00
UTC). In parentheses, Table 3 indicates the increment in the RMSE
between the updated inflows, along the event, and the background
(the open loop hydrologic forecast) inflow errors. Thus a positive/
negative increment in RMSE indicates the updated inflows are fur-
ther from/closer to the gauged inflows than the background.

The filters, in any case, just calculate the innovations (WLOs
minus the forecast levels at the time of the overpass and on WLO
locations) and use the background and observation error covari-
ances to map these innovations into increments in the state vector
(water levels and, possibly, parameters, depending on the filter
configuration). So, positive/negative innovations, along with the
generally positive correlations between observation errors and
water level errors, are basically stating that more/less water should
have entered into the system by the time of the assimilation and
correcting this by updating the water levels and inflow errors. In
the setup in this study, apart from the 7 inflow boundary condi-
tions, we are not making any provision for lateral inflows along
the river network, inflows from smaller tributaries, nor for ground-
water infiltration/exfiltration. These unaccounted inflows/outflows
in the flood model may well lead to increased/decreased local
innovations and the corresponding mapping into the distributed
increments in the water level as a result of the assimilation. Also
if inflow errors at the time of the assimilation are correlated with
water levels at downstream observation points at that time, the
abovementioned unaccounted flows may map, through the inno-
vations, into an over- or underestimate of the specific errors at
the inflow boundary conditions (over/under-shooting). However,
this over/under-shooting is not necessarily a bad thing for the
actual (next) forecast step. The DA is just attempting to estimate
overall inflow errors and assigning them to the only provision we
have made for that, i.e. to the specific inflow boundary conditions.
Thus the RMSEs in Table 3 are just an indication of how close the
gauged inflows (which, themselves may be subject to biases
because of errors or unaccounted hysteresis in the rating curves,
etc.) are to the assimilation-based estimates of total inflow to the
system.

Summarising Table 3, the assimilation in all filter configurations
generally moves the prior inflows away from the gauged inflows.
This is indicated by the positive values in parenthesis in the RMS
row. As indicated, this should not be interpreted as whether the
assimilation is doing a bad job. On the contrary, this may well be
the case that the satellite-based WLOs are providing information,



Table 3
RMSE of inflows for filters with inflow updating.a,b

b d f j k l

besford_bridge_q 1.84(0.24) 1.94(0.35) 1.79(0.20) 1.74(0.15) 1.82(0.23) 1.75(0.16)
bewdley_q 82.87(�2.95) 122.26(36.44) 108.86(23.04) 107.34(21.52) 97.63(11.81) 95.92(10.10)
evesham_q 33.43(12.79) 32.07(11.43) 23.82(3.18) 23.49(2.85) 23.62(2.98) 23.93(3.30)
harford_hill_q 1.12(0.37) 0.96(0.20) 1.32(0.57) 1.21(0.46) 0.96(0.20) 0.95(0.19)
hinton_q 0.65(0.10) 0.48(�0.07) 0.49(�0.06) 0.49(�0.06) 0.53(�0.02) 0.52(�0.03)
kidder_callows_ln_us_q 1.24(�0.60) 1.20(�0.64) 1.42(�0.42) 1.41(�0.42) 1.50(�0.33) 1.54(�0.30)
knightsford_bridge_q 48.38(4.66) 49.56(5.84) 59.34(15.61) 58.08(14.35) 51.13(7.41) 49.00(5.27)
RMSc 38.42(5.27) 51.33(14.61) 47.73(10.59) 46.99(9.84) 42.61(5.39) 41.72(4.49)

a [m3 s�1]. RMSE measured against gauged inflows within [2012-11-27 19:20:00 UTC, 2012-12-05 23:00:00 UTC].
b In parentheses is the RMSE minus the RMSE of the prior inflows (forecast of the hydrologic models).
c RMS of the values for the corresponding column.
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to improve the estimation of total inflows into the system, not con-
tained either in the gauged inflow boundary condition nor in the
prior inflows (i.e., the forecast from the catchment-scale hydrologic
models). Without further information, to evaluate whether the
assimilation is then performing well in estimating inflow errors
and whether this online inflow error estimation/correction is an
useful operational strategy, one needs to evaluate how the flood
forecast behaves downstream and whether the estimated inflow
errors are properly allocated to the corresponding sources. In the
context studied, this refers to a loose relationship between flooded
areas and corresponding assumed point inflow boundary
conditions.

