
Acceleration and visualization of Dynamic
Network Optimization

Conference or Workshop Item

Accepted Version

Ye, Y., Cadenas Medina, J. and Megson, G. (2014)
Acceleration and visualization of Dynamic Network
Optimization. In: International Conference on Computing,
Networking and Communications (ICNC), 3-6 Feb. 2014,
Honolulu, HI, pp. 726-730. Available at
http://centaur.reading.ac.uk/39918/

It is advisable to refer to the publisher’s version if you intend to cite from the
work. See Guidance on citing .
Published version at: http://dx.doi.org/10.1109/ICCNC.2014.6785426

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement .

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://centaur.reading.ac.uk/licence

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

Reading’s research outputs online

http://www.reading.ac.uk/centaur

__

1 Project partly funded by Knowledge Transfer Partnership (KTP), between the University of Reading and Arieso Ltd

Acceleration and Visualization of Dynamic Network

Optimization

Yuanzhou Ye
φ

, Oswaldo Cadenas
#
, Graham Megson

*

#
School of Systems Engineering, University of Reading / (Arieso Ltd

1
), Reading, United Kingdom

*
School of Electronics and Computer Science, University of Westminster, London, United Kingdom

φ
Symantec Corp., 350 Brook Drive, Green Park, Reading, United Kingdom

Abstract - With the emerging prevalence of smart phones and 4G

LTE networks, the demand for faster-better-cheaper mobile

services anytime and anywhere is ever growing. The Dynamic

Network Optimization (DNO) concept emerged as a solution that

optimally and continuously tunes the network settings, in

response to varying network conditions and subscriber needs.

Yet, the DNO realization is still at infancy, largely hindered by

the bottleneck of the lengthy optimization runtime. This paper

presents the design and prototype of a novel cloud based parallel

solution that further enhances the scalability of our prior work

on various parallel solutions that accelerate network optimization

algorithms. The solution aims to satisfy the high performance

required by DNO, preliminarily on a sub-hourly basis. The paper

subsequently visualizes a design and a full cycle of a DNO system.

A set of potential solutions to large network and real-time DNO

are also proposed. Overall, this work creates a breakthrough

towards the realization of DNO.

 Keywords: Dynamic Network Optimization, Self-Organizing

Network, Self-Optimization, Mobile Network Optimization

Algorithms, Cloud Parallelization, Inter Process Communication

I. INTRODUCTION

The past 5 years have witnessed an emerging prevalence of

smart phones, tablets and 4G LTE networks. Mobile network

operators can no longer afford to be outpaced by the varying

demands presented by subscribers. The tightened budgets as

well as flattened mobile penetration rates make it essential for

service providers to operate their networks as efficiently as

possible at all times. They have been pursuing aggressive tools

for automated Mobile Network Optimization (MNO) that

optimally determines the network settings such as base station

transmit power and azimuth that best serve the demand within

budgetary constraints [1]. Nevertheless, MNO is classed as a

Non-deterministic Polynomial-time (NP)-hard combinatorial

optimization problem [2] that is highly compute and data

intensive. Consequently, timescales associated with MNO are

commonly in tens of hours, with the ever-growing network

complexity. MNO is largely static, yet network traffic exhibits

significant spatial and temporal variations, for instance, the

commute-work-home routines of most subscribers. This

fundamental limitation has inspired the Dynamic Network

Optimization (DNO) concept to emerge that aims to

continuously and optimally configure the network settings to

adapt to changing network conditions and demands [3][4].

The DNO development, however, is still at infancy, largely

hindered by the lengthy optimization runtime. Likewise, the

key functionality “self-optimization” of the Self-Organizing

Network (SON) technology [5] faces the same bottleneck. Our

long-term goal is to realize DNO on a sub-hourly basis,

implying that the optimization phase of a DNO cycle ought to

complete ideally within a quarter of an hour regardless of the

network size and complexity. Our prior work [6][7] has

designed and implemented scalable distributed parallel

solutions for two core MNO algorithms that achieved

substantial speed gain at 7.5 and 14.5 on a 16-core distributed

system. GEOson (originally known as ariesoACP) from

Arieso Ltd [8], the market-leading automated MNO product,

serves as the testbed for acceleration in our work. Yet, given a

large and loaded network such as central London, acceleration

of optimization from a scale of tens of hours to sub-hour is

challenging and would require an equally massive distributed

system, presumably upon hundreds of thousands of

processors. For network operators, such a system is neither

cost-effective nor easily manageable. The first part of this

paper further addresses the scalability of the distributed

system and enhances the efficiency and robustness of the

Inter-Process Communication mechanisms. The second part

visualizes a preliminary design and a full cycle of a DNO

system alongside various approaches to realize it.

