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a b s t r a c t

Cortical motor simulation supports the understanding of others' actions and intentions. This mechanism
is thought to rely on the mirror neuron system (MNS), a brain network that is active both during action
execution and observation. Indirect evidence suggests that (alpha/beta) mu suppression, an electro-
encephalographic (EEG) index of MNS activity, is modulated by reward. In this study we aimed to test the
plasticity of the MNS by directly investigating the link between (alpha/beta) mu suppression and reward.
40 individuals from a general population sample took part in an evaluative conditioning experiment,
where different neutral faces were associated with high or low reward values. In the test phase, EEG was
recorded while participants viewed videoclips of happy expressions made by the conditioned faces.
Alpha/beta mu suppression (identified using event-related desynchronisation of specific independent
components) in response to rewarding faces was found to be greater than for non-rewarding faces. This
result provides a mechanistic insight into the plasticity of the MNS and, more generally, into the role of
reward in modulating physiological responses linked to empathy.

& 2015 Published by Elsevier Ltd.
1. Introduction

According to simulation theories, cortical motor simulation is
fundamental to interpret the actions and intentions of others
(Gallese and Goldman, 1998). The mirror neuron system (MNS),
which maps the correspondence between the perceived and exe-
cuted actions, has been proposed as the neural substrate of cortical
motor simulation (Rizzolatti and Sinigaglia, 2010). Alpha-mu (8–
12 Hz) and beta-mu (12–25 Hz) rhythms generated over the sen-
sorimotor cortex desynchronize (are suppressed) both during ex-
ecution and observation of actions, and therefore have been pro-
posed as an electroencephalographic (EEG) index of mirror-like
activity (Arnstein et al., 2011; Braadbaart et al., 2013; Pineda,
2005). Importantly, mu suppression has been shown to occur
during observation of facial gestures in infant monkeys (Ferrari
et al., 2012), and when viewing emotional faces in humans (Moore
et al., 2012). This neural mirroring of emotions has been hy-
pothesized to facilitate the understanding of emotions experi-
enced by others, which in turn might support the ability to
33
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empathize (Iacoboni, 2009; Niedenthal, 2007; Pfeifer et al., 2008).
Consistent with this speculation, Woodruff et al. (2011) and Hoe-
nen et al. (2013) found an association between mu suppression
and empathic abilities.

An electrophysiological study by Caggiano et al. (2012) re-
ported that the activity recorded from single mirror neurons was
modulated by the reward value ascribed to the observed object on
which the motor act was performed. This result was the first direct
evidence for the role of reward in determining the plasticity of the
mirror neuron response. There is substantial indirect evidence for
the plasticity of the MNS response in humans using different task
manipulations (e.g., group membership (Gutsell and Inzlicht,
2010), familiarity (Liew et al., 2011; Oberman et al., 2008)), which
can be potentially argued to alter the reward value of the stimuli.
E.g., in-group members are considered more rewarding than out-
group members and are associated with greater reward response
(Brewer, 1979; Chen et al., 2014), and greater familiarity is asso-
ciated with greater liking and ‘reward’ (Hansen and Wänke, 2009).
More specifically, MNS activation is enhanced in response to in-
group members and familiar stimuli since these stimuli might be
more rewarding to us than out-group, or unfamiliar stimuli. Based
on these findings, it is reasonable to hypothesize that the extent of
(alpha/beta) mu suppression will be modulated by the reward
value of the observed stimuli.
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A link between empathy-related responses and reward has
previously been demonstrated by Sims et al. (2012), who showed
that spontaneous facial mimicry is modulated by the reward value
associated with the imitated social stimuli. In this study, the re-
ward value of neutral faces was manipulated using an evaluative
conditioning paradigm before emotional facial expressions made
by the same faces were presented to the participants in a passive
viewing task. Participants showed greater spontaneous mimicry
(measured using facial electromyography; EMG) in response to
happy expressions performed by the faces associated with high
reward as compared to those associated with low reward. Further
evidence of the modulatory influence of reward value on mimicry
comes from a recent neuroimaging study (Sims et al., 2014) that
used the same paradigm as Sims et al. (2012). Results showed that
functional connectivity between the ventral striatum, a region
associated with reward processing, and the inferior frontal gyrus, a
region involved in mimicry, was stronger when participants ob-
served happy facial expressions of faces conditioned with high
reward compared to those conditioned with low reward. Since
spontaneous mimicry has been proposed to be a marker of em-
pathy (Dimberg et al., 2011; Sonnby-borgström et al., 2003), this
indicates the existence of a link between the reward and empathy
systems.

