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Abstract

Signaling via NF-kB in neurons depends on complex formation with interactors such as dynein/dynactin motor complex and
can be triggered by synaptic activation. However, so far a detailed interaction map for the neuronal NF-kB is missing. In this
study we used mass spectrometry to identify novel interactors of NF-kB p65 within the brain. Hsc70 was identified as a
novel neuronal interactor of NF-kB p65. In HEK293 cells, a direct physical interaction was shown by co-immunoprecipitation
and verified via in situ proximity ligation in healthy rat neurons. Pharmacological blockade of Hsc70 by deoxyspergualin
(DSG) strongly decreased nuclear translocation of NF-kB p65 and transcriptional activity shown by reporter gene assays in
neurons after stimulation with glutamate. In addition, knock down of Hsc70 via siRNA significantly reduced neuronal NF-kB
activity. Taken together these data provide evidence for Hsc70 as a novel neuronal interactor of NF-kB p65.
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Introduction

The inducible transcription factor NF-kB is composed of

dimeric DNA-binding subunits including p50, p52, c-Rel, RelB,

and p65 (RelA). The most abundant NF-kB-heterodimer detected

within the central nervous system (CNS) consists of p65 and p50

[1–3]. In its inactive form, NF-kB is kept in the cytoplasm by

inhibitory IkB-proteins.

Within the CNS several crucial functions of NF-kB have been

characterized in detail, such as the participation in neuroprotec-

tion, learning and memory formation [3–9]. NF-kB can be

activated by a wide range of neuronal signals like neurotrophic

factors, neurotransmitters or membrane depolarization [6].

We and others described that active NF-kB associates with

microtubules via entry into the dynein/dynactin motor protein

complex during its retrograde transport [10–12]. Moreover, in

peripheral neurons NF-kB can translocate from activated synapse

to the nucleus by associating with wild type Huntington protein,

but not with mutant protein via association with importin a2 [13].

Importantly, the interaction of nuclear translocation signal with

importin-a is essential for synapse-to-nucleus transport of NF-kB

p65 [11] suggesting a huge regulatory impact of such direct

interactions on the resulting signaling and transcriptional regula-

tion.

Heat shock proteins (HSPs) were initially described as a large

family of proteins mediating the cellular response to environmental

stress such as elevated temperature, heavy metals or anoxia.

However, they play also an important role in cell differentiation,

proliferation and are implicated in tumor cell invasion. Within the

CNS, HSPs have tremendous impact not only on protein folding

but also on processes such as synaptic transmission, stress response,

protein kinase-mediated signaling as well as cell death (reviewed in

[14]). Interestingly, the Heat Shock Cognate 70 (Hsc70), the

constitutively expressed form of HSP70, is localized specifically in

synapses [15,16] suggesting its involvement in synaptic signal

transduction.

In this study we identified Hsc70 as a novel interaction partner

of NF-kB using immunoprecipitation with subsequent mass

spectrometry. In summary, we demonstrate that Hsc70 interacts

directly with NF-kB-p65 in living hippocampal neurons and has a

major impact on nuclear translocation and regulation of

transcriptional activity via NF-kB in neuronal cells.

Materials and Methods

Ethics Statement
Prior to tissue isolation, mice were kept under specific pathogen

free conditions as defined by the Federation European Laboratory

Animal Science Association (FELASA) in the central animal

facility of Bielefeld University. This study was carried out in strict

accordance with the regulations of the governmental animal and

care use committee, LANUV of the state North Rhine-
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Westphalia, (Düsseldorf, Germany). All animal tissue isolation

procedures were approved by the Ethical Committee LANUV of

the state North Rhine-Westphalia (Düsseldorf, Germany). All

efforts were made to minimize suffering and animal number.

Culture of Cell Lines
The adherent growing cell line HEK293FT was cultivated in

DMEM (PAA, Colbe, Germany) supplemented with 200 mg/mL

G418 (Sigma-Aldrich, Taufkirchen, Germany) in order to

maintain the plasmid pCMVSPORT6TAg.neo. The medium

was changed at least every three days. If confluent, the cells were

split at a ratio of 1:10 up to 1:20.

