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The error of representation: basic understanding
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ABSTRACT

Representation error arises from the inability of the forecast model to accurately simulate the climatology

of the truth. We present a rigorous framework for understanding this kind of error of representation. This

framework shows that the lack of an inverse in the relationship between the true climatology (true attractor)

and the forecast climatology (forecast attractor) leads to the error of representation. A new gain matrix for the

data assimilation problem is derived that illustrates the proper approaches one may take to perform Bayesian

data assimilation when the observations are of states on one attractor but the forecast model resides on

another. This new data assimilation algorithm is the optimal scheme for the situation where the distributions

on the true attractor and the forecast attractors are separately Gaussian, and there exists a linear map between

them. The results of this theory are illustrated in a simple Gaussian multivariate model.

Keywords: Representation error, data assimilation, correlated observations, model error, Bayesian

1. Introduction

Representation error in this manuscript will refer to the

impact of the unavoidable misrepresentation of complex

atmospheric flows by the inadequacies of the forecast model

on the data assimilation. This misrepresentation of complex

fluid flows arises for the most part from the inability of

the forecast model, using the relatively coarse grids custo-

marily employed in numerical weather prediction, to resolve

small-scale properties of the boundary conditions as well

as other small-scale properties of the turbulent flows in

the interior of the fluid. This misrepresentation of the flow

leads to an incompatibility between the observations of the

true state, which see these small-scale processes, and the

relatively coarser states achievable by the forecast model.

The result of this incompatibility is that the forecast model

can effectively consider the states implied by the observa-

tions to be inconsistent with its own attracting manifold,

and therefore either ignore some or all of the information in

the observations or react pathologically to them.

Recognition of this incompatibility between the obser-

vations of the true state and the states achievable by the

forecast model goes back at least to Petersen andMiddleton

(1963) with more thorough and modern treatments in Daley

(1993), Mitchell and Daley (1997a, 1997b), Liu and Rabier

(2002), Janjic and Cohn (2006) and Frehlich (2006). This

body of work has correctly identified that because of the

incompatibility mentioned above, performance gains in

the quality of the analysis can be made by inflating the

observation error variances and accounting for the implied

correlations between observations owing to unresolved pro-

cesses. In addition to these, more theoretical works there

have recently been attempts at estimating the structure of

representation error from observational data and numerical

model output (e.g. Richman et al., 2005; Frehlich, 2008;

Oke and Sakov, 2008; Waller et al., 2013). This work has

shown that there are a number of ways to see this error of

representation in data. For example, the standard obser-

vations of temperature and humidity as well as aircraft

measurements of turbulence have been compared with

forecasts and shown to contain a component consistent

with errors in representation.

This paper intends to conjoin this past work under

a single unifying theme. The basic idea is to extend the

Kalman (1960) filter to explicitly account for the fact that

the climate (attracting manifold) of the Earth’s atmosphere

is distinct from that of the forecast model. To understand

how we will accomplish this, it will prove illustrative to

review Kalman’s original setup. In the work of Kalman,
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the flaws in the model were accounted for using a white

noise source, viz.

xkþ1
f ¼ Mxk

f þ wk; (1)

where M is a linear model, xk
f is the forecast at time k

and wk is white noise drawn from N(0,Q). The idea behind

eq. (1) is that the model M is not entirely adequate at

producing the set of states that correctly describes all the

potential true states (one of which is being observed by

the observational instruments). In terms of the problem at

hand, we may interpret eq. (1) as implying that the forecast

model’s climatology (attracting manifold) is not sufficient

to encompass the complete set of potential true states.

The inclusion of the white noise source is then there to

enhance the spread of states in state space (with Q chosen

large enough to more than fill this gap between the true and

forecast attractors) such that this noisy forecast model does

encompass the complete set of potential true states. In

other words, the action of this noise is such that the

forecast model’s attracting manifold, which is distinct from

that of the true attracting manifold, is in essence ‘blurred’

in phase-space until the states available to eq. (1) encom-

passes the states on the true attracting manifold and many

others for that matter.

There are at least two downsides to this choice to render

the model stochastic. The first is that while probability

forecasts using this noisy model now correctly assign non-

zero probability to states on the true attracting manifold,

other forecasts from eq. (1) will assign non-zero probability

to states off the true attracting manifold, which of course

implies that implausible events are assigned a non-zero

probability of occurrence. The second issue with this noisy

model is that in fluids as complex as the general circulation

of the atmosphere, it is well known that choosing the

character of this noise is difficult and improper choices

may lead to issues with the physical realism of the fluid

evolution from the noisy forecast model (e.g. Hodyss et al.,

2014).

While we believe that stochastic modelling can be use-

ful, the tack taken here is to explore what happens when

one does not add noise to the model but addresses the

climatology (attractor) differences between the true physi-

cal system and that of the forecast model through the use

of maps between distributions on each attractor. We will

derive the best, linear unbiased estimate (minimum error

variance) of the state on the forecast model attractor given

observations of states on the true attractor. This new data

assimilation method will be optimal when the distribu-

tions on the true attractor and the forecast attractor are

Gaussian and the map between them is linear. By deriving

the data assimilation method that produces the best state

estimates on the forecast model attractor, we will see the

error of representation arise as a natural consequence of

a specific form of attracting manifold difference.

Finally, we would like to point out here that one common

viewpoint for the connection between the data assimila-

tion process and the forecast process is the expectation that

the most accurate forecast arises from the most accurate

estimate of the true state. This desire for the data assimila-

tion algorithm to produce an estimate that is close to the true

state is conceptually easy to rationalise when the model is

perfect. However, when the model is flawed, creating a data

assimilation algorithm that produces an accurate estimate

of the true state is likely to mean that this state is in some

way incompatible (e.g. unbalanced) with the flawed forecast

model. This notion that the true state might not be the best

initial condition for the flawed forecast model has led us to

choose to develop a data assimilation system that attempts

to produce a state estimate on the forecast attractor. The

estimation of the true state is then one relegated to post-

processing of the resulting forecasts. More discussion of

the ramifications of this choice will be made throughout

the development and in the conclusions.

In Section 2, we derive the general theory for this new

form of data assimilation algorithm. In Section 3, we apply

the theory of Section 2 to representation error in the form

of a smoothing operator that describes the differences

between the true and forecast attractors. Section 4 applies

the theory of Section 3 to a multivariate Gaussian model

to illustrate the basic ideas in their simplest forms. Section 5

closes the manuscript with a summary of the results and

a discussion of the conclusions.

2. The two attractor problem

In this section, we formulate a general theory for data

assimilation in the situation where the observations are of

states in one subset of state space but the forecast model

resides in another. Our basic assumption throughout will

be that our goal in such a situation is to develop a data

assimilation method that will provide the best estimate

of the state in the region of state space in which the fore-

cast model resides. As we go we will illustrate the theory of

this section using a very simple, example problem that we

believe illustrates the basic ideas in their simplest form.

2.1. The true posterior

We imagine the true state, xt, to be an N-vector and that it

is drawn from a climatological distribution whose prob-

ability density function (pdf) we label r(xt). By ‘climato-

logical’, we are referring to the pdf we would obtain if we

ran the true model for a very long time, discretised state

space, and counted the number of times the state entered

each cell of our discretisation. In the limit as this true
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model simulation becomes very long and the volume of

each cell of our discretisation of state space becomes very

small, we obtain this climatological pdf. We define from

this climatological pdf the set At of states xt with the

property that r(xt)�0 and will subsequently refer to the set

At as the true ‘attracting manifold’ of the physical system

under consideration. Therefore, the set At consists of all

the states in which the true state at any point in the future

may be found.

