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ABSTRACT

Flow in geophysical fluids is commonly summarized by coherent streams (e.g., conveyor belt flows in

extratropical cyclones or jet streaks in the upper troposphere). Typically, parcel trajectories are calculated

from the flow field and subjective thresholds are used to distinguish coherent streams of interest. This

methodology contribution develops a more objective approach to distinguish coherent airstreams within

extratropical cyclones. Agglomerative clustering is applied to trajectories along with a method to identify the

optimal number of cluster classes. Themethodology is applied to trajectories associatedwith the low-level jets

of a well-studied extratropical cyclone. For computational efficiency, a constraint that trajectories must pass

through these jet regions is applied prior to clustering; the partitioning into different airstreams is then

performed by the agglomerative clustering. It is demonstrated that the methodology can identify the salient

flow structures of cyclones: the warm and cold conveyor belts. A test focusing on the airstreams terminating at

the tip of the bent-back front further demonstrates the success of themethod in that it can distinguish finescale

flow structure such as descending sting-jet airstreams.

1. Introduction

The structure of a wide range of geophysical flows has

often been analyzed in terms of distinct, coherent air-

streams, such as jet streams, jet streaks, and conveyor

belts. For example, a conveyor belt view of flow within

extratropical cyclones is widely accepted (Harrold 1973;

Carlson 1980; Browning and Roberts 1994; Wernli and

Davies 1997; Schultz 2001). Though clearly defined

features in satellite imagery or synoptic-scale analyses,

the precise definition of these airstreams often relies

on a relatively arbitrary choice of threshold. The goal of

this contribution is to demonstrate that cluster analysis

of flow trajectories is a successful method to automate

the identification of coherent airstreams in a more

objective way.

Cluster analysis has gained wide use in geophysical

sciences, particularly in applications where identifying

archetypes is useful. Cheng and Wallace (1993) identi-

fied large-scale atmospheric flow regimes by applying a

hierarchical clustering approach to 500-hPa geo-

potential height fields. Hierarchical clustering has also

been used to categorize synoptic-scale rainfall patterns

from a high-density rain gauge network (e.g., Tennant

and Hewitson 2002; Crétat et al. 2012). Fuzzy clustering
approaches such as theK-means algorithm have become

the favored methods for determining weather regimes

because of the variety of advanced statistical tests that

can be used to test the robustness of the regimes that are

determined (e.g., Michelangeli et al. 1995; Fauchereau

et al. 2009).

Application of cluster analysis to two-dimensional

and later three-dimensional airflow trajectories was

first carried out in research focusing on understanding

variability in atmospheric composition at observations

sites (e.g., Moody and Galloway 1988; Harris and Kahl

1990). Both hierarchical and fuzzy clustering ap-

proaches have been used to characterize the trajectories

computed backward from atmospheric composition

observatories (e.g., Dorling et al. 1992; Moody et al.

1995; Cape et al. 2000). Stohl (1998) summarized the

strengths and shortcomings of these trajectory compu-

tations and classification techniques. Despite this wide

use of cluster analysis, we are unaware of an application
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to the flow in extratropical cyclones. There is an im-

portant difference between the application we present

and the literature noted above: most applications have

little a priori knowledge of the classifications cluster

analysis may produce, whereas extratropical cyclones

have a wealth of literature describing airflow features.

The warm conveyor belt (WCB) is a warm moist

(high-valued equivalent potential temperature) rain-

producing ascending airstream advancing poleward

ahead of the cold front (Harrold 1973). The cold con-

veyor belt (CCB) is a cool low-level airstream that forms

on the cool side of the warm front flowing rearward in

relation to cyclone motion (Carlson 1980; Schultz 2001).

In extratropical cyclones where the warm front bends

cyclonically around behind the low pressure center of

the system, the CCB flow can wrap around to produce

very strong earth-relative winds immediately south of

the cyclone center. This is common in Shapiro–Keyser-

type cyclones (Shapiro and Keyser 1990), producing a

‘‘poisonous tail’’ of damaging winds (Grønås 1995). In
such cyclones, finer-scale flow structures have some-

times been found associated with damaging winds ahead

of the CCB (Browning 2004). Termed ‘‘sting jets,’’ since

they occur near the tip of the poisonous tail, these air-

streams develop less frequently than the CCB andWCB

(Martínez-Alvarado et al. 2012) and can have a more

transient nature when they do develop, persisting for

periods of only several hours (Clark et al. 2005; Baker

2009; Martínez-Alvarado et al. 2010).

