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Abstract

In this paper, Bond Graphs are employed to develop a novel mathematical model of conventional
switched-mode DC-DC converters valid for both continuous and discontinuous conduction modes. A
unique causality bond graph model of hybrid models is suggested with the operation of the switch and
the diode to be represented by a Modulated Transformer with a binary input and a resistor with fixed
conductance causality. The operation of the diode is controlled using an if-then function within the
model. The extracted hybrid model is implemented on a Boost and Buck converter with their operations
to change from CCM to DCM and to return to CCM. The vector fields of the models show validity
in a wide operation area and comparison with the simulation of the converters using PSPICE reveals
high accuracy of the proposed model, with the Normalised Root Means Square Error and the Maximum
Absolute Error remaining adequately low. The model is also experimentally tested on a Buck topology.

1 Introduction

In most applications a DC-DC power converter will be designed to operate in either Continuous Conduction
Mode (CCM) or Discontinuous Conduction Mode (DCM), and the model for converter would be different
in each case. However, there are applications where the converters are required to operate in the boundaries
of the two operation modes, like the Interleaved DCM/CCM Boundary Power Factor Correction (PFC)
Converters (Lai & Chen 1993, Huber et al. 2008) or converters where their load or their switching frequency
changes significantly during operation allowing them to pass from one mode to the other. In such cases, two
models are derived and two different controls are implemented; the transition between CCM and DCM must
be detected and the correct model and controller selected. For one converter with n storage elements capable
of passing from CCM to DCM the number of the models that need to be derived is given by k& = 2™, and as
a result d = n - k different differential equations need to be derived. The complexity increases exponentially
for a system of more than one converter.

A conventional approach to model a converter that passes from CCM to DCM is to derive the averaged
model for both CCM and the DCM through a State Space Averaging (SSA) technique (Middlebrook & Cuk
1977). However, using the SSA method results in inaccuracies in the final models as well as in difficulties
with calculations (Moussa & Morris 1990). Moreover, using the SSA technique, the diode is assumed to be
a switch which operates complementary with the main switch of the converter. In DCM, complementary
switching is not adequate to define the operation of the converter as within one period an additional time
interval exists when the one of the state variables reaches and remains at zero. A volt-second balance is
employed to define this time interval but the model appears with a reduced order (Cuk & Middlebrook
1977). A solution has been suggested by Mitchell et al. (2001) although the obtained mathematical model
is more complicated.

The PWM-Switch Modelling Method was suggested by Vorperian (1990b,a). This method uses the
concept of a fictitious Single-Pole-Double-Throw (SPDT) switch to represent the operation of the switch
and the diode. Furthermore, Femia & Tucci (1994) present an approach that uses a fictitious switch to
represent both CCM and DCM. This method gives more accurate results than State-Space Averaging since
linearisation happens only in the non-linear part responsible for the switching, whereas the entire system is
linearised in SSA. However, as with SSA, the implementation of the PWM-Switch Modelling method is based
on the assumption that the switch and the diode operate complementary. Finally, both methods produce the



averaged values of the state variables, which has an impact in the accuracy of the models that are developed.
The focus of this paper is the development of a modelling method for CCM and DCM operation of DC-DC
converters that does not assume complementary operation of the switches, does not linearise across the whole
system and does not average the state variables. The central tool to develop such a model is Bond Graphs.

Bond Graphs (Paynter & Briggs 1961, Rai & Umanand 2009) is a Mechatronics modelling technique
utilised to model interconnected interacting physical systems. Bond Graphs have been designed to repre-
sent the continuous flow of the power or the energy exchanges within the components of a system. Hence,
abrupt changes on that flow, like the operation of a common switch in Hybrid Systems, can not be directly
represented without modifications to the method. Systems are defined as hybrid, when they contain both
continuous states as well as discrete phenomena (Mirzaei & Afzalian 2009). Throughout the years, several
methods have been suggested and reviewed for representing hybrid systems using Bond Graphs. As men-
tioned by Mosterman & Biswas (1998), the modelling of Hybrid Systems using Bond Graphs creates two sub
categories: models with causalities that remain unchanged during commutation (fixed causalities) and their
variables do not depend upon the ON-OFF mode of a switch, and models with variable causalities where
the integral causality changes during commutation.