Astrocyte Cultures
Rat or mouse astrocytes were prepared from the cortex of

postnatal day 1 (P1) Wistar rats or BL6 mice, after treatment with

16Trypsin/EDTA (PAA). The astrocytes were washed with pre-

warmed DMEM (37uC, PAA) and transferred to DMEM

containing 2 mM L-glutamine, 100 U/ml penicillin and strepto-

mycin and 10% fetal bovine serum (FCS, PAA). Cells were further

cultured in a humidified incubator at 5% CO2. 1 day before

hippocampi preparation the astrocytes were treated with 10 mg/

ml mitomycin (Sigma-Aldrich) for 1.5 h. Directly before prepara-

tion of the hippocampi the astrocytes were transferred to pre-

warmed Neurobasal medium (Invitrogen, Karlsruhe, Germany)

supplemented with B27 supplement (Invitrogen), 2 mM L-

glutamine (PAA), 100 U/ml penicillin (PAA) and 100 U/ml

streptomycin (PAA).

Hippocampal Neuron Cultures
Primary cultures of rat/mouse hippocampal neurons were

prepared from the hippocampi of E18–E19 Wistar rat/BL6 mice

embryos, after treatment with 16Trypsin/ETDA (15 min, 37uC;

(0.05%/0.002% in PBS) PAA). The hippocampi were then washed

with pre-warmed DMEM (37uC) containing 10% FCS, to stop

trypsin activity and transferred to pre-warmed DMEM supple-

mented with 2 mM L-glutamine, 100 U/ml penicillin, 100 U/ml

streptomycin and 10% FCS. Cells were triturated with a fire-

polished Pasteur pipette in this solution and afterwards plated on

poly-D-Lysine (Sigma-Aldrich) coated coverslips at a density of

50000 cells/18 mm coverslip. The cultures were maintained in a

humidified incubator at 5% CO2 for 60 min to allow the cells to

adhere. After 1 h the neurons growing on coverslips were placed

on top of mitomycine-treated astrocyte cultures and further

cultivated at 37uC and 5% CO2.

Anesthesia of Neuronal Activity for Baseline of Nuclear
NF-kB

24 h prior to the experimental procedure, hippocampal neuron

cultures were treated with 40 mM CNQX (Sigma-Aldrich),

100 mM APV (Sigma-Aldrich) and 10 mM nimodipine (Sigma-

Aldrich) to establish a stable and low baseline of nuclear NF-kB.

Pharmalogical Blockade of Hsc70
For pharmacological blockade of Hsc70 38 mg/ml deoxysper-

gualin ((DSG); Sigma-Aldrich)) was applied 60 min prior to the

stimulation as previously described [17].

Immunocytochemistry
Neurons were fixed using 4% paraformaldehyde (PFA) for 1 h

at 4uC and permeabilized with 0.1% Triton X-100 in 16PBS for

30 min at room temperature, followed by blocking using

appropriate normal serum (5%, Jackson Immuno Research

Laboratories). The primary antibodies [mouse monoclonal anti-

a-tubulin (1:100, Sigma-Aldrich), mouse anti- NF-kB p65 (1:100,

Santa Cruz Biotechnology Inc., Santa Cruz, California, USA)]

were incubated for 1 h followed by labeling with secondary

detection antibodies and counterstaining for nuclei using SYTOX

green (1:10000, Invitrogen, Karlsruhe, Germany). Images were

collected using an Inverted Confocal Laser Scanning Microscope

(LSM 510, Carl Zeiss) and analyzed with the ZEN2008 software

(Carl Zeiss).

In situ Proximity Ligation Assay
For in situ PLA, the Duolink II kit (Olink bioscience, Uppsala,

Sweden) was used. Neurons were fixed using 4% PFA for 1 h at

4uC and treated with 16PBS containing 0.1% Triton X-100.