Conveyor belt and sting-jet airstreams are often

identified subjectively or with simple thresholding

techniques applied to Lagrangian trajectories describing

these flows (Wernli and Davies 1997; Schultz 2001;

Clark et al. 2005). This approach has proved particularly

effective for automating the identification of the WCBs

in climatology studies of extratropical cyclones (Stohl

2001; Eckhardt et al. 2004; Madonna et al. 2014; Pfahl

et al. 2014). Trajectories that start near the surface, and

exceed a total ascent threshold (e.g., Dp. 600hPa, where

p is pressure) can be retained as the coherent ensembles

of trajectories describing the WCB, as demonstrated by

Wernli and Davies (1997). Madonna et al. (2014) note

that a 600-hPa ascent criterion (within a 2-day time

period) is ‘‘fairly strong’’ and found some changes in the

spatial distribution of WCB starting points and average

evolution of parameter values (such as specific humidity

and potential vorticity) along the trajectories in sensi-

tivity tests in which the ascent pressure change or time

criterion were relaxed.

Applying thresholds to identify airstreams works well

where the airstream is largely similar across cyclone

populations and has an easily identifiable characteristic

such as strong ascent or descent. Nevertheless, calculating

statistics across the airstreams has the caveat that the

thresholdingmay admit more or fewer trajectories in the

WCB of each cyclone, resulting in statistical artifacts.

If a study focused on fine differences betweenWCB flow

in, for example an ensemble simulation of one storm,

this caveat could become a serious issue. Furthermore, if

the airstream of interest exhibits wide variability in total

ascent or descent, such as a sting jet, threshold criteria

may well prevent detection of valid coherent ensembles

of trajectories. This contribution proposes cluster anal-

ysis as an appropriate tool in such a situation. Clustering

trajectories that pass near the frontal structures of

extratropical cyclones should naturally result in co-

herent ensembles of trajectories, based on similarities in

their dynamical histories. These could then be classified

based on the a priori knowledge of conveyor belt flow;

for example, a coherent ensemble of trajectories would

be identified as a WCB if it was a near-saturated as-

cending airstream ahead of the cold front. The WCB

could thus be selected without the need to choose a

threshold criterion other than a test of ascent.

The clustering method is demonstrated here in appli-

cation to thewell-observed andwell-studied extratropical

cyclone, Cyclone Friedhelm (2011). Figure 1 provides

schematic representation of where the airstreams formed

during the development of Cyclone Friedhelm, which

developed explosively and produced very strong and

damaging surface winds over Scotland on 8 December

2011 (Baker et al. 2013; Martínez-Alvarado et al. 2014,

hereafterMA14).During the early stages of development

the WCB was the primary coherent ensemble of trajec-

tories associated with this cyclone (Fig. 1a). The CCB

became associatedwith strongEarth-relativewinds as the

warm front was cyclonically bent back around the low

pressure center (Fig. 1b). By this stage the low-level jet

associated with the WCB was starting to weaken. A sting

jet descended on the southern flank of the CCB as the

cloud head of the cyclone continued to wrap around with

the bent-back warm front (Fig. 1c). While the schematic

shows the evolution of these flows forCyclone Friedhelm,

this evolution generally occurs for developing cyclones

with diagnosed sting jets [Clark et al. (2005), e.g., the

Great October storm of 1987].

A general description of the method, independent of

application to extratropical cyclones, is given in section

2. Section 3 describes the model simulation of Fried-

helm, the cyclone used to demonstrate and test the

methodology. The results of applying this method to

the dominant low-level conveyor belt airstreams and the

mesoscale jet structure near the bent-back front are

described in sections 3a and 3b, respectively. Section 4

provides a summary of these results and concludes

this study.
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2. Methodology: Agglomerative clustering

Agglomerative (also termed hierarchical) clustering

depends on assessing the similarity between many in-

dividual instances that are commonly referred to as

observations in clustering algorithms. In this application

each trajectory is one observation. These observations

are stored in a matrix W containing J observations each

described by N dimensions. A common measure of sim-

ilarity is Euclidean distance d, computed as the l2 norm.

Between two observation vectors in W this would be

djk 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
N

n51

[Wj(n)2Wk(n)]
2

s
, (1)

where j and k index the two observations under compari-

son and n indexes the dimension of each observation.

Clustering starts by agglomerating the most similar

observations into new cluster classes. The algorithm used

here is Ward’s variance minimization (Ward 1963); this

has a straight-forward implementation, which lends itself

to automation, a key goal of this study. Its primary draw-

back is the tendency to produce cluster classes containing a

similar numbers of observations. This produces the caveat

that coherent streams containingmany trajectoriesmay be

described by more than one cluster class. The SciPy Hi-

erarchical Clustering module for Python (Jones et al.

2001), used here, implements Ward’s method with the

widely used approach of updating a matrix storing the

Euclidean distances between each cluster centroid

(Wishart 1969). The algorithm ensures that, at each iter-

ation, new classes are created such that variance between

members within a cluster class is minimized across all

possible combinations of members of a class, at that step.

