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Burst suppression in the electroencephalogram (EEG) is a well-described phenomenon
that occurs during deep anesthesia, as well as in a variety of congenital and acquired
brain insults. Classically it is thought of as spatially synchronous, quasi-periodic bursts of
high amplitude EEG separated by low amplitude activity. However, its characterization as
a “global brain state” has been challenged by recent results obtained with intracranial
electrocortigraphy. Not only does it appear that burst suppression activity is highly
asynchronous across cortex, but also that it may occur in isolated regions of circumscribed
spatial extent. Here we outline a realistic neural field model for burst suppression by
adding a slow process of synaptic resource depletion and recovery, which is able to
reproduce qualitatively the empirically observed features during general anesthesia at
the whole cortex level. Simulations reveal heterogeneous bursting over the model cortex
and complex spatiotemporal dynamics during simulated anesthetic action, and provide
forward predictions of neuroimaging signals for subsequent empirical comparisons and
more detailed characterization. Because burst suppression corresponds to a dynamical
end-point of brain activity, theoretically accounting for its spatiotemporal emergence will
vitally contribute to efforts aimed at clarifying whether a common physiological trajectory
is induced by the actions of general anesthetic agents. We have taken a first step in this
direction by showing that a neural field model can qualitatively match recent experimental
data that indicate spatial differentiation of burst suppression activity across cortex.

Keywords: burst suppression, anesthesia, EEG, neural field model, neuronal hyperexcitability

1. INTRODUCTION
Over the many years since its discovery in humans (Berger,
1929, 1930; Adrian and Matthews, 1934), the electroencephalo-
gram (EEG) has been shown to be a sensitive, and often specific,
indicator of brain state and function (Schomer and Lopes da
Silva, 2010). In the case of the deeply inactivated brain, whether
through trauma or medical intervention, a burst suppression
pattern is typically observed (Niedermeyer, 2009; Ching et al.,
2012). Consisting of quasi-periodic alternations of high ampli-
tude periods of spiking activity with low amplitude periods that
are near isoelectric, the burst suppression pattern is associated
with a range of central insults or interventions that include
cortical deafferentation (Henry and Scoville, 1952; Kellaway
et al., 1966; Lukatch and MacIver, 1996), cerebral ischaemia
(Bauer et al., 2013), deep coma (Young, 2000), various infantile
encephalopathies (Grigg-Damberger et al., 1989), the final stages
of deteriorated status epilepticus (Treiman et al., 1990), hypother-
mia (Stecker et al., 2001), and high levels of many anesthetic and
sedative drugs (Schwartz et al., 1989; Akrawi et al., 1996).

The burst suppression pattern can show a significant degree of
variation depending on its aetiology. For example, in the case of
infantile hypoxic-ischemic encephalopathy the burst suppression
pattern can be quite complex; and due to significant variability

in the amplitude of individual bursts a clear transition to sup-
pression may not readily be apparent (Lamblin et al., 2013). In
contrast, in deep anesthesia bursts are typically separated by clear
isoelectric periods, the duration (relative and absolute) of which
increases systematically with increasing anesthetic level. This sys-
tematic dependence on anesthetic level can be utilized in the
treatment of status epilepticus (Kalviainen et al., 2005) and the
management of brain trauma in the intensive care setting (Doyle
and Matta, 1999) by defining an endpoint in which more than
50% of an EEG recording consists of suppressions.

In what follows we will provide an overview of the phe-
nomenon of burst suppression and summarize the current under-
standing regarding its physiological genesis. This will then be
followed by a detailed outline of a neural field model developed
to describe the emergence of burst suppression during anesthesia,
which notably, and for the first time, incorporates the empirically
realistic modeling of a general anesthetic agent (isoflurane) and
the spatio-temporal propagation of cortical activity.

1.1. PHYSIOLOGICAL BASIS OF BURST SUPPRESSION
Despite its clear aetiological associations and clinical utility, lit-
tle is known about the physiological mechanisms responsible for
the genesis of burst suppression (Liley and Walsh, 2013). On
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the basis of brain slice and in vivo animal studies, a number of
hypotheses have been advanced with sometimes contradictory
conclusions. For example both increases (Steriade et al., 1994)
and decreases (Ferron et al., 2009) in GABAergic inhibitory activ-
ity have been speculated to have causal roles in the onset of
burst suppression. Supporting reductions in inhibition are in vivo
whole-brain animal studies suggesting that enhanced network
excitability (Detsch et al., 2002; Hudetz and Imas, 2007; Kroeger
and Amzica, 2007; Land et al., 2012), possibly mediated through
alterations in extracellular calcium (Kroeger and Amzica, 2007),
is responsible for driving transitions between low amplitude qui-
escence and high amplitude bursting. The study of Land et al.
(2012) is particularly relevant in this regard. Not only do they
report that auditory and visual stimuli readily evoke burst activ-
ity in visual cortex (V1) and subiculum during deep anesthesia
in rats, but (i) such excitability does not occur in the absence of
burst suppression, (ii) V1 and subiculum bursting, in response
to the cortically remote auditory stimulus, emerges abruptly with
increasing anesthetic (isoflurane) concentration, and (iii) hystere-
sis occurs in both stimulus-induced and spontaneous bursting
during isoflurane wash-in and wash-out. Thus, the phenomenon
of burst suppression might be explicable in terms of the emer-
gence of propagating excitability through a dynamical bifurcation
parametrically regulated by isoflurane concentration.

Clinically it is well-established that bursting responses dur-
ing burst suppression in deep anesthesia can be readily evoked
by noxious and sensory stimulation, thus further implicating a
role for alterations in cortical excitability in the genesis of burst
suppression. For example, in probably the first systematic study
on evoked bursts, Yli-Hankala et al. (1993) observed that a vibra-
tory stimulus applied to the palm of the hand was readily able to
evoke electroencephalographic bursts in patients during moder-
ately deep isoflurane anesthesia. Subsequently it has been found
that a range of visual, auditory, tactile and noxious stimuli are
able to evoke electroencephalographic bursts during deep anes-
thesia in which burst suppression has been variously induced with
isoflurane (Hartikainen et al., 1995), sevoflurane (Jantti et al.,
1998) or propofol (Huotari et al., 2004).

Complementing this empirical and clinical research are recent
modeling studies (Ching et al., 2012; Liley and Walsh, 2013),
which suggest that the onset or unmasking of slow and activity-
dependent modulations of network excitability might account
for burst suppression patterns. Because it is observed that the
spectral characteristics of the EEG just prior to the onset of
the anesthesia-induced burst suppression are conserved in the
bursts1, such theoretical approaches typically modulate the oscil-
latory system that accounts for the dynamical emergence of the
resting and anesthetic EEG. In order to simulate burst suppres-
sion during deep propofol anesthesia, Ching et al. (2012) utilize
a thalamo-cortical model based on individual neurons previ-
ously developed to account for the propofol-induced emergence
of frontal alpha-spindle activity (Ching et al., 2010). This model

1For propofol anesthesia this means that alpha activity present prior to the
onset of burst suppression is retained within the bursts (Ching et al., 2012).
In contrast, during isoflurane anesthesia slow-wave and delta activity persists
during bursts (Kroeger and Amzica, 2007).

is then augmented with a slow adenosine triphosphate (ATP)
gated potassium membrane current, which is hence regulated
by the activity-dependent metabolic production rate of ATP. By
assuming that propofol down-regulates neuronal firing through
enhanced synaptic inhibition, thus leading to an autoregulatory
decrease in cerebral metabolism and hence ATP production, the
modulatory effect of this potassium current is magnified such that
bursting emerges. In contradistinction to this model, in which
bursting arises due to essentially intrinsic changes of neuronal
excitability, Liley and Walsh (2013) developed a model in which
bursting arises as a consequence of the slow activity-dependent
modulation of synaptic efficacy. In this model the effects of
synaptic resource depletion (receptor desensitization and synap-
tic vesicle depletion) and recovery during periods of sustained
neuronal population activity act to slowly modulate neuronal
population excitability. This mechanism comes to the fore in
anesthesia because the general reduction of cortical activity allows
the synaptic neurotransmitter reservoirs to fill up, potentiating
excitation until it is sufficiently strong to induce feedback bursts
of excitation, followed by suppression as the thereby depleted
reservoirs refill. In support of this mechanism are the activity-
dependent alterations in synaptic efficacy that have been been
observed in vivo in recordings in cats during burst suppression
induced with isoflurane (Kroeger and Amzica, 2007).

1.2. SPATIO-TEMPORAL FEATURES OF BURST SUPPRESSION
Because burst suppression is classically characterized as being a
spatially homogeneous phenomenon (Brenner, 1985; An et al.,
1996; Lewis et al., 2013), on the basis of near simultaneous burst
onset and offset across scalp electrode derivations, little atten-
tion has been paid to its spatio-temporal features until recently.
Motivated by the inability of scalp electroencephalography to
reveal the fine structure of cortical dynamics, due to the spa-
tial blurring induced by volume conduction, Lewis et al. (2013)
chose to investigate the spatiotemporal features of burst suppres-
sion using intracranial electrocortigraphy (ECoG) in medically
intractable epilepsy patients. Five patients, implanted with a range
of subdural strip, grid and depth electrodes as part of a standard
clinical monitoring procedure, had recordings collected through-
out the induction of anesthesia with propofol, during explanta-
tion surgery. Burst onset and offset was observed to be visibly
asynchronous across recording electrodes, with the absolute dif-
ference in burst onset time in general an increasing function of
inter-electrode distance. Interestingly, not all recording electrodes
would participate in such asynchronous bursting. It was found
that burst onsets were visibly clustered across channels such that
bursting could either be confined to a small subset of nearby elec-
trodes (“local” bursting) or spread to involve the whole electrode
grid (“global” bursting), with more distantly separated electrode
pairs less likely to share a burst (based on burst onset within some
time window).