Blocking was performed using Duolink blocking solution in a pre-

heated humidity chamber for 30 min at 37uC. Thereafter, the

primary antibodies [mouse anti-HSC70 (1:100, Biotrend, Co-

logne, Germany), rabbit anti-a-tubulin, mouse anti-b-III-tubulin

(1:100, Sigma-Aldrich), rabbit anti-NF-kB p65 (1:100, Santa

Cruz), mouse anti-NF-kB p50 (1:50, Santa Cruz), rabbit anti-

Nestin (1:100, Sigma-Aldrich), mouse anti-Reelin (1:100, Milli-

pore, Schwalbach/Ts., Germany)] were immediately applied and

incubated for 1 h at RT followed by incubation with the PLA-

probes (1:5, 2 h, RT)). Thereafter, cells were incubated with

ligation solution (15 min at 37uC) followed by the amplification-

polymerase solution (90 minutes at 37uC). Images were collected

using Zeiss Axio Observer D1 (Carl Zeiss, Jena, Germany) and

analyzed by using the AxioVision software (Zeiss). Quantification

of PLA-signals (number of spots/cellular compartment) was

performed using ImageJ-software (NIH).

Immunoprecipitation for Mass Spectrometry
For immunoprecipitation 20 mg of brain extract in a volume of

1–2 ml were used. The protein complexes were cross-linked by

addition of dithiobissuccinimidylpropionate (DSP) resulting in a

final concentration of 0.5 mg/ml following by incubation on ice

for 30 min. The cross-linking was stopped by addition of 25 mM

Tris buffer (pH 8.0). The cross-linked protein was mixed with

50 ml protein G sepharose 4B fast flow (Sigma-Aldrich) and 30 mg

of the anti p65/RelA antibody (sc-8008, Santa Cruz) or the isotype

control (mouse monoclonal IgG1, MOPC 21, Sigma-Aldrich). The

immunoprecipitates were slowly agitated for 2 h at 4uC. After

immunoprecipitate-formation the samples were washed 3 times.

During each washing step the samples were centrifuged for 1 min

at 3000 g, the supernatants were discarded and 1 ml lysis buffer

were added. After the last washing step the IPs were centrifuged

and the pellet resolved in 30 ml 16SDS sample buffer by heating

at 60uC for 5 min. The supernatant was used for SDS gel

electrophoresis and subsequent mass spectrometry analysis.

Mass Spectrometry
Porcine brain extracts were immunoprecipitated with anti NF-

kB p65 AB on protein G with isotype control. The IP were

separated in a 1D SDS gel. Each lane (p65 precipitate and control)

were cut into 36 slices and prepared for MS by tryptic digestion.

All 36 slices were analyzed by MS (MALDI-TOF, Ultraflex

extreme, Bruker, Bremen, Germany). Seven samples in the range

of 95 to 60 and 27 to 24 kDa were additionally analyzed by LC-

ESI-MS/MS (Thermo Scientific). The mass spectrometry peptide

data were compared to the human protein data base from Uniprot

using Mascot. Only proteins with a score .80 were regarded, if

those proteins were absent in the corresponding isotype control.

Hsc70 Interacts with p65 in Neurons
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Immunoprecipitation (IP) for Western Blotting
HEK293FT cells were transfected with the expression con-

structs pcDNA3.1(+)c-myc-HSC70, pcDNA3.1(+)c-myc-

HSC70mut, pEF-FLAGpGKpuro p65WT or pCMV c-myc-Ike
using Lipofectamine2000TM (Invitrogen) according to the manu-

facturers recommendation. For co-transfections equimolar ratios

of the constructs were used. The cells were harvested 36 h after

transfection and resuspended in 1 ml of lysis buffer (50 mM

HEPES, 150 mM NaCl, 1% NP-40 (v/v), pH 7.5) supplemented

with protease inhibitors (1 mM PMSF; 10 mg/ml leupetine,

10 mg/ml aprotinine, 1 mg/ml pepstatine and 10 mM NaF).

Debris was separated by centrifugation for 10 min at 14000 g at

4uC. For IP 30 ml 50% protein A sepharose beads were washed

once with 1 ml PBS. The beads, 900 ml supernatant and 1.0 mg/

ml of rabbit anti-c-Myc antibody (Sigma-Aldrich) were incubated

spinning head over tail for 2 h at 4uC or 37uC. If indicated 3.3 mg

axon enriched porcine brain extract and 0.5 mg/ml DSP for

crosslinking were added. The remaining cross-linker was

quenched by addition of TrisHCl (pH8.0) to a final concentration

of 25 mM and incubation for 15 minutes at 4uC. The beads were

centrifuged at 12000 g for 1 min and washed with 1 ml lysis buffer

containing 50 mM Tris instead of HEPES. After five washing

steps with this lysis buffer and one with PBS the beads were eluted

with 90 ml 16SDS-sample buffer and subsequently loaded on

SDS-Page for western blotting. The western blotting was

performed using the following antibodies: rabbit polyclonal anti-

Flag 1:4000 (Sigma-Aldrich), rabbit polyclonal anti c-Myc 1:2000

(Sigma-Aldrich) and goat anti-rabbit IgG H+L HRP 1:4000

(Jackson Immuno Research Laboratories, Suffolk, UK).