A comparison between Bond Graph modelling methods which lead to fixed causalities and those with vari-
able causalities is presented by Mosterman & Biswas (1998), Dauphin-Tanguy & Rombaut (1993), Borutzky
(1995), Buisson et al. (2002), Umarikar & Umanand (2005b,a), Markakis et al. (2011). In Mosterman &
Biswas (1998) and Markakis et al. (2011) Bond Graph models with variable causalities are used for each
switching mode. However, this approach results in a disadvantage. For systems containing more than one
switches, the number of configurations required to be calculated is up to n*, where n is the number of switch-
ing components and k is the behaviour modes of each component. Therefore, for converters containing a
switch with two modes (on, off) k is equal to k = 2. Particularly for the ”Ideal Switch Element” method, an
additional resistive element is suggested to be used in order for the causality to remain the same across the
storage elements although the causality changes in this additional resistive elements during the commutation
(Buisson 1993). The same method for the representation of a switch has been proposed by Buisson (2001)
but this technique is valid only when the switches operate complementary.

In this paper, a combination of a Modulated Transformer with a binary modulation ratio and a resistor
(MTF-R method) is employed to represent the operation of a switch. This method has been proposed by
Dauphin-Tanguy & Rombaut (1993), Ducreux et al. (1993), Borutzky (1995, 2010, 2012) and leads to a fixed
causality bond graph model. Consequently, the resulting model is not segmented according to the state of
the switch. Additionally, this method allows the modelling of several switches within a network without
requiring any correlation between them; the switches do not have to operate complementary. By permitting
direct access to the on-off state of the switch, the extracted model is not the averaged model. Such a model
is suitable for control strategies with direct boolean control inputs like ”Sliding Mode Control” (Paul 2013).
Finally, the operation of the diode can be represented by this method as well as will be discussed later.

The novel contribution of this paper is the use of the MTF-R method to derive a unified model valid for
both CCM and DCM. The resulting model does not restricts the input, the load or the switching frequency
to remain constant or within tight limits. In the following sections, the MTF-R method is demonstrated and
the representation of the diode using the MTF-R method is presented. The operation of the model in both
CCM and DCM is described and the validity of the obtained hybrid model is proved with a unique state
space equation to be derived. The accuracy of the model is tested by its implementation on two different
DC-DC converter topologies, and results are presented including the vector fields of the models and the
comparison between the resulting, mathematical models and the simulation of the converters using PSPICE.
Furthermore, the model is compared with the experimental results of a Buck converter. Finally, a discussion
on the results follows where, the Normalised Root Means Square Error as well as the Maximum Absolute
Error between the mathematical model and the simulation results is calculated.



2 Modelling of DC-DC Converter Using Bond Graphs

2.1 Modulated Transformer and Resistor to Represent the Switch Using Bond
Graphs (MTF-R Method)

In this paper, the DC-DC converters are suggested to be modelled by Bond Graphs using the MTF-R
method to model the switches. According to the MTF-R method a Bond Graph Modulated Transformer
(MTF) element with Binary modulation ratio m € {0,1}, is combined with a resistive element R,,, to exhibit
the operation of a switching device. With reference to Fig. 1, if the modulation index of the modulated
transformer is set equal to one m = 1, power is dissipated through the resistor R,,,. The R,, value is chosen
to be small and can represent the resistance of a switch when it is closed "ON”. In this case, the MTF-R
combination provides the flow information, f, to the rest of the system, as it is described by the eq.(1). In
electrical systems the flow, f, is equivalent to the current.
€4 2 m2

m
Ja=mpi=mps =g = k=5

(61 - 62) (1)

When the modulation index of the transformer is set to be equal to zero, m = 0, a zero flow is implied
to the rest of the system. In that case, the operation of an open switch "OFF” is realised, where no current
is allowed to pass. The ratio Rl{m shows that the conductance of the switch is high when the switch is ON
and is zero when the switch is OFF. With reference to R,,, the causality of R,, remains fixed during the

commutation and it is named as ”Conductance Causality.
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Figure 1: Bond graph model of a switch implemented by MTF - R method

2.2 The operation of a diode

For the methods described in the introduction, a diode is commonly modelled as a switch and assumed
to operate complementary to the actual switch in a single-switch DC-DC converter. Such a representation
may leads to erroneous models. For instance, the inductor current in a conventional DC-DC converter with
one switch and one diode is restricted by the diode to remain above zero. However, the representation of a
diode using a bidirectional switch model will permit the inductor current to go below zero resulting in an
erroneous steady-state as well as transient response. Also, if the switch and diode are assumed to operate
complementary then it will not be possible to represent DCM where the switch and diode are off for a
portion of the switching cycle. The MTF-R method allows for a more accurate representation of the diode
independent from the main switch. This paper uses this fundamental advantage to derive a model valid for
both CCM and DCM.