We simply use the phrase ‘attracting manifold’ through-

out this manuscript as a convenient way to refer to the

portion of state space in which the true physical system

resides. We emphasise however that the following theory

does not require the existence of a compactly supported

region in state space with the properties normally asso-

ciated with attracting manifolds as we will apply the theory

to example problems which do not technically have this

feature. More discussion of this set and its relationship

to the ‘attracting manifold’ of the forecast model can be

found in the next subsection.

We obtain a sequence of p-vector observations,

yj�Hxt�o0 that were taken at various times j�1, 2, . . .,

J. The object H is a vector-valued function and, for

simplicity, will be assumed to be a linear matrix operator

(p�N) with the instrument errors drawn from o0�N(0,Ri).

We emphasise however that the results presented below will

not depend on a linear observation operator. For simplicity,

we will assume that both the instrument error variance,

Ri, and the number of observations, p, per assimilation time,

j, are fixed constants. Because we have observations at

various times, j, this implies that the state must also be

integrated through time. In the interest of simplicity of

presentation, we do not attach a label to xt that denotes

its relevant time j. However, because we will refer to the

‘filtering’ data assimilation problem throughout, this should

cause no confusion as xt will always be considered to be at

the time of the latest set of observations.

We begin by assimilating the j�1 set of observations

using Bayes’ rule, viz.

q xtjy1

� �
¼ C1q y1

��xt

� �
q xtð Þ; (2)

where C1�1/r(y1). The density r(y1Nxt) describes the

conditional distribution of observations given a particular

value of the state on the true attractor (often referred to as

the observation likelihood). The interpretation of the act of

employing Bayes’ rule in eq. (2) is simply as a ‘windowing’

function through the observation likelihood that acts

to reduce the view of the climatological distribution to

a portion of At in the vicinity of the observation. This is

important because, under the assumption that the observa-

tion likelihood is Gaussian, which implies thatr(y1Nxt)�0

for all values of (xt,y1), this means that the act of data

assimilation does not change the states in At but simply

re-calculates their relative probability of being the true

state. We will use this fact later in the next subsection.

By repeating the indicated operations in eq. (2), and

using the Fokker-Planck equation to propagate the result-

ing distributions forward in time between each set of

observations, we may repeat the process in eq. (2) up to

the present time, j�J, for which we have observations YJ

such that:

q xtjYJð Þ ¼ CJq yJ

��xt

� �
q xtjYJ�1ð Þ; (3)

where the symbol Yj denotes the set of all observations

at all times up to and including the jth set and the

CJ�1/r(yJNYJ�1) is simply the normalisation. The density

r(xtNYJ�1) will hereafter be referred to as the ‘prior’. The

density r(xtNYJ) describes the conditional distribution of

all possible true states given all observations including

the present set; this density will hereafter be referred to as

the ‘posterior’.

As alluded to in the beginning of this section, we construct

here a simple data assimilation example that we believe will

illustrate the basic properties of the more complex concepts

in the remainder of this section in the simplest way. To this

end, we assume the true states to be characterised by a two-

vector whose climatological distribution is illustrated in

Fig. 1a. This distribution is Gaussian with a variance of 3

on each variable and a covariance between the two variables

of 1. Note that the set At in this case is the entire plane as

a Gaussian vanishes nowhere. An observation of only one

of the variables is made and defines an observation like-

lihood with instrument error variance equal to 1 (Fig. 1b).

Calculating eq. (2) from the climatological distribution and

observation likelihood for an observation of y1�1 obtains

the posterior in Fig. 1c. For simplicity, we further assume

that the true model that is propagating the states forward in

time is simply the identity. This implies that the posterior

from eq. (2) is simply the prior for the next assimilation

step in eq. (3) and the result of this calculation with y2�3

is plotted in Fig. 1d. One can see in Fig. 1c and 1d that

the assimilation of the observations has reduced the vari-

ance greatly for the observed variable but less so for the

unobserved variable. In the next subsection, wewill return to

this example and illustrate its relationship to the forecast

posterior.

2.2. The forecast posterior

Because of our fundamental inability to construct an exact

model of the evolution of the general circulation of the

atmosphere, the posterior distribution described by eq. (3)

can never be produced by a data assimilation algorithm.

This is true for several reasons. First, even if we could give
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the forecast model the true state, it would not produce

the correct forecast evolution because of incorrectly spe-

cified parameters and altogether missing physics. Second,

what exactly is the appropriate true state to give the fore-

cast model as an initial condition is ambiguous given the

fact that this model can only represent states that are

‘smoothed’, or said another way, truncated with respect

to the truth (Frehlich, 2011). More on this notion will be

presented in Sections 3 and 4.

Because the forecast model cannot represent the true

attractor, we begin by defining the state on the forecast

attractor, xf, as an M-vector and hypothesising that it too

is drawn from a ‘climatological’ distribution whose pdf

we label r(xf). We emphasise that the ‘climatology’ here is

different from that of the true distribution denoted above

and results from running the forecast model for a very long

time, discretising state space, and counting the number of

times the forecast state enters each cell of our discretisation.

We again define from this forecast climatological distri-

bution a new and distinct set of states Af with the pro-

perty that r(xf)�0 and will subsequently refer to the set

Af as the ‘attracting manifold’ of the forecast model’s

representation of the physical system under consideration.

Next, we hypothesise the existence of a map (function)

over At0Af. We do this by relating the states on the

forecast attractor and the states on the true attractor

through a vector-valued function:

xf ¼ F xtð Þ: (4)

The function, F, represents a mapping from the true

attracting manifold to that of the forecast model. We

emphasise that this is a mapping from one state space (At)
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Fig. 1. Data assimilation on the high-resolution (true) attractor. (a) High-resolution climatological distribution, (b) high-resolution

observation likelihood, (c) high-resolution posterior for j�1 and (d) high-resolution posterior for j�2.
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to another (Af) and not a direct relationship between

today’s truth and today’s forecast, which because of the

noise in the observations could not possibly satisfy eq. (4).

We will assume that this function, F, has the property that

for every xt in At there is a corresponding element of xf

in Af. However, we will not in general assume that the

converse is true and therefore we will discuss, F, as lacking

an inverse, but we will also examine specific situations

where this function does have an inverse. Please see Fig. 2.

From a numerical weather prediction perspective, we

view eq. (4) much like that of the algorithms in the ensemble

post-processing and bias-correction literature (e.g. Glahn

and Lowry, 1972; Raftery et al., 2005) in which climatolo-

gical information is used to build relationships between

forecasts and observations. Additionally, we view eq. (4) as

having both a practical as well as a pedagogical application.