Tissue Extraction
Porcine brain tissue was sheared in an equivalent amount of

lysis buffer in a blender on lowest level. One fraction of the hashed

brain was used for extract directly; the other one was filtrated by a

sieve, which enriches the more robust axon/myelin containing

white tissue in the filter cake. The filter cake and the unseparated

brain matter were separately mixed with the two fold amount of

lysis buffer (50 mM HEPES, 15 mM NaCl, 1% NP-40 (v/v),

pH 7.5, 1 mM PMSF). Afterwards both, whole brain and the filter

cake were sheared by Ultra-Turrax T25 (Janke & Kunkel IKA

Labortechnik, Staufen, Germany). After incubation (30 min on

ice), the suspensions were cleared by centrifugation steps at

15000 g for 20 min and subsequently at 40000 g for 30 min. The

protein solutions were directly used for IP.

Determination of the Impact of Hsc70 on Nuclear
Translocation of p65 and NF-kB Activity in HEK293 Cells

HEK293FT cells were co-transfected either with a combination

of p65 FPred, mock vector and Hsc70-GFP expression constructs

or with p65 FPred, mock and GFP using Lipofectamine. In

additional approaches, cells were co-transfected with p65 FPred,

IkB and Hsc70 GFP or p65 FP red, IkB and GFP. All approach

were cultivated for 36 h, fixed and counter-stained with DRAQ5

(nuclei). The nucleus and the whole cell body were defined as

regions of interest and their mean fluorescence was detected using

confocal microscopy (Zeiss LSM) with subsequent image analysis

in ImageJ software.

Gene Silencing
The Ambion Silencer siRNA Construction Kit (Ambion,

Austin, USA) was used to produce siRNAs against mouse

Hsc70. The target sequences for Hsc70 knock down were

identified, followed by Blast searches to ensure that the sequences

did not contain significant homology to any other known genes.

The following sequences were used for the knock down of Hsc70:

TCAGGTGTATGAAGGTGAA, GCAACCCTATCAT-

TACCAA, ACAACCGAATGGTCAATCATT and GCACAG-

GAAAGGAGAACAA.

Cultured mouse astrocytes were transfected with 1 mg of the

constructs cloned into pSilencer expression vector (Ambion) using

Nucleofector II - device and Cell line-Nucleofection-Kit (Lonza,

Verviers, Belgium) according to manufacturer’s protocol. After

48 h the cells were lysed and processed for western blot analysis

using anti-Hsc70 antibody, whereas GAPDH served as loading

control. Densitometric quantification (ratio Hsc70/GAPDH) was

performed using ImageJ software. The construct inducing the

strongest knock-down in astrocytes was used for the transfection of

hippocampal neurons (GCAACCCTATCATTACCAA). Freshly

isolated neurons were transfected with 1 mg of the construct using

Nucleofector II. Anti-GFP siRNA served as control. After 48 h,

transfected neurons were stimulated with glutamate as described

above and processed for the experiments.

Results

Hsc70 is a Novel Interaction Partner of NF-kB
In this study, we analyzed potential novel interactors of NF-kB

complexes acquired by co-precipitation with the NF-kB subunit

p65 from neuronal extracts by a mass spectrometric analysis.