The current study aimed at providing direct evidence of the
relationship between motor cortical stimulation and reward by
examining how reward modulates (alpha/beta) mu suppression.
Fig. 1. (a) Top panel: example of the four neutral faces that were associated with diffe
phase. The first face corresponds to the High Reward condition, and the fourth face to t
phase in which the participants had to predict whether the face down card would be of
was displayed. (b) Top panel: examples of the target clips (High Reward and Low Rewa
Bottom panel: example of two trials of the test phase. A fixation cross appeared during
made by the target or oddball faces. Participants had to make a keypress response ever
To this end, the reward value ascribed to neutral faces was ex-
perimentally manipulated using a paradigm similar to Sims et al.
(2012, 2014). In light of previous results, we hypothesized that
(alpha/beta) mu suppression would be more pronounced in re-
sponse to happy expressions displayed by faces conditioned with
high reward compared to those produced by faces conditioned
with low reward.
2. Materials and methods

2.1. Participants

Forty adults (20 females) between 18 and 44 years of age
(M¼24.53; SD¼5.73) were recruited from the University of
Reading campus area. All participants had normal or corrected-to-
normal vision and all but two were right-handed. None of the
participants reported current neurological or psychiatric disorders,
or history of regular drug/substance use. Four participants re-
ported a history of depression and one participant had a history of
eating disorder. From the original sample, 10 participants were
excluded in the analysis due to regular cigarette consumption
(n¼2), low performance in the oddball task (i.e. score lower than
75%, see Section 3; n¼3), and insufficient data after artifact re-
moval (n¼5). Regular smokers were excluded as smoking has
been associated with alterations in reward processing (Martin-
rent reward values (90% win, 60% win, 60% loss, 90% loss) during the conditioning
he Low Reward condition. Bottom panel: example of two trials of the conditioning
lower or higher value than the face up card. Following their key response, feedback
rd conditioned faces) and two of the oddball clips presented during the test phase.
1000 ms before the presentation of the 4000 ms clips of happy facial expressions
y time an oddball clip was presented.
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Sölch et al., 2001; Ohmura et al., 2005). All participants gave
written informed consent and were financially remunerated for
their participation. The study was approved by the School of
Psychology and Clinical Language Sciences Research Ethics Com-
mittee of the University of Reading.

2.2. Stimulus material

Stimuli in the conditioning phase consisted of static images of
four faces (2 male, 2 female) with neutral expressions (Fig. 1).
During the test phase, 4000 ms video clips of the same identities
showing happy dynamic facial expressions were presented. In
addition, 4000 ms clips of 6 different identities displaying happy
expressions were used as oddball stimuli. Dynamic expressions
were preferred over static pictures as they enhance spontaneous
mimicry and are more ecologically valid (Krumhuber et al. 2013;
Sato et al., 2008). All stimuli were selected from the standardized
Mindreading set (Baron-Cohen et al. 2004; available at www.jkp.
com/mindreading). These stimuli show sufficient inter-rater re-
liability and external validity (Golan et al., 2006; Golan and Baron-
Cohen, 2006), and have been used in previous research (Sims et al.,
2014, 2012). Images of French playing cards were used for the card
guessing game in the conditioning phase. Specifically, only cards
with values 2–7 of each of the four suits (spades, hearts, diamonds
and clubs) were included in the paradigm. Cards with values 8,
9 and 10, as well as face cards, were not used in order to increase
the difficulty of the task.