II. METHODOLOGIES AND TECHNOLOGIES

A. Acceleration of Mobile Network Optimization Algorithms

 As an NP-hard multiple-objective constrained combinatorial

optimization problem, MNO problems exhibit high

complexity that requires applying iterative heuristic

algorithms. Our prior work has managed to accelerate two

core MNO algorithms, Intelligent MNO Algorithm [6] that is

an iterative heuristic algorithm with intelligent learning

capabilities and greedy MNO algorithm [7] that only begins

upon the completion of the “Intelligent” algorithm. We

proposed and implemented novel predictive binary or greedy

tree patterns to expose the parallelism. The parallel designs

Fig. 1. Diagram of a Simple Instance of the Distributed Parallel System

are deployed on a distributed system that adopts the server-

client model utilizing the computer cluster. Fig. 1 presents a

simple instance of such a distributed system. The parallel

controller along with a shared folder is hosted by the server

node whilst optimizers reside on the client nodes. The IPC

mechanism is via Windows sockets, and PsExec utility serves

as the main technique for remote process control. The cluster

based system manifests good scalability, but it becomes costly

and hardly deployable in the context of tens of thousands of

nodes for DNO. A desirable system would be one that can

scale on demand that is to scale up to its full potential for

large networks and scale down to fit small and medium ones.

Thanks to high scalability and elasticity, Software as a service

(SaaS) [9] based cloud platform stands out as a perfect match.

B. Cloud Parallelization

A cloud based parallel solution exhibits considerable

beneficial characteristics. From the end users’ viewpoint,

MNO tools can be delivered as a service and accessible via a

thin client interface such as a web browser through the

internet, which is much simplified as opposed to the physical

software based solution. The dynamic nature of cloud bridges

the gap between the relatively static optimization process and

the dynamics needed for DNO. By means of a unified web

application, one can establish a full cycle of DNO that

network operators feed traffic and network data into the cloud

and the MNO service performs optimization jobs behind the

scenes and suggests optimal network configurations post the

optimization. Further, deployment and initialization of MNO

tools can be simplified. At present, users have to deploy the

optimization software on each node of the distributed system

and a ParaController process remotely controls the launch of

all optimizers. These procedures produce high overhead, and

hence it is beneficial to redesign and pre-install the MNO

processes as a service. Moreover, the cloud solution possesses

fault tolerance and high availability as a faulty node can be

easily replaced by a failover node in the cloud such that it

allows speedy recovery.

However, we are facing tremendous challenges in terms of

the migration of our MNO applications into the cloud. The

first is how to implement MNO processes as a service

whereby it will manage the start and stop of optimizer

processes. The second is how to improve the IPC mechanism

since Windows sockets may not be as scalable and reliable

and how to address the limitations placed by the single-

controller system when the system size grows. The third is

how to support parallel file access as shared folders and files

are being used to retain certain network data for replication

but may not be efficient for a large system.

III. DESIGN AND PROTOTYPE OF THE CLOUD PARALLEL SOLUTION

This section illustrates the design and prototype of the cloud

parallel solution. Since the MNO algorithms were written in

C++, the software development language remains C++.

A. System Deployment and Initialization

 To migrate our MNO applications into the cloud, a first step

is to simplify the early deployment and initialization. A new

MNO process is created as a Windows service that is

effectively a shell process. The optimizer binary is still

required to be pre-deployed in a fixed folder location on each

compute node as before. However, this deployment only

needs to occur once and the main simplification is that the

optimizer executable no longer needs to be launched

remotely. The new MNO service is configured to

automatically run when the operating system starts, and it

invokes a pool of local optimizer processes whose number

defaults to the number of cores on the cloud node. By using a

local process pool, the overhead for remote process control is

eliminated and there is no need for users to specify the remote

location of the optimizer binaries, and the ParaController

process is now freed to mainly handle the synchronization

among optimizers. The optimizer process is redesigned to

wait while consuming little computing resources such as CPU

until optimization jobs have been requested by a user.