It has been speculated that the appearance of spatially inho-
mogeneous bursting might be a reflection of the differential sen-
sitivity of specific thalamo-cortical networks to anesthetic action.
However, another possibility is that the spatially heterogeneous
nature of this bursting arises as a feature of the axonal propaga-
tion of activity through cortex. In support of such a speculation
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is the developmental emergence of isoflurane-induced burst sup-
pression in rats. It is conjectured that it is the development of
short- and long-range horizontal connections between pyrami-
dal neurons in infra-granular cortical layers, which is the critical
factor in determining the appearance of isoflurane-induced burst
suppression in the second postnatal week (Sitdikova et al., 2014).
Further implicating the role that altered propagation may have
in determining the physiological features of anesthetic action
are reports that document the effects anesthetics have on nerve
conduction—both centrally and peripherally. While peripher-
ally it is generally assumed that anesthetics principally depress
spinal motoneuron excitability, as assessed by reductions in F-
wave amplitudes (Friedman et al., 1996; Rampil and King, 1996),
there are a number of reports documenting the significant effects
of anesthetic agents in either increasing (cyclopropane, nitrous
oxide, diethyl ether) (Rosner et al., 1971) or reducing (pentobar-
bital, desflurane, enflurane, halothane) (Rampil and King, 1996;
Oh et al., 2010; Nowicki et al., 2013) nerve conduction velocity at
clinical levels, as assessed by increases in F-wave latency. Centrally,
there is some evidence that volatile anesthetics may preferentially
depress nerve conduction in unmyelinated axons (Berg-Johnsen
and Langmoen, 1986; Mikulec et al., 1998). For instance, isoflu-
rane was found to induce a conduction block in 20–30% of the
unmyelinated fibers in the CA1 region of the rat hippocampus
at clinical concentrations, as well as having a 1% effect on the
actual conduction velocity (Berg-Johnsen and Langmoen, 1986).
On the basis of empirical evidence indicating that the cortico-
cortical fiber system is comprised of a mixture of myelinated and
unmyelinated fibers, cf. Bojak and Liley (2010) and references
therein, we hence expect mean cortical axonal conduction veloc-
ity to increase slightly, due to the reduction in the proportion
of low conduction velocity unmyelinated fibers, but nevertheless
anticipate cortico-cortical synaptic connectivity to be attenuated.

1.3. NECESSITY OF LARGE-SCALE CORTICAL MODELS
Regardless of the specific changes in cortical axonal conduction
induced by anesthetics, it is clear that any theoretical attempt to
account for burst suppression and its spatial inhomogeneity must
explicitly incorporate the spatial extent of cortex. While the con-
struction of a biophysically-based neuronal network model might
seem an obvious starting point, numerical tractability and para-
metric uncertainties militates against the utility of this approach
both from a descriptive and an explanatory perspective. For
example, to meaningfully accommodate the extent of the spatially
heterogeneous burst suppression seen in Lewis et al. (2013), we
would need to model ∼ 109 neurons and ∼ 1012 synapses. While
computations at this scale may be at the edge of feasibility for the
largest supercomputers, we cannot reasonably expect such mas-
sive computations to be used for all the myriad specific research
agendas in computational neuroscience any time soon. Even if
such resources were readily available we would still be unable to
specify the microcircuitry realistically at this level of detail for
such a sizeable part of cortex. Such a problem will persist even
if our computational capabilities continue to grow exponentially.

Fortunately, by considering the behavior of populations of
neurons at mesoscopic scales, a variety of numerically tractable
modeling approaches can be motivated physiologically and

anatomically, cf. the reviews of Deco et al. (2008), Coombes
(2010), Liley et al. (2012), and Liley (2013). These neural pop-
ulation models, referred to as neural mass models if localized
and neural field or mean field models if spatially continuous
and extensive, usually aim to describe the dynamical evolution of
mean quantities (such as soma membrane potential or firing rate)
defined over some suitable spatial domain or scale. Because these
models average the activity of many thousands of neurons, they
are well-suited as frameworks for understanding the meso- and
macroscopic neural activity recorded, or inferred by, ECoG, EEG,
magnetoencephalography (MEG) and the blood-oxygen level
dependent (BOLD) contrast of functional magnetic resonance
imaging (fMRI) (Bojak and Breakspear, 2013). Since the pio-
neering work of Walter Freeman (Freeman, 1975), this approach
has flourished and has resulted in a number of important neu-
ral field models aimed at explaining the dynamical genesis of
the mammalian EEG (Wilson and Cowan, 1973; Lopes da Silva
et al., 1974; Nunez, 1974; Liley et al., 2002; Robinson et al., 2004).
Broadly speaking, all these models are able to generate oscillatory
activity through reverberant feedforward and feedback synaptic
activity between excitatory and inhibitory neuronal populations.
We choose to utilize the neural field model of Liley et al. (2002)
as a framework for better understanding the spatial heterogeneity
of bursting during anesthesia because (i) it has been previously
employed to account for a number of anesthetic induced EEG
changes (Steyn-Ross et al., 1999; Bojak and Liley, 2005), and (ii)
a spatially homogeneous version of the theory has been shown to
burst when modified to include a slow modulatory system (Liley
and Walsh, 2013).

2. NEURAL FIELD MODEL FOR SPATIOTEMPORAL BURST
SUPPRESSION

Here we detail how a neural field model (Liley et al., 2002), sub-
sequently extended to account for the dynamical genesis of the
resting EEG and its modulation by anesthesia (Bojak et al., 2004;
Bojak and Liley, 2005; Liley and Bojak, 2005; Frascoli et al., 2011;
Liley et al., 2011; Bojak et al., 2013), can be plausibly modified to
produce bursting-like behavior (Liley and Walsh, 2013), and thus
serve as a basis for understanding the emergence of spatially het-
erogeneous burst suppression seen in cortex. The main advance
in this work is that we combine the realistic modeling of isoflu-
rane effects and the extension to a two-dimensional spatial sheet
of Bojak and Liley (2005) with an updated version of the slow
modulatory system proposed in Liley and Walsh (2013) in order
to obtain spatiotemporal activity predictions.

It is perhaps useful to discuss two fundamental limitations
of our current approach in advance. First, we are limiting our-
selves here to a two-dimensional (toroidal) cortical sheet and
use “background” (isotropic and homogeneous) connectivity in
order to use computationally efficient activity propagation with
partial differential equations (PDEs). Currently there exist a
range of mesoscopic approaches available that can incorporate
more realistic cortical geometry as well as including “specific”
(anisotropic and sparse) connectivity, see for example (Bojak
et al., 2010, 2011; Deco et al., 2011; Bojak and Breakspear, 2013;
Sanz Leon et al., 2013) and references therein. These typically
involve constructing meshes of neural masses and tracking their
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information exchanges individually. However, such approaches
are computationally about an order of magnitude more expen-
sive. Furthermore, to effectively display spatiotemporal pattern
formation on a realistically folded cortex is a graphical chal-
lenge. We will show here that spatial differentiation of activity
emerges even if one uses a simple toroidal cortical geometry with
isotropic and homogeneous connectivity. The additional com-
plexity introduced by anatomical folding structures and patchy
connectivity are expected to break up long-range coherence fur-
ther, but should not qualitatively change our results more locally
(where the “background” connectivity is a good approximation)
and between well-connected but separated regions (where we
would expect emergent differentiation). In addition, we use here
the well-known “damped wave” propagation PDEs that have been
the mainstay of the field since their initial introduction by Jirsa
and Haken (1996). It is by now known that one can use “dis-
persive” propagation PDEs that are more faithful to the actual
distribution of axonal fiber velocities (Bojak and Liley, 2010).
However, we are using here a parameter set of Bojak and Liley
(2005) that delivers realistic EEG activity under the assumption
of “damped wave” propagation. Furthermore, the better “dis-
persive” propagation is also computationally considerably more
expensive and technically difficult to implement. Finally, one of
the key results of Bojak and Liley (2010) was that more realis-
tic “dispersive” propagation lead to easier spatiotemporal pattern
formation. Thus, we expect that the results here would carry over
qualitatively to more realistic propagation models, likely showing
spatial differentiation earlier on in the burst phase. In summary,
we will show here with the computationally simplest model that
spatial differentiation in the burst phase can emerge in qualitative
agreement with the experimental observation, and we expect that
even more realistic modeling will only enhance these emergent
effects.

2.1. THE (EXTENDED) LILEY MODEL
The electrocortical model of Liley et al. (2002) is constructed at
the scale of the cortical macrocolumn. Within each macrocol-
umn, and extending across all cortical layers, distributed popula-
tions of excitatory and inhibitory neurons interact with each other
by all possible feedforward and feedback intracortical (local) axo-
dendritic connections. Macrocolumns then interact with each
other by the exclusively excitatory cortico-cortical (long-range)
axonal fibers. The topological organization of this model is well-
known, and depicted in Figure 1. In this model cortical activity
is described by the spatiotemporal evolution of the mean exci-
tatory he(�x, t) and inhibitory hi(�x, t) soma membrane poten-
tials. The connection with electrophysiological measurement is
through he, which is assumed to be linearly related to the EEG, cf.
Bojak and Breakspear (2013). Excitatory and inhibitory neuronal
populations are modeled as spatially averaged conductance-based
neurons:

τk
∂hk (�x, t)

∂t
= hr

k − hk (�x, t) +
∑

l = e,i

h
eq
lk − hk (�x, t)

|heq
lk − hr

k|
Ilk (�x, t) , (1)

FIGURE 1 | Topology of the Liley model (Liley et al., 2002; Bojak and

Liley, 2005). Its two distinct neural populations (E = excitatory, I =
inhibitory) are shown for two separate positions on the cortical sheet. Each
one can be considered as representing a single macrocolumn. All synaptic
connections that occur in the model are shown by red (excitatory) and blue
(inhibitory) disks, respectively. Extracortical inputs to the cortical
populations are shown by green fibers. Symbols illustrate the various inputs
to the excitatory population in the left macrocolumn and to the inhibitory
population in the right macrocolumn, respectively, according to
Equations (3, 4).

where �x ∈ R
2 is position on the cortical sheet, subscripts l, k ∈

{e, i} indicate excitatory and inhibitory subpopulations, respec-
tively, and double subscripts represent first the pre-synaptic
source and then the post-synaptic target. The parameters hr

k are
the mean resting membrane potentials to which the hk decay
exponentially with characteristic time scales τk in the absence of
inputs Ilk. The fraction in front of the Ilk weighs these inputs,
so that the depolarizing effect of additional excitation diminishes
linearly and then even becomes hyperpolarizing past the rever-
sal potentials h

eq
ek , and similarly for the hyperpolarization due to

inhibition depending on h
eq
ik . The weight at the resting potentials

is +1 for excitatory and −1 for inhibitory inputs, respectively.
The dynamics of the post-synaptic potentials (PSPs) Ilk are

described by critically damped oscillators driven by the mean rate
of incoming excitatory or inhibitory axonal pulses Alk, originally
defined as follows (Liley et al., 2002):

(
1

γlk

∂

∂t
+ 1

)2

Ilk (�x, t) = e�lk

γlk
Alk (�x, t) , (2)

Aek (�x, t) = Nβ

ekSe [he (�x, t)]

+Nα
ek�ek (�x, t) + pek (�x, t) , (3)

Aik (�x, t) = Nβ

ikSi [hi (�x, t)] . (4)
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For excitatory post-synaptic conductances there are three sources
of axonal pulses—local (Se), cortico-cortical (�ek), and subcorti-
cal (pek)—whereas for inhibitory post-synaptic conductances the
only source of axonal pulses is local (Si), because thalamic and
cortical inhibitory axons are essentially short-range on the basis of
existing neuroanatomical evidence. For these equations, at a given
location a single pre-synaptic (Dirac delta) spike Alk(t) = δ(t)
would produce a so-called “alpha function” response

Ilk(t) = e�lk

γlk
αlk(t) , (5)

αlk(t) = γ 2
lkte−γlkt
(t) , (6)

with the Heaviside step function 
(t). The alpha function αlk is
normed to one for integration over time, hence the pre-factor in
Equation (5) is proportional to the charge transfer of the induced
PSP. Furthermore, δlk = 1/γlk is the characteristic time scale of
the PSP’s exponential decay. Since Ilk (t = δlk) = �lk is the max-
imum amplitude of the PSP, δlk is also the rise time to peak
amplitude. Note that since we have collapsed all cortical layers
into one sheet without radial extension, this rise time is that
of the PSP conducted to the soma rather than at the synapse
in the dendritic tree. Conduction through a passive dendritic
cable effectively leads to a “flattened” PSP at the soma with lower
maximum amplitude and prolonged rise and decay times.