2.3. Procedure

The study protocol was based on Sims et al. (2012). After EEG
electrodes placement, participants were seated in front of a com-
puter screen and introduced to the experimental procedure. Task
instructions were displayed on the screen, and also read aloud by
the experimenter to make sure that participants understood the
procedure. During all experimental phases, participants were in
the room alone to avoid distraction due to experimenter effects.
Participants performed a supervised 8-trials practice session be-
fore beginning an evaluative conditioning task (see following
section), followed by the test phase. The test phase consisted of an
oddball task (see following section) during which emotional ex-
pressions of previously conditioned faces were viewed.

2.3.1. Conditioning phase
An implicit reward conditioning paradigm in the form of a card

guessing game was used to associate faces with high and low re-
ward value (Fig. 1). At the beginning of each trial, participants
were shown two cards, one face up and one face down. The task
was to predict whether the face-down card was of greater or
smaller value than the first card by pressing one of two keys on a
keyboard. Correct predictions won 6 pence, while incorrect pre-
dictions cost 2 pence. No money was won or lost if the cards were
of equal value. After each response, feedback indicating whether
participants had won, lost or drawn the round was displayed for
4000 ms. Participants were told at the beginning of the session
that they would receive the monetary winnings after completion
of the experiment. The total amount of money won was shown
after completion of the card game. In each trial, one of four target
faces was displayed on the right side of the cards. The reward
value associated with each face was manipulated by adjusting the
number of trials in which participants won or lost money in the
presence of this particular face. In the High Reward condition,
participants won 90% of the trials paired with the associated face;
in the Low Reward condition, participants lost 90% of the trials in
which the low rewarding face was presented. Two additional
conditions in which participants won or lost 60% of the trials,
respectively, were used to prevent participants from detecting the
underlying structure of the game. The remaining trials in all con-
ditions were “draw” trials (i.e. the two cards were of the same
value). The card game consisted of 160 trials (40 trials per condi-
tion) and presentation of trials was randomized. The faces in the
four conditions were counterbalanced across participants. To en-
sure that participants paid attention to the faces while playing the
card game, they were told that during the test phase a simple
memory task involving the same faces would be performed.

2.3.2. Test phase
After conditioning, participants were presented with 4000 ms

clips of happy expressions of the same faces previously associated
with high and low reward value. In addition, clips of 6 novel faces
(oddballs) displaying happy expressions were displayed (Fig. 1).
Participants were asked to press a key every time they spotted a
novel face. A total of 72 trials were presented during the test
phase: target clips (High Reward and Low Reward conditions)
were presented 30 times each, and oddball clips appeared twice.
The order of presentation of the target and oddball clips was
pseudorandomized such that the same condition was never pre-
sented more than three times in a row. A fixation cross appeared
for 1000 ms before each clip. The use of an oddball task instead of
passive observation was chosen to ensure that attention was di-
rected to the target facial stimuli. Behavioral performance in the
oddball task was assessed for each participant individually (see
Section 3).

2.4. EEG measurement

Continuous EEG data was recorded using Brain Vision Recorder
1.10 (Brain Products, Munich, Germany) from 26 active AG/AgCL
electrodes (Fp1, Fp2, F1, F2, F3, F4, Fz, FC1, FC2, FC5, FC6, Pz, P3, P4,
P7, P8, CP1, CP2, CP5, CP6, C3, C4, Cz, O1, O2, Oz) embedded in EEG
caps (BrainCaps, Brain Products GmbH, Munich, Germany). Elec-
trode placement was done according to the International 10/20
System (Jasper, 1958) and all electrodes were referenced to an
electrode located at the left earlobe. An additional electrode was
placed at the right earlobe for offline re-referencing to the average
of the right and left earlobe electrodes. Electrooculogram (EOG)
was recorded using two electrodes placed below (vertical EOG)
and on the outer canthi of the left eye (horizontal EOG). High
chloride gel was used to facilitate conductance between the cap
electrodes and the scalp. Impedances were kept below 5 kΩ. EEG
data was amplified with an EEG amplifier (BrainAmp MR plus,
Brain Products GmbH, Munich, Germany) and digitized at a sam-
pling rate of 1000 Hz. High-pass filter was set at 0.01 Hz and low-
pass filter at 100 Hz, with a notch filter of 50 Hz.