B. Multi-ParaController Design

 In the world of cloud, as the system size is constantly

growing, IPC plays a key role to high performance. A closer

look at the single-controller design by Fig.1 reveals

inefficiency when talking to an enormous amount of

optimizers across the network. Every IPC call between the

ParaController and optimizers is a remote call across machine

boundaries and presents higher cost. A solution is to introduce

multiple ParaControllers whilst maintaining a Main-

ParaController. Initially a viable approach is to have a

ParaController per compute node since the communication

becomes solely local and ParaController itself is a lightweight

process. At a later stage, we may consider an enhanced

solution as to have one controller per optimizer compute

group that comprises closely positioned nodes. Diagram of a

basic multi-controller based cloud parallel system is given by

Fig. 2. Research has been carried out in search of a more

efficient and secure IPC mechanism to replace sockets and

Component Object Model (COM) and Distributed COM

(DCOM) technologies are chosen, also as shown in Fig. 2.

C. Redesign of Inter-Process Communications Mechanism

 COM is a standard for software component reutilization [10].

Optimizer 0

Optimizer 2

ParaController

Socket Link

Optimizer 1 Optimizer 3

Fig. 2. Diagram of a Multi-Controller based Cloud Parallel System

As our MNO algorithms are implemented in C++, COM and

DCOM are chosen given its better compatibility and

supportability through .NET COM Interop if we migrate to

.NET later. An important characteristic of COM is its location

transparency to applications that the client and server can

establish IPC irrespective of their relative locations.

ParaController, Optimizer and the new MainController

executables are re-implemented as COM EXE servers whose

COM diagrams are in Fig. 3. Note that IUnknown is an

interface that all COM components must implement. The

ParaController COM component implements IParallelControl

interface that includes the following methods:

HRESULT Init([in] networkConfigXML, [in] paraControllerID):

is called by MainController and, as part of the initialization, a

cache of ParaController COM objects are created.

HRESULT NotifySolutionAccepted([out] costData): is called

twice by an optimizer to accept a solution, one to its owning

ParaController and in turn another to the MainController.
HRESULT CheckSolutionAccepted([out] hasSolutionAccepted,

[out] costData): requests all ParaControllers to notify related

optimizers to check whether a solution of current iteration is

accepted. A pre-selection of the best solution is performed

locally to a ParaController and results are returned to the

MainController to choose the overall best one for replication.

HRESULT Stop(): stops the optimization of all optimizers.

HRESULT Get_Result([out] optResultXML): returns

optimization result (network configurations, Key Performance

Indicators (KPIs) and such) in XML format to the cloud client.

The IMainControl interface contains a set of wrapper methods

for Stop, Init and NotifySolutionAccepted with almost

identical signatures as on IParallelControl. The optimizer

COM component implements a set of interfaces, namely IStop

and IParallelComms whose functionalities basically match the

request-reply pairs in the original IPC mechanism of our

distributed solution [6].

HRESULT InitOptimization([in] networkConfigXML, [in]
optimizerID): assigns a unique optimizerID to each optimizer

who initializes the network and kicks off optimization.

HRESULT CheckSolutionAccepted([out] hasSolutionAccepted,

IUnknown

ParaControllerIParallelControl

IUnknown

Optimizer

IParallelComms

IStop

IUnknown

MainControllerIMainControl

Fig. 3. COM Diagram of Controller and Optimizer Components (coclasses)

 [out] costData): requests all optimizers, to check whether a

solution is accepted. If the answer is yes, the corresponding

optimizer sends costData values back to ParaController.

HRESULT WriteReplicationFile(): is called by the

MainController to the selected ParaController that in turn calls

the best optimizer.

HRESULT ReadReplicationFile(): notifies non-best

ParaControllers to request their managed optimizers to

perform replication of the best network configurations.