For example, Table 3 shows two opposed configurations with
similar RMS [filter (b) and filter (l)]. Filter (b) is in fact the only con-
figuration which brings the updated inflow from Bewdley closer to
the gauged inflows (dRMSE ¼ �2:95 m3 s�1). Fig. 5 shows the evo-
lution of the updated inflows at Bewdley for these two filters; i.e.
the global filter (b), and the filter (l), with dn-metric localization
and simultaneous friction and bathymetry estimation. Filter (b)
behaves rather erratically, in agreement with the discussion about
the lack of robustness of the filter in Section 3.2. For example, the
assimilation of the WLOs from the 2nd and 6th overpasses creates
positive increments, which are interspersed with the negative
increments related to the 3rd and the 7th overpasses. On the other
hand, filter (l) has a small increment at the 1st overpass, and then
onwards, the increments become negligible. To provide some
insight into the reasons leading to these different situations, let
us focus now on the forecast error covariances after the 1st
assimilation step between the flows at Bewdley (inflow to the Sev-
ern) and the water levels elsewhere. This is depicted by Fig. 6 for
the same filters as Fig. 4. Filter (b) shows a strong component of
the updating is due to spurious correlations, not only from smaller
tributaries downstream, but also even from a set of negative Kal-
man gain values assigned to WLOs too distant in the Avon. The
evolution of the spatial distribution of the Kalman gain values in
filter (b) is highly erratic along the event, with the highest gain val-
ues continually displacing from one location to another between
Fig. 5. Inflow estimation at Bewdley for filters with
sequential assimilation steps (not shown; available on request),
and leading to a degenerate situation by the 7th overpass, where
a highly skewed distribution of the gain values (in the row) and
the growth of spurious correlation with WLOs in smaller tribu-
taries is very similar to that of Fig. 4 for the same filter.

Filter (d), however, adequately takes into account the most
upstream observations in the Severn to update the inflows. Still
there are non negligible spurious gain values in tributaries down-
stream. Filters (f) and (l) are both similar to (d) but more effective
at damping the spurious correlation with water levels at down-
stream tributaries. The evolution of the distribution of Kalman gain
values in the sequential assimilation is then very similar for (d), (f),
and (l) (not shown). For these, the spatial distribution of gain val-
ues is much more stable in time, and the filters are effective in
removing the spurious correlations. There is still a general trend
to put more weight into a few observations over time. However,
this is partially due to the fact that less WLOs are available to
assimilate as the flood recedes.

Table 4 indicates the RMSE of the water levels through the
event evaluated at the seven available water level gauges. Note
that it is also possible that the gauges have some bias. According
to Table 4, a pairwise comparison of filter configurations with simi-
lar configuration but without/with simultaneous inflow estimation
indicates that the online inflow updating lead to improved fore-
casts if localization is applied [e.g., (c) vs. (d), or (e) vs. (f)]. This
improvement also applies if friction is simultaneously estimated
[(g) vs. (j)], but the statistics are similar for those configurations
with simultaneous bathymetry estimation [(h) vs. (k), or (i) vs. (l)].

On the other hand, in the global filters [(a) vs. (b)] the simultane-
ous inflow updating further promotes ensemble collapse and diver-
gence. This is reflected in the larger RMSE in (b) with respect to (a),
and can be seen, e.g., in the water level time series plots for con-
figuration (b) in Worcester in the Severn (Fig. 7), Mythe Bridge
downstream in the Severn close to the junction with the Avon
(Fig. 8), or Bredon in the Avon (Fig. 9). Thus, just the filters with
localization, with improved accounting of the forecast error
covariances, are able to better exploit the added freedom of inflow
configuration (b) and (l), as specified in Table 2.



Fig. 6. Updated error covariance between the inflow boundary conditions at Bewdley and the state vector (water level elsewhere) at the first assimilation step (1th CSK
overpass) for the same filter than Fig. 4. Plots focus on the satellite coverage area, thus Bewdley location is not shown. Description is as Fig. 4, being now i the state vector
index corresponding to inflow errors at Bewdley.