The Se and Si are respectively the local mean excitatory and
inhibitory firing rates, and are assumed to be instantaneous
sigmoidal functions of the hk of the form

Sk [hk (�x, t)] = Smax
k /

{
1 + exp

[
−√

2
hk (�x, t) − μk

σk

]}
, (7)

and the Nα
ek and Nβ

lk factors in the Alk above multiply these local
firing rates by the number of synaptic connections formed with
the target populations. The Smax

k are the maximum mean fir-
ing rates, and the μk and σk can be understood as the mean
and standard deviation, respectively, of the firing thresholds of
the populations, which are taken to be roughly normally dis-
tributed. The propagation of axonal pulses by the excitatory
cortico-cortical fiber system �ek is described here by the follow-
ing well-known “damped wave” equation2(Jirsa and Haken, 1996;
Robinson et al., 1997; Liley et al., 2002; Bojak and Liley, 2010):

[(
1

vek

∂

∂t
+ 1

λek

)2

− ∇2

]
�ek (�x, t) = 1

λ2
ek

Se [he (�x, t)] . (8)

But for the λek terms, this would be an inhomogeneous wave
equation with conduction velocity vek, propagating the local exci-
tatory firing rate Se. However, due to these terms the wave gets
suppressed roughly exponentially with distance with a character-
istic spatial scale λek.

2We note that as compared to Bojak and Liley (2005), we have here rescaled vek

and λek as in Bojak and Liley (2010), so as to remove a factor 3/2, which tech-
nically arises from an expansion of an ansatz for the corresponding Green’s
function.

Finally, there is also extracortical synaptic input in the form
of the pek. These inputs can be considered to be mainly due to
thalamic afferents. If the pek were constant, then for the model
parameters chosen here the system would quickly converge to a
static equilibrium point. It is hence the imposition of noise on
these inputs which effectively drives the neural activity. This noise
is taken to represent the average over the varied extracortical
synaptic input to the many thousands of neurons in a neural
population, for the case in which there is no strong external (sen-
sory) drive that would lead to clear correlations of the synaptic
inputs to the individual neurons. We follow here essentially the
approach of Bojak and Liley (2005) for noise generation. Thus,
for the sake of computational simplicity noise is imposed only
on pee, whereas pei is taken to be constant. At every grid point of
the two-dimensional cortical sheet normally distributed noise is
generated independently, but with the same mean pee, and a stan-
dard deviation that is 10% of this mean. However, we filter this
noise spatiotemporally, both to achieve more biological realism
and to make it easier to achieve numerical stability. We follow the
Fourier space procedure of Bojak and Liley (2005) for the spatial
filtering, but use the Catmull-Rom spline procedure detailed in
Bojak et al. (2011) for the temporal filtering, with lowpass −3 dB
points at 75 Hz and 2/cm, respectively (Bojak and Liley, 2005).
Thus, the noisy input oscillates equally at all frequencies, but
only up to about 75 Hz, and is identical for neighboring grid
points, but becomes uncorrelated at cortical distances greater
than about 0.5 cm. The spatiotemporal pee noise breaks the
otherwise perfect homogeneity and isotropy of the system, and
consequently acts as seed for the heterogeneities observed in
the burst suppression phase. However, the characteristics of the
spatiotemporal structures that emerge in the burst suppression
phase do not otherwise depend on the noise; hence in particular
they do not depend on the details of the noise filtering, and can
be elicited with white noise driving.

The model we have described so far has to be extended for a
realistic description of the effect of general anesthetic action. In
particular, the effect of isoflurane on the rise time δlk of the PSPs
from zero to maximum amplitude �lk, and on the subsequent
decay time ζlk back to �lk/e (measured here from the start of the
PSP, not from the peak) can be parameterized as follows in the
form of a Hill equation (Bojak and Liley, 2005):

δlk(c) � δlk (constant) , (9)

ζek(c) ≡ ζ 0
ekκek(c) � ζ 0

ek (constant) , (10)

ζik(c) ≡ ζ 0
ikκik(c) � ζ 0

ik

0.322.7 + 4.7c2.7

0.322.7 + c2.7
, (11)

where c is the aqueous concentration in mM. Thus, the main
effect is a prolongation of the decay of the inhibitory PSPs. In
addition, the maximum amplitudes of the PSPs also diminish
with increased isoflurane concentration, which is also the case for
excitatory PSPs:

�ek(c) ≡ �0
ekHe(c) � �0

ek

0.7072.22

0.7072.22 + c2.22
, (12)

�ik(c) ≡ �0
ikHi(c) � �0

ik

0.792.6 + 0.56c2.6

0.792.6 + c2.6
. (13)
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While for consistency with laboratory based estimates we choose
to parameterize isoflurane level in terms of its aqueous concen-
tration, it is important to appreciate that because isoflurane is a
volatile gas, clinically its level is typically reported in terms of its
concentration in the expired air (which is assumed to be in equi-
librium with the blood and hence the extracellular fluid of cortical
neurons). At normal body temperature 1.3% isoflurane are equiv-
alent to an aqueous concentration of about c � 0.27 mM (Franks
and Lieb, 1996). Typical isoflurane concentrations encountered in
clinical anesthetic practice range from 0 to 2% of the expired air,
equivalent to aqueous concentrations 0 − 0.42 mM (Mapleson,
1996). A measure commonly employed in anesthetic practice is
the minimum alveolar concentration or MAC of an anesthetic
agent. It is essentially defined as the concentration of gas in
the lungs required to prevent movement in 50% of subjects in
response to a painful surgical stimulus. In the case of isoflu-
rane 1 MAC � 1.17% � 0.243 mM for an adult at normal body
temperature (Mapleson, 1996). It should be noted that in com-
bination with other anesthetic agents like nitrous oxide, less than
1 MAC of isoflurane will be required to reach the 50% end-point.

It is straightforward to introduce Equations (12, 13) to the
Liley model by changing the �lk according to isoflurane concen-
tration, i.e., �lk → �lk(c) = �0

lkHl(c) with the �0
lk now having the

same values as the �lk had in the standard Liley model. However,
Equations (9–11) are more problematic. The decay time of the
alpha function in Equation (5) changes linearly with its rise time,
thus one cannot match the experimental result that only the decay
time is prolonged under anesthesia. Consequently, the following
modification of Equation (2) was introduced (Bojak and Liley,
2005)

[
1

γlk(c)

∂

∂t
+ 1

] [
1

γ̃lk(c)

∂

∂t
+ 1

]
Ilk (�x, t)

= eγlk(c)δlk�lk(c)

γlk(c)
Alk (�x, t) , (14)

γlk(c) = εlk(c)

eεlk(c) − 1

1

δlk
, γ̃lk(c) = eεlk(c)γlk(c) . (15)

Notably, for εlk → 0 one finds that γ̃lk → γlk, and γlk → 1/δlk

with a removable discontinuity. Defining these variables as con-
tinuous with the limit, the new Equation (14) then becomes
identical with the old Equation (2) in this limit. The correspond-
ing response to a single pre-synaptic spike Alk(t) = δ(t) now
becomes a bi-exponential function

Ilk(t) = eγlkδlk�lk

γlk
βlk(t) , (16)

βlk(t) = γlkγ̃lk
e−γlkt − e−γ̃lkt

γ̃lk − γlk

(t) , (17)

where we have suppressed the concentration dependence. Again
the pre-factor in Equation (16) is proportional to the charge
transferred, since βlk(t) is normed to one for integration
over time. Note that now Ilk (t = δlk) = �lk, which for εlk = 0
becomes the previous result since in this limit again δlk = 1/γlk.

More generally, for εlk → 0 we have βlk(t) → αlk(t) at all times
and the alpha function is the “sharpest” response βlk(t) ≥ αlk(t).
Clearly with this new form we can keep the rise time parame-
ter δlk constant, while changing the εlk so as to achieve a desired
decay time ζlk. Given the changes imposed by isoflurane in
Equations (9–11), one can solve for the appropriate εlk numeri-
cally in dependence on the concentration c. However, here we will
use the excellent approximation formula presented in Liley et al.
(2011), which can be written as3

εlk(c) � e2.5466−1.3394κlk(c)
√

κlk(c) − 1 +
(

e−1.2699[κlk(c)−1] − 1
)

·
[

1

κ2
lk(c)

+ W−1

(
e−0.23630/κ2

lk(c)

1 − 3.1462κlk(c)

)]
,

(18)
where W−1 is the −1 branch of the Lambert-W function. Here we
assume that κek = 1, thus εek = 0, and only the inhibitory decay
time is affected.

Equations (1–4, 7–8) represent a system of eight coupled non-
linear PDEs that define the standard Liley model. Changing the
PSPs of Equation (2) to those of Equations (14, 15) defines the
extended Liley model. It is therein understood that 1/δlk of the
extended Liley model equals γlk of the standard one, so that
for εlk → 0 both become identical. Finally, Equations (9–13)
parameterize the effect of isoflurane on the extended Liley sys-
tem. Here Equations (12, 13) can be used straightforwardly as
determining �lk(c), but in order to use Equations (10–11) one
additionally needs Equation (18) to translate them into changes
of the γlk(c) and γ̃lk(c) parameters. In Bojak and Liley (2005)
extensive parameter searches were performed. All selected param-
eter sets gave rise to a plausible resting EEG power spectrum
(‘1/f ’ low frequency activity with an alpha peak in the 8–13 Hz
range) under noise driving, retained a stable equilibrium point
for increasing isoflurane concentration and hence remained in
a quasi-linear dynamical regime, and showed the experimentally
observed drop of the alpha peak to low frequencies for increas-
ing isoflurane concentration. Some parameter sets furthermore
exhibited a so-called “bi-phasic” transient surge in total power
during simulated anesthesia induction, as observed in several
experiments (Kuizenga et al., 1998, 2001). The parameter val-
ues used in this paper correspond to one of these “bi-phasic”
parameter sets, and are listed in Table 1.