At a glance, it appears that more communications are

involved but in essence remote calls are significantly reduced

and the system becomes more manageable and hence robust.

D. Parallel File Access Enhancement

Our cloud system uses the Network File System (NFS) to

store shared data that encompasses a file for replication of

network configurations and an optimization result file. These

files do not support concurrent writing and reading access that

could become a bottleneck for scalability of cloud and High-

Performance Computing (HPC) cloud platforms. Also, a

faulty file server node could easily cause data loss and system

paralysation. An option is to introduce multiple copies of the

files over the network, in place of a centralized storage

location. In such a manner, optimizers can read from or write

to files stored on nodes that are physically closer, and data loss

can be mitigated at a light cost of data duplication. Extensive

research discovers that Parallel File System (PFS) techniques

such as IBM General PFS (GPFS) [12] could be employed to

our design. Distributed PFS stripes chunks of data from an

individual file over multiple file server nodes such that

different data chunks can be read and written in parallel.

Hence, our cloud system can output optimization outcomes

from the result files frequently to the client interface, without

blocking optimizers from writing the latest statistics into the

same result files. This results in higher data throughput.

Optimizer
2

Optimizer 3 Optimizer 1
ParaController

1

ParaController
2

Optimizer 6 Optimizer 7

Optimizer 11

Optimizer 10

Optimizer 5 Optimizer 8

Optimizer 4 Optimizer 9

MainController

Optimizer 0

DCOM DCOM

COM COM

Fig. 4. A Basic Design of a DNO system

IV. VISUALIZATION OF DYNAMIC NETWORK OPTIMIZATION

The demand for high data rates has driven the infrastructure

of certain 3G and emerging 4G LTE networks toward micro-

cellular structures. This introduces intrinsically greater traffic

fluctuations than traditional voice traffic. DNO can address

the dynamic demands as well as specific events such as a big

football match or a traffic jam where a significant spike in

mobile usages will be seen in a concentrated area. We hereby

visualize a holistic DNO system that comprises three essential

components, namely mobile geo-locator, fast MNO platform

and network configurator, as depicted in Fig 4. Our research

thus far has been focusing upon the design and realization of a

fast parallel MNO platform. We will next explain the roles of

the other two DNO components.

A. Mobile Geo-Locator

 The main purpose of mobile geo-locator is to locate real-

time mobile traffic and thereby identify where the problem

cells are. Its core technique is based upon Per Call

Measurement Data (PCMD) [13]. With such location

intelligence, our fast MNO platform can score each cell on its

performance by calculating the KPIs or on its voice or data

traffic load. Subsequently, optimization starts with the

underperformed cells or cells with heaviest load, thereby

intelligently accelerating the optimization process to reach

KPI targets of the overall network. AriesoGEO platform

developed by Arieso Ltd [11] has a proprietary algorithm that

reads in raw PCMD records, parses and processes them and

outputs the best estimated locations. The output location file

is in a format that is recognizable by and can be seamlessly

loaded into our research testbed AriesoACP platform.

B. Automatic Network Configurator

The network configurator component is responsible for

automatically and remotely adjusting network configurations

suggested by our optimization platform. It matches self-

optimization functionalities of SON that aim to minimize

human interventions and adjust network parameters on a

regular basis. This automation becomes viable with the

deployment of programmable base station antennas. KWM

programmable antenna system is one of the available systems.

And antenna management features are being integrated into

O&M platforms of 4G LTE networks.

By remotely updating the azimuth, tilt and power output of

antennas on a regular basis, the real benefits are that the

network coverage topology is dynamically optimized to

balance the traffic between congested base stations and

underutilized ones, which translates into higher QoS. We will

need to standardize an API that can support various vendors.

