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Abstract - With the emerging prevalence of smart phones and 4G 

LTE networks, the demand for faster-better-cheaper mobile 

services anytime and anywhere is ever growing. The Dynamic 

Network Optimization (DNO) concept emerged as a solution that 

optimally and continuously tunes the network settings, in 

response to varying network conditions and subscriber needs. 

Yet, the DNO realization is still at infancy, largely hindered by 

the bottleneck of the lengthy optimization runtime. This paper 

presents the design and prototype of a novel cloud based parallel 

solution that further enhances the scalability of our prior work 

on various parallel solutions that accelerate network optimization 

algorithms. The solution aims to satisfy the high performance 

required by DNO, preliminarily on a sub-hourly basis. The paper 

subsequently visualizes a design and a full cycle of a DNO system. 

A set of potential solutions to large network and real-time DNO 

are also proposed. Overall, this work creates a breakthrough 

towards the realization of DNO.   

  
 Keywords: Dynamic Network Optimization, Self-Organizing 

Network, Self-Optimization, Mobile Network Optimization 

Algorithms, Cloud Parallelization, Inter Process Communication 

I. INTRODUCTION 

The past 5 years have witnessed an emerging prevalence of 

smart phones, tablets and 4G LTE networks. Mobile network 

operators can no longer afford to be outpaced by the varying 

demands presented by subscribers. The tightened budgets as 

well as flattened mobile penetration rates make it essential for 

service providers to operate their networks as efficiently as 

possible at all times. They have been pursuing aggressive tools 

for automated Mobile Network Optimization (MNO) that 

optimally determines the network settings such as base station 

transmit power and azimuth that best serve the demand within 

budgetary constraints [1]. Nevertheless, MNO is classed as a 

Non-deterministic Polynomial-time (NP)-hard combinatorial 

optimization problem [2] that is highly compute and data 

intensive. Consequently, timescales associated with MNO are 

commonly in tens of hours, with the ever-growing network 

complexity. MNO is largely static, yet network traffic exhibits 

significant spatial and temporal variations, for instance, the 

commute-work-home routines of most subscribers. This 

fundamental limitation has inspired the Dynamic Network 

Optimization (DNO) concept to emerge that aims to 

continuously and optimally configure the network settings to 

adapt to changing network conditions and demands [3][4].  

The DNO development, however, is still at infancy, largely 

hindered by the lengthy optimization runtime. Likewise, the 

key functionality “self-optimization” of the Self-Organizing 

Network (SON) technology [5] faces the same bottleneck. Our 

long-term goal is to realize DNO on a sub-hourly basis, 

implying that the optimization phase of a DNO cycle ought to 

complete ideally within a quarter of an hour regardless of the 

network size and complexity. Our prior work [6][7] has 

designed and implemented scalable distributed parallel 

solutions for two core MNO algorithms that achieved 

substantial speed gain at 7.5 and 14.5 on a 16-core distributed 

system. GEOson (originally known as ariesoACP) from 

Arieso Ltd [8], the market-leading automated MNO product, 

serves as the testbed for acceleration in our work. Yet, given a 

large and loaded network such as central London, acceleration 

of optimization from a scale of tens of hours to sub-hour is 

challenging and would require an equally massive distributed 

system, presumably upon hundreds of thousands of 

processors. For network operators, such a system is neither 

cost-effective nor easily manageable. The first part of this 

paper further addresses the scalability of the distributed 

system and enhances the efficiency and robustness of the 

Inter-Process Communication mechanisms. The second part 

visualizes a preliminary design and a full cycle of a DNO 

system alongside various approaches to realize it. 

II. METHODOLOGIES AND TECHNOLOGIES 

A.  Acceleration of Mobile Network Optimization Algorithms  

   As an NP-hard multiple-objective constrained combinatorial 

optimization problem, MNO problems exhibit high 

complexity that requires applying iterative heuristic 

algorithms. Our prior work has managed to accelerate two 

core MNO algorithms, Intelligent MNO Algorithm [6] that is 

an iterative heuristic algorithm with intelligent learning 

capabilities and greedy MNO algorithm [7] that only begins 

upon the completion of the “Intelligent” algorithm. We 

proposed and implemented novel predictive binary or greedy 

tree patterns to expose the parallelism. The parallel designs  



 

 

 