2.5. EEG data processing

BrainVision Analyzer 2.0.1 (Brain Products, Munich, Germany)
and EEGLAB v.13 (Delorme and Makeig, 2004) were used for off-
line EEG data preprocessing. EEG data was filtered with a 30 Hz
low-pass filter and a 0.5 Hz high-pass filter, re-referenced to the
average of the right and left earlobes, and down-sampled to
512 Hz. Independent component analysis (ICA) was ran in order to
remove components visually identified as ocular artifacts (Jung
et al., 2000). EEG continuous data was then epoched into 4750 ms
timebins (�750 ms to 4000 ms with reference to the onset of the
clip) for each of the two conditions of interest (High Reward, Low
Reward). Oddball trials were not included in the analysis since
these were included solely to ensure that participants attended to
the stimuli. Trials contaminated with EEG artifacts exceeding
775 mV in any electrode were rejected. A minimum of 80% of the
total number of trials in each condition for each participant was

http://www.jkp.com/mindreading
http://www.jkp.com/mindreading
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required for inclusion in the analyses. In accordance with this
criterion, data from 5 participants were excluded. After exclusion,
the average number of artifact-free trials per participant was 28.82
(SD¼1.44) for the Low Reward condition, and 28.90 (SD¼1.65) for
the High Reward condition. There was no significant difference
between the two conditions in the number of trials included in the
analysis, t(29)¼�0.372, p¼0.712.

2.6. Independent component clustering

Independent component clustering has been proven to be a
successful method to identify mu clusters in previous studies
(Bowers et al., 2013; Moore et al., 2012; Vukovica and Shtyrov,
2014; Zhang et al., 2014). Since the clustering method requires the
same number of independent components (ICs) per each partici-
pant, a second ICA was run on the artifact-clean epoched data.
Brain sources of each of the ICs were localized using the DIPFIT2
toolbox in EEGLAB (Oostenveld and Oostendorp, 2002; available
from sccn.ucsd.edu/eeglab/dipfit.html), which fits an equivalent
current dipole model using a non-linear optimization technique
(Oostendorp and van Oosterom, 1989). Electrode coordinates were
registered to the standard Boundary Element Model (BEM) of the
Montreal Neurological Institute (MNI) average brain. The BEM is a
representative model since it is composed of three 3-D surfaces
(skin, skull, cortex) extracted from the MNI.

In order to maximize the subsequent ICs clustering process,
several measures were computed for each IC. Component power
spectra were calculated by averaging fast Fourier transform spec-
tra from �750 to 4000 ms (window length of 2432 points) using
the spectopo function. Event related potential (ERPs) were calcu-
lated using a �200 ms baseline correction. Finally, time-frequency
decomposition was calculated using a Mortlet wavelet with the
number of cycles linearly rising from a minimum of 3 cycles at
7 Hz to a maximum of �5 cycles at 25 Hz. Power was calculated
for 100 log-spaced frequencies ranging from 7 to 25 Hz and along
200 temporal bins (from �750 ms to 4000 ms). Moment to mo-
ment oscillatory change between baseline and test phase (Event-
related spectral perturbations; ERSPs) was calculated using a
750 ms common baseline (�750 to 0 ms with reference to the
stimulus onset) for each of the two conditions. A decrement in
post-stimulus power corresponds to an event-related desynchro-
nization (ERD; suppression) of the frequency band, while an in-
crement corresponds to an event-related synchronization (ERS).