A control loop external to the Bond Graphs model is established, as shown in Fig.2 (Ducreux et al.
1993, Borutzky 1995, 2010, 2012). This control loop compares the effort between the shared bonds of the
diode junctions. With reference to Fig.2, when the difference of the effort, Ae = e; — es, passes a specific



threshold, ege¢, the modulation ratio of the transformer becomes equal to one as can be tracked in eq.(2).

m—{l if Ae > eget 2)

0 if Ae< eget

The observation of the effort across the junction is internal to the system control loop. Therefore, the
obtained model of Fig.2 as defined by Borutzky (2012) is a model with Internal Modulation. Following this
definition, the flow information provided by the model of the diode to the rest of the system is a function of
its flow and effort and it is not outlined by any external control.

R:Ron

MTF:1/m 4—{ Ae > e ‘4—

0

€ [

_____:=.| 1 F____;:;

Figure 2: Bond graph model of a diode implemented by MTF - R method

The characteristics of the diode’s model is presented in Fig. 3. The forward-biased part of the diode’s
characteristic is a line, instead of a curve, with a gradient R%m; the forward voltage drop is not represented
using the MTF-R method. Nevertheless, the simulation results are affected significantly since the resulting
error is very small. Also, appropriate selection of the resistor R,,, reduces the difference between the a real
diode component and the model.

1/Ron

€set Ae

Figure 3: Static characteristic of a diode

3 Operation in CCM and DCM

In Fig. 4 an automaton diagram describes the operation of a conventional DC-DC converter and shows that
the obtained model complies with this operation. In mode ¥; the switch is ON, m; = 1, while the diode is
reversed, ms = 0. As the switch opens, m; = 0, the system passes to mode ¥y where the diode starts to
conduct, mg = 1. There are two potential next modes depending upon the inductor’s current. If the energy
stored in the inductor is large enough to supply the load when the switch is OFF, the system returns to the
31 and the converter operates in Continuous Conduction Mode. If the energy stored in the inductor is not
enough to supply the load during the ¥, state, the inductor current reaches zero and the diode is reversed
biased, mo = 0. At this point both the switch and the diode will not conduct, m; = ms = 0, and the system
passes to mode Y3 until the switch turns ON again by the control input and the system returns to the state



3. When the system remains in the three modes 1, Y5, 33, the converter operates in DCM. The state >4
describes the case where both the switch and the diode are conducting.

The novel contribution of this paper is a unified mathematical model derived from Bond Graphs for
DC-DC converters operating in both CCM and DCM. In conventional DC-DC converter topologies, a switch
and a diode are connected either in parallel or in series. Using Bond Graphs MTF-R method, a causality
conflict occurs at the junction where the two components are connected. To solve this causality conflict an
additional resistive element is added as suggested by Dauphin-Tanguy & Rombaut (1993). The causality on
that additional resistor remains fixed during the commutation. This additional resistor in combination with
the resistive elements of the switch and the diode does not allow the denominators of the first derivatives
of the state variables to be zero when both switch and the diode are OFF, m; = my = 0. Therefore, no
singularity occurs in their equations when the converter operates in DCM and the extracted model has the
ability to demonstrate both CCM and DCM.

Figure 4: Automata diagram showing all the possible states of a conventional DC-DC converter

3.1 Obtained Hybrid Mathematical Model

The mathematical model of a conventional DC-DC converter obtained by the MTF-R method follows the
general form of the switching Bond Graphs models as established by Buisson (2001), Buisson et al. (2002)
and demonstrated in Fig. 5 The implicit formalisation is described by eq.3 (Buisson et al. 2002).

Sources
Se,Sf
7'y
v U
A\ 4

- D
Junction sl Resistors
Structure | R

Derivative (0,1,TF,GY) | Din
Causality (& z, Tautl me

Switches
as
resistors
Ron

Integral
Causality

W72

Figure 5: Block diagram describing the general structure of a switching Bond Graph model
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where:

T

X = [Xz Xd:l aW = [Zz Zd Din Dout T; Tout U V]

1. e X, denotes the state vector which consists of the energy variables in integral causality. The
momentum p is for the inertia elements (inductors) I while displacement ¢ for the complaint
elements C (capacitors)

e 7, is the complementary state vector composed of the power variables in integral causality, e for
the C elements and f for the I elements

2. e X, named as semi-state vector which contains energy variables in derivative causality

e 7, is the complementary state vector in derivative causality

3. e D;, and D,,; are vectors which contain the power variables going into and out of the junction
structure from the resistive elements field.

4. e T;, and T,,; are vectors containing the power variables going into and out of the junction structure
from the switches. These variables, in variable structure systems such as the ”Ideal Switch”,
change during the commutation. Whereas in a unified representation of the switch, such as the
MTF-R method, they remain invariant, f for the T;, and e for the T,,;.