Fig. 1. Diagram of a Simple Instance of the Distributed Parallel System 

 

are deployed on a distributed system that adopts the server-

client model utilizing the computer cluster. Fig. 1 presents a 

simple instance of such a distributed system. The parallel 

controller along with a shared folder is hosted by the server 

node whilst optimizers reside on the client nodes. The IPC 

mechanism is via Windows sockets, and PsExec utility serves 

as the main technique for remote process control. The cluster 

based system manifests good scalability, but it becomes costly 

and hardly deployable in the context of tens of thousands of 

nodes for DNO. A desirable system would be one that can 

scale on demand that is to scale up to its full potential for 

large networks and scale down to fit small and medium ones. 

Thanks to high scalability and elasticity, Software as a service 

(SaaS) [9] based cloud platform stands out as a perfect match.  

B.  Cloud Parallelization  

A cloud based parallel solution exhibits considerable 

beneficial characteristics. From the end users’ viewpoint, 

MNO tools can be delivered as a service and accessible via a 

thin client interface such as a web browser through the 

internet, which is much simplified as opposed to the physical 

software based solution. The dynamic nature of cloud bridges 

the gap between the relatively static optimization process and 

the dynamics needed for DNO. By means of a unified web 

application, one can establish a full cycle of DNO that 

network operators feed traffic and network data into the cloud 

and the MNO service performs optimization jobs behind the 

scenes and suggests optimal network configurations post the 

optimization. Further, deployment and initialization of MNO 

tools can be simplified. At present, users have to deploy the 

optimization software on each node of the distributed system 

and a ParaController process remotely controls the launch of 

all optimizers. These procedures produce high overhead, and 

hence it is beneficial to redesign and pre-install the MNO 

processes as a service. Moreover, the cloud solution possesses 

fault tolerance and high availability as a faulty node can be 

easily replaced by a failover node in the cloud such that it 

allows speedy recovery.     

However, we are facing tremendous challenges in terms of 

the migration of our MNO applications into the cloud. The 

first is how to implement MNO processes as a service 

whereby it will manage the start and stop of optimizer 

processes. The second is how to improve the IPC mechanism 

since Windows sockets may not be as scalable and reliable 

and how to address the limitations placed by the single-

controller system when the system size grows. The third is 

how to support parallel file access as shared folders and files 

are being used to retain certain network data for replication 

but may not be efficient for a large system. 

III. DESIGN AND PROTOTYPE OF THE CLOUD PARALLEL SOLUTION  

This section illustrates the design and prototype of the cloud 

parallel solution. Since the MNO algorithms were written in 

C++, the software development language remains C++.  

A. System Deployment and Initialization 

  To migrate our MNO applications into the cloud, a first step 

is to simplify the early deployment and initialization. A new 

MNO process is created as a Windows service that is 

effectively a shell process. The optimizer binary is still 

required to be pre-deployed in a fixed folder location on each 

compute node as before. However, this deployment only 

needs to occur once and the main simplification is that the 

optimizer executable no longer needs to be launched 

remotely. The new MNO service is configured to 

automatically run when the operating system starts, and it 

invokes a pool of local optimizer processes whose number 

defaults to the number of cores on the cloud node. By using a 

local process pool, the overhead for remote process control is 

eliminated and there is no need for users to specify the remote 

location of the optimizer binaries, and the ParaController 

process is now freed to mainly handle the synchronization 

among optimizers. The optimizer process is redesigned to 

wait while consuming little computing resources such as CPU 

until optimization jobs have been requested by a user. 

B. Multi-ParaController Design 

  In the world of cloud, as the system size is constantly 

growing, IPC plays a key role to high performance. A closer 

look at the single-controller design by Fig.1 reveals 

inefficiency when talking to an enormous amount of 

optimizers across the network. Every IPC call between the 

ParaController and optimizers is a remote call across machine 

boundaries and presents higher cost. A solution is to introduce 

multiple ParaControllers whilst maintaining a Main-

ParaController. Initially a viable approach is to have a 

ParaController per compute node since the communication 

becomes solely local and ParaController itself is a lightweight 

process. At a later stage, we may consider an enhanced 

solution as to have one controller per optimizer compute 

group that comprises closely positioned nodes. Diagram of a 

basic multi-controller based cloud parallel system is given by 

Fig. 2. Research has been carried out in search of a more 

efficient and secure IPC mechanism to replace sockets and 

Component Object Model (COM) and Distributed COM 

(DCOM) technologies are chosen, also as shown in Fig. 2. 