2.2. SLOW AND ACTIVITY-DEPENDENT SYNAPTIC BURSTING
MECHANISM

In this work we consider receptor desensitization and synap-
tic vesicle depletion during periods of high neuronal population
activity, and the homeostatic recovery of synaptic readiness dur-
ing periods of low neuronal activity, as the slow mechanism that
can modulate the excitability of cortical tissue. Such activity-
dependence of synaptic efficacy has been observed during burst
suppression induced with isoflurane (Kroeger and Amzica, 2007).

3The last term W−1[exp (a/κ2)/(1 − bκ)] actually has b = −W−1( − 1/e2)
and a = −1 + ln ( − 1 + b). It is real for κ ≥ 1 and for κ = 1 becomes −1.
To avoid spurious imaginary terms one can set a = −0.23630117 for a b =
3.1462 of limited accuracy.
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Table 1 | Mean population parameter values used to obtain bursting in the Liley model.

Definition Excitatory (target) Inhibitory (target)

Passive membrane decay times τe 65.815 ms τi 130.13 ms

Resting membrane potentials hr
e −78.422 mV hr

i −72.959 mV

Maximum firing rates Smax
e 0.39535/ms Smax

i 0.15439/ms

Firing thresholds (FTs) μe −51.656 mV μi −47.267 mV

Standard deviations of FTs σe 2.8669 mV σi 4.3250 mV

Synaptic recovery times τ rec
e 800.00 ms τ rec

i 600.00 ms

Synaptic depletion factor fe 1.2500 fi 0.17500

EXCITATORY SOURCE

Reversal potentials heq
ee −5.7891 mV heq

ei −1.6566 mV

PSP peak amplitudes �ee 0.18424 mV �ei 1.8771 mV

PSP rise times to peak δee 9.1059 ms δei 1.2103 ms

Number of intracortical synapses Nβ
ee 3410.8 Nβ

ei 2738.9

Number of cortico-cortical synapses Nα
ee 3616.3 Nα

ei 2905.1

Cortico-cortical decay scale λee 24.000 mm λei 24.000 mm

Cortico-cortical conduction velocity vee 2.1042 mm/ms vei 2.1042 mm/ms

Rate of extracortical input pee 9.3193/ms pei 3.1563/ms

INHIBITORY SOURCE

Reversal potentials heq
ie −86.675 mV heq

ii −84.596 mV

PSP peak amplitudes �ie 1.5969 mV �ii 1.0838 mV

PSP rise times to peak δie 2.5985 ms δii 9.6946 ms

Number of intracortical synapses Nβ

ie 863.89 Nβ

ii 267.92

In practice, we will modify the maximum PSP amplitudes �lk

that can be obtained, which directly depend on the available pre-
synaptic amount and post-synaptic impact of neurotransmitter.
Instead of considering these quantities as parameters as in the
extended Liley model (where they act as control parameters that
can be changed according to the concentration of an anesthetic
agent), we now consider them as variables with their own slow
dynamics coupled to the neural activity. Our ansatz is a com-
mon phenomenological model for activity-dependent synaptic
depression (Bressloff, 2012). It represents a rate-based version
of the model proposed by Tsodyks and Markram (1997), under
the assumption that the processes responsible for the recovery
of synaptic efficacy evolve on a time scale much slower than
those associated with that of synaptic depletion (e.g., receptor
desensitization and synaptic vesicle depletion):

∂�lk (�x, t)

∂t
= �r

lk − �lk (�x, t)

τ rec
l

− ρ
dep
l Sl [hl (�x, t)] �lk (�x, t) ,

(19)
with l, k ∈ {e, i} indicating the excitatory and inhibitory sub-
populations and Sl(hl) is the local population firing rate of
Equation (7), as before. Local neurotransmitter depletion is here
considered to be directly proportional both to the strength of the
PSPs, represented by �lk itself, and to their frequency, represented
by Sl. In the absence of neural activity Sl = 0/s, there will be an
exponential return of �lk to the resting value �r

lk with a character-
istic recovery time τ rec

l . However, if there is no recovery τ rec
l →

∞ and we have constant neural activity Sl > 0/s, then �lk will
exponentially decay to zero with a characteristic depletion time

1/(ρ
dep
l Sl). Note that we have assumed that in the pre-synaptic

recovery and decay there is no dependence on the target (on the

index k), since these processes will be determined by the activity
of the source. However, in the post-synaptic impact on the maxi-
mum amplitude of the PSP, we allow a dependence on the target,
since the response will depend on the morphology and physiology
of the receiving neurons.

Now consider the case where we have both depletion and
recovery. We will choose some homogeneous hl (�x, t) ≡ h0

l so that

Sl(h0
l ) > 0/s. The synaptic system will then converge everywhere

to an equilibrium value easily calculated by setting the left hand
side of Equation (19) to zero:

�lk (�x, t) → �0
lk = �r

lk

1 + τ rec
l ρ

dep
l Sl

(
h0

l

) ≡ �r
lk

1 + fl
, (20)

fl ≡ τ rec
l ρ

dep
l Sl(h0

l ) = �r
lk

�0
lk

− 1 . (21)

This equilibrium value is always smaller than the resting one, i.e.,
fl > 0. We can scale our ansatz in terms of this equilibrium value
and then obtain

�lk (�x, t) ≡ �0
lkCl (�x, t) , (22)

τ rec
l

∂Cl (�x, t)

∂t
= 1 + fl −

(
1 + Sl [hl (�x, t)]

Sl
(
h0

l

) fl

)
Cl (�x, t). (23)

This scaling conveniently removes the post-synaptic depen-
dence from the dynamical equations. Hence if we assume that
the scaled initial conditions are identical �le (�x, t = 0) /�0

le =
�li (�x, t = 0) /�0

li, then in practice we only have to solve the two
equations of Equation (23) instead of the four of Equation (19),
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obtaining the four potentially different peak amplitudes via
the scaling in Equation (22). Our choice for the initial con-
ditions is to start them all at equilibrium �lk (�x, t = 0) = �0

lk,
thus Ce (�x, t = 0) = Ci (�x, t = 0) = 1, and then we can use these
reduced computations with subsequent scaling. The only con-
straint we have imposed on the mean membrane potentials h0

l
here is that they should lead to non-zero population firing rates,
which however is always the case unless one assumes unphysi-
ological infinite polarization. The depletion coupling constants

between the neural activity and the peak amplitude ρ
dep
l are

empirically unknown, and would have to be determined labori-
ously from observations of dynamical changes of synaptic efficacy.
However, in terms of the model proposed here, if one specifies
the equilibrium values of the soma membrane potentials h0

l and
how much the neurotransmitter reservoir is depleted at the corre-
sponding activity levels (�0

lk vs. �r
lk), then this in turn determines

the depletion coupling constants

ρ
dep
l = fl

τ rec
l Sl

(
h0

l

) = �r
lk/�0

lk − 1

τ rec
l Sl

(
h0

l

) . (24)

In practice we make an implicit choice of the coupling constants
by choosing the fl for the system.

Now we wish to combine this synaptic system with the
extended Liley model for anesthesia. For the parameter sets
provided by Bojak and Liley (2005), that model has stable equilib-
rium points. That is to say, if we re-write the extended Liley model
in the abstract form

�s (�x, t) ≡ (he, hi, Iee, Iei, Ii.e., Iii, �ee, �ei)
T (�x, t) ,(25)

D�s (�x, t) = F [�s (�x, t)] + P (�x, t) , (26)

with a suitable differential operator D, a function F and a noise
drive P, then there exists a solution

F[�s ∗] = 0 , (27)

so that for P (�x, t) = 0 the system is static. Furthermore, since this
equilibrium is stable, after small and transient disturbances the
system will return dynamically to �s ∗. We now make the following
replacements in the extended Liley system

�lk → �lk (�x, t) , (28)

i.e., we replace the parameter values �lk of the extended Liley
model with the variables �lk (�x, t) of the synaptic system that
we have just described. Together with the coupling to the neural
activity explicit in Equation (23) this closes the combined system,
which we will call the bursting Liley model henceforth. We now
make the following convenient choices

�s (�x, t = 0) = �s ∗, Cl (�x, t = 0) = 1, h0
l = h∗

l , �0
lk = �lk,

(29)
This homogeneous initial state of the bursting Liley model
must now be an equilibrium point by construction: while
Equation (27) is calculated with the parameters �lk, we have

arranged it so that the equilibrium value �0
lk of the synaptic

system at the resulting mean soma membrane potentials has the
same value as that parameter. This is simply achieved by fix-
ing the �r

lk for a given fl according to Equation (20), i.e., �r
lk =

�0
lk(1 + fl). Hence the equilibrium of one system is compatible

with that of the other, and if we start them off in their respective
equilibrium states nothing will change. However, there is no guar-
antee that this constructed equilibrium point of the bursting Liley
model will be stable.

Previously, we had incorporated the effects of isoflurane into
the extended Liley model in part by replacing the standard param-
eter �0

lk according to Equations (12, 13) with the anesthesia-

dependent �lk(c) = �0
lkHl(c). In the bursting Liley model these

parameters have become state variables with their own dynam-
ics due to synaptic depletion and recovery. Hence the synaptic
dynamics pertaining to the (pre-synaptic) source likewise must
be multiplied by the anesthesia-dependent Hl(c) to compute the
(post-synaptic) amplitude induced at the target:

�lk (�x, t, c) ≡ �lk (�x, t) Hl(c) = �0
lkCl (�x, t) Hl(c)

= �lk(c)Cl (�x, t) . (30)

However, since the synaptic dynamics are now coupled to the
spatially variable cortical activity, we need to adjust our synaptic
inputs to Equation (14):

Aek (�x, t) = Nβ

ekCe (�x, t) Se [he (�x, t)] + Nα
ek�ek (�x, t)

+ pek (�x, t), (31)

Aik (�x, t) = Nβ

ikCi (�x, t) Si [hi (�x, t)] , (32)[(
1

vek

∂

∂t
+ 1

λek

)2

− ∇2

]
�ek (�x, t) = 1

λ2
ek

Ce (�x, t) Se [he (�x, t)].