5. e [ is the vector containing the power sources of the system

e V1 is the complementary to U containing the variables provided from the system to the sources,
f for the effort source SE and e for the flow sources SF.

Necessary condition for the eq.(3) is for no unit causal loops to exist. Also, due to the energy conservation
on each junction, the matrices S11, S35, S44 are skew symmetric (Buisson et al. 2002).

The relation between T;,,, Ty is based on eq.1 which combines the modulus of the controlled transformer
with the Ohm’s law. Thus, the implicit equation changes whenever the mode changes.

With the MTF-R method the causalities remain invariant and any causality conflicts are solved with
additional resistive elements. Therefore, the integral causality for all the storage elements will remain during
commutation. It is thus possible for the eq.(3) to be simplified by omitting the second row and column
relating with derivative causality. Also, the last row of the eq.(3) corresponding to the variables provided
from the system to the sources can be omitted, as it is only useful when energetic balance analysis is needed,
which is out of the purposes of this paper. After implementing the above simplifications the eq.(4) results

X; Sii Sz 0 Su 0 Sis
0 *Sg S33 —1 Siy 0 Sss w’ (4)
0 Sﬂ S?ﬁ 0 Sy —I Sy

with the new W' = [Z; Din Dowr Tin Tout U}T

3.2 Validity of the Obtained Modes

Having established integral causality for all the storage elements, the modes described in Fig. 4 are all
reference modes (Buisson et al. 2002). The eq.(5) is the criteria for these modes to be valid (Cormerais &
Buisson 2000) when there is no causal path between a switch and a storage element in derivative causality
S24 = 0 (Buisson et al. 2002).

rank (A (514533S14\)) = rank (A) (5)

where A € Ry.x is a diagonal matrix with its elements equal to I when the corresponding switches change
state with commutation, otherwise 0, and k is the number of the switches (in this case k = 2).

When considering the operation in CCM where, the system commutates from the reference mode X1
to 32 and vice versa, A is a unity matrix and the eq.(5) is established. When X3 or ¥4 mode is involved
in DCM, then A\i; or A9y equals to zero respectively. However a reduction in the order of the system then
occurs to establish the eq.(5) again. Thus, all the possible modes are valid and the operation in DCM is
possible to be represented.



3.3 Unique State Space

Assuming D;,, = LD,,;, where L is a matrix consisting of the resistive values or their inverses, which depends
upon the causality of the corresponding resistors. The L is symmetric if the number of the resistive elements
is even. Then, the second line of the implicit equation eq.(4) can be written as:

LY — LS33)Dyy, = —ST3Z; + S34Tip + S35U (6)

The matrix L=(I — LS33) is invertible even if a causal path between the resistive elements does not exist
S33 = 0. Then the value of D;,, is defined as:

Din = H(=5{3Z; + S34 Ty + S35U) (7)
where H = L(I — S33L)~!. Then, from the first line of eq.(4) and from eq.(7) the eq.(8) is established as:
l.'i = (Sll — 513HSf3)Zz + (514 + S13H534)Tm + (515 + 513H535)U (8)

To eliminate the T; factor from eq.(8) it is assumed that T, = E~'T,,; where, E is a diagonal matrix
consisting of the R,, and the Ry values. Then the third line of the eq.(4) leads to:
(E — S44)Tip = ST, Z; + S5y Din + SusU 9)

The switch and the diode are connected between them and a causal path is established. However the
causalities of the switch and the diode are referred to the R,4q which results to Sy = 0. Thus, £ —Syy = F
and the eq.(9) can be simplified to:

ET;, = ST, Z; + S1,Dip + SusU = Ti, = E=1(ST,Zi + S34Din, + SasU) (10)
The eq.(11) occurs from eq.(10) by substituting D;,, from eq.(7).
(I — E~'S3,HS34) sy = B~ (S} — S3.HST3) Zi + B~ (S44H S35+ Sa5)U (11)

The expression E~1ST, HS3, # I is always true when considering a system with one switch and one diode
as the S34 is a non-symmetric matrix consisting of the modulation ratio of the MTF-Rs representing the
switch and the diode (my,ms). Moreover the matrices E~1, H will always be diagonal matrices consisting
of resistances. Thus E~1ST) H S5, will never be a diagonal matrix and the matrix J = (I — E~1ST, HS34) 7!
will always exist for a network with one switch and one diode. Then, the eq.(11) is possible to be rearranged
as:

Ty = JE~(S]y — S5, HS{3) Z; + JE~ ' (S34H S35 + Sas)U (12)
Rearranging the fist line of the eq.(4) using the eq.(7) and the eq.(12)

X; = {(S11 — S13HST3) + (S1a + S13HS34) JETH (ST, — S5, HST)} Zi+

(13)
{(S15 + S13HS35) + (S14 + S13H S34) JE~* (S35, H S35 + Su5) YU

The fellow Z; of the eq.(13) can be replaced by the X; using the constitutive low which describes the
behaviour of the storage elements within the network Z; = F;X; with F; a positive definite function. Using
that, the eq.(13) is transformed as:

Xi = {(511 — S13H517;3) + (514 + 513HS34)JE_1(517:1 — S&HSIT;’)}Fle—I—
{(515 + 513H335) + (514 + 513H534)JE71(S§:1H535 + S45)}U

The eq.(14) is a unique state space representation which, includes all the possible modes and proves that
the extracted model is valid for both CCM and DCM.