As a source for neuronal NF-kB interactors we used porcine

brains yielding high amounts of protein. MALDI-MS and LC-

ESI-MS/MS revealed an interaction of p65 with compounds of

the endocytosis network: clathrin and dynamin-1, microtubule

subunits or associated proteins like beta 5-tubulin, tubulin alpha 6,

beta actin, dihydropyrimidinase-related protein 2, neurofilament

and light polypeptide (NEFL) and heat shock proteins HSP90

alpha class A and B (data not shown). Moreover, using MS we

detected for the first time potential interaction of p65 with the

protein chaperone heat shock cognate 70 kDa (Hsc70) alias

HSPA8 (figure 1A). Since a high expression level of Hsc70 instead

of HSP70 seems to be a hallmark of the nervous system [18], we

hypothesized that Hsc70 may represent a novel neuronal

interaction partner of NF-kB. The interaction of p65 and Hsc70

was further investigated by co-immunoprecipitation using anti-

myc antibody and western blotting of flag-tagged proteins derived

from lysates of HEK293 overexpressing p65-flag and Hsc70-myc

or IkBe-myc as positive control (Figure 1B). A clear interaction

band (WB: aFlag) was detected for Hsc70 and the positive control

IkBe, whereas no band was observed in negative controls.

Neuronal Proteins Influence the Interaction with NF-kB
p65 and Hsc70

To address the question whether the presence of neuronal

proteins influences the interaction discovered here, HEK293 cells

were transiently co-transfected with flag-tagged p65 and myc-

tagged Hsc70. After 36 h cells were harvested, lysed and processed

for immunoprecipitation (IP). IP was performed using anti-myc-

antibody in presence of cross-linker (DSP) and/or brain lysates. A

clear interaction band for Hsc70-myc and p65-flag (WB: aFlag)

was detected in presence of cross-linker (Fig. 1C). Moreover, brain

lysates further increased the Hsc70-p65 interaction band (WB:

aFlag) In contrast, without cross-linker or brain lysate no band was

detectable (Fig. 1C).

Hsc70 Interacts with p65 in Neurons
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The Interaction of Hsc70 with NF-kB p65 is Lost after
Mutation within the ATPase Domain of Hsc70 (F68 = .C)

Due to the known function of Hsc70 in the nervous system

acting as a clathrin uncoating ATPase during the anterograde

axonal transport [19] we analyzed the potential impact of a

mutation (F68 = .C) within the ATPase domain of Hsc70 on the

interaction with p65. We created an Hsc70 mutant with a mutated

ATPase domain (see scheme in Fig. 2A) to assess the ability of this

mutant to interact with NF-kB p65. IP (amyc-antibody) and a

subsequent western blot developed with anti-Flag antibody using

p65-flag and myc-tagged Hsc70 Phe68mut revealed no interaction

band (Fig. 2A, WB: aFlag. Compare with the wild-type in Fig. 1B).

The Interaction of Hsc70 and NF-kB p65 is Modulated by
ATP and Depends on Temperature

Since Hsc70 dissociates clathrin coats from vesicles in an ATP-

dependent manner [19], the potential influence of different ATP

concentrations on the interaction was investigated. In parallel, the

Figure 1. Hsc70 is a novel neuronal interaction partner of NF-kB. A. Porcine brain extracts were immunoprecipitated with anti NF-kB p65
antibody or isotype control on protein G sepharose in presence of cross-linker. The IP were separated in a 1D SDS gel. Each lane (p65 precipitate and
control) were cut into 36 slices and prepared for MS by trypsin digestion. All 36 slices were analyzed by MS. Seven samples in range of 95 to 60 and 27
to 24 kDa were additionally analyzed by LC-ESI-MS/MS. The hits identified by MS included the heat shock cognate Hsc70 as a potential interaction
partner of NF-kB p65. B. HEK293 co-transfected with p65-flag and Hsc70-myc or IkBe-myc were lysed followed by co-immunoprecipitation in
presence of cross-linker using amyc (IP) antibody with subsequent WB analysis. A clear interaction band (WB: aFlag) was detectable if myc-tagged
IkBe and flag-tagged NF-kB p65 were co-transfected. Similarly, co-transfection of p65-flag and Hsc70-myc resulted in a clear interaction band (WB:
aFlag), whereas no band was observed in negative controls (no p65-flag, or no IkBe-myc or Hsc70-myc). Lysates were used as input control. C.
Neuronal proteins influence the interaction of NF-kB p65 with Hsc70. IP (amyc) was performed in presence of cross-linker (DSP) and/or brain lysates
with subsequent analysis by western blot. Interaction bands (WB: aFlag) were detectable in cross-linked samples for myc-tagged IkBe and flag tagged
NF-kB p65 as well as for Hsc70-myc and NF-kB p65-flag. Combination of cross-linker and brain lysates resulted in stronger interaction band (WB:
aFlag) for Hsc70-myc and NF-kB p65-flag. Without cross-linker no interaction bands was detectable.
doi:10.1371/journal.pone.0065280.g001