(33)

Here the first term in Alk is multiplied with Cl (�x, t) at the
same time and position, since it represents local and quasi-
instantaneous synaptic input. For the second term of Aek, the
Ce (�x, t) term is instead included through Equation (33). The
right hand side of this propagation equation, while written in
terms of the (�x, t), effectively encodes the signal at a distance
location �x ′, sampled there at time t′, and then transported with
velocity vek to the local position �x with a conduction delay t − t′;
see for example (Bojak and Liley, 2010) for an explanation in
terms of Green’s functions. Thus, we now propagate the firing
rate as scaled by the pre-synaptic efficacy of the neural popula-
tions at a distant position �x ′ at the time t′. We note that this is not
quite physiologically accurate either, since the synaptic dynamics
should be evaluated at (�x, t), not (�x ′, t′), albeit driven with the fir-
ing rates from �x ′ delayed by t − t′. This could be achieved by set-

ting Nβ

ekCe → Nβ

ekCS
e and Nα

ek�ek → Nα
ekC�

ek�ek in Equation (31),
removing Ce in Equation (33), and then tracking separately the
spatiotemporal dynamics of CS

e and C�
ek, respectively, where the

latter would have �ek instead of Se in Equation (23). However,
this would double the effort for computing the synaptic dynam-
ics and could have potentially undesirable consequences for the
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separation of distant sources, see the Discussion for further detail.
Finally, for simplicity we have assumed here that the extracortical
input pek remains unchanged. This assumption will likely need
to be improved upon for greater physiological realism, i.e., we do
expect that in particular thalamic activity will also be modified by
anesthesia. However, our current focus on only the cortical side
allows us to highlight the proposed bursting mechanism without
potential interference from complex interactions between extra-
cortical and cortical structures. Given the assumption that pek

is constant (or in the case of pee, that its mean is constant), we
would not expect the pre-synaptic efficacy to change. Overall, if
we switch off the synaptic dynamics Cl ≡ 1, we recover exactly
the extended Liley model of Bojak and Liley (2005).

The bursting Liley model hence consists of Equations (1, 7,
14, 15, 21–23, 30–33), with the influence of isoflurane anesthe-
sia being parameterized by Equations (9–13, 18). In practice we
choose the fl > 0, and as before use the “combined fixed point”
initial state of Equation (29). The parameter values we have cho-
sen are listed in Table 1. For the synaptic system, we have followed
qualitatively the work of Tsodyks and Markram (1997) in assum-
ing a possible range of about 250 ms to 1000 ms for τ rec

l , and
values between 0.1 and 2.0 for fl. The values used in this paper
were chosen after computational experimentation with various
settings, and were selected because they lead to bursting only for
relatively large concentrations of isoflurane. Clearly, more system-
atic and comprehensive scans of the available parameter space and
better understanding of the dependence of the observed dynam-
ics on these parameter values are needed in order to elucidate the
mechanisms proposed here. However, it takes considerable com-
puting time to simulate such large spatial systems. In order to
accomplish a proper analysis of the parametric dependencies, one
will likely need to find approximate but rapid evaluation meth-
ods, similar to replacing the full simulation with an eigenvalue
calculation as in Bojak and Liley (2005). The development of
such methods is beyond the scope of this article, here we want
to demonstrate in a pilot study that we can qualitatively repro-
duce the spatial differentiation in burst suppression that has been
observed experimentally.

2.3. NUMERICAL SIMULATIONS
All our simulations are performed on a two-dimensional corti-
cal sheet discretized by a 512 × 512 numerical grid, where we
assume a grid spacing of �x = �y = 1 mm. The effective sim-
ulation area of 2, 621.44 cm2 corresponds roughly to the size
of an entire human cortex (Im et al., 2008). Smaller grids, with
or without larger grid spacing, have been used to investigate
parameter dependencies more rapidly, but the results presented
in this paper were all obtained on this standard grid. In order to
avoid boundary effects we have made the numerical grid toroidal,
i.e., if we number the grid points 0–511 along one dimension
from left to right, then the grid point to the left of 0 is 511,
and the grid point to the right of 511 is 0, and this is true for
both dimensions. Obviously such a geometry is artificial as com-
pared to the real brain. However, since it leaves all numerical
grid points entirely equivalent, this together with the isotropic
and homogeneous “background” connectivity implicit in the
PDE propagation makes minimal assumptions about the actual

geometry and specific connectivity of the brain. Basically, it rep-
resents a kind of anatomical “null hypothesis” from which any
anatomical detail will deviate; and the more homogeneous the
brain turns out to be in an effective sense, the better this approxi-
mation will represent its activity. As argued above, at significantly
increased computational costs one can improve this description
with neural mass meshes, but this is not expected to change the
results obtained here at least qualitatively.

The only dependence on space is found in the propagation
PDE of Equation (33). Hence the other dynamics are effectively
described by a set of independent ordinary differential equations
(ODEs) in time at every grid point. We solve all these ODEs with
the following simple method: First, any higher time derivatives
are turned into first derivatives by defining auxiliary variables,
e.g., d2g/dt2 = f (g) becomes dg/dt = g̃ and dg̃/dt = f (g). Next,
we solve these first order ODE systems with the forward Euler
method. Obviously many more efficient numerical schemes exist.
But in our experience they occasionally fail for specific parameter
settings with the Liley model, whereas the forward Euler method
always remains stable. Thus, we trade speed for guaranteed stabil-
ity here. In the propagation PDE, the Laplacian is approximated
by a five point stencil, i.e., to estimate the Laplacian at a grid point,
we use the value at that point and those of its four horizontal
and vertical nearest grid neighbors. We find that numerical sta-
bility is increased, if in this PDE we likewise estimate the second
derivative in time directly by considering the current, previous
and future values (and solving for the future one), rather than
first rewriting them into first order derivatives as for the other
dynamics. We use MPI-C to parallelize the computation across
multiple nodes (threads and/or cores). This involves splitting up
the grid into patches assigned to the individual nodes. We note
that since the only spatial dependence in the dynamics arises from
the Laplacian, and since we approximate it with a five point sten-
cil, the only required communication between these nodes is that
of the proximate part of the one grid point deep boundary of the
local patch to the nodes working on the adjacent patches. This
limited need for communication between nodes allows for very
efficient parallel computation.

How the noise driving the system is generated and filtered in
a mathematical sense has been described above, here we will add
the following technical comments: The temporal Catmull-Rom
spline filter is obviously local in space, and hence in a paral-
lel setting can be performed by every individual compute node
on the grid points assigned to it. However, the initial noise gen-
eration is done in Fourier space, to allow spatial filtering by a
simple multiplication at every (Fourier space) grid point, fol-
lowed by an inverse Fourier transformation. We use FFTW (Frigo
and Johnson, 2005) to perform the inverse Fourier transform in
parallel across the available compute nodes. This means that the
random number generation and the Fourier space filtering can
be done local in each node on its part of the Fourier grid, while
FFTW organizes the communications between the nodes involved
in the inverse Fourier transform.

The time step used in our simulations is �t = 5 · 10−5 s,
which for our chosen grid spacing is sufficient to achieve stable
and convergent results. However, we save the simulation results
neither at every time step, nor the entire system state, nor at the
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internal double floating point precision (8 Bytes). The reason is
that the 10 state variables of the bursting Liley model saved for
512 × 512 grid points at 8 bytes per point already would require
20 MB of hard disk space per time step, and thus at full time res-
olution a mere 3 s of run time would generate more than 1 TB of
data. In practice, we typically save between one and four selected
state variables with 250 Hz, converting to single floating point
precision (4 Bytes) in the output. This still generates data files of
many GB for our longest runs. Finally, even this data reduction is
not sufficient to generate suitably sized animations of our results.
Basically, the fine detail of a 512 × 512 grid leads to low com-
pression efficiency of the employed (H. 264) movie codec. For
producing animations we hence tile the output grid into squares
of 4 × 4 grid points and average over these to obtain an effec-
tive 128 × 128 grid with smoother values that compress better.
This explains the mild visual disparity between our figures (at
full 512 × 512 resolution) and the animations, even though they
are produced from the same underlying data set. We also produce
video frames at an even lower sampling rate in time, and we use
variable sampling rates to selectively speed up uneventful parts of
the video. A time counter in the videos keeps track of the sampling
rate, and occasional choppiness and blurriness in the videos does
not reflect actual discontinuities in the simulations but merely low
sampling rates and aggressive video compression.

3. RESULTS
We explore the influence of isoflurane on the model in a long
simulation run presented in Figure 2. The entire simulation also
has been animated as Movie 1, included in the Supplementary
Material. In Figure 2A we show the time course of the isoflurane
concentration that we have imposed. First the system is run free
of anesthesia (0 MAC) for 10 s. We call this the first plateau in the
following. The equilibrium values of the system are used as initial
conditions. Hence there are no transient dynamics, which allows
us to estimate a power spectral density (PSD) from the he time
series. Then we increase the concentration linearly to 0.5 MAC
(equivalent to 0.1215 mM or 0.585% inspired at normal body
temperature) over 10 s, and keep the system at this concentra-
tion for another 10 s. This second plateau corresponds to a light
anesthesia state, without burst suppression, and again we can esti-
mate a PSD here. Next we increase the concentration linearly to
1.0 MAC (equivalent to 0.243 mM or 1.17% inspired), and keep
the system there for 40 s. This third plateau corresponds to a state
of deep anesthesia, with burst suppression, and we can estimate
a PSD here as well. After that, we increase the isoflurane concen-
tration again for 10 s to 1.5 MAC (equivalent to 0.3645 mM or
1.755% inspired), and maintain it at this value for 10 s. Bursting
is abolished at this fourth plateau, and we compute another PSD
here. Finally, we raise the concentration for another 20 s up to
2.5 MAC (equivalent to 0.6075 mM or 2.925% inspired). This
demonstrates that the system has finally returned to a regime
without bursting.

In Figure 2B, we see PSDs estimated over these plateaus. At
each concentration, we have calculated PSDs for every individ-
ual grid point from the he time series for the entire duration of
the plateau, using a Welch estimate with a 2.5 s window and 50%
overlap, and then have averaged the resulting 262,144 PSDs. We

have normed these average PSDs to have unit area, i.e., their total
power over all frequencies is one. This makes it easier to com-
pare them visually. Please note that the parameter set used here
is a “bi-phasic” one, see the discussion in Bojak and Liley (2005).
Consequently, the total power at the second plateau is actually
increased over that at the first plateau by a factor of 1.26. We
see the characteristic shift of the alpha resonance to lower fre-
quencies, in this case initially accompanied by a sharpening of
the peak. Without the slow synaptic system as in Bojak and Liley
(2005), a further increase of the isoflurane concentration would
move the former alpha peak to ever lower frequencies, accompa-
nied eventually by strong damping of the peak and a reduction of
the total power, completing the bi-phasic power change. However,
with the introduction of the slow synaptic system we see a burst
suppression pattern emerge, and the large amplitude oscillations
imply a drastic increase in total power by a factor 131 over the
resting values. Yet we see that the PSD obtained from the third
plateau—as far as frequency content is concerned—roughly fol-
lows what is expected without the synaptic system: The majority
of the power, which is generated by the large bursts, is located
where one would expect to see the former alpha resonance in the
previous model of Bojak and Liley (2005). In other words, the
bursts roughly conserve the regular dynamics of the system, in
particular of the former alpha resonance. At the fourth plateau
the system has ceased to burst but still shows elevated total power
1.44 times larger than at rest.