(14)

4 Simulation Results

In this section the overall process will be implemented on two different topologies. For each, the Bond Graph
models are developed and the differential equations are extracted. The behaviour of the models is described
through their vector field diagrams, the mathematical models are implemented using MATLAB/SIMULINK
and compared with the simulation of the converters using PSPICE. To aid direct comparison, the two pro-
grammes have been linked using the SLPS interface. This tool operates within the SIMULINK environment
and the results of both simulators are extracted and displayed using MATLAB.



4.1 Boost Converter Example

The first topology presented is the Boost DC-DC converter Fig. 6. The values of the components have been
chosen as: £ =9 Volts, L =20 uH, C =20 uF, R =50 ().

_N—

L D

Figure 6: The circuit diagram of Boost Converter

The extracted Bond Graph model is shown in Fig. 7. The resistor R,, has been chosen as R,,, = 0.001 2
. For the diode, the resistor Ry = 0.001 2 is combined with the modulated transformer with ms modulation
index. The modulation index msy takes binary values according to eq.(2) where Ae = e; — es — e and
eset = 0. The eq.(15) defines the resulting if-then rule that controls the diode.

1 if E—LYL — Vo >0
meo = (15)
0 if E—L4r -V, <0

The additional resistor R,q = 1000 Ohms has been placed to solve the causality conflict occurring at
the 0-junction in which it participates. Since this resistor is placed in parallel with the switch, its value is
required to be high in order not to affect the operation of the switch.

" RRyy MTF:L/m;
o
SE:51I1I3 0 7I1I10 0 12:R:R
4 11
MTF:1/m, GC
g
R:Ron

Figure 7: The Bond graph diagram of a Boost Converter

The mathematical model of the eq.(16) is obtained from the Bond Graph model, Figure 7 through a
”Sicuential Causality Assignment Procedure” (SCAP) (Karnopp et al. 1990)

P 0 0 |-1 o0 0 0 |1 ef2
1 0 0 |0 —1| 0 mo [0 -
fe 1 0 0 0 |—-m -m2|0 6
€12 0 1 0 0 0 0 |0 J;” (16)
es 0 0 |m O 0 0 |0 f5
e9 0 —mg|my O 0 0 |0 E9

where po is the derivative of the momentum of the inertia element connected to bond 2 in Figure 7. This
momentum is equal to: py = [ eadt hence, po = es. The ¢11 represents the displacement of the compliant
element C which is connected with bond 11. The displacement can be expressed as: g1 = [ fi1dt and so
G11 = f11- The effort e; and the flow f1; represent the voltage across the inductor L and the current through



the capacitor C of the electric circuit in Figure 6. Hence the inductor’s voltage is given by: Vi = L% and
the capacitor’s current by: Io = C%.

The implicit form is then derived as in eq.(17) after combining the eq.(4) with eq.(16):

0O 0| -1 0|0 O 0 0 0 0|1
5 0 0 0O —-1,0 O 0 me | 0 0 |0
‘o1 0] 0 0|-1 0[-m —-me| 0 00
[8]_ 0 1 0 010 =1 0 0 0 010 W (17)
0O 0|-my O |0 O 0 0 |-1 010
0 mg|—me 0| 0O O 0 0 0 -110
The differential equations eq.(18) and eq.(19) are also provided below.
ﬂ _ RdRadRon I
dt ((Ron + mlRad)Rd + RonRade)L r
(18)
RaaRonmo E
- Vout + =
((Ron + mlRad)Rd + RonRade)L L
dvout o RonRade I
dt B ((Ron + mlRad)Rd + RonRadmg)C L
(19)
(Ron + mlRad)(RmZ + Rd) + Ropn Raama v
- out

((Ron + mlRad)Rd + RonRadm2)CR

The evaluation and the behaviour of the mathematical model extracted for the Boost converter, is tracked
via its vector field when the switch is ON, Figure 8 and OFF, Figure 9.

ml=1
25
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Figure 8: The vector field of a Boost Converter when its switch is ON while the diode is reversed