Iteration continues until all observations are agglomerated

into a single class. Cheng and Wallace (1993) provide a

FIG. 1. Schematic of the development of airstreams

and front locations in extratropical cyclone Friedhelm

during 8 Dec 2011 overlaid onto infrared imagery at

(a) 0300 UTC (MODIS), (b) 1000 UTC (AVHRR),

and (c) 1300 UTC (AVHRR). The light blue region

denotes approximate region of strongest low-level

(e.g., 850 hPa) winds. (Courtesy: Dundee Satellite

Receiving Station).
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detailed account of the algorithm with additional de-

scriptions available in Crétat et al. (2012) and Ramos

(2001). The succession of agglomerations is represented

graphically by dendrograms, as shown in Figs. 2a and 2c.

Any distinguishing variable can be used in an obser-

vation vector. In the context of classifying atmospheric

flows, building the observation vectors from positional

information [x(t), y(t), z(t), where t is time] is appro-

priate (e.g., Dorling et al. 1992). Inclusion of an airmass

tracer variable [g(t)] can add further distinguishing in-

formation to the flows under consideration. Having

computed trajectories for a given flow field (from start

points at time t0) a time period of interest can be

chosen—t5 [t0 2 3, t0 1 3 h]—and the observation vector

for one of these trajectories can be specified:

Wj5 [xj, yj, zj,gj] , (2)

where bold variables denote rows of values for this time

period. This observation vector would have dimension

N5 28, if the time period was over seven hourly

positions.

Scaling of these variables is necessary because of the

different units of the horizontal, vertical, and airmass

variables. We choose to scale the values of each variable

by their respective standard deviations at time t5 t0,

giving x̂j 5 xj/s[xall(t0)] and similarly for y, z, and g. The

matrix xall represents a matrix of x positional vectors for

all trajectories and s represents the standard deviation.

Thus, x̂j is the jth x-coordinate vector scaled with the

standard deviation of the x position of all trajectories at

t5 t0. Scaling in such a manner for all variables in each

observation produces the data matrix that is passed to

the clustering algorithm:

Ŵj 5 [x̂j, ŷj, ŷj, ĝj]; j5 1: J . (3)

Two subtleties to these choices bear mention. First, the

mean is not removed (if so this would be a normaliza-

tion) as this would remove the ability to distinguish the

FIG. 2. (a) Dendrogram indicating the successive agglomeration of clusters from observations (x axis) with an increasing distance

between clusters (y axis), and (b) d as a function of agglomeration step (blue) with the peak value of curvature (d2d/dx2, red) indicated

(dashed). See the text for a definition of d. Themean distance at the agglomeration stepwhen the peak curvature occurs is the classification

cutoff distance as shown by a horizontal dashed line in (a). The resulting six clusters are labeled in (a). Panels (a) and (b) correspond to the

clustering of trajectories initialized at 0600 UTC (No. of observations 5 9738) shown in Fig. 4. (c),(d) As in (a),(b), but correspond to

superclustering (No. of observations 5 60) shown in Fig. 6.
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geographic locality of the trajectories, leaving only the

shape of each trajectory as the distinction. Second,

scaling by the standard deviation calculated only at the

trajectory start time ensures that the relative time evo-

lution of each variable is unmodified (i.e., a trajectory

with substantial three-dimensional curvature retains its

character in relation to more linear trajectory paths).

The nature of the task requires an approach to auto-

matically decide on the number of clusters to retain. This

decision would ideally result in a classification with co-

herent, dissimilar airstreams assigned to separate clas-

ses, and similar airstreams grouped in one class. This can

be achieved by exploiting a feature of the clustering al-

gorithm itself. As agglomerative clustering proceeds,

d between successive clusters joined at each iteration

increases gradually. This distance d can be averaged

over all the clusters joined at one iteration step to give d.

Figure 2b shows this increase in d as a function of ag-

glomeration step. When notably distinct clusters start to

be cojoined d rapidly increases. The last set of cluster

classes present before this sudden jump represents the

classification of trajectories into classes most distinct

from one another, as shown by the curvature in Fig. 2b.

These classes are the classification retained as the salient

airstreams in this methodology. Dorling et al. (1992)

used a similar technique in application of a fuzzy clus-

tering method for 2–30 clusters. The number of cluster

classes was chosen as that just before a sudden increase

in intracluster variance, as expected when classes con-

tain very different class members. This was decided by

visual inspection (Dorling et al. 1992). In our method,

the decision of cluster numbers is automated, which

leads to the method admitting a caveat as follows. If a

maximum in curvature occurs two agglomerations or

more before only one class is left, the method works as

described; if not, the last value of the curvature is the

highest and the number of classes chosen is forced to be

the number of classes present in the third-last iteration.

This is borne out in a comparison of Figs. 2b and 2d. At

worst, this caveat results in more cluster classes being

selected than would have been selected by visual in-

spection. Therefore, no attempt is made to draw con-

clusions from the number of classes.

