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Abstract 

 

The Chiado’s fire that affected the city centre of Lisbon (Portugal) occurred on 25
th

 

August 1988 and had a significant human and environmental impact. This fire was 

considered the most significant hazard to have occurred in Lisbon city centre after the 

major earthquake of 1755. A clear signature of this fire is found in the atmospheric 

electric field data recorded at Portela meteorological station about 8 km NE from the 

site where the fire started at Chiado. Measurements were made using a Benndorf 

electrograph with a probe at 1 m height. The atmospheric electric field reached 510 V/m 

when the wind direction was coming from SW to NE, favourable to the transport of the 

smoke plume from Chiado to Portela. Such observations agree with predictions using 

Hysplit air mass trajectory modelling and have been used to estimate the smoke 

concentration to be ~0.4 mg/m
3
. It is demonstrated that atmospheric electric field 

measurements were therefore extremely sensitive to Chiado’s fire. This result is of 

particular current interest in using networks of atmospheric electric field sensors to 

complement existing optical and meteorological observations for fire monitoring. 
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1. Introduction 

 

Atmospheric electric field measurements have many applications in atmospheric 

sciences, e.g. (Matthews et al. 2010). In the literature it is usual to refer to Potential 

Gradient
1
 (PG) defined as:  

 

𝑃𝐺 =
𝐽𝑧

𝜎𝑡
.                                                                                                                                         (1) 

 

Here 𝐽𝑧 corresponds to the vertical air-Earth current density and 𝜎𝑡 to the atmospheric 

electric conductivity (AEC). Where 𝜎𝑡 is given by: 

 

𝜎𝑡 = 2𝑛𝜇𝑒,                                                                                                                                     (2) 

 

where 𝑛 is the mean bipolar ion number concentration, 𝜇 is the mean ion mobility and 𝑒 

the electronic charge. Furthermore, PG is defined to be positive in fair-weather days to 

Voeikov (1965), this means those days with cloudiness less than 0.3, wind speed less 

than 20 km/h and absence either of fog or precipitation.  

Among its different uses, sensing pollution with PG measurements is one of the most 

significant ones (Harrison 2006). Historical PG records have been used to infer 

pollution dynamics since the first reliable PG measurements were done in the mid-

nineteenth (Aplin 2012 and references therein) to late twentieth century (Silva et al. 

2014) when particulate matter measurements became abundant as part of routinely air 

quality control (Krzyzanowski and Cohen 2008). In this context, AEC was also proven 

to be very sensitive to air pollution (Retails et al. 1991; Sheftel et al. 1994). These 

studies show a decrease in AEC with the increase of air pollution; which does relate, 

through Eq. (1), to the increase of PG (Retalis and Retalis 1997; Silva et al. 2014). 

Actually, the reduction of the number of small ions caused by air pollution (Retails 

1977) is the main mechanism behind these observations as it reduces considerably AEC. 

Details on the theory will be given below. 

                                                           
1 The convention is that PG = dVI/dz, where VI is the potential difference between the Ionosphere and 

Earth’s surface and z the vertical coordinate. It is defined to be positive for fair-weather days and is 

related with the vertical component of the atmospheric electric field by Ez = PG. 
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Due to its sensitive to air pollution a possible application of PG measurements is the 

detection of fires. These hazards represent an immense threat to public health and 

impose a strong environmental impact; which makes all possible tools available to their 

monitoring of fundamental importance. In the context of atmospheric electricity, initial 

interest in fires was related with lightning from fire-clouds (Vonnegut et al. 1995). It 

was found that the plumes of hot gas, moisture, and smoke formed by the fires originate 

anomalous lightning (Lang and Rutledge 2006) and disturb significantly the local PG 

(Phalagov et al. 2009). This perturbation is caused by the action of two distinct factors 

(Gopalakrishnet al. 1996): 1) the atmospheric ions created by the burning flame 

increasing AEC and decreasing PG; 2) the smoke spread with the plume scavenge the 

atmospheric ions decreasing AEC and increasing PG. The second factor dominates over 

the first (Ippolitov et al. 2013).  