C. Dynamic Network Optimization on a Sub-Hourly Basis

For small and relatively medium sized networks and

specific events such as major traffic congestion or a natural

disaster, ideally DNO ought to be performed at a margin of 15

minutes. Given a standard dual-core (at 2.16GHz) computer,

the mobile geo-locator can locate 120, 000 PCMD records in

approximately a 2-minute span. The figure is customarily

sufficient for the number of mobile subscribers simultaneously

using various services in central areas of a busy city. The

timing consumed by the optimization phase is the determining

factor. If we define small and medium sized networks as of

less than 30 cell sites, an 11-minute optimization run may be

achieved with a set of arrangements:

First, in the course of initialization, KPI calculations are

performed per cell using the real-time traffic map from the

geo-locator. Each cell is scored and problem cells will be

optimized first alongside their neighbouring cells. In such a

fashion, the optimization algorithms tend to converge swifter,

since the problem cells exhibit more room for optimization.

Second, an asynchronous distributed and multi-threaded

hybrid parallel solution based upon our prior work can be

applied to boost the speed performance.

Third, the 11-minute is not a concern for event driven DNO

as it is performed on a concentrated area where a major traffic

jam or sports event resides, whereas for a 30-site

geographically sparsely distributed network special

arrangements are required. We can decompose the network

into small sized ones since radio coverage areas that are far

apart have little correlation (e.g. interference) with each other.

The partitioned sub-networks can be optimized in parallel and

individual results can be aggregated in the end. By partitioning

with a carefully selected interference-free distance, a speed

gain required by each sub-network is relatively smaller.

Consequently, the original problem is transformed into a

simpler problem manageable by a few hundreds of nodes.

To guarantee a fixed optimization run-time, a timer can also

be set to terminate the optimization precisely after 11 minutes.

The remaining 2-minute span will be allocated for the network

configurator operations that apply the optimized network

configurations to the real network. Remote configurations via

electronic means can be accomplished swiftly, yet a fast

interface or transport protocol needs to be implemented.

V. POTENTIAL SOLUTIONS TO LARGE NETWORKS AND REAL-

TIME DNO

Due to the enormous data intensity, fast DNO for a large

network such as London with over 400 cell sites or real-time

DNO may be unviable without a “super” HPC cloud system as

of today. Nonetheless, in the long run, there are a collection of

approaches that can help realizing real-time DNO:

Fast MNO
Platform

Mobile
Geo-Locator

Live
Network

Network

Configurator

Again the first is the aforementioned network

decomposition techniques that are particularly beneficial to

large networks. The scheme to partition a network largely

replies upon the shape and terrain of the area under

optimization. An interference-free distance can be computed

upon the maximal range which a transmitter can interference

with a receiver and an empirical study [14] suggests a 2-

kilometer distance. The more parallel zones we can partition,

the more speed gain we can obtain.

The second is to pre-compute by pattern modelling and store

possible solutions in response to various network scenarios or

“profiles” into a lookup table or database where the best

network configurations could be fetched for a given set of

network patterns and KPI targets. The lookup time could be

short but a sound algorithm that can find the best match is yet

to be designed. In order to adapt to minor changes in the

network conditions, an issue could be that the lookup table

needs to be populated with a large volume of data, as to store

every possible pre-calculated solution. This might be

addressable by the big data related technologies.

An alternative to the above approach is to store selected

solutions on the fly. In a sense, this approach is network event

driven where the notion of network events refers to not only

specific events such as a large sports event but also regular

events such as traffic variations over various areas throughout

a day. For example, once a DNO cycle is performed for a

typical event that the mobile traffic shifts from residential

areas in the evening into commercial districts during the office

hours, its optimized network configurations will be stored and

recommended as a good match when a similar event of the

network surfaces. The key is its learning capabilities that may

become achievable with the assistance of the artificial neural

network and machine learning technologies. The difficulty

would be in choosing suitable neural network architecture as

well as the type of neuron and the training algorithm. Once the

network is properly trained and can learn from past DNO runs

with diverse network conditions and patterns, it ought to

swiftly produce good solutions even for those scenarios that

the network has not been trained for.

The last but crucial approach is the adoption of state-of-the-

art HPC platforms that can provide sufficient yet affordable

parallel computing power. A candidate might be the latest

GPGPUs such as Compute Unified Device Architecture

(CUDA) by NVIDIA. GPGPUs are much more powerful than

conventional CPUs and cost reasonably. Platforms like CUDA

can provide tens or hundreds of cores, and hence much more

parallel execution pipelines that can concurrently perform

tasks of an optimizer per core. The main issue is that many

efforts will be required to migrate our C++ implemented

optimization algorithms into a varied language and perhaps a

different operating system supported by GPGPUs. The overall

speed performance is expected to be significantly improved.