In Figure 2C1 we see the system at rest under noise drive. The
visible structure is hence basically that of the spatial correlations
we have included in the noise. The corresponding time series
in Figure 2C2 shows the typical waxing and waning of a resting
alpha rhythm in he. Unsurprisingly, �ee oscillates slowly at values
about the equilibrium value of the slow synaptic system �0

ee, cf.
Table 1. In Figures 2D1,D2 we see the corresponding state at light
anesthesia. The overall he is now lower across the grid, indicating
smaller firing rates on average. However, as we can see in the time
series the amplitude of the oscillations has increased, correspond-
ing to the power increase expected for this “bi-phasic” parameter
set. The oscillation frequency also has become lower, though this
is easier to see in the PSDs of Figure 2B. We see that �ee is still
oscillating slowly, but around values somewhat higher than �0

ee,
because the synaptic resources are not as rapidly depleted by the
reduced excitatory firing rate of the depressed he.

In Figure 2E1 burst suppression patterns have emerged. These
patterns are clearly independent of the noise drive. In the Movie 1,
included in the Supplementary Material, one can see how this is
a snapshot of “burst waves” moving across cortex, with centers
of burst activity spontaneously forming and disappearing. The
geometry of these excitations is complex and constantly chang-
ing. We see in Figure 2E2 that the strongest oscillations in he are
associated with a rapid drop in �ee due to the synaptic depletion
during these periods of high firing. This lowering of �ee quickly
suppresses the burst by reducing the self-excitation of cortex. This
is then followed by a recovery to values of �ee that are large com-
pared to those at rest or light anesthesia. This recovery to high
values of �ee is driven by the isoflurane-induced reduction in
the mean excitatory firing rate during the suppressed periods. In
turn, these strong PSPs eventually destabilize the neural system,
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FIGURE 2 | (A) Imposed concentration of isoflurane (red curve), and the he

response (blue curve) at the cortical location indicated by black arrows in the
snapshot panels below. Different plateaus of concentration are labeled “C,”
“D,” “E,” and “F.” Arrows point to the central times of the corresponding time
series shown below. (B) PSDs of he averaged over the entire grid and normed
to unit area for plateaus “C” (blue), “D” (green), “E” (red), and “F” (cyan). The
motion of the alpha peak to lower frequencies persists qualitatively into the
burst suppression phase “E” at much increased power. (C1) Snapshot of the
he activity of the cortical surface at 0 MAC isoflurane. The size of he is indicated
by both height and color, cf. the color bar. A black arrow shows the position from

which the corresponding time series were recorded. (C2) Time series of he

(blue) and �ee (green) over the 10 s of the “C” plateau. Regular alpha rhythms
in he and slow �ee oscillations around the standard value �0

ee can be seen. (D1)

Snapshot at 0.5 MAC. (D2) Time series of the “D” plateau. The oscillations of
he have larger amplitude at a lower average. The slow �ee oscillations now
occur at an elevated level. (E1) Snapshot at 1 MAC. Burst suppression patterns
have emerged and move across the cortical surface. (E2) Time series of the
“E” plateau. Burst suppression is apparent both in he and �ee, with a rapid
drop in �ee caused by the strongest he oscillations. An animation of this
simulation is provided as Movie 1 in the Supplementary Material.
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leading to another burst. The burst suppression pattern persists
as the anesthesia concentration is being increased again, up to
quite high concentrations. In Movie 1, one can see that the ampli-
tudes of the “burst waves” eventually become smaller and smaller
until the burst activity fades away into regular noise driven activ-
ity. We do not show here corresponding plots for the fourth
plateau with abolished bursting, but they would look similar to
Figures 2D1,D2 with a further reduced mean value he, even lower
oscillation frequency, and a �ee that is on average even higher.

The burst suppression phase shown in Movie 1 of the
Supplementary Material makes obvious that one cannot expect
global synchrony of the burst suppression across cortex. A mul-
titude of transient spatiotemporal patterns emerge, travel across
cortex, and dissolve. This is also shown in Figure 3, which shows
time series from three well-separated locations on the simulated
cortex at a specific point in time. There is little evidence of
strong systematic correlations. While one might expect that the
propagation of “burst waves” should lead to correlations with
temporal delay at these distances, other burst features emerge
across these spatial scales and interfere with the burst timing.
Without observing spatiotemporal pattern globally, it hence will
be difficult to find systematic correlations of the bursts at large
distances. However, locally it may be possible to track the regular
motion of burst patterns, e.g., at a point close to the one labeled
“a” one might see bursting appear with a delay, characteristic
for the “burst wave” passing through these two points sequen-
tially. Overall, we expect stronger synchronization—or at least
consistent phase differences from traveling patterns—at shorter
distances, whereas at longer distances such correlations will be
basically accidental. Thus, one would expect to see considerable
spatial differentiation if one records from several spatial locations,
as in Lewis et al. (2013). How many electrodes would be seen to
burst at the same time would depend on the size and motion of
the emerging spatiotemporal burst patterns.

Local variation of cortical tissue properties, reflected in the
model evaluation by a change in the parameters, may also affect
the ability of some part of cortex to participate (fully) in the
spatiotemporal burst suppression dynamics. Such variation of tis-
sue properties can be natural and develop intrinsically, or could
be induced extrinsically by physical insult or the application of
drugs. We have seen that bursts are associated with slow but
large oscillations in the excitatory peak amplitudes of the PSPs.
It is important to note that there are two different effects deter-
mining the general size of the �ek. On one hand, anesthesia is
reducing �ek directly as parameterized by the Hill factor He(c),
cf. Equation (30). On the other hand, the reduction in the aver-
age he, mostly due to the strong prolongation of the inhibitory
PSPs with anesthesia, means that the average excitatory firing
rate Se decreases. This in turn leads to less synaptic depletion
and hence actually a rise in �ek, cf. Equation (19). The net effect
with increasing concentration is actually an increase of �ek, and
this is crucial for the onset of bursting. If one increases anesthe-
sia further, eventually the Hill factor begins to dominate and �ek

decreases again.
The same can be said for the �ik, and the corresponding

balance between the Hill factor Hi(c) and the reduction in Si

for increasing anesthesia. However, we see that in the standard
parameters the excitatory synaptic depletion factor fe = 1.25 is
much larger than the inhibitory one fi = 0.175. This means that
there is much less room for �ik to grow, since the steady maxi-
mum is �r

lk(c) = �0
lk(1 + fl)Hl(c). One simple idea for reducing

the ability of cortical tissue to participate in burst suppression
is hence to increase the growth of inhibition with anesthesia by
raising fi. What do we expect to be the effect of this increased
inhibition, in particular concerning the excitatory �ek? In gen-
eral we expect he and hi to decrease even more rapidly with
increasing concentration of anesthesia, due to the boosted inhi-
bition. But silencing the cortex also decreases synaptic depletion,

FIGURE 3 | (A) Snapshot of the he activity of the cortical surface at
simulation time 54.94 s under the influence of 1 MAC isoflurane. Black
arrows with labels “a,” “b,” and “c” point to the cortical locations of the time
series shown in the other panel. Note the toroidal boundaries, e.g., the
circular burst front that appears cut off around (x, y ) = (44.8, 0) cm continues
at x = (44.8, 51.2) cm. (B) Time series of he (blue) and �ee (green) taken

from the three different positions marked as “a,” “b,” and “c” in the other
panel. It is obvious that bursts are not generally synchronized in time at the
different positions. Spatiotemporal correlations from propagating “burst
waves” can occur, but are removed at larger distances by the interference
from other emergent patterns. An animation of this simulation is provided as
Movie 1 in the Supplementary Material.
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so we actually expect a stronger initial �ek growth for increas-
ing anesthesia. It is hence not a priori clear whether the more
rapid decrease in he or the more rapid increase in �ek dominates,
and in consequence whether bursting is abolished or maintained,
respectively. We note that for our regular parameter set burst-
ing is abolished at higher concentrations even though �ek is still
increasing, because he has then decreased too much. We may
hence expect that an increase of fi alone can stop the bursting.

To test this, we use a typical simulation at 0.25 mM
isoflurane. However, in a circular patch of tissue we set
fi = 1.25 instead of the standard fi = 0.175, while leaving
this parameter at fi = 0.175 across the rest of the cor-
tical sheet. Using �r

lk(c) = �0
lk(1 + fl)Hl(c), we have inside

this patch �r
ie,ii(0.25) = (3.5174, 2.3872) mV and outside

�r
ie,ii(0.25) = (1.8369, 1.2467) mV, respectively, while every-

where �r
ee,ei(0.25) = (0.37703, 3.8414) mV. As shown in

Figure 4, outside of the circular patch burst suppression patterns
emerge as usual, see Figures 4A,B, while in the dead center of the
circular patch there is no sign of such activity, see Figures 4A,D.
Hence inside the patch the greater decrease in he was more
effective than the greater increase in �ek, compare Figures 4B,D.
Interestingly, at the border of the circular patch, see Figures 4A,C,

we see largely the same state as for the center, but there appear
to be some “quasi-bursts”. Actually, this is activity spilling into
the circular patch from the outside through the propagation with
Equation (33). The characteristic spatial decay scale of this prop-
agation is λek = 2.4 cm. Given a radius of 9.6 cm of the circular
patch, we expect a signal from the outside to have fallen to less
than 2% of its original value at the center. So it is unsurprising
that any outside influence on the center is not obvious to the eye,
but that close to the rim we see stronger echoes of the surround-
ing burst activity. In Movie 2 in the Supplementary Material he

(top panel) and �ee (bottom panel) animations are shown. Here
one can observe the bursting waves collide with the circular patch,
and then fade as they penetrate deeper. We note that an increase to
for example fi = 0.5 in the patch is not sufficient to abolish burst-
ing in this manner, illustrating that it is the balance between the
decrease in he and the increase in �ee which determines whether
self-excitation is possible.