Presently, the use of PG measurements in sensing smoke plumes derived from fires is 

gaining vigour with the development of networks of PG sensors worldwide. In 

particular, in South America a PG network is operating (Tacza et al. 2014); this region 

comprises the Amazon rainforest (largest tropical rainforest in the world) and the use of 

this network could be of significant value in complementing visual and meteorological 

measurements.  

In this perspective, the urban fire that occurred in Lisbon (Portugal) on 25
th

 August 

1988, known as Chiado’s fire, represents a rare opportunity (Figure 1) to study the 

effect of smoke particles on PG, as such measurements were made in the suburbs of 

Lisbon at Portela meteorological station (Serrano et al. 2006; Silva et al. 2014). 

Chiado’s fire was considered the most significant hazard to have occurred in Lisbon city 

centre since the 1755 earthquake. It had a significant economical and human impact due 

to the destruction of many buildings, 2 people lost their lives, 73 were injured, and 

around 300 people lost their homes, while nearly 2000 lost their jobs. The fire started 

about 05:00 h (local time) at the Grandella store in Carmo Street (Chiado). Highly 

flammable and explosive materials were stored in the buildings affected by the fire, 

which contributed to its rapid spread and great magnitude. Firefighters fought this urban 

hazard until 16:00 h on 25
th

 August 1988 while smoke emissions last for several days 

(firefighters work in the zone went to 5
th

 September). In the end, Chiado’s fire affected 

about 8000 m², which corresponds to approximately 3.4% of Lisbon’s downtown.  
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Here it is discussed the impact that Chiado’s fire had on the PG at Lisbon. The analysis 

of these records is complemented with air mass trajectory modelling, using Hysplit 

model (as no aerosol measurements or satellite monitoring was available during that 

period) and the examination of local meteorological conditions to evaluate the 

sensitivity of the PG to this urban fire. 

 

2. Results and Discussion 

 

The former Portuguese Meteorological Institute (IM) recorded PG at Portela 

meteorological station (38º 46' 12'' N, 9º 07' 41'' W), located near Lisbon airport and NE 

from Chiado (38º 42' 43'' N, 9º 08' 22'' W), since 1955 until 1990, using a Benndorf 

electrograph. The electrograph was coupled to a radioactive probe to secure equality of 

potential between the sensor and the air and also improving the time response of the 

electrograph (Shigeno et al. 2001). It was installed at 1 m above ground in a cement 

base recorded the PG at Portela meteorological station (Lisbon Airport, Portugal, as 

shown in Figure 1). Its sensitivity was checked using an electronic electrometer with 

standard voltage source between ± 200 V and the same calibration procedure was used 

in all periods of operation. The analogue records of the electrograph were digitalized 

afterwards (Serrano 2010). Further details on the dataset can be found in (Serrano et al. 

2006; Silva et al. 2014). The hourly values of PG measured during 1988 are presented 

in Figure 2; the vertical green line marks the period in which Chiado’s fire occurred, on 

25
th

 August. Examination of Figure 2 shows that on the 26
th

 August the PG at Portela 

was significantly enhanced, reaching a maximum value of 510V/m at 19:00 h. Figures 

3a and 3b show the annual and summer PG histograms (in logarithmic scale) for 1988, 

respectively. This is because seasonal variations affect considerably the PG distribution. 

In Figure 3a,b it is seen that the PG distributions are not normal and are positively 

skewed (to the right), due to the predominantly positive PG values during fair-weather. 