Table 4
RMSE of water levels at gauged locations for the filters evaluated.a

a b c d e f g h i j k l m

bransford_h 0.79 0.90 0.80 0.95 0.81 1.34 0.85 1.00 0.98 1.30 1.14 1.18 1.00
bredon_h 0.66 0.65 0.69 0.40 0.69 0.40 0.67 0.85 0.89 0.45 0.74 0.72 0.60
kempsey_h 1.22 1.43 1.26 0.57 1.27 0.60 1.17 1.22 1.28 0.65 1.16 1.18 1.06
mythe_bridge_h 0.69 0.79 0.73 0.50 0.73 0.46 0.72 0.86 0.79 0.51 0.76 0.76 0.65
saxons_lode_us_h 0.94 1.12 0.98 0.56 0.99 0.55 0.94 1.16 1.22 0.60 1.20 1.26 1.24
shuthonger_h 0.38 0.49 0.42 0.22 0.42 0.22 0.41 0.63 0.55 0.25 0.52 0.55 0.39
worcester_h 1.33 1.55 1.37 0.48 1.38 0.61 1.28 1.29 1.48 0.66 1.27 1.23 1.02
RMS 0.91 1.06 0.94 0.56 0.95 0.68 0.91 1.03 1.07 0.70 1.01 1.02 0.90

a [m]. RMSE measured against gauged water levels within [2012-11-27 19:20:00 UTC, 2012-12-05 23:00:00 UTC].
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updating, behaving better throughout the event than the versions
with prescribed inflows. The benefit of the simultaneous inflows
estimation shown in Table 4 is also shown by a pairwise
comparison of the filter with de-metric localization [(c) vs. (d)] or
the filters with dn-metric localization [(e) vs. (f)] in time series
(Figs. 7–9).



Fig. 7. Water level forecast at Worcester, whose major inflows come from Bewdley (river Severn), Kidder Callows Ln Us (river Stour), and Harford Hill (river Salwarpe). Plot labels
refer to the corresponding filter configurations (Table 2). For each plot, gray lines are the forecast ensemble, the red line is the mean forecast and the blue line is the gauged water
level, included as a reference. Vertical dashed lines indicate the times of the CSK overpasses/assimilation. Horizontal lines indicate the bank level (labelled as ‘‘dtmd’’), and the
prior mean channel bottom level (labelled as ‘‘SGCz’’). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 8. Water level forecast at Mythe Bridge, in the Severn. Description as in Fig. 7.
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Fig. 9. Water level forecast at Bredon, in the Avon. Description as in Fig. 7.
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Overall, the two filters with better performance in the group
without friction and/or bathymetry estimation (a–f) are the filters
with localization and simultaneous inflow estimation. According to
Table 4, these are filter (d) with de-metric localization
(RMS = 0.56 m), and (f) with dn-metric localization (RMS = 0.68 m).
While the RMS is slightly better for filter (d), the evaluation of the
forecast error covariance (for example, as shown in Figs. 4, and 6)
indicates that the along-network-based localization is preferable
as a forecast error covariance moderation process, and helps fur-
ther to prevent the development of spurious correlations, which
should be adequate for local parameter estimation. Also in the
downstream areas, where most of the flood occurred (Mythe
Bridge, Saxons Lode US, and Bredon) the RMSE is equal or better
for filter (f).

Thus in the following section on simultaneous parameter
estimation we focus the discussion on filter configurations with
dn-based localization.
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Fig. 10. Evolution of the estimate of the global Manning’s coefficient along the
sequential assimilation steps for the three major rivers (Severn, Avon, and Teme),
and filter configuration (j).
3.4. Parameter estimation

In this section we focus on filter configurations with simultane-
ous friction and/or bathymetry estimation. We evaluate if these
parameters can be simultaneously estimated, and also if this
simultaneous estimation leads to an improvement in the flood
forecast.