The dynamics of �ee are of course much slower than those
of he, and we can track the he burst fronts by the progression
of the lowest dips and valleys in �ee. This corresponds to rapid
synaptic depletion in high firing regions. The extent of “spill-in”
from the outside into the circular patch is also easier to discern

FIGURE 4 | (A) Snapshot of the he activity of the cortical surface at
simulation time 16.78 s under the influence of 0.25 mM isoflurane, where in
a circular patch (center (x, y ) = (20.0, 20.0) cm, radius 9.6 cm) the inhibitory
synaptic depletion factor fi has been increased from 0.175 to 1.25, leading to
an increase of �r

ie,ii there by a factor 1.91. The size of he is indicated by both
height and color, cf. the color bar. One can see that the circular patch does
not participate in the burst suppression pattern. Black arrows with labels “B,”
“C,” and “D” point to the cortical locations used in the other panels. (B) Six

seconds long time series of he (blue), hi (green), �ee/�0
ee (red), and �ie/�0

ie
(cyan) around the time of the snapshot from a point outside of the circular
patch. Burst suppression is clearly visible in all variables. (C) Time series from
just inside the circular patch. There is no local burst suppression, but some of
the outside burst activity spills in. (D) Time series taken from the center of
the circular patch. There is neither local burst suppression nor spill-in.
Animations of this simulation are provided as Movie 2 in the Supplementary
Material.
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FIGURE 5 | Time series of the mean excitatory soma membrane

potential he (blue), the excitatory post-synaptic peak amplitude �ee

(green) and the average excitatory firing rate normed to the maximum

attainable rate Se(he)/Smax
e (red). Note that both �ee and Se(he)/Smax

e
map by value to the black ordinate on the right, though with different units.
The time series shown here is part of the times series labeled “a” in
Figure 3B. One sees that the strongly non-linear relationship between he

and Se in the anesthetic regime transforms the “symmetric” he oscillation
that would be visible in local field potentials and the EEG during the burst
phase into strong “spikes” in the firing rate Se, and consequently to a
“jagged” appearance of the synaptic depletion of �ee.

in �ee: the center of the patch remains at roughly constant val-
ues, while at the rim �ee drops when high firing propagates into
the patch. We note that the strong oscillations that one can see
as �ee drops rapidly in Figure 4C show up in the movie as a
kind of “bouncing” rather than a smooth advance of the burst
fronts. To understand this better, we provide Figure 5. It shows
part of the time series labeled “a” in Figure 2B. However, in addi-
tion to he (blue curve) and �ee (green curve), it also shows the
mean excitatory firing rate Se(he) as red curve. So that one ordi-
nate can be used for both �ee and Se(he), we have normalized
the latter by the maximum excitatory firing rate Se(he)/Smax

e . The
basically symmetric oscillations of the mean membrane poten-
tial he around an average value translate into strong “spikes” in
the mean firing rate Se(he). This is due to the sigmoidal nature
of Equation (7), combined with the fact that the average he is
about 5.5 standard deviations σe = 2.8669 mV below the average
firing threshold μe = −51.656 mV, leading to low firing rates.
Only the strongest depolarizations in the burst come close to this
threshold—though even they do not quite reach it here, as we
can see, since Se(μe)/Smax

e = 0.5 by definition. Thus, the relation-
ship between he (local field potentials and EEG) with firing rates
is highly non-linear in the anesthetic regime. It is obvious from
Figure 5 that the jagged drop of �ee is simply caused by strong
synaptic depletion induced by “spikes” in the mean excitatory
firing rate.

Finally, we also considered the influence of the spatial scale
of brain connectivity on the spatiotemporal expression of burst
suppression. As mentioned above, in this simplified model it is
represented by the parameter λek, the characteristic length scale of
the exponential decay of activity propagated with Equation (33).

Its regular value according to Table 1 is λek = λ2 = 2.4 cm. This
is a length scale one might associate with a brain region and
cortico-cortical connections, in particular since the influence of
activity at a point would be felt across a distance of several
λek. We vary this length scale up λek = λ1 = 2.7 cm and down
λek = λ3 = 2.1 cm to investigate the impact of brain connectiv-
ity on the dynamics. In Figure 6 we see the dependence of the
spatiotemporal activity on adjusting this parameter. The spatial
extent of the emerging burst patterns clearly becomes smaller as
λek is being decreased, cf. Figures 6A–C. This is particularly obvi-
ous in the corresponding animations for the different λek values,
Movies 3–5 of the Supplementary Material, where we can see that
at λ1 large parts of cortex are recruited in the bursts, whereas
for λ3 bursting is much more localized. Our standard λ2 repre-
sents an intermediate case. However, the time interval between
bursts for these different λek appears at first sight comparable,
see Figure 6D. To be more quantitative, one can use the point
where �ee drops lowest as a convenient marker for the time of
a burst peak. To carry out automatic computations for 50 s time
series for every grid point, we select the deepest minimum within
a specific continuous “burst peak region” defined by �ee ≤ 0.05
as burst peak time, and we remove inter-burst intervals with
�tIBI < 1.0 s as not representative for single burst behavior. This
cut removes “double-dipping” below our �ee threshold, caused
for example by two subsequent activity “spikes” in the same burst
with just enough recovery in between to get above threshold (very
small �tIBI) or the interference of two burst waves (small �tIBI).
We find the following grid averages: 〈�tIBI〉λ1 = (4.44 ± 0.26) s,
〈�tIBI〉λ2 = (4.0 ± 1.1) s, and 〈�tIBI〉λ3 = (3.5 ± 1.5) s. We see
that the mean of �tIBI is decreasing roughly by 0.5 s per 3 mm
reduction of λek; whereas the standard deviation increases con-
siderably with decreasing λek, reflecting the more diverse spatial
distribution of the burst patterns. According to these simulations,
we can expect that spatial differentiation—the size of the burst
suppression patterns and their timing—is intimately linked to the
effective extent of the brain connectivity propagating the burst
activity.

4. DISCUSSION
We find that the simulation of isoflurane induction with the
model proposed here reproduces at least qualitatively the electro-
physiological response that one can measure in the EEG (Foster
et al., 2008). At light anesthesia there is an oscillatory shift to
lower frequencies with higher amplitudes, then in deep anesthe-
sia we find burst suppression patterns, and finally for even higher
concentrations these bursts are abolished as cortex slowly heads
toward electrotonic death. Significantly, in the burst suppression
phase the prior regular activity of cortex is roughly “echoed” in
the frequency content of the burst (Kroeger and Amzica, 2007;
Ching et al., 2012), though of course the amplitude of the oscilla-
tions is much increased. We find that burst suppression results
in dynamic and complex burst patterns that travel across cor-
tex in waves, rather than remaining statically in place. The burst
suppression phase is foreshadowed by the continuous elevation
of peak PSP amplitudes, until finally these strong inputs desta-
bilize the neural system into bursting. At maximum oscillation
of the mean soma membrane of the neural population, strong
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FIGURE 6 | (A) Snapshot of the he activity of cortex at simulation time 9.54 s
at 0.25 mM isoflurane with λek = λ1 = 2.7 cm. A black arrow shows the
cortical location at which the corresponding time was recorded. An animation
is provided as Movie 3 in the Supplementary Material (B) Snapshot at
simulation time 5.79 s with λek = λ2 = 2.4 cm, the standard value. An
animation is provided as Movie 4 in the Supplementary Material. The

characteristic size of the burst patterns is reduced. (C) Snapshot at simulation
time 11.70 s with λek = λ3 = 2.1 cm. An animation is provided as Movie 5 in
the Supplementary Material. The characteristic size of the burst patterns is
reduced even further. (D) Time series of he (blue) and �ee (green) taken from
these three simulations, marked as “λ1,” “λ2,” and “λ3.” We see that
inter-burst interval remains roughly the same.

depletion of the synaptic system leads to a sudden drop of the
PSP peak amplitude, which suppresses the burst until the synap-
tic system is able to recover again. The relatively slow time scale of
this recovery is what governs the periodicity of the bursts in the
burst suppression regime in this model.

While we are mostly interested here in investigating the spatial
differentiation of burst suppression qualitatively, the emergence
of burst suppression in our simulations is also in rough quantita-
tive agreement with what has been observed clinically. Because the
emergence of burst suppression in the EEG represents a distinct
endpoint, it has been proposed that it may be a suitable measure
by which to titrate the administration of anesthesia to ensure opti-
mal hypnosis. On this basis a variety of efforts have been made
to estimate the concentration dependent emergence of burst sup-
pression during anesthesia. It has been found that during sole
agent isoflurane anesthesia, the burst suppression pattern can
emerge at end-tidal concentrations as low as 1.2% (Hoffman and
Edelman, 1995; Pilge et al., 2014), i.e., aqueous concentrations of
� 0.25 mM at 37◦C. However when arterial blood concentrations
of isoflurane have been measured the onset of burst suppression
has been reported for levels as low as 34.9 μg/ml or � 0.19 mM
(Loomis et al., 1986) – close to the value at which we observed the
onset of burst suppression in our model.

However, more importantly our model predicts the appear-
ance of large-scale spatial burst patterns across cortex, which
emerge, travel and disappear over time. In consequence, coher-
ence of burst timing is mostly local, though one can expect to
see characteristic burst onset time shifts in the case of burst pat-
terns traveling across neighboring recording sites. Some of the
simulated patterns become large in size intermittently, recruiting
large parts of cortex and thus leading to more “global” correla-
tions of burst timing. However, for the most part the complex
spatiotemporal dynamics will lead to “local” correlations, with
synchronization over large distances being mostly accidental.
These predictions are at least qualitatively in line with the experi-
mental observations of Lewis et al. (2013), see in particular their
Figures 3, 4. We suggest that spatially dense experimental record-
ings may allow one to track such spatiotemporal burst patterns in
detail. At least in principle it should be possible to reconstruct the
underlying cortical state in terms of our model from such record-
ings, in particular if one tracks the activity over some length of
time. The relatively slow spatiotemporal dynamics of the bursts
may help in this regard.

We have shown here as well that increasing the inhibitory
depletion factor fi, or equivalently the resting values �r

ie and �r
ii of

the inhibitory peak amplitudes, can abolish bursting in the model
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in a localized manner (in a patch of simulated cortical tissue).
This is due to affecting the balance of two competing effects: the
decrease of he reduces, whereas the increase of �ee increases, the
capacity of cortex for self-excitation. For large enough increases of
inhibition the former dominates the latter. This provides further
possibilities for spatial differentiation in cortex as some tissue may
have naturally higher inhibitory peak amplitude resting values,
and hence be less capable of participating in burst suppression.
In addition, it is expected that spatial heterogeneity in the cortical
actions of anesthetics will contribute to the spatial differentiation
of burst suppression. Most anesthetics that induce burst sup-
pression are GABAergic agents, which in addition to enhancing
inhibitory PSP action also produce increases in tonic inhibition,
as well as reductions in tonic excitation by altering the activity
of a variety of membrane bound channels that include two pore
potassium channels, extrasynaptic GABAA and nicotinic acetyl-
cholinergic ionotropic receptors. However, these synaptic and
extra-synaptic channels, which exist in multiple isoforms that
are variably affected by the same anesthetic agent, are not dis-
tributed uniformly throughout cortex. Thus, we would expect no
two regions of cortex to share exactly the same propensity to burst
for a given anesthetic level. This is not reflected in the current
work, but left for future studies.