C. Redesign of Inter-Process Communications Mechanism 

 COM is a standard for software component reutilization [10]. 
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Fig. 2. Diagram of a Multi-Controller based Cloud Parallel System 

As our MNO algorithms are implemented in C++, COM and 

DCOM are chosen given its better compatibility and 

supportability through .NET COM Interop if we migrate to 

.NET later. An important characteristic of COM is its location 

transparency to applications that the client and server can 

establish IPC irrespective of their relative locations.  

ParaController, Optimizer and the new MainController 

executables are re-implemented as COM EXE servers whose 

COM diagrams are in Fig. 3. Note that IUnknown is an 

interface that all COM components must implement. The 

ParaController COM component implements IParallelControl 

interface that includes the following methods: 

HRESULT Init([in] networkConfigXML, [in] paraControllerID): 

is called by MainController and, as part of the initialization, a 

cache of ParaController COM objects are created. 

HRESULT NotifySolutionAccepted([out] costData): is called 

twice by an optimizer to accept a solution, one to its owning 

ParaController and in turn another to the MainController.  
HRESULT CheckSolutionAccepted([out] hasSolutionAccepted, 

[out] costData): requests all ParaControllers to notify related 

optimizers to check whether a solution of current iteration is 

accepted. A pre-selection of the best solution is performed 

locally to a ParaController and results are returned to the 

MainController to choose the overall best one for replication. 

HRESULT Stop(): stops the optimization of all optimizers. 

HRESULT Get_Result([out] optResultXML): returns 

optimization result (network configurations, Key Performance 

Indicators (KPIs) and such) in XML format to the cloud client.  

The IMainControl interface contains a set of wrapper methods 

for Stop, Init and NotifySolutionAccepted with almost 

identical signatures as on IParallelControl. The optimizer 

COM component implements a set of interfaces, namely IStop 

and IParallelComms whose functionalities basically match the 

request-reply pairs in the original IPC mechanism of our 

distributed solution [6].  

HRESULT InitOptimization([in] networkConfigXML, [in] 
optimizerID): assigns a unique optimizerID to each optimizer 

who initializes the network and kicks off optimization. 

HRESULT CheckSolutionAccepted([out] hasSolutionAccepted, 
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Fig. 3. COM Diagram of Controller and Optimizer Components (coclasses) 

 

 [out] costData): requests all optimizers, to check whether a 

solution is accepted. If the answer is yes, the corresponding 

optimizer sends costData values back to ParaController.   

HRESULT WriteReplicationFile(): is called by the 

MainController to the selected ParaController that in turn calls 

the best optimizer.  

HRESULT ReadReplicationFile(): notifies non-best 

ParaControllers to request their managed optimizers to 

perform replication of the best network configurations. 

At a glance, it appears that more communications are 

involved but in essence remote calls are significantly reduced 

and the system becomes more manageable and hence robust.  

D. Parallel File Access Enhancement  

Our cloud system uses the Network File System (NFS) to 

store shared data that encompasses a file for replication of 

network configurations and an optimization result file. These 

files do not support concurrent writing and reading access that 

could become a bottleneck for scalability of cloud and High-

Performance Computing (HPC) cloud platforms. Also, a 

faulty file server node could easily cause data loss and system 

paralysation. An option is to introduce multiple copies of the 

files over the network, in place of a centralized storage 

location. In such a manner, optimizers can read from or write 

to files stored on nodes that are physically closer, and data loss 

can be mitigated at a light cost of data duplication. Extensive 

research discovers that Parallel File System (PFS) techniques 

such as IBM General PFS (GPFS) [12] could be employed to 

our design. Distributed PFS stripes chunks of data from an 

individual file over multiple file server nodes such that 

different data chunks can be read and written in parallel. 