Let us first make a comment about the accuracy generally
achieved in this type of flood forecast. Schumann et al. (2011)
evaluated the accuracy of sequential aerial photography and SAR
data for observing urban flood dynamics, with a case study of the
2007 floods in the same area as our case study. In fact, their
2007 event was the same one that we used for calibrating the mod-
el in our case. They reported that, from a number of SAR sensors,
the best vertical accuracy was obtained for the high-resolution Ter-
raSAR-X SAR data (which has an horizontal resolution similar to
CSK), with a 0.56 m RMSE (evaluated against a high resolution
hydraulic model simulations as a surrogate for the unknown true
water levels). It is worth noting than in our case study, the agree-
ment between the water levels recorded by gauges and those just
updated by the assimilation (i.e. water levels at assimilation
times), was generally higher than that indicated by Schumann
et al. (2011). Fig. 8 is an indication of this. At that location, in the
filter (f), which had the best RMSE, the difference between gauged
levels and assimilated levels at the time of the CSK overpasses was
kept very low (order of a few centimeters), except for the last over-
pass, where the difference was �0.45 m. In fact, most of the RMSE
shown in Table 4 relates to the capability of the filter to remain
stable and even being able to forecast the levels in the recession
of the flood. Let us note also that the estimation of the recession
levels was more difficult as rivers were back in bank, whereas
WLOs were on the floodplain at those times. With this, Table 4
indicates that, according to the RMS criterion, there is no benefit
in simultaneous parameter estimation regarding the flood forecast
during the short time span of a single event in this case study. Let
us explore possible reasons.

The estimation of Manning’s friction coefficient for the major
channels appears to converge systematically across all the filter
configurations. Fig. 10 shows this convergence for filter (j). With
slightly different convergence rates, all filters with friction estima-
tion ([g], [i], [j], and [l]) had a very similar trend, from an initial
mean gc1 ¼ 0:035 to a final mean gc1 � 0:033. This systematicity
in time and across filters, independent from simultaneous inflow
and bathymetry estimation, supports the confidence in the friction
estimates. The fact that the convergence is gradual is intrinsic to
the assimilation-based estimation, but also the gradual friction
decay may well be physical. The washout effect of high water
levels on channel beds, resulting in hysteresis of the rating curves
(stage-discharge relationships), is known to happen for some flood
events (e.g., García-Pintado et al., 2009). On the other hand, the
second Manning’s friction coefficient, affecting the minor tribu-
taries, did not converge systematically across the filters. For exam-
ple, from the initial gc2 ¼ 0:040 the final estimate was gc2 ¼ 0:039
in filter (j), but other filters saw final values slightly higher than the
prior ones. With a smaller general influence on the water levels,
and generally more distant from the WLOs, the estimation of gc2

seems to be influenced by spurious correlations and, as a summary,
does not seem sound.

However, despite the likely adequate estimation of channel fric-
tion in the major channels (the ones with a higher influence on
general water levels), the feedback of friction estimation on the
flood forecast within this event seems negligible. For example,
compare the RMS of (e) vs. (g), both without inflow estimation,
or (f) vs. (j), both with inflow estimation, where in both compar-
isons the second filter includes friction estimation. The negligible
difference in RMSEs can also be seen by the pairwise comparison
of these filters in Figs. 7–9. As gc1 is consistently estimated, one
could expect that this sensitivity of friction to the WLOs should
be reflected in a sensitivity of the flood forecast to the (likely)
improved friction estimates, so leading to a better forecast. Howev-
er, the convergence being gradual, it seems the DA-forecast cycle
does not have time to benefit from the updated friction.

Fig. 11 shows the evolution of bathymetry, along the event, for
the rivers Severn and Avon, and filter configuration (k). The chai-
nage 0 for the Avon refers to its junction with the Severn, very close
to Mythe Bridge. All the filters including bathymetry estimation
with identical localization radius for bathymetry, either with/with-
out simultaneous friction estimation, or with/without simultane-
ous inflow bias correction (i.e. filters [h], [i], [k], and [l]) show a
nearly identical convergence, supporting the robustness of the esti-
mation shown in Fig. 11, independently from other factors. The
sequential updating converges systematically toward a profile in
which, after the event, the lower part of the Severn is nearly 2 m
higher than the prior bathymetry, and the transect between Saxons
Lode US and Kempsey gauges is lower than the prior (at some
points reaching �1.5 m of difference with respect to the prior).
The highest increments in the updating are due to the assimilation
of WLOs from the first overpass. Thereafter, the updating incre-
ments become gradually smaller along time. The updatings sum-
marize the influence of the channel conveyance on the flood
development. Globally, the SAR-WLOs seem to indicate that the



Fig. 11. Evolution of the estimate of bathymetry along the sequential assimilation steps for the river Severn (top), and the Avon (bottom), for the filter configuration (k). The
ticks at the bottom indicate the location of the available cross sections. The vertical dashed lines and corresponding labels indicate the location of level gauges used for water
level validation.
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prior bathymetry was leading to a model which overestimated the
release of water from the flooded domain during the early stages of
the event. The sequential increments in the bathymetry along the
Avon are also systematic, leading to a raised channel bed profile
with respect to the prior. In both rivers, the effect of the localiza-
tion is clearly visible. That is, moving upstream, the increments
become gradually smaller as the bed locations move away from
the observations (e.g., in the Severn the WLOs roughly generally
covered up to the 40 km chainage coordinate, close to Kemspey).
The consistent and systematic sequential increments indicate a
physical basis for these, as happened with gc1. Note the prior
bathymetry was based on an interpolation of the rectangular
approximations of the real cross-sections. Thus these plots refer
to the bottom of the rectangular channels approximating the real
ones.