VI. CONCLUSION

 The design of a novel cloud parallel solution is proposed and

prototyped, and it can scale up in ease to satisfy the high

performance requirement of DNO. In comparison with our

prior work, the new solution delivers optimization as a service

and simplifies the client interface and deployment. The

prototype can be tested on a large-scale private cloud platform

if our budget allows in the future. To achieve better scalability

and reliability than Windows Sockets, a new COM/DCOM

based IPC mechanism is introduced and is fully compatible

with our C++ backed optimization algorithms. We also

present a novel Multi-ParaController design for more efficient

IPC in the cloud.

 Also proposed is a system design of a full DNO cycle that

consists of mobile geo-locator, fast MNO platform and

network configurator components. To cater for the surging

data demands pressed by the uptake of smart phones and

emerging 4G LTE networks, we visualize a realistic sub-

hourly DNO cycle in order to dynamically adjust the network

to meet changing demands and network conditions. To realize

a fixed 15-minute DNO cycle, a number of solutions are

suggested: optimization is made more intelligent by starting

with “problem” cells and network decomposition schemes are

optionally employed depending upon the network size and

complexity. To look forward upon large network and real-

time DNO, potential solutions are discussed such as pre-

computed network solutions, pattern matching using artificial

neural network techniques and migration to HPC platform,

just to name a few. Overall, this is a milestone towards the

realization of DNO as well as fast self-optimization for SON.

REFERENCES

[1] J. Laiho, A. Wacker and T. Novosad, Radio Network Planning and

Optimisation for UMTS, Wiley, 2006, Ch. 8
[2] D. S. Hochba, “Approximation Algorithms for NP-Hard Problems”, ACM

SIGACT Newsletter, Vol. 28 Issue 2, pp. 40 – 52, Jun. 1997

[3] S.C.Borst, A. Buvaneswari, "Dynamic Optimization in Future Cellular
Networks", Bell Labs Tech. J., 10(2), 2005, pp. 99–119

[4] L. M. Drabeck et al., “Network Optimization Trials that Prove a Vendor-

Independent Methodology Using Ocelot”, Bell Labs Tech. J., 2005
[5] 3GPP, “Technical Specification Group Radio Access Network; Evolved

Universal Terrestrial Radio Access (E-UTRA); Self-configuring and self-

optimizing network use cases and solutions”, Technical Report TR 36.331
[6] Y. Ye, G. Megson and O. Cadenas, “Asynchronous Distributed

Parallelization of Mobile Network Optimization Algorithms”, Proc. Global

Wireless Summit, Atlantic City, USA, 2013
[7] Y. Ye, O. Cadenas and G. Megson, “Distributed Parallelization of Greedy

Mobile Network Optimization Algorithms”, IEEE 21st International

Conference on Software, Telecoms and Computer Networks, 2013 (Accepted)
[8] Brief description of GEOson, Arieso Ltd, [Online],

WWW. on http://www.arieso.com/products/applications/geo-son/

[9] W. Chou, “Web Services: Software-as-a-Service (SaaS), Communication,
and Beyond”, IEEE Congress on Services Part II, 2008

[10] R. Grimes, A. Stockton, Beginning Atl Com Programming, Wrox Press,

1998, Ch. 1
[11] AriesoGEO platform, Arieso Ltd, [Online],

WWW. on http://www.arieso.com/products/platform/

[12] F. Schmuck, R. Haskin, "GPFS: A Shared-Disk File System for Large
Computing Clusters", Proc. the FAST'02 Conference on File and Storage

Technologies, pp. 231–244, 2002

[13] M. J. Flanagan, L. M. Drabeck, L. A. Cohen, “Wireless network analysis
using per call measurement data”, Bell Labs Technical Journal, Vol. 11, Issue

4, pp. 307–313, 2007

[14] S. E. Elayoubi, “On the Parallelization of Radio Network Planning

Tools”, Vehicular Technology Conference, pp. 951-954, 2007