Each of these automatically chosen classes contains a

population of trajectories from which class-median tra-

jectories are calculated by taking the median trajectory

properties at each time in the coherent ensemble of

trajectories. Trajectory classification can be repeated for

trajectory populations calculated from start locations

defined at consecutive times in the evolution of a

weather system. Class-median trajectories from each

consecutive time can be calculated relative to the posi-

tion of the center of the weather system at the given

time. This results in a population of system-relative

class-median trajectories that summarize the weather

system development. This summary class-median-

trajectory population can then be classified with same

clustering approach described above to obtain a ‘‘super’’

classification of airstreams that form as a weather system

evolves. In a Shapiro–Keyser-type extratropical cyclone,

this superclassification should show theWCB flow during

early cyclone development and the CCB in later stages

(Shapiro and Keyser 1990). This is demonstrated in

section 3a.

3. Coherent ensembles of trajectories in a test case
cyclone

In this section we describe Cyclone Friedhelm and

demonstrate that the method of clustering trajectories

can identify both synoptic-scale and mesoscale struc-

tures in its flow field. Cyclone Friedhelm was observed

in situ using a research aircraft during intensive ob-

serving period 8 of theDiabatic Influences onMesoscale

Structures in Extratropical Storms (DIAMET) field

campaign (Vaughan et al. 2015). It was the subject of a

detailed case study into the airstreams that constituted

the low-level jet in the bent-back frontal region (MA14).

MA14 analyzed a numerical simulation that was com-

pared to flight data. They defined the low-level jet in this

region by the 45ms21 isotach and found three constit-

uent airstreams with distinct equivalent potential tem-

peratures and airflow histories: a primary CCB flow, a

secondary CCB flow, and a sting-jet descent. Compari-

son with MA14 provides a stringent test for this clus-

tering methodology.

The cyclone was simulated using the operational

numerical weather prediction model used by the Met

Office, the UnifiedModel (MetUM). Version 8.2 of the

MetUM was used with the (until recently operational)

North Atlantic and European domain configuration

that extends from approximately 308 to 708N in latitude

and from 608W to 408E in longitude (figures in this

paper show a subregion of this domain). This configu-

ration has 0.118 (;12 km) grid spacing in the horizontal

in both latitude and longitude on a rotated grid. The

model lid is at ;80 km with the 70 stretched vertical

levels spaced such that slantwise circulations of slope 1:

40, with an absolute vertical level spacing of 300m, are

resolvable near 600 hPa and slopes shallower than 1:50

are resolvable below 750 hPa. This compares well with

the 1 in 50 slope suggested as necessary to simulate the

release of conditional symmetric instability by slant-

wise circulations (Persson and Warner 1993) and sim-

ilarly slantwise sting-jet descents (Clark et al. 2005;

Gray et al. 2011).
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The simulation was initialized at 0000 UTC 8 De-

cember from the operational North Atlantic and Euro-

pean analysis, with boundary conditions provided from

the operational global MetUM. This modeling setup is

nearly identical to that used in MA14; the only differ-

ences are the updates due to the change inmodel version

from 7.3 to 8.2. Simulations of Friedhelm from the two

model versions compare very closely (not shown).

Model data from the version 8.2 simulation were in-

terpolated onto pressure levels (Dp5 25hPa) before

calculating the diagnostics used in this study.

The aim is to demonstrate that the clustering meth-

odology can characterize airstreams that flow through

the low-level jet regions of this cyclone. In principle, the

methodology could identify these low-level jets from

trajectories that describe the full flow around the cy-

clone. Jet regions of strong wind speed would be dis-

tinguished by coherent classes of trajectories that trace

greater distances than those not associated with jet re-

gions. To reduce the computational resources needed,

including the computational challenge of clustering

;105 trajectories, we speed up this identification process

by preselecting grid points within strong wind regions.

However, this preselection is a practical step, not a

necessary one. To this end we choose where to seed

trajectories by identifying grid points that lie within a

threshold isotach in the lower troposphere (950–

650hPa). Considering 25-hPa pressure increments, tra-

jectories identifying the conveyor belts at each level are

started within any 40ms21 isotach that is vertically

contiguous with a 40ms21 isotach at 850 hPa, an arbi-

trary but reasonable wind speed for low-level jets (re-

sults will be shown in section 3a). For comparison with

the bent-back front jets studied inMA14, their threshold

of 45ms21 is chosen (results will be shown in section

3b). Start points were thus selected hourly from the

model output and used to initialize both forward and

backward trajectories. Trajectories were calculated with

the Lagrangian Analysis Tool (LAGRANTO; Wernli

and Davies 1997; Sprenger and Wernli 2015) using the

iterative Euler scheme applied to hourly model output,

with an iteration time step of 5min.