From the 800 ICs (25 ICs � 32 participants), only those with a
single dipole model within the head volume accounting for 80% or
greater of the variance in the independent component scalp dis-
tribution were included (563 ICs). Each of the IC measures was
reduced by principal component analysis (PCA). Specifically,
power spectrum was reduced to 3 PCs, ERPs to 4 PCs, scalp map
gradient to 5 PCs, and averaged ERSPs to 5 PCs. The equivalent
dipole location measure was up-weighted by a factor of 2 while
other measures were given a weight of 1, and all features were
normalized. Finally, these weighted measures were further com-
pressed by PCA into a single 12-dimensional cluster vector. These
clustering options were taken for previous reports that have uti-
lized a similar approach to individualize right and left mu clusters
(Zhang et al., 2014). ICs were then clustered by the k-means al-
gorithm based on the 12-dimensional measure, resulting in 10
mutually exclusive IC clusters. ICs with a distance larger than 3 SDs
from the mean of any cluster centroid were excluded as outliers.

The resulting 10 clusters were visually inspected for their
physiological profile. Three criteria reported in previous studies
(Delorme and Makeig, 2004; Moore et al., 2012; Vukovica and
Shtyrov, 2014) were used to identify the right and left mu clusters:
a) topographic scalp map characterized by a lateralized left or right
midline focus; b) characteristic mu spectra with peaks around 10
and 20 Hz; c) brain source localized around BA 1–4 and 6.

2.7. Data analysis

Since ERSPs data were not normally distributed, data analyses
were performed using non-parametric random permutation-
based (2000 permutations, chosen according to guidelines sug-
gested by Cohen (2014) and Manly (1997)) statistics on two one-
way ANOVA respectively for the left and right cluster. A correction
for false discovery rate (pFDR) at po0.05 was applied to correct
for multiple comparisons.
3. Results

3.1. Behavioral performance

A performance score in the oddball task (test phase) was cal-
culated for each participant as follows: (# correct responses – #
incorrect responses) / # oddball clips)n100, where correct re-
sponses refers to key presses in response to oddball clips, and
incorrect responses refers to key presses in response to target
clips. Three participants had a score lower than 75% due to in-
correct responses (i.e. key presses when target clips were pre-
sented). Since execution of motor movements could influence the
magnitude of mu suppression (Frenkel-Toledo et al., 2013; Pfurt-
scheller et al., 2000), these participants were excluded from the
analyses. The mean score in the oddball task for the remaining 37
participants was very high (M¼95.72; SD¼6.40), which indicates
that participants were attending to the target stimuli.

3.2. ERSPs

We identified one left- and one right-hemisphere mu clusters
(Fig. 2), which were composed of 76 ICs of 28 participants and 49
ICs of 26 participants, respectively. The average Talairach dipole
locations were [�15, �2, 53] for the left cluster, and [35, �4, 48]
for right cluster. These Talairach coordinates correspond to Brod-
mann area 6 (Lancaster et al., 2000), one of the regions comprising
the MNS.

For the left mu cluster, permutation test revealed no significant
difference across the two ERSPs matrices of the experimental
conditions (200�100, pFDR40.05). Importantly, significant differ-
ences were found in the right mu cluster in the alpha-mu band (7–
12.5 Hz) between �500 and 700 ms, and in the beta-mu band
(12.5–25Hz) between �2000 and 4000 ms (200�100;
pFDRo0.05; Fig. 3).

3.3. Confounders analysis

To control for a possible confound due to inclusion of left-
handed participants, time-frequency analysis was run a second
time with a sample of right-handed participants only (n¼28). All
effects reported above remained unchanged.
4. Discussion

The present study investigated whether reward conditioning
could modulate (alpha/beta) mu suppression, a putative EEG index
of MNS, in response to emotional facial expressions. As predicted,
(alpha/beta) mu suppression was stronger during observation of
happy facial expressions conditioned with high reward than with
low reward. These findings add to previous psychophysiological
and neuroimaging data demonstrating a direct link between re-
ward and mimicry (Sims et al., 2014, 2012). More specifically, these