One could argue that a possible explanation is that since the
time at which the surveys for the cross sections were done, the
channel bed may have evolved, with some erosion happening
upstream in the Severn (in the Saxons Lode US–Kempsey transect)
and some sediment deposition happening downstream. We did not
have available the metadata indicating the dates for the cross-sec-
tion surveys. Thus it is not possible for us to check the possibility/
degree of this factor. However, the surveys were likely collected
before 2002 (UK Environment Agency, personal communication),
and several flood events have occurred since that time.

As with friction, despite the consistency in bathymetry estima-
tion, the flood forecast does not improve as a result of the updated
bathymetry. Figs. 7–9 shows that the filters including bathymetry
estimation had difficulties in forecasting the recession limb, this
being a the major effect contributing to the worsened RMSE for
these filters. The recession limb is related to the moment in which
the bulk of the flood reaches the downstream boundary location
and leaves the domain through the South boundary. Thus the
updated bathymetry may have led to an improved estimate of
the flood extent for the peak of the flood, but the assimilation
may be overshooting the estimation of the most downstream
bathymetry, preventing an accurate release of water from the
domain in the last stages of the flood. This seems to be the case.
That is, as the flood wave evolves the control from bathymetry
on the flood development is gradually moving downstream. In
the first assimilation steps, it is likely that bathymetry around Sax-
ons Lode US and Shuthonger exerts a stronger control on the flood
than the most downstream areas, and the simultaneous updating
of these most downstream bathymetries is collaterally caused by
their correlated errors with those from the bathymetry some kilo-
meters upstream. An additional difficulty is that the last 5 km of
the domain remained unobserved during the event (i.e., as a results
of the multicriteria screening to obtain the WLOs to be assimilated,
none of these was located in the last 5 km of the Severn within the
domain). As in the experimental design we did not provide any
inflation for bathymetry, the channel bed estimated variance is
gradually reduced along the sequential assimilation, and by time
the most downstream area (around Mythe Bridge and toward the
South) has the strongest influence on the release of water from
the domain, the bathymetry spread is too low to be properly
updated (and the WLOs did not reach the last �5 km of the South
of the domain —see, e.g., Fig. 4—). A plot similar to Fig. 11, but
regarding the evolution of the bathymetry ensemble spread along
the sequential assimilation indicates that the standard deviation of
bathymetry around Mythe Bridge decreases from an initial 0.8 m
until a final 0.4 m (not shown; available on request). The chosen
c.v. = 0.15 in the bathymetry error generation, reflects our confi-
dence in the prior bathymetry estimates.

Overall, it seems that either the chosen 5000 m spatial correla-
tion length in the stochastic generation of the bathymetry error
was too high or the 10,000 m localization window for the dn-based
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localization for bathymetry estimation was too high (or both fac-
tors), leading to an overshooting of the downstream bathymetry
increments, and subsequent problems. To test this point, we con-
ducted a further simulation (filter configuration [m]) with 5000 m
as localization window for bathymetry estimation. In effect, the
general trends in the sequential bathymetry updating are similar
to the previous experiments, but the increments gradually fade
downstream (see supplementary material). This translates into a
steeper recession limbs (closer to those of configuration [f]) and
better statistics (see [m] vs. [l] in Table 4). Thus everything indicates
that by tuning the localization radii and correlation length in the
bathymetry error generation the simultaneous parameter/state
estimation process could be further improved. However, as indicat-
ed in the experimental design, to provide a detailed exploration of
the parameter space and localization parameters goes beyond the
scope of the current study.