Hsc70 Interacts with p65 in Neurons
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influence of temperature on the interaction was determined (see

Fig. 2B). Here, an interaction between p65-flag and Hsc70-myc

was detected in all cross-linked samples. Moreover, samples

without cross-linker showed weak interaction bands in presence of

10 mM as well as 100 mM ATP. If the IP was performed at 37uC,

an interaction band was detected in absence of cross-linker.

p65 Interacts with Hsc70 in Cultured Hippocampal
Neurons

To find out if there is a direct interaction between the Hsc70

and p65 in hippocampal neurons we used the in situ Proximity

Ligation Assay (PLA) (for principle see Figure 3A). In situ PLA is a

simple technique for detection of direct protein-protein interac-

tions using two primary antibodies, each directed against one of

the targets of interest [20].

As a positive control we applied in situ PLA for visualization of

the interaction between the NF-kB subunits p50 and p65 within

the nuclei (Fig. 3B, ROI 2), cell bodies and neurites (Fig 3B, ROI

1) of hippocampal neurons. Similarly, the use of p65 and the

Hsc70 as PLA-probes resulted in clear interaction signals with

similar subcellular distribution (see Fig 3 ROIs and quantification).

The largest fractions of interaction signals for p50/p65 as well as

for Hsc70/p65 were observed within neurites and nuclei of

hippocampal neurons. In negative controls without primary

antibodies as well as in combinations of p65 antibody and

unrelated control antibodies no signal was detected (data not

shown).

Hsc70 Inhibition Reduces the Nuclear Translocation of
NF-kB in Hippocampal Neurons

To assess whether the interaction of p65 and Hsc70 is required

for the nuclear translocation of NF-kB in neuronal cells,

hippocampal neurons were treated with the Hsc70 inhibitor

DSG followed by stimulation with glutamate. Immunohistochem-

ical analysis after treatment with DSG resulted in significantly

reduced nuclear p65 after glutamate stimulation (,53%) com-

pared to DSG-untreated, glutamate-stimulated controls (Fig. 4a).

Overexpression of Hsc70 Results in Increased Nuclear
p65 and NF-kB Activity

Recently, it has been demonstrated, that up-regulation of the

non-constitutive HSP70 results in increased nuclear translocation

of p65 [21]. Therefore, we hypothesized that Hsc70 may affect the

nuclear import and the subsequent transcriptional activity of NF-

kB in a similar manner. Here, HEK293FT cells were transfected

with an FPred-p65 expression construct and in part with an

Hsc70-GFP or a GFP expression vector, fixed and counter-stained

with DRAQ5 to visualize the nuclei. An inactive state of NF-kB

(baseline) was achieved by co-transfection of the IkB. The nuclei

and the whole cell body were defined as regions and their mean

fluorescence was measured using ImageJ-software. We were able

to show that co-expression of IkB significantly reduces nuclear

Hsc70-GFP, whereas no effect on the nuclear localization of GFP

was observed (figure 5). Furthermore, co-expression with Hsc70-

GFP significantly increased nuclear FPred-p65 compared to co-

expression with GFP. In addition, luciferase reporter assay

revealed a significant increase of NF-kB activity in cells co-

transfected with Hsc70 and p65 (+32%), compared to cells over-

expressing p65 alone (figure 5C).
Pharmacological blockade of Hsc70 leads to decreased

nuclear interaction with p65. Using in situ PLA, we investi-

gated the influence of Hsc70 enzymatic activity on its ability to

interact with p65 in hippocampal neurons. Treatment with DSG

reduced the degree of interaction as demonstrated by PLA

(Figure 6A). Quantification of nuclear interaction signals visualized

using in situ PLA revealed significantly decreased nuclear

interaction in DSG-treated hippocampal neurons compared to

controls (Figure 6B).

siRNA Mediated Knock-down of Hsc70 Results in
Significantly Reduced NF-kB Activity