The observation vector (Wj) for each trajectory is

described by latitude, longitude, and pressure co-

ordinates with equivalent potential temperature (ue)

providing the airmass characteristic. For moist flows ue
is a conserved variable; however, ue can evolve in time

along the trajectories and trajectories with similar ue will

be preferentially clustered. While other airmass tracers

could be chosen, a priori knowledge of flow around ex-

tratropical cyclones suggests inclusion of a measure of

the moist entropy of air parcels is worthwhile: Browning

and Roberts (1994) describe how the warm and cold

conveyor belts can be distinguished by their high and

low ue values, respectively [after Carlson (1980)]; and

Clark et al. (2005) show that ue is also approximately

conserved during the descent of air in sting jets.

a. Identification of conveyor belts

To identify the conveyor belts, each trajectory was

calculated over the time period [t02 3, t01 3 h], where t0
is the initialization time from when both forward and

backward trajectories were calculated. This 7-h period

was chosen as a minimum time span in which to capture

the key features of conveyor belt flows (i.e., location

relative to the storm center, curvature, and ascending or

descending character). Tests with a longer time period

[t0 2 6, t0 1 6 h] produced very similar results (not

shown). As Wernli and Davies (1997) noted, these air-

streams are coherent for the duration of storm in-

tensification, longer than 12h. However, these key

features are also present on shorter time scales [e.g., see

Fig. 10 in Schultz (2001)].

The resulting classification for Cyclone Friedhelm is

shown for trajectories passing through low-level jet re-

gions at 0600 UTC 8 December 2011 (Fig. 3). The full

population of trajectories is shown in Fig. 3a. Classes

with both CCB (class 1) and WCB (class 5) character-

istics are identified (Figs. 3b and 3c, respectively). At

this time the cyclone structure was identified as corre-

sponding to stage three of the Shapiro–Keyser concep-

tual model (Shapiro and Keyser 1990) by MA14: the

fronts had formed a T-bone structure with the WCB

still present and the CCB starting to wrap around the

cyclone center. Figure 3d presents a WCB trajectory

population obtained by thresholding for saturated as-

cent. Because of the short 21-h duration of these

trajectories, a 600-hPa ascent criterion [as applied in

previous studies such as Wernli and Davies (1997) for a

48-h period] only admits 183 trajectories. So to provide a

comparable population size for comparison to theWCB

cluster class, a 400-hPa ascent criterion is chosen. The

WCBs obtained by the agglomerative clustering and

thresholding methodsmatch closely (cf. Figs. 3c and 3d).

Obtaining the WCB by thresholding was almost in-

stantaneous, whereas cluster analysis of the full 9738

trajectories passing through the low-level jet region took

;10min. (However, the clustering of the 887 trajecto-

ries passing through the strong wind region at the tip of

the bent-back front to produce Fig. 7 completes in order

seconds; this issue will be discussed in section 4.)Median

trajectories for the CCB andWCB class populations are

overlaid in Figs. 3b and 3c. These median trajectories,

along with the others resulting from the clustering for

this start time, are mapped in Fig. 4a with Figs. 4b, 4c,

and 4d displaying their evolution in pressure, relative
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humidity, and ue, respectively. These are shown for the

full time period of the simulation but, following the

previous discussion, classification was only performed

on trajectory histories from 0300 to 0900 UTC. The

dendrogram associated with these clusters classes is

found in Fig. 2a and shows the distance cutoff used to

obtain these six classes.

The sensitivity of the final classification to variables

chosen for clustering was tested (not shown) by consider-

ing both the number of classes produced and comparison

of resulting class-median trajectories. This showed that

pressure evolution was a strongly distinguishing variable,

with latitude and longitude less so. Inclusion of ue in the

observation vector tended to increase the number of final

clusters. This implies it assists in distinguishing different air

masses constituting the airstreams.

The wind maximum directly south of and closest to

the cyclone center is typical of the wraparound of the

CCB and the associated development of strong surface

winds (Fig. 4a). The near-surface airstream describing

the CCB flow is captured in class 1. This median tra-

jectory remains saturated and below 800hPa while a

drier airstream, class 2, follows a more zonal path above

700 hPa (Figs. 4b and 4c). Together with class 4, these

three classes represent flow in the cool sector of the

cyclone, northwest of the cold front, as demonstrated in

Fig. 4d. The wind maximum some distance southeast of

the cyclone center in Fig. 4a is associated with the cold

front and attendant WCB. The classification in Fig. 4

captures theWCB with class 5, as identified by a median

trajectory that starts near the surface and rises 100hPa

between 0300 and 0900 UTC before ascending more

rapidly to about 350hPa (Fig. 4b). Class 6 describes a

similar airstream at an elevated altitude. These median

trajectories remain saturated, along with class 3, which

captures flow through a lower extension of the upper-

level jet. Classes 3, 5, and 6 summarize flow in the warm

sector of this cyclone (Fig. 4d).

How coherent are the airstreams summarized by these

class medians? Following from Wernli and Davies

FIG. 3. (a) Full population of trajectories passing through low-level jet (wind speed exceeding 40m s21) at 0600 UTC 8 Dec 2011.