From a practical perspective, one may wish to deduce the

relationship [eq. (4)] from some climatological archive of

forecast-truth pairs in order to implement the data assimila-

tion algorithm discussed in this manuscript. By contrast,

and from a pedagogic perspective, one may wish to simply

assert a particular relationship in eq. (4) and subsequently

use the framework presented below to understand its im-

plications. This last tack will be the one illustrated in this

manuscript as we will focus in Sections 3 and 4 on a linear

map in eq. (4) that is to be interpreted as a smoothing

operator as this was used in previous work in the represen-

tation error literature (e.g. Liu and Rabier, 2002; Waller

et al., 2013). In a sequel to this manuscript, we will illustrate

estimation techniques for F and the results of its application

to different cycling data assimilation experiments.

Equation (4) allows for the definition of several new

densities in this problem that will prove to be useful tools

in the subsequent analysis. Equation (4) implies that the

density that describes the distribution of states on the

forecast attractor given a state on the true attractor, which

we will refer to as a conversion density, is the Dirac delta

function:

q xf

��xt

� �
¼ d xf � F xtð Þ
� �

: (5)

This is because given a particular true state xt there is one

and only one forecast state xf that it is related to and hence

there is no uncertainty in the position on the forecast

attractor given a particular realisation of the state on the

true attractor. It is important to realise that eq. (4) implies

that while r(xfNxt) has zero variance that in general the

converse conversion density r(xtNxf) has a non-zero variance
because F does not necessarily have an inverse. Last, the

assumption that the relationship between the two attractors

is of the form [eq. (4)] allows for the subsequent simplifi-

cation in eq. (5) that the conversion density is simply the

Dirac delta function, but this assumption is technically

not required by the following theory and is largely used to

allow greater focus on the relationship between the lack of

an inverse in eq. (4) and the representation error.

Bayes’ rule tells us that the two conversion densities

discussed above can be related to each other through their

associated climatological distributions as

q xf

��xt

� �
q xtð Þ ¼ q xtjxf

� �
q xf

� �
: (6)

We may understand a little bit about the structure of the

converse conversion density r(xtNxf) by solving eq. (6):

q xtjxf

� �
¼ w xt; xf

� �
d xf � F xtð Þ
� �

; (7)

where

w xt; xf

� �
¼ q xtð Þ

q xf

� � (8)

First, eq. (7) shows that when F does not have an inverse,

the densityr(xtNxf) is a weighted collection of Dirac delta

functions on the surface defined by fixing xf and deter-

mining the collection of states xt for which F(xt)�xf. Note

that because F only produces states on Af we never need

evaluate w(xt,xf) for values of xf for which r(xf)�0.

Second, as discussed in subsection 2.1, because the observa-

tions in the data assimilation cycles from times j�1, 2, . . ., J

do not change the set At, and the map [eq. (4)] is valid for

all At and Af, we may apply the map [eq. (4)], and its

corresponding conversion densities, to all data assimilation

cycles, j.

To illustrate the properties of these conversion densities,

we relate these densities to the two-vector example of

subsection 2.1. Here, we define a forecast (low-resolution)

state to be a scalar that arises froma smoothing operator that

ρ(xt)

At

Af

ρ(xf)

Fig. 2. The attractors and their map. The two green squares

represent the domain of the true states (large square) and the forecast

states (small square). The region for which q xtð Þ > 0 q xf

� �
> 0

� �
is

denoted as the red (blue) shaded region. An example of the function

in eq. (4) is denoted by the arrows, which travel from states in At

denoted by filled circles to states in Af denoted by open circles.

Note that multiple states in At may map to the same point in Af. We

will show that this results in an error of representation.
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is an arithmetic mean: F ¼ 0:5 0:5½ �. We use this operator

in eq. (4) to define the forecast (scalar) states that are ob-

tained from the high-resolution true (two-vector) states.

Equation (5) is plotted in Fig. 3a for an example high-

resolution state of xt ¼ 1 3½ �T , which implies a low-

resolution state of xf�2 because Fxt�2 in this case. Note

that the delta function in Fig. 3a is placed at xf�2 and has

amplitude 10. The amplitude of 10 arises because we have

defined integration numerically here as the trapezoidal

rule. For the trapezoidal rule, the Dirac delta function is

inversely proportional to the grid resolution that we are

using to represent these densities. Here we have used a grid

resolution of 0.1, which implies that the Dirac delta has

amplitude 10. As described in the previous section, while

q xf

��xt ¼ 1 3½ �T
� �

is the Dirac delta function, the converse

conversion density r(xtNxf) is not. As an example, the con-

verse conversion density, r(xtNxf�1), has non-zero probabil-

ity on a line defined by Fxt�1 weighted by the climatological

distributions through w and is shown in Fig. 3b.

These conversion densities are useful because they allow

one to convert between the true and forecast densities. For

example, the prior density on the attracting manifold of

the forecast model is:

q xf

��YJ�1

� �
¼
Z1

�1

q xf

��xt

� �
q xtjYJ�1ð Þdxt: (9)

Equation (9) describes the distribution of forecasts xf that

obtains from sampling r(xtNYJ�1) for xt and using these

samples of xt in eq. (4) to obtain samples of xf. We may

apply eq. (9) to our simple example problem to find the

prior distribution of forecasts for the j�2 cycle (Fig. 4b).

Recall that the prior distribution for our simple example

problem is the previous (j�1) posterior, r(xfNy1�1). Note

that the mode of this low-resolution prior is not the mode

of either variable in the high-resolution prior. In fact, the

mode of the low-resolution prior is the arithmetic mean

of the mode of each high-resolution variable in the high-

resolution prior.
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The conversion densities are central to our develop-

ment because through them we are able to build one of the

most important components of this work. These conversion

densities allow us to show that the forecasts have their own

posterior density defined as

q xf

��YJ

� �
¼
Z1

�1

q xf

��xt

� �
q xtjYJð Þdxt; (10)

which, upon using (3) and (5), implies

q xf

��YJ

� �
¼ CJq yJ

��xf

� �
q xf

��YJ�1

� �
; (11)

where r(yjNxf) is the conditional density for the observation

conditioned on the forecast state (which we shall refer to as

the forecast observation likelihood) and r(xfNYJ) represents

the density that describes the conditional distribution of

forecast states given the entire observational record. This

notion that the states on the forecast attractor have a

posterior density that has been conditioned upon obser-

vations of the state on a different attractor is a unique

aspect of this work and will allow us to explicitly show how

the difference in the two attractors leads to an error of

representation.

Equation (11) shows that the data assimilation procedure,

starting from the climatological distribution and proceeding

for J assimilation steps, applies to the forecast model in so

far as one simply replaces the true states, xt, with the fore-

cast states, xf, in eqs. (2) and (3) to define Bayesian data

assimilation on the forecast attractor. It is however im-

portant to recognise that while eq. (11) looks superficially

similar to eq. (3), it is in fact quite different. This is true

for two reasons: (1) the data assimilation procedure for

the forecast model begins with the forecast climatological

distribution, which may be significantly different from the

true climatological distribution, and (2) the forecast ob-

servation likelihood is actually very different from the

true observation likelihood. This difference between the

true observation likelihood and the forecast observation

likelihood will be described next.