In Figure 9, the vectors starting from values I;, < 0 appear to have magnitude similar to the ones with
value Iy, > 0 due to normalisation. In reality, their magnitude is significantly higher than the rest of the field
as both the switch and diode are disconnected in that area m; = ms = 0 while the inductor has some initial
value. As a result, the inductor’s derivative reaches a large value instantaneously ( % — —00), therefore
even when the system starts its operation with negative initial conditions it will be forced to remain in the

first quadrant of the vector field.
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Figure 9: The vector field of a Boost Converter when its switch is OFF

The model described by eq.(18) and (19) is compared with a simulation of a boost converter using
PSPICE. In Figure 10 the inductor current is demonstrated and Figure 11 shows the simulation results of
the output voltage. A pulse signal with frequency f = 100kH z drives the switch. During the simulation
the converter operates in CCM where E = 10 Volts and the V,,; = 50 Volts. At t; = 10 msec the input
voltage changes to E = 36.5 Volts. In order for the output voltage to remain at V,,; = 50 Volts the pulse
width changes from 90% to 20% which forces the converter to operate in DCM for ¢t = 10 msec. At time

to = 20 msec the input voltage returns to £ = 10 Volts and the pulse width to 90% and the system operates
again in CCM.

60 T
i Matlab
i PSPICE
40} ]
g {
4 CCM DCM DCM
- 20 > > >
Lf}rfpwﬂ/\,ﬁ/,,i YV V VO
O B L L L L L
0 0.005 0.01 0.015 0.02 0.025 0.03
Time (sec)
10
| ) | 1
< 51/ | / / / RS
— | Vi

2‘ {
1‘\5.‘:\
o

0
0.00731 0.00733 0.00735 0.01531 0.01534 0.01537
Time (sec) Time (sec)

Figure 10: Comparing Inductor’s current of a Boost Converter by simulating its operation using PSPICE
(Grey Line) with the mathematical model as solved by matlab (Black). The converter operates in CCM for

t = 10 msec, passes to DCM until ¢ = 20 ms and returns to CCM. Images below are zoomed areas for CCM
and DCM from left to right
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Figure 11: Comparing Output voltage of a Boost Converter by simulating its operation using PSPICE
(Grey Line) with the mathematical model as solved by matlab (Black). The converter operates in CCM for
t = 10 msec, passes to DCM until ¢ = 20 ms and returns to CCM

4.2 Buck Converter Example

For the Buck DC-DC converter, Figure 12, the values of components have been chosen as: F =9 Volts, L =
50 uH,C =50 uF, R = 30 Ohms.

Sw L

Figure 12: The circuit diagram of Buck Converter

The Bond Graph model of a Buck converter is presented in Figure 13. Similarly to the Boost converter
Bond Graph Figure 7, the resistor R,y = 1k is added to resolve the causality conflict that occurs on
the 0-junction it is connected to. The values of the resistors R,, and Ry have been chosen as: R,, =
0.1mQ, Rqy = 1 mSQ. The corresponding to the diode modulation index ms is governed by the sign (£) of

R:Rﬂn
3
MTF:1/m, RRug E
P T
SE:E ! I1I4 0 -2 Ililo 0 12 | R:R
6

Figure 13: The Bond graph diagram of a Buck Converter

the effort e; across the 0-junction and is equal to: e5 = eg + e11. Therefore, the if-then rule governs the mq
is given by eq.(20).
1 if LUL 4V, <0

mo = (20)

0 if LUL +V, >0
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The mathematical model of the Buck converter is given by eq.(21).

Po 0 -1] 1 0] o0 0 0 c;f 9
g11 1 0| 0 =1]0 0 0 e“
5 | =1 0] 0 0 [m -ma| 0 5
e | | 0O 1] 0 0[O0 0|0 J;}? (21)
es 0 0 |—-mi 0] 0 0 |m f3
er 0 0| me O[]0 0 |0 EZ
The implicit form is then as in eq.( 22 )
o -1 1 o]o olo o]0 o]o
% 1 0| 0 —-1/0 0|0 O |0 o01]oO
‘N -1 o[ 0 O0[-1 0|m -me| 0 010
8 =l o 1,10 olo —1]lo oo ofo " (22)
0 0|m 0|0 00 0 |-1 0 |m
0 0|-mg O0]0 0|0 0 |0 =1]0

The differential equations for the inductor current I;, and the output voltage V,,; are shown in eq.(23) and
eq.(24).

dIL }%ad}%on}%d
P A IL
dt ((Ron + mlRad)Rd + RonRadm2)L
(23)
1 RoaRgmy
- 4"‘{9u +_ 12
L ! ((Ron + mlRad)Rd + RonRade)L
AVout 1 1
- I - — 24
dt CIL RC Vout (24)

The behaviour of the Buck converter’s mathematical model is observed through the vector fields shown
in Figure 14 when the switch is ON and Figure 15 when the switch is OFF. The vector field Figure 15 shows
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Figure 14: The vector field of a Buck Converter when its switch is ON while the diode is reversed

that the trajectories are restricted to remain within the first quadrant. The system is bounded by the lines

I, = 0 and V,,; = 0 due to the operation of the diode. The vectors are also normalised as for the Boost
Converter.