To further assess the influence of the interaction on NF-kB-

activity, we designed siRNA-constructs to induce a knock-down of

Hsc70. After screening for functional- and non-functional

constructs in glial cells (see Figure 7A), hippocampal neurons

were co-transfected with NF-kB luciferase reporter plasmid and

the most effective anti Hsc70 siRNA (siRNA construct 2, 66% of

Figure 2. Interaction with NF-kB p65 is modulated by ATP and is lost after mutation of the ATPase domain of Hsc70. A. Hsc70
Phe68mut is not able to interact with NF-kB p65. Scheme: domain structure of the Hsc70-construct used for the experiments. The random mutant
harbors a point mutation within the ATPase domain of Hsc70 at the position 68 (F = .C). If myc-tagged Hsc70 Phe68mut was used in the IP (amyc)
no interaction band was detected for FLAG-tagged p65. Lysates were used as input control. B. In absence of cross-linker and ATP, Hsc70 shows no
interaction with NF-kB p65 at 4uC. This interaction is moderately increased in presence of 10 mM and 100 mM ATP even without cross-linking. If the IP
is performed at 37uC, the cross-link is dispensable even without ATP. Lysates were used as input control.
doi:10.1371/journal.pone.0065280.g002

Hsc70 Interacts with p65 in Neurons
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the control siRNA level) or control siRNA followed by detection of

NF-kB-dependent luciferase activity. Here, we demonstrated that

knock-down of Hsc70 resulted in significantly reduced NF-kB

activity compared to neurons transfected with control siRNA

(Figure 7B). Remarkably, knock-down of Hsc70 resulted in

reduced NF-kB activity even after glutamate stimulation.

Discussion

In this study, we demonstrate for the first time that the protein

chaperone Hsc70 directly interacts with NF-kB in living hippo-

campal neurons and has a major impact on the transcriptional

activity of NF-kB.

We and others showed that NF-kB is transported from the

synapse back to the nucleus via the minus-end motor protein

dynein along the microtubuli [3,10] [11,12]. Mikenberg et al.

suggested that the nuclear translocation signal interacting with

importin-a is essential for synapse-to-nucleus transport of NF-kB

p65 [11].

Using immunoprecipitation with subsequent analysis via mass

spectrometry we identified Hsc70 as a neuronal interaction

partner of NF-kB p65. Remarkably, the inducible Hsc70-

Figure 3. in situ Proximity Ligation Assay (PLA) reveals direct interaction of Hsc70 with NF-kB p65. A. Principle of PLA. (1) Incubation
with primary antibodies against the two epitopes of interest. (2) Incubation with PLA probe MINUS and PLA probe PLUS (secondary antibodies
conjugated with oligonucleotides). (3) Hybridization of the oligonucleotides with the PLA probes. (4) Ligation. (5) Rolling-circle amplification. (6)
Detection. B. in situ PLA performed using p65 and p50 probes revealed the majority of interaction signals within the neurites (ROI 1) and nuclei (ROI
2) instead of cell bodies in hippocampal neurons (see also quantification on the right-hand side). C. For p65 and Hsc70, interaction signals were
detected in neurites (ROI 1) and nuclei (ROI 2) with subcellular distribution similar to p65/p50 PLA-probes.
doi:10.1371/journal.pone.0065280.g003

Figure 4. Hsc70-inhibition decreases the nuclear translocation of NF-kB in neurons. A. Hippocampal neurons were treated with
deoxyspergualin (DSG) followed by immunocytochemical staining for NF-kB p65. The treatment with DSG resulted in reduced nuclear p65. Scale bar
represents 10 mm. B. Quantification of nuclear p65 after treatment with DSG. In neurons treated with DSG and glutamate, the nuclear NF-kB p65
significantly decreased to 53% compared to glutamate-stimulated controls. p value ,0.0001.
doi:10.1371/journal.pone.0065280.g004
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homologue HSP70 is expressed only at low levels in the CNS,

whereas Hsc70 seems to be expressed at high levels in mature

neurons and the developing brain [18]. In neuronal cells, Hsc70 is

localized predominantly within synapses suggesting that Hsc70

might participate in synaptic transmission [15,16].