2.3. The forecast observation likelihood

Central to understanding the forecast posterior distribution,

and the manifestation of representation error within it, is the

forecast observation likelihood. The observation likelihood

in eq. (11) obtains from application of the chain rule of

probability through the use of the conversion density as

q yJ

��xf

� �
¼
Z1

�1

q yJ

��xt

� �
q xtjxf

� �
dxt: (12)

An important difference between r(yJNxf) and r(yJNxt)
is that while the mean of r(yJNxt) is the true state (Hxt)

and its variance is the instrument error, Ri, this is not

true of r(yJNxf). The mean of r(yJNxf) is, after use of

eq. (12):

yf xf

� �
¼
Z1

�1

yJq yJ

��xf

� �
dyJ ¼ Hxc; (13)

xc xf

� �
¼
Z1

�1

xtq xtjxf

� �
dxt; (14)

where we will explicitly write this as a state-dependent bias

(from the perspective of the forecast model attractor and its

associated prior) as

yf xf

� �
¼ Hf xf þ b; (15)

with this bias defined as

b ¼ Hxc �Hf xf ; (16)

and Hf (p�M) is the observation operator in the space of

the forecast model. At this point, we will leave the defini-

tion and the distinction between H and Hf undefined. We

emphasise here however that the situation we will examine

is one in which the difference between H and Hf is because

Hf operates on a truncated state vector and is not because

Hf has been approximated or created in error. Nevertheless,

we will see subsequently that this difference between these

two observation operators will turn out to be a central fea-

ture of the analysis and therefore we shall return to discuss

their differences at several points below.

Equations (13) and (14) show that the observation

conditioned on the forecast is biased with respect to the

truth (because the observation is of an object on the true

attracting manifold and not on the forecast attracting

manifold) and that bias is described by the mean of the

conversion density. In addition, the variance about themean

state, yf (xf), is

Rf xf

� �
¼
Z1

�1

yJ � yf

� �
yJ � yf

� �T

q yJ

��xf

� �
dyJ

¼ Ri þHPcH
T

; (17)

where

Pc xf

� �
¼
Z1

�1

xt � xcð Þ xt � xcð ÞTq xtjxf

� �
dxt; (18)

is the covariance matrix of the conversion density. Equa-

tion (18) carries the information that relates the forecast

model states to the true attracting manifold. The term

HPcH
T is the manifestation of the representation error in

the observation covariance matrix and shows that repre-

sentation error occurs when the function F does not have
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an inverse. To see this note that when the function F has an

inverse, then w�1 and

q xtjxf

� �
¼ d xf � F xtð Þ
� �

¼ d xt � F�1 xf

� �� �
; (19)

which clearly has a variance of zero and hence eq. (18)

would vanish. Furthermore, note that if we use eq. (19) in

eqs. (13) and (14), then we obtain yf�HF
�1(xf), which is

biased from the perspective of the forecast attractor, where

that bias is b�HF
�1(xf)�Hfxf. We may however remove

this bias by defining the observation operator in the space

of the forecast model as Hf�HF�1. This definition of

the forecast observation operator is novel as it implies that

we extend our view of what an observation operator does.

The observation operator, Hf�HF�1, implies that the

forecast observation operator should include a ‘bias’

correction for the particular forecast model that we are

using. In Section 4, this definition of the forecast observa-

tion operator will be generalised to linear equations [eq. (4)]

that do not contain an explicit inverse and subsequently

shown to be the proper way to account for representation

error. In the meantime, however, we will maintain the

general form for Hf that we have been using thus far.

In order to understand the forecast observation like-

lihood better, we apply our example problem to eq. (12) to

find the low-resolution observation likelihood. This low-

resolution observation likelihood is plotted in Fig. 4a as

a function of observation and conditioned on the low-

resolution state of xf�1. Because the observation is

actually of the high-resolution state, the low-resolution

observation likelihood is biased (with respect to the low-

resolution states), which can be seen by the mode of the

distribution not being centred on the low-resolution state

of xf�1. It is actually centred at xf�1/2, where this bias

may be seen as coming from the bias in the forecast

climatological distribution whose mean is at xf ¼ �1=2.

The forecast observation likelihood has a variance of 2,

of which 1/2 of this variance (recall that the instrument

error is 1) can be attributed to representation error and

eq. (18). Finally, the low-resolution posterior [eqs. (10) and

(11)] for the observation j�1 and 2 cycles is plotted in

Fig. 4b. The posterior for the j�1 cycle has its mode at 1/2,

and the mode of the posterior for the j�2 cycle is at 1.2.

Again, the mode at each cycle is located at the arithmetic

mean of the location of the modes in the true (high-

resolution) posteriors.

2.4. Data assimilation

Because we are interested in doing data assimilation with

these concepts, we will now derive the minimum error var-

iance estimate of a linear estimator on the forecast models

attractor, which, in this context, is the Kalman filter

(Kalman, 1960) for the states on the forecast attractor.

This formula is derived by minimising the trace of the

expected posterior forecast covariance matrix about a

linear estimator. The expected posterior forecast covariance

matrix may be written as:

Pa ¼
Z1

�1

Z1

�1

xf � xa

� �
xf � xa

� �T

q xf

��YJ

� �
dxf q yJ

��YJ�1

� �
dyJ ;

(20)

where the analysis update equation, whose ‘error’ variance

is being measured, takes the form of a linear estimation

equation

xa ¼ xf þG v � vh i½ �; (21)

where

xf ¼
Z1

�1

xf q xf

��YJ�1

� �
dxf ¼

Z1

�1

F xtð Þq xtjYJ�1ð Þdxt: (22)

The overbar on Pa in eq. (20) is there to make clear that

this is the expression for the expected posterior covari-

ance matrix as it has been averaged over all the obser-

vations [see Hodyss and Campbell (2013) for further

discussion]. The innovation in eq. (21) is v ¼ yJ �Hf xf ,

which we emphasise uses the observation operator in the

space of the forecast model. The expected innovation, vh i,
in eq. (21) is there because the observations with respect

to the forecasts are biased because the observations are

taken on the true attracting manifold. This de-biasing

of the innovation in eq. (21) is critical to get the data

assimilation to put the analysis at the centre of r(xfNYJ)

and therefore the posterior distribution on the desired

forecast attractor.

It is important to realise that while the quantities

derived in eqs. (13) and (14) through eq. (17) are interesting

descriptions of the corresponding densities, they are in

fact not the ones that would be used in a data assimila-

tion algorithm. This is because as shown in eq. (20) those

expressions need to be averaged over the forecasts in the

derivation of the update equations. This averaging for eqs.

(13) and (14) would take the form:

yf ¼
Z1

�1

yf xf

� �
q xf

��YJ�1

� �
dxf ¼ Hf xf þ b; (23)

where b ¼ vh i ¼ Hxt �Hf xf and

xt ¼
Z1

�1

xtq xtjYJ�1ð Þdxt: (24)
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In addition, the observation error variance that would be

used in a data assimilation algorithm is obtained from

Rf ¼
Z1

�1

Rf xf

� �
q xf

��YJ�1

� �
dxf : (25)

Note that the result of the integration in eq. (25) is an

observation error variance that is not state-dependent.

The derivation of the Kalman gain requires the use of an

observation error covariance matrix that is the result of a

weighted average over all possible observation error covar-

iance matrices and therefore cannot depend on the state.