The model of eq.(23),(24) is compared with the simulation of the converter by PSPICE. In Figure 16
the inductor current of the converter is exhibited and Figure 17 shows the simulation results of the output
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Figure 15: The vector field of a Buck Converter when its switch is OFF

voltage, which remains the same during the transition from CCM to DCM V,,; = 18V olts. The switching
frequency is again f = 100kH z, the input voltage in CCM E = 20V olts and the pulse width is 80%. While
in DCM, the input voltage is E = 62V olts and the pulse width is 20%

20 ‘
Matlab
151 PSPICE |
z 10
. CCM DCM DCM
-5 >< >< >
0 ,//\’\Jx’ VAR A RRAR MWW
0 0.005 0.01 0.015 0.02 0.025 0.03
Time (sec)
2
0.8 | | ‘ A i) |
VAR
—~ | “ | |
o/ |/ |/ |/ |
- | | ‘
| { |
0.4

0.00731 0.00733 0.00735 0.01531 0.01534 0.01537
Time (sec) Time (sec)

Figure 16: Comparing Inductor’s current of a Buck Converter by simulating its operation using PSPICE
(Grey Line) with the mathematical model as solved by matlab (Black). The converter operates in CCM for
t = 10 msec, passes to DCM until ¢ = 20 ms and returns to CCM. Below images are zoom areas for CCM
and DCM from left to right

In Figure 16 the current is allowed to reverse when the system is in its transient response due to the
output voltage being greater than the input during this time interval.
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Figure 17: Comparing Output voltage of a Buck Converter by simulating its operation using PSPICE
(Grey Line) with the mathematical model as solved by matlab (Black). The converter operates in CCM for
t = 10 msec, passes to DCM until t = 20 ms and returns to CCM

5 Experimental Results

To verify the validity of the model against a real practical system, the BuckBoost Converter PICtail Plus
Daughter Board developed by Microchip, has been employed. This Daughter Board contains three converters:
two Buck and one Boost. In the practical implementation, one of the Buck Converters is operated in both
CCM and DCM to facilitate a comparison with the simulation results. The buck converter operates in CCM
when an external resistive load of R =5 Ohms is connected, and the converter operates in DCM when the
resistive load is R = 38 Ohms.

The Daughter Board contains a current sensor connected to the FET switch of the converter, rather
than directly to the inductor. Therefore, the inductor current is captured only for the time period when
the switch is ON. When the switch goes OFF the sensing current goes to zero. When the switch turns ON
again, if the converter operates in CCM, the Current instantaneously reaches a value as shown in Figure 18.
During DCM the current starts from zero and ramps up until the switch turns OFF, as shown in Figure 19.

Moreover, an offset in the inductor current I,f¢ser = 0.45 A is observed in both Figures 18,19. This
offset has been designed by the manufacturer to facilitate the Analogue to Digital conversion, with value
corresponding to Iy, = 0.45 A rather than I, = 0 A. The current produced by the model I}, is adjusted to
follow this offset, and the accuracy is increased by choosing appropriate values for the resistors R,, = Rq =
0.7 Ohms.

The switching pulse is generated by a Microchip dsPIC33FJ256GP710A mounted on a Microchip Ex-
plorer 16 Development Board. The switching frequency is chosen as f = 400 kH z while the Pulse width is
50% for both CCM and DCM.
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Figure 18: Inductor current and output voltage of a Buck converter operating in CCM
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Figure 19: Inductor current and output voltage of a Buck converter operating in DCM
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6 Discussion on the Results

The simulation results of the two previous examples appear to have high accuracy. The models extracted from
the Bond Graphs in each case follow the simulation of the converters using PSPICE accurately even through
the transitions of the converter from CCM to DCM. The vector fields reveal that the model is accurate in
a wide range of initial conditions. Furthermore, the mathematical model has adequate performance with
variable switching frequency, load and input voltage. The vector fields also reveal that the equilibrium is
a neighbourhood, due to the ac component inherent in the output voltage. This results in a ripple in the
output voltage.