In this study, the over-expression of Hsc70 led to increased

nuclear p65, whereas the inhibition of p65 by over-expression of

Figure 5. Overexpression of Hsc70 increases nuclear p65 and elevates the activity of NF-kB. A. HEK293FT cells were transfected with
expression vectors as indicated. An inactive state of NF-kB (baseline) was achieved by co-transfection of IkB expression vector. The nuclei and the
whole cell body were defined as regions and their mean fluorescence was measured using ImageJ-software. Co-expression of IkB significantly
reduces nuclear Hsc70 GFP, whereas no effect on the nuclear localization of GFP was observed. B. HEK293FT cells were transfected as indicated in A.
Co-expression with Hsc70 GFP significantly increased nuclear p65-FPred compared to co-expression with GFP. No increase of nuclear FPred p65 was
observed if additional IkB was expressed (data not shown). C. Luciferase reporter assay revealed a significant increase of NF-kB activity in HEK293
cells co-transfected with Hsc70 and p65 (+32%), compared to cells over-expressing p65 alone.
doi:10.1371/journal.pone.0065280.g005

Figure 6. The blockade of Hsc70 reduces the level of interaction with p65. A. Using in situ PLA, we investigated the influence of the Hsc70
inhibiting drug DSG on the interaction with p65. Treatment of hippocampal neurons with DSG resulted in reduced nuclear interaction signals
compared to controls. Scale bar represents 20 mm. B. Quantification of interaction between Hsc70/p65 after pharmacological treatment. The
treatment of hippocampal neurons with DSG resulted in markedly reduced amount of nuclear interaction signals compared to controls stimulated
with glutamate only.
doi:10.1371/journal.pone.0065280.g006
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IkB resulted in decreased nuclear Hsc70 (figure 5). Consequently,

the nuclear translocation Hsc70 and p65 might occur as a protein/

protein complex. This is in general accordance with findings

described for the inducible form HSP70, whose up-regulation was

reported to induce nuclear translocation of p65 in rat liver cells

[21].

It has been suggested that during the anterograde axonal

transport Hsc70 may act as a clathrin uncoating ATPase

participating in the kinesin mediated plus-end transport [19]. In

our study, we created an Hsc70 mutant carrying a point mutation

in the ATPase domain (position 68 (F = .C)) resulting in a loss of

interaction with NF-kB p65. Moreover, we show that this

interaction is moderately increased in presence of 10 mM and

100 mM ATP. This finding correlates with findings on the GR

transport complex, in which the inducible Hsc70-homologue

HSP70 binds the cargo independent from the type of nucleotide

bound (ADP or ATP). The further assembly of the complex, which

grants stable interaction, needs HSP70s ATPase activity [22].

Demonstrably, the inhibitor of Hsc70 DSG does not compete for

peptide binding, but blocks a c-terminal regulatory motif which

appears to regulate the ATPase activity and thus the ability to

interact with protein substrates [23]. However, since we tested the

impact of the mutation within the ATPase domain of Hsc70 in the

context of interaction with NF-kB p65, the exact role of Hsc70

ATPase activity in translocation and transcriptional activity of NF-

kB is clear and should be investigated in future studies.

Here, the pharmacological blockade of Hsp70 via DSG resulted

in diminished nuclear translocation (Figure 4) and reduced

interaction of Hsc70 with p65 in the nuclei of hippocampal

neurons (Figure 6). In addition to the pharmacological approach,

siRNA-mediated knock-down of Hsc70 is sufficient for strongly

reduced NF-kB activity, as demonstrated by a reporter gene assay

(Figure 7).

This is in general accordance with the study by Tepper et al.,

which showed that DSG, a clinically used potent immunosup-

pressive agent (Gusperismus, Bristol-Myers Squibb or Spanidin,

Nordic Pharma Group), can suppress NF-kB activity in pre-B-cells

[24].

Although one of the best characterized functions of heat shock

proteins is the protein folding and mediation of degradation of

misfolded proteins, the predominant localization of Hsc70-p65-

complexes in neurites and nuclei suggests further regulatory role of

Hsc70 in neurons. This and the synaptic localization of both - p65

and Hsc70, suggest an additional regulatory function which may

be achieved via participation in synapse-to-nucleus transport

similar to mechanism described for the retrograde transport of GR

in neurons [25].

This finding might hint to potential neurological side-effects of

Gusperimus (Spanidin) in patients, which might be explained by

inhibiting the neuroprotective NF-kB signaling.
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