Equation (25) is interesting because we may use eq. (17)

in eq. (25) to obtain:

Rf ¼ Ri þ
Z1

�1

HPcH
Tq xf

��YJ�1

� �
dxf ; (26)

where

Z1

�1

HPcH
Tq xf

��YJ�1

� �
dxf¼ HPtH

T �Hf Pf HT
f �Hf Pfb

� PT
fbHT

f � Pbb;

(27)

Pt ¼
Z1

�1

xt � xtð Þ xt � xtð ÞTq xtjYJ�1ð Þdxt; (28)

Pf ¼
Z1

�1

xf � xf

� �
xf � xf

� �T

q xf

��YJ�1

� �
dxf ; (29)

Pfb ¼
Z1

�1

xf � xf

� �
b� b
� �T

q xf

��YJ�1

� �
dxf ; (30)

Pbb ¼
Z1

�1

b� b
� �

b� b
� �T

q xf

��YJ�1

� �
dxf : (31)

Equation (27) shows that representation error is the

difference between the true covariance, the covariance of

the forecasts and the bias, and the covariance matrix of the

state-dependent bias all mapped to observation space.

The steps required to perform the minimisation of the

trace of eq. (20) are well known, can be found in Hodyss

(2011) and will not be repeated here. The result of this

minimisation is that the gain matrix, G, can be written in

two equivalent ways:

G1 ¼ PftH
T HPtH

T þ Ri

� ��1
; (32)

G2 ¼ Pf HT
f þ Pfb

h i

� Hf Pf HT
f þHf Pfb þ PT

fbHT
f þ Pbb þ Rf

h i�1

; (33)

where

Pft ¼
Z1

�1

F xtð Þ � xf

� �
xt � xtð ÞTq xtjYJ�1ð Þdxt; (34)

PftH
T ¼ Pf HT

f þ Pfb: (35)

The first gain matrix, G1, uses information from the true

attractor that is subsequently mapped back to the forecast

attractor through the covariance between the states on the

two attractors, Pft. This version of the gain is most similar

to the traditional Kalman gain whereby the numerator

relates the (true attractor’s) observation space to the state

space to be updated (forecast attractor) using the covar-

iance [eq. (34)]. This version of the gain matrix is of course

impossible to implement in practice as it requires use of the

true prior distribution.

The second gain matrix, G2, is novel and only uses the

information on the forecast model attractor along with the

function F to infer the relationship between the true and

the forecast attractors. This second gain matrix has two

terms in its numerator. The first term is the standard term

that maps the observation space to the state space to be

updated, but totally from within the forecast attractor.

The second term is new and accounts for the possibility that

on the forecast attractor there is no covariance between

the observation space and state space to be updated but,

because the observation is actually of a state on the true

attractor and there may be a covariance between the true

attractor and the forecast state space to be updated, there

should in fact be a correction at that location. This new term

is shown in eq. (35) to be precisely the difference between

the forecast state-space/true observation-space covariance

(PftH
T) and the forecast state-space/forecast observation-

space covariance (Pf HT
f ). Equation (35) shows that the

numerators of eqs. (32) and (33) would be identical if

the forecast-bias covariance matrix, Pfb, would vanish. In

Section 4, we show how to choose the forecast observation

operator to eliminate this forecast-bias covariance matrix.

Last, it is important to realise that the gain matrices [eqs.

(32) and (33)] when used in eq. (21) do not in fact provide

an estimate of the true state on the true attractor. The gain

matrices [eqs. (32) and (33)] when used in eq. (21) find the

state estimate that is closest (in the sense of the function

F and in mean-square) to the forecast that obtains from

mapping the truth through eq. (4). Hence, the gain matrices

[eqs. (32) and (33)] push the state estimate from the true

attracting manifold onto the forecast attracting manifold

and is actually likely to push the state estimate further

from the observations than it would have been if we had

not altered the numerator and denominator of the gain

matrix to account for this error in representation. The

benefit from using these new gain matrices is therefore
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not their distance from the true attractor but actually the

fact that they produce a state estimate near to the fore-

cast attractor, which is likely to produce a better, and more

balanced, forecast.

3. Smoothing operators

Previous work in the representation error literature has

examined the situation where the relationship between

the states being observed by the observational instruments

and that produced by the forecast model are related by a

smoothing operator (e.g. Mitchell and Daley, 1997a, 1997b;

Liu and Rabier, 2002; Waller et al., 2013). Following this

work, we will assume that the forecast model resolution is

coarse as compared to the true model resolution, that is,

MBN. In addition, we will assume the function F is linear,

but we make no assumptions on the shape of the prior

distributions on either attractor.

The function F will be assumed to be a linear matrix

operator that acts to ‘smooth’ the true state to the

resolution of the forecast model, viz.

xf ¼ Sxt; (36)

where S is an M�N matrix whose singular value decom-

position results in

S ¼ U K1=2 0
� �

VT ; (37)

with the left singular vectors contained in U (M�M), right

singular vectors in V (N�N), L(M�M) the diagonal

matrix of singular values and 0 [M�(N�M)] the zero

matrix. The bracket in eq. (37) is a truncation operator,

and along with L, which we assume to be either constant

(white) or steeply sloped (red), we view as a ‘smoothing’

operator. We attach to this notion of ‘smoothing’ the

philosophy prevalent in numerical modelling (e.g. Lilly,

2005) in which forecast model output is assumed to

represent grid-cell averages of the true state around each

nodal point of the model’s grid representation of the

spatial domain. Note that the statement [eq. (36)] states

that the only difference between the forecast and the truth

is through the smoothing of that state, which ignores the

fact that a truncated model will differ in its cascades of

energy and enstrophy (i.e. the nonlinear interaction be-

tween scales and their subsequent evolution).

Because S is M�N and MBN, the matrix S will not

generally have an inverse. This has important implications

for the structure of r(xtNxf) as it implies that there exists

a hyperplane defined by all of the states,xt, that satisfy

eq. (36) for a given forecast state xf. Along this plane,

r(xtNxf) has non-zero probability, and this results in a non-

zero variance of the converse conversion density, which

as shown in eq. (18) leads to the error of representation.

An explicit example of r(xtNxf) that had non-zero variance

was presented in Fig. 3, and in this case one could see

in that figure that the hyperplane alluded to above was

reduced to a line in the two-dimensional plane of xt.

The smoothing operator in eq. (37) will lead to a bias in

the observation mean [eq. (23)]. This bias leads to the

expected innovation being

vh i ¼ b ¼ H�Hf S
� �

xt: (38)

The bias results from the difference between the true prior

mean and the ‘smoothed’ one obtained after use of eq. (36).

Similarly, the use of eq. (36) in the gain matrix, G [eqs.

(32) and (33)], obtains:

G1 ¼ SPtH
T HPtH

T þ Ri

� ��1¼ SGt; (39)

G2 ¼ Pf HT
f þ Pfb

h i
Hf Pf HT

f þ R
�
f

h i�1

; (40)

where Pt is the covariance matrix of the true prior,

Pf ¼ SPtS
T ; (41)

Pfb ¼ SPt H�Hf S
� �T

; (42)

Rf ¼ Ri þ H�Hf S
� �

Pt H�Hf S
� �T

�Pbb; (43)

R
�
f ¼Hf PfbþPT

fbHT
f þPbbþRf ¼ Ri þHPtH

T �Hf Pf HT
f :

(44)

In eq. (39), the gain matrix Gt, which is the true gain matrix

for the true attractor, is mapped into the forecast space

through application of the smoothing matrix S. In eq.

(40), the gain matrix is calculated using only quantities

known from the forecast distributions and the matrix S.