Hence, our cloud system can output optimization outcomes 

from the result files frequently to the client interface, without 

blocking optimizers from writing the latest statistics into the 

same result files. This results in higher data throughput. 
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Fig. 4. A Basic Design of a DNO system 

IV. VISUALIZATION OF DYNAMIC NETWORK OPTIMIZATION 

The demand for high data rates has driven the infrastructure 

of certain 3G and emerging 4G LTE networks toward micro-

cellular structures. This introduces intrinsically greater traffic 

fluctuations than traditional voice traffic. DNO can address 

the dynamic demands as well as specific events such as a big 

football match or a traffic jam where a significant spike in 

mobile usages will be seen in a concentrated area. We hereby 

visualize a holistic DNO system that comprises three essential 

components, namely mobile geo-locator, fast MNO platform 

and network configurator, as depicted in Fig 4. Our research 

thus far has been focusing upon the design and realization of a 

fast parallel MNO platform. We will next explain the roles of 

the other two DNO components. 

A. Mobile Geo-Locator 

  The main purpose of mobile geo-locator is to locate real-

time mobile traffic and thereby identify where the problem 

cells are. Its core technique is based upon Per Call 

Measurement Data (PCMD) [13]. With such location 

intelligence, our fast MNO platform can score each cell on its 

performance by calculating the KPIs or on its voice or data 

traffic load. Subsequently, optimization starts with the 

underperformed cells or cells with heaviest load, thereby 

intelligently accelerating the optimization process to reach 

KPI targets of the overall network. AriesoGEO platform 

developed by Arieso Ltd [11] has a proprietary algorithm that 

reads in raw PCMD records, parses and processes them and 

outputs the best estimated locations. The output location file 

is in a format that is recognizable by and can be seamlessly 

loaded into our research testbed AriesoACP platform.  

B. Automatic Network Configurator 

The network configurator component is responsible for 

automatically and remotely adjusting network configurations 

suggested by our optimization platform. It matches self-

optimization functionalities of SON that aim to minimize 

human interventions and adjust network parameters on a 

regular basis. This automation becomes viable with the 

deployment of programmable base station antennas. KWM 

programmable antenna system is one of the available systems. 

And antenna management features are being integrated into 

O&M platforms of 4G LTE networks.  

By remotely updating the azimuth, tilt and power output of 

antennas on a regular basis, the real benefits are that the 

network coverage topology is dynamically optimized to 

balance the traffic between congested base stations and 

underutilized ones, which translates into higher QoS. We will 

need to standardize an API that can support various vendors. 

C. Dynamic Network Optimization on a Sub-Hourly Basis 

For small and relatively medium sized networks and 

specific events such as major traffic congestion or a natural 

disaster, ideally DNO ought to be performed at a margin of 15 

minutes. Given a standard dual-core (at 2.16GHz) computer, 

the mobile geo-locator can locate 120, 000 PCMD records in 

approximately a 2-minute span. The figure is customarily 

sufficient for the number of mobile subscribers simultaneously 

using various services in central areas of a busy city. The 

timing consumed by the optimization phase is the determining 

factor. If we define small and medium sized networks as of 

less than 30 cell sites, an 11-minute optimization run may be 

achieved with a set of arrangements:  

First, in the course of initialization, KPI calculations are 

performed per cell using the real-time traffic map from the 

geo-locator. Each cell is scored and problem cells will be 

optimized first alongside their neighbouring cells. In such a 

fashion, the optimization algorithms tend to converge swifter, 

since the problem cells exhibit more room for optimization.  

Second, an asynchronous distributed and multi-threaded 

hybrid parallel solution based upon our prior work can be 

applied to boost the speed performance.  

Third, the 11-minute is not a concern for event driven DNO 

as it is performed on a concentrated area where a major traffic 

jam or sports event resides, whereas for a 30-site 

geographically sparsely distributed network special 

arrangements are required. We can decompose the network 

into small sized ones since radio coverage areas that are far 

apart have little correlation (e.g. interference) with each other. 

The partitioned sub-networks can be optimized in parallel and 

individual results can be aggregated in the end. By partitioning 

with a carefully selected interference-free distance, a speed 

gain required by each sub-network is relatively smaller. 

Consequently, the original problem is transformed into a 

simpler problem manageable by a few hundreds of nodes.  

To guarantee a fixed optimization run-time, a timer can also 

be set to terminate the optimization precisely after 11 minutes. 

The remaining 2-minute span will be allocated for the network 

configurator operations that apply the optimized network 

configurations to the real network. Remote configurations via 

electronic means can be accomplished swiftly, yet a fast 

interface or transport protocol needs to be implemented. 