(b) Trajectories assigned to cluster class 1 (CCB) with the class median overlaid (shaded and black-edged thick line). (c) As in (b), but for

cluster class 5 (WCB). (d) AWCB trajectory population obtained from thresholding for saturated (RH. 90%) ascent (Dp. 400 hPa in

21 h). Every 10th trajectory is plotted in (a) with every third shown in (b)–(d). Dots indicate 0600 UTC initial locations of displayed

trajectories, with insets showing vertical cross sections of these start locations between 600 and 1000 hPa through the longitude drawn in

bold. Trajectories are clustered over the period 0300–0900 UTC, but trajectory histories are shown for the extended period 0100–

2200 UTC.
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(1997) who used variance, we quantify coherency by the

standard deviations of the trajectory observation vari-

ables at each time and then average this value for all

times (Table 1). Considering ue, trajectory class 5 (the

WCB airstream) is the most coherent relative to other

classes. Likewise class 1, the CCB has small variance in

ue. However, small standard deviations in pressure

(;50hPa, about 4 times the model vertical level spac-

ing) and ue (;1K) in all the classes support the assertion

that this clustering methodology is capturing coherent

ensembles of trajectories. These results provide a char-

acterization of airstreams constituting the low-level jets

at 0600 UTC in the evolution of Friedhelm. We now

consider the later hours of development.

Agglomerative clustering of trajectories was applied

separately to the model output for initial times set to

every hour of the simulation from 0500 to 1700 UTC.

This resulted in a population of class-median trajectories

(i.e., the information shown in Fig. 4 for each time). The

entire set (for all initial times) of class-median trajec-

tories can be classified as follows. Figure 5a shows an

illustrative selection those class-median trajectories with

WCB characteristics. Before classification the system-

relative (relative to the storm center) class-median

FIG. 4. Classification of trajectories arriving in low-level jets (wind speed exceeding 40m s21) at 0600 UTC 8 Dec 2011 labeled in each

panel by class number. (a) Class-median trajectories colored by pressure with the position of the minimum cyclone pressure marked by3

at 0600UTC on the smoothed cyclone track (black line). The direction of the trajectories can be determined from the numerical trajectory

labels that are positioned near the beginning of the trajectories (at t0 2 3 h). Contours of 40 and 45m s21 wind speed are marked in gray.

Class-median evolutions of (b) pressure, (c) relative humidity, and (d) ue with the start and end times of the [t0 2 3, t0 1 3 h] classification

period denoted by squares and stars, respectively.

TABLE 1. Average standard deviation (s) of each variable for the ensemble of trajectories in each class obtained from clustering

trajectories passing through low-level wind maxima at 0600 UTC (shown in Fig. 4) and 1600 UTC (shown in Fig. 7). Average s for each

variable is computed as the mean of ss at each hour for the classification period chosen: [t0 2 3, t0 1 3 h] at 0600 UTC and [t0 2 5, t0 h] at

1600 UTC.

0600 UTC classes 1600 UTC classes

1 2 3 4 5 6 1 2 3 4 5

s (lon; 8) 0.53 0.62 0.98 1.43 0.52 0.93 0.35 0.22 0.24 0.31 0.27

s (lat; 8) 0.70 0.80 0.34 0.63 0.71 0.80 0.27 0.16 0.25 0.22 0.21

s (pressure; hPa) 52.99 45.21 39.78 32.20 43.14 46.40 33.66 39.88 49.09 35.17 47.11

s(ue; K) 0.50 1.12 0.90 1.13 0.40 1.18 0.31 0.24 0.30 0.21 0.39

No. of trajectories 1192 1847 1294 1742 1324 2339 249 89 188 133 228
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trajectories were calculated (Fig. 5b). Classification was

then performed on all system-relative class-median

trajectories, which in this case clustered these six tra-

jectories and another seven (not shown for clarity) into

a class capturing WCB flow during the period 0500–

1200 UTC of this cyclone. This cluster class can be sum-

marized by the mean of all system-relative class-median

trajectories. This ‘‘super class’’ mean is shown in Fig. 5b

as the dashed black line. Note that for the superclas-

sification the classmedian of the few trajectories is noisy,

hence, the use of the class mean.

All the superclass means for this storm are presented

in Fig. 6. Analysis of the times of the trajectories in the

classes (not shown) associated with each superclass

FIG. 5. Illustration of the computation of aWCB superclass mean. (a) Class-median trajectories withWCB characteristics, as in Fig. 4a,

but only showing every second class-median trajectory to avoid clutter. Contours denote 40m s21 isotach at 850 hPa at each time, with the

corresponding storm center marked on the storm track. (b) System-relative class-median trajectories and isotachs [as for (a) but in system-

relative coordinates] and the superclass mean (dashed black line) computed from all system-relative class-median trajectories with WCB

characteristics in the period 0500–1200 UTC.

FIG. 6. As in Fig. 4, but showing the superclassification of all trajectories arriving in the low-level jet between 0500 and 1700 UTC 8 Dec

2011. The longitude and latitude coordinates in (a) are relative to the center of the cyclone, marked by ‘‘L.’’
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mean in Fig. 6 enables characterization of the evolution

of the conveyor belt airstreams in Cyclone Friedhelm.