The quantity R
�
f is an abstraction of the observation error

covariance matrix to include all the terms except the forecast

covariance matrix in observation space in the denominator

of eq. (40). We will refer to this quantity as the effective

observation error covariance matrix. The effective obser-

vation error covariance matrix reduces to the sum of the

instrument error and the difference between the true and

forecast covariance matrices in observation space. Note

that the difference between the effective observation covar-

iance matrix, R
�
f , and the actual observation covariance

matrix, Rf , is entirely a result of the matrices Pfb and Pbb.

Given eqs. (36) and (37), it may be shown that the trace

(Pt/N)]trace (Pf/M), and therefore the diagonal of R
�
f is

equal to or greater than the instrument error, Ri. This fact

about smoothing matrices of the form [eq. (37)] implies that

high-resolution models should as a general rule have greater

variance than low-resolution models.

This matrix R
�
f is important because it makes the con-

nection between the Kalman gains G1 and G2. The gain

matrix in eq. (39) operates on the same innovation as the
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gain matrix in eq. (40). This implies that the innovation

variance in the denominator, as calculated both ways, must

be equal, viz.

Hf Pf HT
f þ R

�
f ¼ HPtH

T þ Ri: (45)

This relationship may be proven by using eq. (44) in eq.

(45). This shows that if we define the error of represen-

tation as a property of the covariance matrix of the fore-

cast observation likelihood, then one cannot actually

deduce it straightforwardly from the innovation variance

(e.g. Hollingsworth and Lönnberg, 1986; Desroziers et al.,

2006). The object that can be deduced directly from the

innovation variance is R
�
f and not Rf . More discussion of

the differences between R
�
f and Rf will be presented in

Section 4.

4. Gaussian statistics

In this section, we add to the development of Section 3 the

assumption of Gaussianity to the climatological distribu-

tions and linearity in the true and forecast model evolution

equations. This implies that the prior distributions of both

the forecast and true systems must also be Gaussian. It is

important to point out that the assumption of Gaussian

error statistics in the climatological distributions and linear

error evolution implies that the sets At and Af are no longer

bounded in state space as is implied by Fig. 2 but now

extend to include all possible states in their domain.

4.1. Theory

A simple way to construct a Gaussian problem that is

amenable to analysis is through the use of a discrete Fourier

series representation. To this end, we assert a Gaussian

covariance model for the true (high-resolution) states of

the form

xt ¼ xt þ Zg; (46)

where xt is an N-vector, Z is the square-root of the true

covariance matrix,

Pt ¼ ZZT ; (47)

and h is an N-vector of random numbers drawn from

N(0,I). We construct eq. (47) using a sinusoidal basis in

which the columns of E (N�N) contain the sinusoids such

that

Pt ¼ ECET ; (48)

G is a diagonal matrix whose ith element of the diagonal is

defined from Ci ¼ ae�a2k2
i , ki is the wavenumber associated

with the ith basis function of E, and a ¼ N

	
PN

i¼1

e�a2k2
i . The

parameter a determines the slope of the true spectrum,

where large a is associated with a red spectrum and small

a is associated with a white spectrum.

We connect the true (high-resolution) states to the

forecast (low-resolution) states through a smoother that

operates as:

S ¼ EL D1=2T 0
� �

ET ; (49)

where D (M�M) is a diagonal matrix whose diagonal

elements are di ¼ e�b2k2
i , EL (M�M) is the low-resolution

basis whose columns are also the sinusoids and T(M�M) is

a diagonal matrix with the value
ffiffiffiffiffiffiffiffiffiffiffiffi
M=N

p
along the diagonal.

The matrix D represents the climatological ‘model error’ on

the resolved scales and would be equal to the identity matrix

if the forecast model’s climate at the resolved scales was

identical to the true model’s climate at those same scales.

The matrix implied by the bracket in eq. (49) performs a

truncation of the high-resolution basis to theM-dimensional

subspace, while the matrix T assures that the Fourier

coefficients calculated from the high-resolution basis are

reweighted consistently with respect to the low-resolution

basis.

Equation (49) allows for the creation of the low-resolution

forecast states from the true states in eq. (46) using eq. (36).

This implies that the forecast error covariance matrix may

be written as

Pf ¼ SPtS
T ¼ EL D1=2T 0

� �
C D1=2T 0
� �T

ET
L : (50)

Because G are the true (high-resolution) eigenvalues,

eq. (50) shows that the forecast covariance matrix would

be correct up to its M eigenvalues if the climatological

model error D could be removed. We show next how to

remove this climatological model error by accounting for

the error of representation.

Because the true states and the forecast states areGaussian

and their relationship is described by a linear operator,

we know that the mean of the converse conversion density

q xtjxf

� �h i
is a linear function of the vector it is conditioned

upon. This presents us with a direct method to calculate

the prediction of the observation by the forecast state:

yf xf

� �
¼ Hxc ¼ Hxt þHGp xf � xf

h i
; (51)

where

Gp ¼ Z SZ½ �y¼ Sy: (52)

The superscript $ in eq. (52) denotes the Moore-Penrose

pseudo-inverse (Golub and Van Loan, 1996). The pseudo-

inverse is constructed by finding the singular value decom-

position, viz.

SZ ¼ EL D1=2T 0
� �

C1=2ET ; (53)
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and then noting that its pseudo-inverse is therefore

SZ½ �y¼ EC�1=2 D�1=2T�1 0
� �T

ET
L : (54)

Equation (54) is the pseudo-inverse of eq. (53) in the sense

that SZ[SZ]$r�r but SZ½ �ySZq 6¼ q for arbitrary vectors

r and q. Please see Appendix A for a brief derivation of

eq. (51). It is important to note in eq. (52) that the matrix

Z is cancelled by the pseudo-inverse operation such that the

only information required to determine Gp is the smooth-

ing matrix [eq. (49)]. In practice, one would build eq. (49)

by estimating its components using an archive of truth-

forecast pairs as is done in bias-correction algorithms

(Glahn and Lowry, 1972). Moreover, this implies that we

may view eq. (51) as simply a bias-correction algorithm

that we build into the data assimilation system to account

for the fact that the forecast model’s estimate of the

observation is, in effect, biased.

Equation (51) is remarkable in so far as this construc-

tion allows us to calculate the important quantities from

Sections 2 and 3 without the need to explicitly develop the

conversion densities. For example, the representation error

is therefore:

Rf � Ri ¼ HEHET HT ; (55)

where U is a diagonal matrix with the value of the diagonal

of U satisfying:

Hi ¼
0; i ¼ 1 ; :::;M

Ci; i ¼M þ 1 ; :::;N

�
: (56)

The term on the right-hand side of eq. (55) arises from eq.

(43). This term clearly shows that the representation error

[eq. (55)] is simply the portion of the high-resolution

spectrum that is missing from the forecast states. Note

that for M�N, and therefore no truncation, the elements

of U vanish and there is no representation error. This is

again a result of there being, in that case, an inverse

available when M�N and, as discussed in Section 2, this

implies that the representation error must vanish. This

point is important because it shows that the climatological

model error on the resolved scales (D) is irrelevant to both

the existence of representation error and to the structure of

the representation error. By contrast, eq. (44) for which we

are interested in R
�
f � Ri does depend on the climatological

model error on the resolved scales (D) through eq. (50).