Descriptive statistics for both distributions are presented in Table 1. The reliability of 

the 26
th

 August PG value as an outlier it is checked by the skewness of PG and by the 

statistics in Table 1. Additionally, taking into account that in the summer the mean PG 

is 75.4 V/m and standard deviation is 46.1 V/m, this means that the PG anomaly was 

above the summer mean value more than 9 times its standard deviation. It was so large 

that such a value was only exceeded on two days in that year (recorded during foul-
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weather winter days). A stronger indicator is the estimation of the probability that such 

anomalous PG have to occur. To do so the distributions in Figure 3 are fitted to t 

Location-Scale distributions (using maximum likelihood estimation) to calculate the 

probability of a value of 510 V/m to occur. The results show that the probabilities are 

low: ~0.13 % in all the year and ~0.08% in the summer.  

 

Further analysis of the PG data can be achieved by considering its average diurnal 

variation; which is due to a combination of local and global effects.  The black curve in 

Figure 4 shows the average diurnal variation in PG at Portela for 1988 having two 

maxima at approximately 08:00 h and 16:00 h (local time). This is consistent with daily 

particulate matter variations in urban environments (Harrison 2009). Plotted alongside 

is the PG data measured during the period of Chiado’s fire: in red for 25
th

 and in blue 

for 26
th

 August.  The large difference between the average diurnal PG variation and the 

one measured on 26
th

 August (which is much larger than the typical values) suggests the 

presence of an external factor driving the unusual PG changes. Therefore, such effect is 

attributed to the increase in smoke particle concentration generated by Chiado’s fire. In 

fact, assuming that the smoke from Chiado’s fire caused the large PG values over 

Portela, it is possible to estimate the concentration of smoke particles directly from the 

PG measurements through the theory developed by Harrison (2006). This is briefly 

derived from the ion balance equation: 

 

𝑞 − 𝛼𝑛2 − 𝑛𝛽𝑍 = 0,                                                                                                                    (3) 

 

where 𝑞 is the ion production rate, 𝛼 is the ion-ion recombination rate, 𝛽 is the ion-

aerosol attachment coefficient to monodisperse aerosols and 𝑍 is the corresponding 

concentration number. In the case of heavy pollution, 𝑛𝛽𝑍 ≫ 𝛼𝑛2, Eq. (3) simply 

becomes: 

 

𝑛 =
𝑞

𝛽𝑍
 .                                                                                                                                         (4)                     

 

Substituting Eq. (4) in the equation for AEC, Eq. (2), and the result included in the 

formula for the PG, Eq. (1), it is found the relation: 
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𝑃𝐺 =
𝐽𝑧𝛽𝑍

2𝑞𝜇𝑒
 .                                                                                                                                  (5) 

 

It is possible to substitute 𝑍 in Eq. (5) by smoke mass concentration, 𝑀, through the 

relation, 𝑍 = 𝑀/𝑚, with 𝑚 the mean mass of a single particle. Thus it is obtained the 

relationship: 

 

𝑃𝐺 =
𝐽𝑧𝛽

2𝑞𝜇𝑒𝑚
𝑀.                                                                                                                           (6) 

 

This equation links the 𝑃𝐺 directly to 𝑀. Finally, the measured 𝑃𝐺 is written as the sum 

of two components: the one caused by the action of smoke particles, Eq. (6), and the 

one conforming to clean air, 𝑃𝐺0. This results in: 

 

𝑃𝐺 =
𝐽𝑧𝛽

2𝑞𝜇𝑒𝑚
𝑀 + 𝑃𝐺0.                                                                                                              (7) 

 

Substituting the coefficient of 𝑀 in Eq. (7) by 𝐶 and isolating 𝑀, the smoke 

concentration can be retrieved as a function of 𝑃𝐺 and 𝑃𝐺0: 

 

𝑀 = 𝐶−1(𝑃𝐺 − 𝑃𝐺0).                                                                                                                 (8) 

 

The constant 𝐶 was estimated by Harrison (2006) for Kew (London) to be ~1082.6 

(V/m)/(mg/m
3
). Using Eq. (8) it is possible to make a reasonable estimation of 𝑀 at the 