Superclass mean 1 contains a population of class-median

trajectories present from 0500 to 1200 UTC. This was

the WCB while it was still a part of the low-level jet

regions of this cyclone. The elevation of this superclass

mean (Fig. 6b) indicates that while containing obvious

WCB class-medians such as class 5 in Fig. 4, it also

contains class-median trajectories of elevatedWCB-like

flows such as class 6 in Fig. 4. Superclass mean 4 sum-

marizes the population of CCB class-medians present

throughout the period analyzed (0500–1800 UTC). The

weak, late ascent of this class and mean warming

(Fig. 6b) of 5K (Fig. 6d) contrast with the cooling

(;2K) and sharper ascent of class-mean 1. Classes 2 and

3 capture the low-level extensions of upper-level jets

above the cold front and bent-back warm front.

b. Identification of airstreams terminating at the tip of
the bent-back front

For this comparison with airstreams classified in

MA14, the focus is on the airstreams that enter an in-

tense low-level jet region near the tip of the bent-back

front and positioned south of the cyclone center (in the

frontal fracture zone as defined in MA14). Starting

points for trajectories in this low-level jet were only re-

tained if they were within the isotach that was contigu-

ous with the near-surface jet, defined by wind speed

exceeding 45ms21 at 850hPa. The trajectories were

classified based on their positional and thermodynamic

histories in the time period [t0 2 5, t0 h].

MA14 describe descending sting jets arriving in this

low-level jet at 0900, 1300, and 1600 UTC 8 December

and undercut by two distinct CCB flows. Further anal-

ysis of these sting jets revealed mesoscale dynamical

instabilities (conditional, conditional symmetric, and

inertial instabilities) associated with the sting-jet de-

scent, which were absent in the CCB flows. Using

convection-permitting (2.2-km horizontal grid spacing)

ensemble simulations of Cyclone Friedhelm, Vaughan

et al. (2015) revealed finescale banding in the wind and

precipitation structure in the region where the sting-jet

airstream emerged from the cloud head.

Having demonstrated that the clustering algorithm

can distinguish conveyor belts in section 3a, the follow-

ing question is now addressed: can the clustering meth-

odology capture a mesoscale feature such as the sting jet

with minimal use of threshold criteria? Figure 7 presents

the results of the cluster analysis for trajectories arriving

in the low-level jet in the frontal fracture zone of Cy-

clone Friedhelm at 1600 UTC. For comparison, Fig. 8

(adapted from MA14) shows the pressure, relative hu-

midity, and ue evolutions of the sting-jet (S2) and CCB

(S1 and S3) airstreams identified inMA14. InMA14, the

trajectories were split into coherent ensembles of tra-

jectories using subjectively chosen threshold values for

FIG. 7. As in Fig. 4, but showing the classification of trajectories arriving in the low-level jet region (wind speed exceeding 45m s21) in the

frontal fracture zone at 1600 UTC 8 Dec 2011 labeled in each panel by class number.
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ue (Fig. 8a shows the pressure evolutions for four arrival

times; Fig. 8b shows the relative humidity evolution for

arrival at 1600 UTC only). Cluster classes 2–5 distin-

guish nuances of the CCB (Fig. 7a). Together these

classes describe similar evolutions to those of S1 and S3

in MA14. They remain saturated at low altitude while

rising weakly and warming ;3K, characteristic of CCB

flow.

In contrast to the other classes, the median trajectory

in class 1 descended more than 150 hPa during this pe-

riod (Fig. 7b). This class median is most similar to the

median trajectory labeled ‘‘S2@16’’ by MA14 due to its

descent from ;500 to ;700 hPa, drying to about 50%

relative humidity and small change in ue (;1K). These

features are characteristic of sting-jet descents and

MA14 demonstrated the presence of mesoscale in-

stability associated with the descent of the trajectory

population that this class summarizes. Although sting

jets are often associated with strong surface winds [e.g.,

in the Great October storm of 1987, Browning (2004)],

trajectory analysis that uses the resolved model wind

field, cannot show the interaction of the sting jet with the

boundary layer.

Some differences in evolution of the ensemblemedian

CCB and sting-jet trajectories calculated here and in

MA14 are to be expected as the different clustering

methods result in slightly different apportioning of in-

dividual trajectories to each ensemble. For example, the

inclusion into S2 of some trajectories assigned to S3

would result in a moister S2 class median. Differences in

the ensemble-median trajectories would also be ex-

pected from slight differences in forecast evolution due

to the different model version used, the rejection of

some trajectories in MA14 using a conservation of po-

tential temperature criterion (but not in this study), and

differences in the start points of the trajectories (the

wind speed threshold used to identify the start points is

the same in this study and MA14, but MA14 used all

FIG. 8. Evolution of (a) pressure, (b) relative humidity with respect to ice, and (c) ue along the

ensemble median trajectories of the subjectively clustered trajectories arriving in the low-level

jet region in the frontal fracture zone at 1600 UTC 8 Dec 2011 in MA14. The ensemble median