An important quantity in our development of Section 2

was the state-dependent bias of the forecast model’s

estimate of the observation [eq. (16)], b, which given eq.

(51), implies:

b ¼ HSy �Hf

h i
xf þH xt � Syxf

h i
: (57)

The first term in eq. (57) is interesting because it corresponds

to the mismatch between the forecast model’s estimate of

the true observation operator HS$ in eq. (51) and the

observation operator we are actually using Hf. We empha-

sise here that this mismatch is not one in which we are

implying thatHf is incorrect in the sense that if, for example,

we had a point measurement that there would be some

form of inaccuracy in the interpolation to the observation

location. Indeed, even in this case of a point measurement, in

which we are assuming we have a perfect interpolation, the

mismatch inferred by eq. (57) is between the statistically

derived observation operator HS
$, which now corresponds

to more than just an interpolation, and the operator, Hf.

Equation (57) suggests that if we define Hf such that,

Hf � HSy; (58)

we may remove this state-dependent bias term, which

subsequently renders Pfb�0 and Pbb�0. This implies

that in this data assimilation system the observation

operator does not simply map the truth to the observation,

but rather it maps the forecast to the observation and,

because the forecast is in a different portion of state space

than the truth, this requires the matrix operator, HS$

rather than just H.

One of the most important results of choosing eq. (58),

and subsequently rendering Pfb�0 and Pbb�0, is that

this results in R
�
f ¼ Rf , and therefore the choice [eq. (58)]

has removed the impact of the climatological model error

on the resolved scales, D, in the forecast covariance matrix

and therefore also in R
�
f . This has two important con-

sequences: (1) innovation-based techniques (e.g. Hollings-

worth and Lönnberg, 1986; Desroziers et al., 2006) for the

estimation of R
�
f are therefore self-consistent estimators

of the representation error only when the choice (58) has

been implemented and (2) as we show next this provides

a direct way to remove the deleterious impact of the

climatological model error on the state estimate from the

data assimilation algorithm.

Subsequently, by employing eq. (58), it can be shown

that the gain matrix written in terms of the forecast

quantities [eq. (40)] is now:

G2 ¼ Pf SyT HT HSyPf SyT HT þ R
�
f

h i�1

: (59)

This new gain matrix is the most important result of this

manuscript. The calculation of the operator Gp has allowed

for the creation of a new observation operator HS$ that

represents the forecast model’s estimate of the observation

of states on the true attractor. Subsequently, this has

allowed the calculation of the correct numerator in eq. (59)

that represents the covariance between the states on the

12 D. HODYSS AND N. NICHOLS



forecast attractor and the observations of the true attrac-

tor. Equation (58) results in

Hf Pf HT
f ¼ HSyPf SyT HT ¼ HE

CM 0
0 0

� 
ET HT ; (60)

vh i ¼ HE
0 0
0 I

� 
ET xt; (61)

where GM denotes the first M eigenvalues of G, and 0 is the

zero matrix. Equation (60) shows that the choice [eq. (58)]

results in Hf Pf HT
f being correct up to the resolution of the

forecast model in the sense that the climatological model

error denoted by D has been removed. Equation (51),

which describes the bias in the innovation owing to the

unresolved scales of motion, is a result of the scales in the

true prior mean that are missing in the forecast prior mean.

4.2. Spatially extended example

We now explore the theory discussed above for the

spatially extended problem described in this section by

employing some simple example problems. We will not re-

define the observation operator in order to clearly show

the differences between Rf � Ri and R
�
f � Ri, which will

underscore the importance of applying eq. (58), as it was

already proven above to remove this difference. We will

define H to be the operator that observes each point of the

low-resolution (forecast) state. Hence, in these experiments,

Hf will simply be the identity operator for the point mea-

surements we have available. We emphasise again that

employing eq. (58) would lead to an observation operator

for these point measurements that is not the identity

operator even though these are point measurements, which

as we have proven above corrects the problems to be
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Fig. 5. Pure spectral truncation. (a) Three one-point prior covariance functions: blue is the high-resolution (true) covariance model, red

is the M�16 low-resolution (forecast) covariance model and green is the M�8 low-resolution (forecast) covariance model. (b) One

column of the smoother matrix [eq. (62)] for M�16 (red) and M�8 (green). (c, d) The main components of the theory for M�16 and

M�8, respectively: blue is the representation error covariance (Rf � Ri), red is the effective representation error covariance (R
�
f � Ri) and

green is the bias covariance matrix (Pbb).
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illustrated next. In order to maintain a connection with

previous work (e.g. Mitchell and Daley, 1997a, 1997b;

Liu and Rabier, 2002; Waller et al., 2013), we begin by

defining the low-resolution (forecast) states as obtained

from a smoother that operates as a pure spectral truncation

such that we set b�0 in eq. (49), which obtains D�I and

S ¼ EL T 0½ �ET : (62)

We set a�1/12 and plot the central column of Pt in Fig. 5a,

which represents the one-point covariance function for the

point x�p. The length of the state vector for the high-

resolution (true) states will be N�256. In Fig. 5a, we also

plot the central column of Pf for two different truncation

matrices S: one is for M�16 and the other is for M�8.

Fig. 5b shows the corresponding central column of S,

which maps the high-resolution (true) states to the low-

resolution (forecast) states. The smoothing functions in

Fig. 5b show that truncating the true spectrum results in

smoothing kernels that average the true state globally to

produce the local low-resolution (forecast) state. In addi-

tion, note that the smoothing kernel weights the true state

both positively and negatively, which we will see shortly

results in long distance negative correlations. Figure 5c and

5d shows the one-point covariance function (again for the

central column) for Rf � Ri and R
�
f � Ri for the M�16

and M�8 cases. In both cases, the representation error

Rf � Ri and the effective representation error R
�
f � Ri are

very nearly equal in the centre of the domain but differ in

the far-field. We will show by contrast below that this

equality between these two matrices is due to the pure

truncation in this case. When we invoke a Gaussian

smoother (i.e. D"I), which as noted above corresponds

to a climatological model error on the resolved scales, Rf �
Ri and R

�
f � Ri will become substantially different. Also,

note that there exists a strong far-field positive�negative
wave pattern in Rf � Ri and less so for R

�
f � Ri. This is due

to the aforementioned positive�negative weightings in the

smoothing kernels of Fig. 5b. An example of a randomly

constructed high-resolution (true) state [eq. (46)] is shown

in Fig. 6. Using eq. (62), we may produce the correspond-

ing low-resolution (forecast) state from the M�8 forecast

state shown in Fig. 6. Also, shown in Fig. 6 is the estimate

of the true state, xc, given the low-resolution forecast state

from eq. (51) using the M�8 forecast state shown in that

figure. This ‘best estimate’ from eq. (51) makes use of the

linear regression in eq. (51) but does not make use of the

observation operator, H. In this sense, this ‘best estimate’ is

simply a state-dependent bias correction of the forecast.