Fig. 2. Cluster maps for each hemisphere in response to the individual task conditions. (a) Cluster mean topographical scalp maps; (b) cluster mean DIPFIT dipole location
(c) cluster mean spectra (10� log10 (mV2/Hz)) as a function of condition.
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studies showed that spontaneous facial mimicry (measured with
EMG) and functional connectivity between the ventral striatum
(associated with reward processing) and the inferior frontal gyrus
(involved in mimicry) were modulated by reward conditioning,
that is, they were stronger in response to happy faces conditioned
with high reward compared to low reward. Consistent with these
earlier findings, the results of the current study show that reward
conditioning effectively modulates the extent of cortical motor
simulation in response to facial expressions observed in others.
Given that neural mirroring of emotion and spontaneous facial
mimicry have been proposed as indices of empathic abilities
(Dimberg et al., 2011; Sonnby-borgström et al., 2003; Woodruff
et al., 2011), these findings provide convergent validity to the link
between reward and empathy across different methods (i.e. EMG,
fMRI and EEG) and independent samples.

In line with our results, Brown et al. (2013) demonstrated that
observation of motor actions leading to monetary reward pro-
duced stronger mu suppression than observation of punishing or
neutral actions. Moreover, alpha-mu rhythm responses to ob-
servation of hand movements have been shown to vary depending
on the emotional facial expressions of the actors performing the
action (Cooper et al., 2013), presumably by changing the reward
value ascribed to the actor. Indeed, greater mu suppression was
observed in response to happy (vs. angry) expressions, which are
rewarding social stimuli (Niedenthal et al., 2010; O’Doherty et al.,
2003). The current results extent these findings by showing that
reward-related modulation of cortical motor simulation occurs
also when observing emotional facial expressions.

Interestingly, significant reward modulations of (alpha/beta)
mu suppression were found only in the right hemisphere. Even
though bihemispheric attenuation of the alpha-mu rhythm is a
common finding (e.g., Cochin et al., 1999; Muthukumaraswamy
et al., 2004; Pineda and Hecht, 2009; Cooper et al. 2013), recent
data suggests that mu suppression during action-observation
might be stronger in the right hemisphere (Frenkel-Toledo et al.,
2013). Of note, most of the literature examining the spatial domain
of mu suppression is based on observation and execution of limb
movements, which might not be comparable to the mu effects in
response to emotional facial stimuli. Indeed, Moore et al. (2012)
found that differences in mu suppression between angry and
happy faces were stronger in the right hemisphere. Moreover,
neuroimaging studies examining the neural correlates of



Fig. 3. (a) Mean right-hemisphere mu time-frequency ERSPs (event related spectral perturbations; 7–25 Hz power, dB) as a function of condition. Event-related decreases in
spectral power are represented in blue and increases are represented in orange and red. (b) Significant differences between conditions in the alpha-mu (7–12.5 Hz) and beta-
mu (12.5–25 Hz) ranges. Significant values at po0.05 after FDR correction are indicated in dark orange and non-significant values in green. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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spontaneous facial mimicry have indicated a relative right later-
alization of MNS regions during observation of emotional facial
expressions (Lee et al., 2006; Likowski et al., 2012). In view of
these findings, it could be speculated that the observed later-
alization of the effects reported here is related to the right hemi-
sphere dominance repeatedly reported in face and emotion pro-
cessing (Ahern et al., 1991; Borod et al., 1998; Sato et al., 2008).

Importantly, the time-course of the cortical desynchronization
appeared to be different for alpha and beta rhythms. More speci-
fically, the reward effect in alpha-mu suppression occurred within
the first 1000 ms post-stimulus onset, while the beta-mu effect
occurred much later, between 2000 and 4000 ms. Several studies
reported an early desynchronization of alpha-mu around the first
1000–2000 ms, which is believed to reflect an automatic motor
resonance mechanism (Babiloni et al., 2002; Moore et al., 2012;
Orgs et al., 2008; Streltsova et al., 2010). Moreover, Moore et al.
(2012) found an earlier alpha-mu ERD for faces displaying negative
compared to positive emotions. This suggests that early cortical
motor simulation can be highly sensitive to the social significance
of the observed stimuli.