PG maximum (510 V/m). The mean PG values for the Sundays of August 1988 is used 

as corresponding to clean air, 𝑃𝐺0 ~ 53 V/m. Sundays were chosen because they are the 

less polluted days of the week (Silva et al. 2014). The estimation indicates a maximum 

smoke concentration of M ~ 0.4 mg/m
3
 at Portela (8 km from the origin of the fire) 

which is consistent with high smoke concentration scenario as expected for this fire. It 

is important to bear in mind that this is an indicative value. Moreover, it is expected that 

the value of 𝐶 for Lisbon might not differ significantly from London’s, as both cases 

consider a high pollution scenario. Finally, using Eq. (8) a simple estimation for the 

threshold smoke concentration needed for a fire to be detected by PG measurements 



8 

would be around ~0.2 mg/m
3
; this assumes that a PG ~ 300 V/m is anomalous and 𝑃𝐺0 

~ 53 V/m (the one used above). 

 

 

2.1 Meteorological considerations 

 

PG is drastically affected by local weather conditions.  It is therefore important to 

determine whether the anomalous PG values measured on 26
th

 August were in fact due 

to the increase in smoke concentration, caused by the fire, or resulted from local 

meteorological factors.  Meteorological parameters at Portela meteorological station 

(the same location of PG records) were obtained from NNCD Climate Data Online 

website supported by NOAA. These include visibility, wind speed and direction, air 

temperature, and dew point (used to calculate relative humidity). Figure 5 shows the 

time series of the meteorological variables over Lisbon for the period 25
th

 and 26
th

 

August 1988: (a) PG; (b) visibility; (c) wind speed; (d) wind direction; (e) relative 

humidity (RH).  These demonstrate that during the period of the fire there were fair-

weather conditions, according to Voeikov (1965). Some high cloud (above 5km) was 

present on 26
th

 and 27
th

, though. Such clouds, due to their high altitude (well above the 

boundary layer) cannot account for the large PG values measured at the time of the fire. 

The synoptic situation (not shown) during this period was characterized by a high-

pressure system over Portugal with mostly clear skies and no precipitation 

corresponding to quiet atmospheric conditions. Such conditions in summer are 

characterized by intense solar radiation that causes significant air convection. It is 

expected that the smoke plume due to its high temperature would have been injected 

well above the ground, but air convention would cause vertical dispersion of smoke 

particles. These would reach the ground during the travel time from Chiado to Portela. 

In fact, the increased smoke particle concentration from the fire could last for several 

days.  

 

It can also be seen in Figures 5b and 5e that visibility and RH have values that exclude 

the possibility of fog formation; this is important because fogs tend to increase the PG 

(Piper and Bennett 2012) and could be a possible cause for the anomalous PG discussed 

here. Besides, to account for the smoke plume transport from the fire’s site to the PG 

measurement location, it is important to consider the wind direction on 25
th

 and 26
th
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August, Figure 5d.  This shows that on the 25
th

 the wind was mainly coming from the 

north, 360º; whereas on the 26
th

 the wind direction started coming from east and then 

gradually from southwest, 240º. This process took ~6 hours to stabilize (the black arrow 

marks the stabilizing moment) and it is clearly seen in Figure 6 (withe arrow marks the 

wind rotation). After this it is observed that the PG starts to increase, up to its peak 

value ~3 hours later, Figure 5a. The smoke plume took roughly ~1 hour to travel from 

the fire’s site to the measurement location. This is estimated dividing the distance from 