The overshoot appearing in Figures 10, 11, 16, 17, is due to uncharged output capacitors and lasts only
for few usecs and happens only at the beginning of the simulation. Moreover, an ideal model produces more
overshoot than a system containing physical components with ”Equivalent Series Resistances”(ESRs) which
result in lower overshoot.

The error between the mathematical models extracted from the Bond Graphs and implemented by
MATLAB, and the simulation of the converters using PSPICE is evaluated by calculating the Normalised
Root Means Square Error (NRMSE). The NRMSE is defined in eq.(25):

N
Y (@i —y)?
=1

NRMSE =

(25)
Ymaz — Ymin

where N is the number of samples captured by SLPS/Simulink and extracted in MATLAB. This number

varies for each case while the step size has been chosen to be fixed at T, = 1078, Also, z; is the i*" value

of the state variables generated in each i sample while y; is the i*" value of the state variables generated by
PSPICE.

To ensure there are no spikes or Dirac pulses in the error calculations, the Maximum Absolute Error
(MAE) has also been calculated as in eq.(26).

MAFE = max, | i — i | (26)
The results extracted from eq.(25) and eq.(26) are provided in the (Table 1) below, where both NRMSE
and MAE are increased when high overshoot occurs. This is due to high rate of change in each time constant

when the converter is in transient, whereas in steady state the values of both errors are not significantly
increased. Additionally, in DCM the NRMSE is higher compared to CCM.

Table 1: Results Produced by Normalised Root Mean Square Error

CcCM DCM
NRMSE | Max Error | NRMSE | Max Error
BOOST I, 0.0037 0.9854 0.0070 0.1367
BOOST V,,; | 0.0099 1.6676 0.4104 0.9114
BUCK I, 0.0029 2.6986 0.0127 0.0892
BUCK V, .+ 0.0029 0.2845 0.1903 0.0808

Differences between the mathematical model and the PSPICE simulations occurred mainly due to the
representation of the diode and the necessity of small constant step-times due to stiff equations. The
representation of the diode using the MTF-R method results in linear instead of curved characteristic,
Figure 3. However, PSPISE uses components with characteristics similar to the real ones. This difference
leads to the voltage drop to be different between the two models. Moreover, the representation of the diode
by the MTF-R is not capable of representing the voltage drop of a real component when it conducts, which
typically is Vg ~ 0.8 Volts.

Small constant times are needed due to the extracted differential equations, which are stiff when they
are solved by specific numerical solvers. The stiffness phenomenon, studied by Dijk & Breedveld (1991a,b),
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occurs because the values of the resistors R,,, Rq are very small and appear in the denominator of the
differential equations (Borutzky 1995). The way for this phenomenon to be avoided is to decrease the step
size significantly (max step size > 10~7) although memory problems and long simulation time may become
an issue. Nevertheless, these small differences between the model and the actual converter can be evaluated
and any impact mitigated through using appropriate control.

7 Conclusion

In this paper, a mathematical model for conventional DC-DC converters with one switch and one diode
has been extracted via Bond Graphs such that the new model can operate in both CCM and DCM and
also allow for independent operation of the switch and diode. The operation of a switch is represented by a
combination of modulated transformers MTF with binary modulation index and resistors, called the MTF-R
method.

The MTF-R method leads to fixed causality models which remain the same during commutation. Fur-
thermore, utilisation of this method allows the switches participating in the system to operate independently
without any correlation between them. Moreover, the MTF-R method allows a direct binary control input
to be implemented unlike averaged models. Causality conflict arises while the diode and the switch are
connected between them and is solved by using one additional resistive element connected in parallel with
the switch. This resistor’s value needs to be so high as not to affect the operation of the switch.

The operation of the diode has been represented through the MTF-R method by using an internal
control loop that governs the modulation of the MTF according to the difference of the effort (voltage) in
the junction where it participates.

The mathematical model, valid for both CCM and DCM, has been extracted from the Bond Graphs
using standard SCAP without any modifications. The implicit equation and a unique state space equation
of this mathematical model have been derived with all of the operation modes to be proven valid. The
operation of the model capable of representing both CCM and DCM has also been demonstrated through
an automaton diagram.

The new modelling method has been implemented in two different converter topologies, Buck and
Boost, and their behaviour is evaluated through their vector fields. Numerical results, obtained by MAT-
LAB/SIMULINK, have been compared with the simulation of the converters’ operation using PSPICE. The
differences between the new model and the PSPICE simulation results are evaluated through the Normalised
Root Mean Square Error and the Maximum Absolute Error and overall the new model performs very well.
Experimental results are also provided with the model tested on a Buck Converter topology, for both CCM
and DCM. The results show adequate accuracy.
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