trajectories represent airstreams that are labeled as ‘‘SX@HH,’’ where X indicates the air-

stream number andHH indicates the arrival hour. Pressure evolutions are shown for airstreams

arriving at four times whereas relative humidity evolutions are only shown for those airstreams

arriving at 1600UTC. (Figure adapted fromMA14’s Fig. 8, courtesy of theAmer.Meteor. Soc.,

used with permission).
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points exceeding this threshold within a specified box

whereas in this study points contiguous to the jet at

850hPa were used). However, the differences areminor;

the overall resemblance between the full trajectory

populations of classes 1 and S2 (Figs. 9a and 9b, re-

spectively) is striking. Both contain trajectories that rose

from near the surface up to ;600 hPa before joining air

parcels with a more westerly and elevated source. These

parcels then descended together as an airstream into the

strong wind region above Scotland. This similarity

demonstrates that the agglomerative clustering meth-

odology can distinguish mesoscale flow structures such

as sting-jet descents even in cases such as Cyclone

Friedhelm in which the CCB undercuts the sting jet.

4. Summary and conclusions

This study has demonstrated the ability of cluster

analysis to identify the salient airstreams of an extra-

tropical cyclone in an automated way. This was possible

by making specific choices with regards to the time pe-

riod, distinguishing variables, and cluster algorithm.

These choices benefit from a priori knowledge of

extratropical cyclone structure. Focus on strong wind

FIG. 9. Positional evolution of the trajectories constituting (a) agglomeratively clustered class

1 and (b) the subjectively clustered S2 airstream (from MA14’s Fig. 5, courtesy of the Amer.

Meteor. Soc., used with permission). The back trajectories are colored by pressure. In (a) the

position of the minimum pressure marked by 3 at 1600 UTC on the smoothed cyclone track

(black line) is also shown. In (b) the mean sea level pressure at 1600 UTC (contours) is also

shown. Black dots in both panels represent the positions of the trajectories at 1500 UTC. The

trajectories in both panels extend backward to 0100 UTC.
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regions introduced a wind magnitude threshold that was

applied to limit the number of start points of trajectories

to be passed through cluster analysis.

The first test was to identify the primary low-level

flows of the extratropical cyclone, Cyclone Friedhelm.

With focus on the low-level jets, the CCB andWCBwere

identified at a specific time. The cluster-determinedWCB

matched closely to a WCB obtained by thresholding for

saturated ascent. The automated method was applied to

the classification of trajectories passing through the low-

level wind maxima during a period in which the cyclone

continued to develop. Cluster analysis was performed

on the population of class medians from classifications

at each hour in this period. This produced a ‘‘super-

classification,’’ which summarized the Lagrangian flow

of this storm in a single system-relative figure.

Following the identification of conveyor belts the

second test was to identify flows arriving in the strong

(.45m s21) low-level jet region in the frontal fracture

zone, just south of the center of Cyclone Friedhelm. We

demonstrated that the clustering methodology was ca-

pable of distinguishing mesoscale flow structure com-

parable to that identified by careful case study analysis

of this cyclone and clustering of trajectories using sub-

jectively chosen ue thresholds (MA14). The success in

passing this second test motivates the use of this clus-

tering methodology in the study of mesoscale features of

the flow such as sting jets in extratropical cyclones.

The cluster analysis method successfully passed both

these tests and thus provides a more objective way of

identifying airstreams in extratropical cyclones than the

use of threshold criteria. We noted that identifying the

WCB by an ascent threshold is substantially more

computationally efficient, but the cluster analysis will be

computationally acceptable for many applications. The

main computational drawback of Ward’s method is due

to the implementation using a stored Euclidean matrix.

This contains the distance between each possible pair of

trajectories. Therefore, the matrix size increases as the

square of number of trajectories to be classified, which

can lead to large memory requirements.

The caveat of the presented clustering algorithm is

that both the choice of number of cluster classes and

Ward’s clustering algorithm can result in more clusters

than the data natural describes with large clusters clas-

sified into a few clusters of similar size. This may have

occurred with the multiple CCB clusters in Fig. 7. Fur-

ther work could experiment with alternative clustering

methodologies such as, K means (MacQueen 1967;

Hartigan and Wong 1979) or affinity propagation (Frey

and Dueck 2007), in order to address these issues. Some

of these other clustering algorithms also have less com-

putational memory demand, addressing the problem of

clustering large numbers (.104) of trajectories [see

Dorling et al. (1992)]. They can, however, demand more

computational processing time.

In conclusion, an extratropical cyclone has been used

to demonstrate this methodological approach to air-

stream classification. This method has application in

studies where the caveats of thresholding are unaccept-

able. For example, sting jets may have strong variability

in descent rates, so analysis of ensemble simulations of

sting-jet storms would be a natural application of the

approach presented here. Furthermore, the method is

sufficiently general to be used in other contexts where

such distinguishing of flows is needed.
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