Differently from alpha-mu, beta-mu showed a later reward-
related effect. Alpha and beta ERD have shown to be similarly
modulated in action observation tasks (Meyer et al., 2011; Perry
et al., 2010b; Perry et al., 2010a, but cf. Cochin et al., 1999; Mu-
thukumaraswamy et al., 2004). However, a recent study reported
that beta-mu ERD during action observation showed a peculiar
spatiotemporal pattern that could reflect its role in evaluating the
accuracy of the simulated motor plan (Sebastiani et al., 2014).
Based on this, we speculate that such assessment has to be more
accurate for socially relevant stimuli (i.e. high rewarding faces) and
thus requires a higher beta-mu ERD.

It is worth noting that the latency of reward modulation of
beta-mu ERD overlaps with the latency of facial EMG reported in
Sims et al. (2012), where facial mimicry for high reward faces
peaked after 2000 ms post-stimulus onset. Cortical motor simu-
lation is believed to require an online mechanism of motor in-
hibition, which prevents us from executing the motor plan we are
mirroring (Sommerville and Decety, 2006). In line with this idea, a
recent study has demonstrated a functional dissociation between
alpha and beta rhythms during cortical motor simulation (Brink-
man et al., 2014). Specifically, the authors propose that alpha-mu
oscillations over the sensorimotor cortex are related with the
disengagement of task-irrelevant neural regions, whereas sup-
pression of beta-mu reflects the desinhibition of cortical areas
involved in movement preparation. Given the spontaneous nature
of facial mimicry in response to social stimuli, the reward-related
modulation of beta-mu frequency observed here could also reflect
the switch from an “as-if” motor simulation to a motor facial re-
sponse (Moore et al., 2012).

Finally, mu suppression has been associated with expectancy
and attentional processes (Klimesch, 2012). While differences in
attention were not measured in this study, eye-tracking measures
used in an identical paradigm in an fMRI experiment showed no
differences in gaze duration to rewarding vs. non-rewarding happy
faces (Sims et al., 2014). Moreover, the (alpha/beta) mu compo-
nents identified here were originated in more anterior regions as
shown by both the topographical scalp maps and dipole locations,
making it unlikely that the observed reward-related effects were
driven by attention-based occipital alpha. Nonetheless, future ex-
periments should involve a simultaneous measure of eye-tracking
in this paradigm to rule out this potential confound. A second
aspect to improve on in future studies would be to have higher
spatial accuracy by using structural MRI images for the dipole
fitting procedure, and by recording from a larger number of elec-
trodes. It should be noted that this study is one of the first few to
use this methodological pipeline for EEG data analysis (i.e. ICA-
Dipole fitting-ICs clustering – ERSP). Hence, to ensure replicability,
we closely followed the procedures used by groups that have ex-
amined mu suppression using these methods (Bowers et al., 2013;
Moore et al., 2012; Vukovica and Shtyrov, 2014; Zhang et al., 2014).

Notwithstanding its limitations, the current study provides
evidence of reward based modulation of cortical motor simulation.
In light of the findings discussed earlier, and given the link be-
tween empathy, spontaneous facial mimicry, and cortical motor
simulation (Dimberg et al., 2011; Hoenen et al., 2013; Niedenthal,
2007; Pfeifer et al., 2008; Sonnby-borgström et al., 2003; Sonnby-
borgström, 2002; Woodruff et al., 2011), the current study points
to a significant role of reward in modulating the extent of
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empathy-related responses. These results are consistent with so-
cial psychological theories that suggest a relationship between
mimicry and liking (Byrne and Griffitt, 1973), as well as recent
neurobiological models suggesting a top down modulation of
mimicry (Wang and Hamilton, 2012). These findings thus provide
a direct insight into the fundamental architecture of human social
behavior and how reward helps to shape this.
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