The hypothesized synaptic basis for spatially heterogeneous
burst suppression suggests that if one can accordingly manipulate
the cortical tissue, then one can artificially suppress, abolish or
even enhance its participation in bursts. Importantly, our model
predicts that drugs increasing inhibition could have the paradox-
ical effect of increasing burst activity, depending on the precise
balance of the he decrease and �ee increase that they induce. In
particular, one would typically expect that any paradoxical effects
would occur at lower doses, since strongly increasing inhibition
should eventually see the he decrease win over the �ee increase. It
is interesting to note that a wide variety of GABAA modulators
appear to have paradoxical effects at low doses, see for exam-
ple (Bäckström et al., 2011) and references therein. Furthermore,
our spatial model predicts that bursting activity of surround-
ing tissue can propagate into tissue that is incapable of bursting
itself, to a depth depending on the density of synaptic connec-
tivity, and lead there to “quasi-bursts” which simply reflect the
dramatic variation of the synaptic input. However, if bursts are
abolished by the mechanism suggested here, namely an increase in
the inhibitory synaptic depletion factor fi, then this tissue would
show particularly large inhibitory PSP amplitudes and largely
constant (rather than strongly varying) excitatory ones . This sug-
gests that one could experimentally distinguish between bursting
and “quasi-bursting” tissue by monitoring the size of the PSPs.

Furthermore, we have shown that both the spatial extent of
the burst patterns, and the timing of the bursts (in particular the
interval between bursts) depend on the characteristic scale of the
brain connectivity effectively involved in propagating this activ-
ity: the shorter range these connections, the smaller the regions
of coherent burst activity, and the more rapidly one burst follows
on after the other. While at present this constitutes a qualitative
finding, and while the implementation of brain connectivity in
our model (homogeneous, isotropic and exponentially reducing
with distance) is too simplistic to speak directly to the complexity

of actual cortico-cortical connectivity, this nevertheless suggests
that there is an intimate link between the spatiotemporal profile
of burst suppression and the underlying brain connectivity. This
will have to be taken into account when trying to improve
the realism of such simulations. Thus, by being more specific
about the anatomical structure of our mesoscopic model it may
become possible that observations of burst suppression patterns
will enable estimation of the effective connectivity of the bursting
tissue. This would provide a new window on a difficult to access
but key property of the brain.

Our present simulation has been restricted to studying the
role that one slow modulatory system might have in the gene-
sis of the burst suppression pattern. However, given the feedback
inherent in the physiological and anatomical organization of cor-
tex it is certainly only one of many systems that are capable of
modulating cortical excitability, and hence the emergence of fast-
slow bursting activity. Indeed we might hypothesize that such
slow modulatory systems will span a number of functional scales
in the brain—from perturbations in the autoregulatory coupling
of neuronal and metabolic activity to alterations in the dynam-
ics of cortico-thalamic and cortico-cortical feedback, to mention
only the most obvious. However, regardless of the specifics of the
slow system it is clear that any theory purporting to account for
the genesis and features of cortical electrodynamics must be able
to account for the reversible emergence of burst suppression in
response to the action of anesthetic agents. In this respect both
our model and the model of Ching et al. (2012) may be seen as
meeting this requirement, even though they take as their start-
ing points neuronal activity modeled at different spatial scales. A
possible advantage of our approach, besides being able to deal eas-
ily with a spatially extended cortex, is that the modeled action of
anesthesia is directly coupled to the emergence, and subsequent
disappearance, of bursting. In contrast, in Ching et al. (2012) the
parameters defining anesthetic action (τGABA and gGABA) are not
directly related to the parameter JATP (the metabolic production
rate of ATP) that defines the emergence of bursting.

Our model of synaptic depression is driven by pre-synaptic
firing rates. This is unproblematic for the quasi-instantaneous
local activity. However, an issue arises due to the propagation of
action potentials from distant sources with finite velocities along
cortico-cortical fibers. The current formulation of Equations (31,
33) as to how such distant inputs drive local PSPs is not entirely
faithful to the actual physiology: the pre-synaptic firing rate is
now modulated with the concurrent synaptic dynamics at the
distant pre-synaptic site, which is then propagated with conduc-
tion delay; whereas it would be more physiologically accurate
to propagate the pre-synaptic firing rates, and then modulate
these conduction-delayed inputs with local synaptic dynamics.
However, this would mean tracking separately local synaptic
dynamics driven by quasi-instantaneous local (CS

l ) and delayed

distant (C�
ek) pre-synaptic firing rates, respectively. Our current

model requires only one local synaptic dynamics (Cl), making
it computationally simpler. Furthermore, one can argue that the
current formulation better separates distant sources: If there are
two distant sources, but only one of them begins to fire at higher
rates, then only its signal would become depressed by the resulting
synaptic dynamics, but not that of the other. Whereas if we were to
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drive a local C�
ek directly with the sum of the delayed signals, then

the higher firing of one would lead to synaptic depression also of
the other. Yet one can argue to the contrary that such a conflation
of distant inputs is simply part of the averaging approximation
involved in considering neural populations rather than individual
cells. We have made here a choice of convenience, but this may not
always be possible. The parameters characterizing the (excitatory)
synaptic dynamics are in this work taken to be spatially homoge-
neous. We are not aware of any extant empirical evidence that
would require a significant deviation from homogeneity, but the
alternative method mentioned above would be more suited for
this case. For as currently formulated, the synaptic dynamics will
be determined by parameters located at the origin of such activity
and not, as must be physiologically the case, its pre-synaptic ter-
mination. A further possibility that we have not considered, due
to the lack of any clear empirical data, is that these parameters
themselves depend systematically on anesthetic concentration. If
such a relationship is demonstrated, then this could act as a pos-
sible source of spatial inhomogeneity in the parameters of the
synaptic dynamics, under the assumption that anaesthetic action
shows spatial variability.

Finally, there are obvious extensions to this work that should
be considered, but were beyond the scope of this initial inves-
tigation. The most obvious extension is to more systematically
consider the effects of variations in the neural field model param-
eters defining the resting (unperturbed) EEG, and to study the
resulting dynamics for spatially homogeneous models of synap-
tic resource depletion and anesthetic action. Furthermore, the
neural field model used here can be extended to an equivalent
neural mass mesh constrained by a real cortical head model based
on MRI data (Bojak et al., 2010, 2011). Then one could inves-
tigate regional variations of the neural mass parameters with
areal boundaries defined according to any of the available cortical
structural/anatomical atlases [e.g., the Harvard-Oxford cortical
and subcortical structural atlas (Desikan et al., 2006), or the Jülich
histological atlas (Eickhoff et al., 2005)]. For example, each region
could be assigned a distinct parameter set identified as producing
physiologically plausible EEG within the physiologically admis-
sible/plausible parameter space (Bojak and Liley, 2005). One
could then additionally study regional variations in the synaptic
resource depletion and/or anesthetic action parts of the model,
as well as the interactions of heterogeneities in the component
systems.

A perhaps less immediately obvious development, which how-
ever will be necessary to obtain a deeper understanding of the
dynamical mechanisms responsible for the emergence of burst-
suppression, would be some form of systematic bifurcation anal-
ysis. In such an analysis, the slow system would be “frozen”, i.e.,
one would set the synaptic ∂Cl/∂t ≡ 0, and a bifurcation analysis
of the remaining “fast” subsystem would be performed by treat-
ing the Cl as bifurcation parameters. Such a bifurcation analysis,
known as a fast-slow analysis, was pioneered by Rinzel (1985)
in his formal analysis of bursting in biophysical models of the
neuronal action potential. While such a bifurcation analysis is rel-
atively straightforward for the temporal dynamics of non-linear
ODE systems, using a variety of available bifurcation software
tools like AUTO, Content, and MatCont (Meijer et al., 2013), it

is considerably more challenging in systems of non-linear PDEs
of the type we have studied here. A fast-slow bifurcation analysis
of the spatiotemporal dynamics of burst suppression will require
the development of new numerical methods and tools, which are
only just beginning to emerge (Green and van Veen, 2014).

Our work then represents only a first step toward a deeper
understanding of the spatiotemporal dynamics of burst suppres-
sion, in particular as induced by anesthesia. Yet it is already clear
from the theoretical results obtained here, which were motivated
by the recent experimental results of Lewis et al. (2013), that the
classical understanding of burst suppression as spatially homo-
geneous phenomenon has become outdated. This can only add
to the importance of burst suppression as a dynamical probe to
investigate the properties and function of cortical tissue, whether
in a theoretical modeling or an applied clinical setting. We expect
that in the near future theory will be further challenged by
the rapid technological advances in electrophysiology and neu-
roimaging, which are producing increasingly accurate and dense
measurements of neuronal activity and cortical dynamics. This
hopefully will allow us to test to what extent the synaptic resource
depletion mechanism proposed here is indeed the driver of the
observed burst suppression dynamics.
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SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online
at: http://www.frontiersin.org/journal/10.3389/fnsys.2015.

00018/abstract
We include the animations below to illustrate the results

described in this work. In all cases the 512 × 512 grid for numer-
ical evaluation has been averaged over 4 × 4 patches, and strong
compression and low time sampling may limit the movie quality,
see the discussion in Section 2.3.

Movie 1 | Animation showing the he dynamics for variations in the

isoflurane concentration, for details see Figures 2, 3. Note that the parts

prior and after the emergent burst suppression have been sped up by

increasing the time step between the movie frames.

Movie 2 | Animation showing he (top panel) and �ee (bottom panel),

respectively, at 0.25 mM isoflurane with an increased fi = 1.25 inside a

circular patch—preventing burst suppression there—while the regular

fi =0.175 is kept elsewhere. For further detail see Figure 4 and the text.

Note that the induction phase is not shown.
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Movie 3 | Animation showing the he dynamics at 0.25 mM isoflurane with

regular λek = λ1= 2.7 cm, for detail see Figure 6. Note that the induction

phase is not shown.

Movie 4 | Like Movie 3 but with λek = λ2 = 2.4 cm.

Movie 5 | Like Movie 3 but with λek = λ3 = 2.1 cm.
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