4. Conclusions

We have shown that under a relatively complex scenario with
simultaneous uncertain inflows into a flooded domain, a satel-
lite-based forecast of the flood with high accuracy is possible
through the assimilation of the satellite-based WLOs into a flood
forecast model. However, several aspects should be taken into
account for a successful operational application of EnKF-based
assimilation of EO-based WLOs and forecast. First, a moderation
of the forecast error covariance based on spatial localization is nec-
essary to avoid filter divergence. Second, inflow estimation also
improves the forecast. This second point is only valid if localization
is applied, otherwise the incorrect forecast error covariance devel-
opment prevents the global filter from adequately locating inflow
errors and the corresponding benefit in their online correction.
Third, the implementation should consider the possible uncertain-
ty in model parameters and their simultaneous online estimation.

Importantly, inflow estimation, for the evaluated filter con-
figurations which do so in this study, simultaneously attempts to
correct for missing inflows/outflows in the domain covered by
the hydrodynamic model (e.g., precipitation or minor tributary
inflows) between the satellite WLO locations and corresponding
inflow boundary locations, which are unaccounted for by the
upstream hydrologic model. Our results show that, for properly
localized filters, this is not to be seen as a problem, but as a prac-
tical benefit for the actual flood forecast, as indicated above. Fur-
ther, the possible strategy of attempting to adjust the state of the
coupled upstream hydrologic model would just be sensible provid-
ed no additional inflow/outflow occurred between the outlet of the
hydrologic model (i.e. inflow boundary condition location) and the
WLOs contributing to the update of the corresponding inflow time
series, which cannot be assured in the general case.

The study shows that if the physical connectivity of flows is
considered in the form of the newly proposed along-network met-
ric for the localization, the development of forecast error covari-
ances is sounder than that resulting from the use of a standard
as-the-crow-flies distance. The relevance of this regarding the fore-
cast skill should depend on the geometry of the network in each
specific case, and further studies would be needed to assess this
relevance.

The study is not conclusive about how simultaneous parameter
estimation (friction and bathymetry —considered as a parameter
from the estimation point of view—) interacts with the flood fore-
cast. There seems to be a benefit in the development of sound fore-
cast error covariances, and also, the convergence of the parameters
seems to be consistent. However, the simultaneous parameter esti-
mation does not improve the on-going flood forecast skill in the
studied case. In other cases (steeper rivers, faster flow, etc.) things
might be different. The localization parameters used in the case
study for bathymetry estimation seem to be far from optimal,
and tuning these parameters could lead to a better estimates in
the inverse problem (i.e. bathymetry estimation), with improved
feedback on the flood forecast. The exploration of the localization
parameters and localization method on the simultaneous state
and parameter estimation problem warrants further investigation.

There should be also a more positive feedback from the simul-
taneous parameter estimation (provided parameters are properly
estimated) for longer events, in floods developed over bigger areas.
The estimated parameters resulting from the assimilation should
also lead to improved forecasts in future events in the same
domain. This is mostly the case for bathymetry estimation, to
which the forecast sensitivity is higher that the sensitivity to chan-
nel friction, at least in this study.

Other factors influencing filter performance have not been
explored here. For example, the sensitivity of the skill to the ensem-
ble size, or the possibility of conducting transformations to dimin-
ish the negative effect of the nonlinearities in the filtering process.

The study described here has been a retrospective forecasting
(hindcasting) rather than a real forecasting process. Current high
resolution satellite SARs including the COSMO-SkyMed constella-
tion and TerraSAR-X do not yet provide near real-time geo-regis-
tered imagery from which WLOs could be extracted and
assimilated to provide a flood forecast (the only exception is
RADARSAT-2). However, the European Space Agency (ESA) will
shortly launch the Sentinel-1 two-satellite high resolution SAR
constellation which will give almost daily coverage of floods at
European latitudes. The first satellite of the pair was launched in
April 2014, and the second is scheduled to follow in 2016. The sys-
tem will allow processed multi-look geo-registered SAR images to
be available to the user only an hour or so after download to the
ground station. In addition, ESA have developed the Fully Automat-
ed Acqua Processing Service (FAAPS) to process SAR images in near
real-time to create geo-registered rural flood extent maps and
deliver them to the user via the Internet. It should therefore be
possible in the near future to use the techniques developed here
to help to provide flood forecasts in near real-time.

Overall, further possible improvements notwithstanding, the
study indicates that a properly constructed stand-alone EO-based
flood forecast is accurate enough for operational applications even
for floods developed within relatively complex river networks.
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