V. POTENTIAL SOLUTIONS TO LARGE NETWORKS AND REAL-

TIME DNO 

Due to the enormous data intensity, fast DNO for a large 

network such as London with over 400 cell sites or real-time 

DNO may be unviable without a “super” HPC cloud system as 

of today. Nonetheless, in the long run, there are a collection of 

approaches that can help realizing real-time DNO: 
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Again the first is the aforementioned network 

decomposition techniques that are particularly beneficial to 

large networks. The scheme to partition a network largely 

replies upon the shape and terrain of the area under 

optimization. An interference-free distance can be computed 

upon the maximal range which a transmitter can interference 

with a receiver and an empirical study [14] suggests a 2-

kilometer distance. The more parallel zones we can partition, 

the more speed gain we can obtain.   

The second is to pre-compute by pattern modelling and store 

possible solutions in response to various network scenarios or 

“profiles” into a lookup table or database where the best 

network configurations could be fetched for a given set of 

network patterns and KPI targets. The lookup time could be 

short but a sound algorithm that can find the best match is yet 

to be designed. In order to adapt to minor changes in the 

network conditions, an issue could be that the lookup table 

needs to be populated with a large volume of data, as to store 

every possible pre-calculated solution. This might be 

addressable by the big data related technologies. 

An alternative to the above approach is to store selected 

solutions on the fly. In a sense, this approach is network event 

driven where the notion of network events refers to not only 

specific events such as a large sports event but also regular 

events such as traffic variations over various areas throughout 

a day. For example, once a DNO cycle is performed for a 

typical event that the mobile traffic shifts from residential 

areas in the evening into commercial districts during the office 

hours, its optimized network configurations will be stored and 

recommended as a good match when a similar event of the 

network surfaces. The key is its learning capabilities that may 

become achievable with the assistance of the artificial neural 

network and machine learning technologies. The difficulty 

would be in choosing suitable neural network architecture as 

well as the type of neuron and the training algorithm. Once the 

network is properly trained and can learn from past DNO runs 

with diverse network conditions and patterns, it ought to 

swiftly produce good solutions even for those scenarios that 

the network has not been trained for.  

The last but crucial approach is the adoption of state-of-the-

art HPC platforms that can provide sufficient yet affordable 

parallel computing power. A candidate might be the latest 

GPGPUs such as Compute Unified Device Architecture 

(CUDA) by NVIDIA. GPGPUs are much more powerful than 

conventional CPUs and cost reasonably. Platforms like CUDA 

can provide tens or hundreds of cores, and hence much more 

parallel execution pipelines that can concurrently perform 

tasks of an optimizer per core. The main issue is that many 

efforts will be required to migrate our C++ implemented 

optimization algorithms into a varied language and perhaps a 

different operating system supported by GPGPUs. The overall 

speed performance is expected to be significantly improved. 

VI. CONCLUSION 

  The design of a novel cloud parallel solution is proposed and 

prototyped, and it can scale up in ease to satisfy the high 

performance requirement of DNO. In comparison with our 

prior work, the new solution delivers optimization as a service 

and simplifies the client interface and deployment. The 

prototype can be tested on a large-scale private cloud platform 

if our budget allows in the future. To achieve better scalability 

and reliability than Windows Sockets, a new COM/DCOM 

based IPC mechanism is introduced and is fully compatible 

with our C++ backed optimization algorithms. We also 

present a novel Multi-ParaController design for more efficient 

IPC in the cloud.  

  Also proposed is a system design of a full DNO cycle that 

consists of mobile geo-locator, fast MNO platform and 

network configurator components. To cater for the surging 

data demands pressed by the uptake of smart phones and 

emerging 4G LTE networks, we visualize a realistic sub-

hourly DNO cycle in order to dynamically adjust the network 

to meet changing demands and network conditions. To realize 

a fixed 15-minute DNO cycle, a number of solutions are 

suggested: optimization is made more intelligent by starting 

with “problem” cells and network decomposition schemes are 

optionally employed depending upon the network size and 

complexity. To look forward upon large network and real-

time DNO, potential solutions are discussed such as pre-

computed network solutions, pattern matching using artificial 

neural network techniques and migration to HPC platform, 

just to name a few. Overall, this is a milestone towards the 

realization of DNO as well as fast self-optimization for SON. 
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