The next set of experiments will make use of the matrix

D. Here, we study eq. (49) for b�1/6, which implies

a Gaussian smoother on the degrees of freedom that are

retained after truncation. The same true covariance model

is used in this experiment, Pt, for which the one-point

covariance function is repeated in Fig. 7a. Again, in Fig. 7a,

we also plot the central column of Pf for two different

truncation matrices T: one is for M�256 and the other

is for M�16. Note that the M�256 case corresponds to

no truncation at all as the forecast state vector and the

true state vector are equal (M�N�256). The M�256

case provides an example of a forecast model error that

does not arise from a reduction (truncation) of the number

of degrees of freedom in the forecast model. The smooth-

ing kernels for these two cases are shown in Fig. 7b. The

truncated smoothing kernel (M�16) shows the positive�
negative oscillations in the far-field that we saw previously.

Contrast this with the non-truncated smoothing kernel

(M�256) that is completely local.

The application of these smoothing kernels produces

distinctly different responses in Rf � Ri and R
�
f � Ri.

For the M�256 case, the S is full-rank, has an inverse

and results in Rf � Ri ¼ 0 as shown in Fig. 7c. However,

because the smoothing matrix S still produces a difference

between Pt and Pf, which implies that R
�
f � Ri is non-zero

as shown in Fig. 7c. Hence, when the forecast model is

full-rank, but fails to reproduce the climatology of the true

attractor, the representation error nonetheless vanishes.

This type of climatological error in the model must still

be accounted for using R
�
f � Ri and Gp. In the case where

M�16, which implies both a Gaussian smoothing and

a truncation, one can see in Fig. 7d that both representa-

tion error and R
�
f � Ri are non-zero and quite different.

This difference between Rf � Ri and R
�
f � Ri illustrates

that one can only estimate the representation error from
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Fig. 6. Example high-resolution state, low-resolution state

(M�8) and mean of the conversion density, which is labelled

above as the ‘best estimate’. The low-resolution state is defined

only at the grid-points denoted by the open circles.
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innovation statistics when eq. (58) is implemented because

this is the only way to render Pfb�0 and Pbb�0.

5. Summary and conclusions

A framework has been presented to understand the origin

of the representation error as well as to properly frame

attempts at estimating and accounting for its effects. We

have extended the work of Kalman (1960), whose data

assimilation algorithm is optimal for Gaussian systems for

which the flaws in the model were accounted for using

a white noise forcing, to the case where the observations

are of states on a true ‘attractor’ and the model evolution

produces states on a forecast ‘attractor’ with both states

Gaussian distributed and a linear map existing between

them, but with no applied white noise forcing. In practical

terms, when the distributions are not Gaussian and the

mapping between the two attractors is not linear, we have

derived the best linear, unbiased estimation technique.

For this case, we have shown that in this data assimilation

algorithm the observation operator does not simply map

the truth to the observation, but rather it maps the forecast

to the observation, and because the forecast is in a different

portion of state space than the truth, this requires a

modified observation operator. We emphasise that the

operation of this new data assimilation framework only

requires the prior distribution on the forecast model

attractor and the function F, and does not need the prior

distribution on the true attractor, to correctly assimilate

observations of states on the true attractor. We view this

map in eq. (4) much like that of the algorithms in the

ensemble post-processing and bias-correction literature

(e.g. Glahn and Lowry, 1972; Raftery et al., 2005) in which

climatological information is used to build relationships
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between forecasts and observations. As such, this new

framework has shown how to properly include the in-

formation normally obtained from ‘bias-correction’ algo-

rithms within the data assimilation system.

As discussed in the introduction, the notion that the

true state might not be the best initial condition for the

flawed forecast model has led us to choose to develop a data

assimilation system that attempts to produce a state estimate

on the forecast attractor. This obviously produces a state

estimate that may not be as close to the truth as is required in

some applications. Note however that we may use the state

estimation procedure described in Appendix A to map our

forecast back to the true attractor in order to produce a state

estimate on the true attractor. This of course is nothingmore

than the well-known post-processing of a forecast but using

the infrastructure that we have already developed for the

data assimilation algorithm.

In any event, this new framework shows that the re-

presentation error arises from the lack of an inverse in the

relationship between the true attracting manifold and that

of the forecast models. This lack of an inverse in their

relationship results when the forecast model is a truncated

representation of the true states. In other words, represen-

tation error does not occur when the forecast model is

simply in error in its representation of climatology. The

error that the model must make for representation error

to exist is one in which the forecast model has been

truncated to represent fewer degrees of freedom than the

number of degrees of freedom describing the true states.

In this specific case, the forecast observation likelihood

q yJ

��xf

� �h i
will have a variance greater than that of the

error of the instrument and is also likely to have a cor-

relation between observations. In the Gaussian case, it was

shown explicitly that this inflation and correlation structure

arises as the covariance matrix of the portion of the true

spectrum that goes missing from the truncated forecast

model. Lastly, it was shown that innovation-based techni-

ques (e.g. Hollingsworth and Lönnberg, 1986; Desroziers

et al., 2006) for the estimation of representation error

covariance matrices are self-consistent estimators of the

representation error only when the observation operator has

been modified to account for the attractor differences.

Applying this new framework to specific problems in

the geosciences will require estimation of the map between

the true attractor and that of the forecast model [eq. (4)].

We imagine a proxy for such a model could be developed

from the difference between high-resolution and low-

resolution simulations. After development of the map

[eq. (4)], one must develop the observation gain (Gp) for

each observation in which one is interested in accounting for

errors in representation. We suggest performing this step

using an observation-by-observation approach as this will

likely lead to a reduction in the size of the matrices in the

calculation [eq. (52)]. Research into performing this estima-

tion of S is underway and will be reported in a sequel.
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7. Appendix

The Moore-Penrose Inverse and the Minimum Variance

Estimate

We begin with eq. (36) and decompose it into prior mean

and perturbation:

xf ¼ Sxt; eef ¼ Seet (A1a,b)

where eef ¼ xf � xf and eet ¼ xt � xt. Equation (46) tells us

that

eet ¼ Zgg (A2)

where h is a N-vector whose elements are drawn from

N(0,1). Therefore, we attempt to minimise the cost function

J ggð Þ ¼ 1

2
eef � SZgg
h iT

eef � SZgg
h i

(A3)

to find that the minimum of eq. (A3) is defined by an

infinite number of solutions of the form:

ĝg ¼ SZ½ �yeef þ E2nn (A4)

where

SZ½ �y¼ EC�1=2 D�1=2T�1 0
� �

ET
L (A5)

E ¼ E1 E2½ � (A6)

and j is a vector of length (N-M) that is composed of

random noise with the property that it is a random draw

from N(0,GN�M) with GN�M denoting the last (N-M)

elements of the diagonal of G. In eq. (A6), E has been

subdivided such that we define E1 as the first M columns of

E and then place the remaining columns into E2. We

choose the best solution from the set [eq. (A4)] by requiring

the solution at the minimum of eq. (A3) to also minimise

eeT
t P�1

t eet, which may be shown to imply that hTh is also a

minimum. The addition of this constraint chooses j�0,

which then defines the solution as

êet ¼ Z SZ½ �yeef (A7)

Equation (A7) defines the minimum variance estimate ot
under the constraint that eeT

t P�1
t eet is also a minimum. Hence,
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eq. (A7) finds the minimum variance estimate of eq. (A1a,b)

for the state ot given of. The minimum variance estimate of

a linear estimator will be equal to themean of the conversion

density when that density is Gaussian. When that density is

not Gaussian, it then reduces to the best linear, unbiased

estimate of the mean of the conversion density.
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