Chiado to Portela, 8 km, by an average wind velocity of ~2 m/s (Figure 5c). This means 

that there is a delay of ~2 hours between the plume arrival and the PG maximum. This 

delay is attributed to the time that smoke particles took to scavenge enough atmospheric 

ions to cause the significant decrease in AEC and consequently the anomalous increase 

in the PG. A simple estimation can be made taking into account that the lifetime of 

atmospheric ions in highly polluted air is ~20 s (Retails 1991). Assuming that ion 

concentration before the fire was ~500 ions/cm
3 

(Harrison and Carslaw 2003) an 

increase of the PG from a typical ~100 V/m to the anomalous ~500 V/m would imply, 

through Eq. (2), a reduction in atmospheric ions by ~400 ions/cm
3
 (assuming that Jz 

remained constant and the ion mobility did not change). Multiplying this value by the 

ion life time an estimation of the time needed for the process of ion scavenging to occur 

is calculate, ~8000 s, which corresponds to approximately 2 hours. Adding this 

estimation with the time for the smoke plume to travel gives ~3 hours, consistent with 

the observations. From the evolution of PG and visibility, Figures 5a and 5b, it can be 

seen that there was a reduction in the visibility, consistent with the transport of the 

plume to Portela station.  

 

 

2.2 Air mass trajectory modelling 

 

Air mass trajectories were calculated using the Hysplit-4 model for air masses that 

started at the fire site at 05:00 h on the 25
th

 of August 1988 and ended at 20:00 h on the 

26
th

. Despite the fact that the fire ended on 16:00 h of 25
th

 of August smoke emission 

remained during several days after (firefighters worked in the zone until 5
th

 September 

as mentioned above). In fact, meteorological conditions also favoured a late detection of 

the smoke plume by the PG in Portela. From Figure 7 it is possible to see the time 

evolution of the smoke particle trajectories between the fire site (marked with red pin) 



10 

and the location where the PG was measured (pointed with a yellow pin). It is seen that 

the transport of the smoke plume evolves in a clockwise rotation from SW to the NE, 

and is estimated to pass over the PG measurement site at Portela between 17:00 h and 

18:00 h (consistent with the minimum in visibility). Note also that this trajectory started 

at the source location at 16:00 h, which gives an approximately 1 hour to get to Portela, 

corroborating the estimation done before. The Hysplit trajectory shown in Figure 7 is 

also consistent with the change in wind direction shown in Figure 6, with the wind 

blowing from the fire site to the SW on 25
th

 and to the NE (in the Portela direction) on 

26
th

 August. Additionally, using the Hysplit dispersion model, which for visualization 

effect can be more interesting, it was possible to simulate the smoke plume travelling 

path for 25
th

 and 26
th

 August (Figure 8). In Figure 8a at 17:00 h on 25
th

, it is observed 

that the main concentration of the smoke plume is SW of Portela. By 07:00 h on 26
th

, 

Figure 8b, the smoke plume had spread W/NW, and by 18:30 h was over Portela region, 

Figure 8c. This effectively demonstrates that when the maximum in PG occurred, the 

main concentration of the smoke plume was above Portela. This approach was used to 

complement the trajectory model with improved visualization of the dispersion of the 

smoke particles by introducing information about the type of deposition (dry 

deposition), density (1g/cc) and particle diameter (0.1 µm), and approximately 30 hours 

of emission (counting not only the fire duration but also the period when smoke was 

still being released). The density was chosen to be consistent with (Harrison 2006). 

Finally, the results support the argument that during the late afternoon of 26
th

 August a 

smoke plume from Chiado’s fire passed over Portela causing the observed anomalously 

large PG values.  

 

 

3. Conclusions 

 

These results suggest that the Chiado’s fire left a clear signature on the PG recorded at 

Portela. During the late afternoon of 26
th

 August 1988, one day after the fire, the PG 

increased to 510 V/m, which is an anomalously high value in comparison to the annual 

and summer distributions of PG at that site. This value is identified as an evident outlier 

with a reduced probability to occur, ~0.08 % in the 1988 summer. The analysis of wind 

speed and direction combined with calculations of forward trajectories using the Hysplit 

model enabled the assessment of the temporal and spatial evolution of the smoke plume. 
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This analysis shows that the large PG values coincide with the approximate arrival time 

of the smoke plume at Portela. Finally, the analysis of the meteorological and synoptic 

conditions confirms that the anomaly of the PG does not result from meteorological 

effects. It is therefore likely that not only were the large PG values measured at Portela 

a result of the smoke plume from the Chiado’s fire, but also, that measurements of PG 

can be used as a complementary method for fire detection, acting as a smoke proxy. 

Future application of this finding may arise from networks of PG sensors, covering 

large areas, to complement other visual and meteorological variables with PG 

measurements in fire detection. It would enable the identification of the region where a 

fire is starting and the perception of the directions that the smoke plume is taking. Such 

information could be of determinant importance for fire hazard mitigation.  
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Table 1 Mean, median, standard deviation, skewness, lower whisker, lower adjacent 

value, upper whisker and upper adjacent value for all year of 1988 (Annual) and 

Summer of 1988 (Summer). The last four statistical parameters were calculated trough 

adjusted boxplot method (Vanderviere and Huber, 2004). 

 

 Annual Summer 

Mean (V/m) 88.9 75.4 

Median (V/m) 80.0 70.0 

Standard deviation (V/m) 58.2 46.1 

Skewness 1.76 1.92 

Lower whisker (V/m) 0.0 10.0 

Lower adjacent value (V/m) 50.0 49.0 

Upper whisker (V/m) 110.0 90.0 

Upper adjacent value (V/m) 160.0 150.0 
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Figure 1, Image of the Chiado’s fire that took place at Lisbon city centre; courtesy of 

the Municipal Archive of Lisbon. 

 

Figure 2, PG data measured at Portela during 1988 (the green line denotes the PG peak 

of Chiado’s fire on 26
th

 August). 

 

Figure 3, a) distribution of PG values for all the year of 1988; b) distribution of PG 

values for the summer of 1988. The arrows point to the anomalous PG value in study. 

 

Figure 4, Hourly mean behaviour of the PG at Portela calculated from all year of 1988 

(black curve), PG during 25
th

 (red curve) and 26
th

 of August 1988 (blue curve). 

 

Figure 5, Meteorological conditions from 25
th

 and 26
th

 of August 1988 for Portela 

meteorological station (Lisbon airport): a) Potential Gradient; b) Visibility; c) Wind 

Speed; d) Wind Direction; e) Relative Humidity (RH).  The vertical lines denote the 

start of the fire (first green line) and the PG peak hour (second green line). The 

horizontal red dash line in c) marks the fair-weather limit for wind speed, 6 m/s, 

according to Voeikov (1965). The black arrow in d) marks the moment when the smoke 

plume started travelling to Portela. 

 

Figure 6, Rose wind representation in Portela during 1988 (a 3D perspective is used). 

The white arrow marks wind rotation in time from 25
th

 of August at 07:00 up to 26
th

 of 

August at 18:00 (UTC). These moments are marked in the figure. The wind speed 

varies according to 4 colours increasing its magnitude from light blue, dark blue, green 

and yellow. The increasing radius represents an increase in the observations. The 

Chiado’s fire is marked with red pin and Portela station marked with a yellow one. 

 

Figure 7, Forward trajectories calculated using Hysplit-4 for air masses at 750 m 

starting at 05:00 h 25
th

 August (first white trajectory) with a new trajectory created each 
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5 hours (blue trajectories) until 16:00 h 26
th

 August (last black trajectory). The Chiado’s 

fire is marked with red pin and Portela station marked with a yellow one. NOAA Air 

Resources Laboratory. 

 

Figure 8, Model projections of the plume spread from Chiado’s fire: a) 25
th

 August, 

17:00 h; b) 26
th

 August, 07:00 h; c) 26
th

 August, 18:30 h; The smoke particle 

concentration varies according to 4 colours increasing its magnitude from light blue, to 

dark blue, green and yellow. The Chiado’s fire is marked with red pin and Portela 

station marked with a yellow one. NOAA Air Resources Laboratory. 
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Figure 8b  
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Figure 8c 
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th
 August 

18:30 h 


