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ABSTRACT 

Photosensitized oxidation of guanine is an important route to DNA damage. Ruthenium polypyridyls are 

very useful photosensitizers as their reactivity and DNA-binding properties are readily tunable. Here we 

show a strong difference in the reactivity of the two enantiomers of [Ru(TAP)2(dppz)]
2+

, by using time-

resolved visible and IR spectroscopy. This reveals that the photosensitized one-electron oxidation of 

guanine in three oligonucleotide sequences proceeds with similar rates and yields for bound delta-

[Ru(TAP)2(dppz)]
2+

, whereas those for the lambda enantiomer are very sensitive to base sequence. It is 

proposed that these differences are due to preferences of each enantiomer for different binding sites in 

the duplex.  

 

TOC GRAPHICS 
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The photo-oxidation of guanine by small molecules is an important precursor to DNA damage, and a 

mechanism for possible novel photo-therapeutic applications.
1-7

 Ru(II)L2(dppz) complexes are DNA 

intercalators and those with the appropriate redox chemistry, such as rac-[Ru(TAP)2(dppz)]
2+

 (1) (TAP 

= 1,4,5,8-tetraazaphenanthrene; dppz = dipyrido[3,2-a: 2',3'-c]phenazine), can photo-oxidize guanine 



when bound.
8-12

 As DNA is chiral, enantiomers of octahedral metal complexes are expected to bind in 

different ways, with resulting effects on the excited-state behavior.
13-15

 Detailed knowledge of 

enantiomer binding has improved in recent years following the report of the crystal structure of Λ–

[Ru(TAP)2(dppz)]
2+

 intercalated into the {TCGGCGCCGA}2 decamer duplex (A)
16

 and several 

structures of the  ‘light switch’ complexes [Ru(phen)2(dppz)]
2+

 (phen = 1,10-phenanthroline)
17,18

 or 

[Ru(bpy)2(dppz)]
2+

 (bpy – 2,2'-bipyridyl)
19

 bound to small DNA molecules. While there have been 

attempts to correlate the enantio-specificity of the luminescence of DNA-bound 

[Ru(phen)2(dppz)]
2+

,
18,20-24

 there has yet to be a transient spectroscopic study of how these structural 

factors affect guanine photo-oxidation in dppz complexes. In order to try to understand the influence of 

the handedness of the metal complex on the photo-oxidation of guanine when bound to DNA, we 

compare here the Λ and Δ enantiomers of [Ru(TAP)2(dppz)]
2+

 in oligodeoxynucleotide (ODN) 

{(GC)5}2 and {G5C5}2, as well as in ODN A. As ODN A contains both G and GG sites, the two GC 

ODNs were chosen because they consist purely of either single or consecutive Gs, respectively (Figure 

1) 

 

Figure 1 Structures of Λ- and Δ-[Ru(TAP)2(dppz)]
2+

 and ODNs used in this study 

The forward and reverse ET between the enantiomers of 1 and the ODNs were monitored using both 

transient absorption (TA) and time-resolved infrared (TRIR) spectroscopy on the ps and ns timescales. 

TA is especially useful for monitoring the transient species formed from the metal complex while TRIR 

is particularly sensitive to chemical changes in the DNA nucleobases.
25-26

 Samples were prepared at a 

Ru:duplex ODN ratio of 0.8:1 (400 µM Ru, 500 µM duplex) in buffered D2O.
27

 The ps-TA spectra of 

either Λ-1 or Δ-1 bound to any of the three ODNs (Figure 2) shows the initial removal of the ground 



state at 460 nm (negative ‘bleaching’) and concurrent formation of a broad positive transient feature 

(λmax = 600 nm) immediately after photoexcitation of the Ru complex (400 nm, 1 μJ).  

 

Figure 2. Selected ps-TA spectra (-100 ps, 20 ps, 2500 ps) and associated kinetic fits at 515 nm (inset) 

for Λ-[Ru(TAP)2(dppz)]
2+

bound to (a) ) {(GC)5}2 (b) {G5C5}2 (c) A; and Δ-[Ru(TAP)2(dppz)]
2+

 bound 

to (d) {(GC)5}2 (e) {G5C5}2 (f) A. In each case λexc = 400 nm, 1 μJ. [Ru] = 400 μM, [ODN] = 500 μM 

duplex in 50 mM phosphate (pH 7) in D2O with 50 µm pathlength 

This transient feature is assigned as the [Ru
III

(TAP)(TAP
●-

)(dppz)]
2+

 
3
MLCT state (also observed 

in unbound complex; ESI Figure S2). This excited state is much more readily reduced than the 

corresponding ground-state complex (E
o*

 = 1.44 V vs NHE)
2c

 and accordingly causes the ‘grow 

in’ of a new feature at 515 nm, assigned to the reduced complex [Ru
II
(TAP)(TAP

●-
)(dppz)]

+
. By 

comparing the strength of this signal with that of the initially formed excited state (at 600 nm), it 

is possible to compare relative ET yields between different systems.
28

  

A comparison of Λ-1 or Δ-1 bound to {(GC)5}2 reveals striking differences between the 

enantiomers (Figure 2a,d). Measuring the 515 nm:600 nm absorbance ratio shows that the yield 



 5 

of reduced species is ca. 2.5 times higher for Δ-1 than for Λ-1. By contrast, in the presence of 

{G5C5}2 both Λ-1 or Δ-1 show similarly high ET yields (Figure 2b,e). Rate constants for the 

electron transfer to the excited state range from 1/550 ps
-1

 – 1/770 ps
-1

 (Table 1). The results with 

mixed sequence ODN A show intermediate behavior for the yield but not for the rate of the 

electron transfer process.(Figure 2c,f). 

 

Table 1. ET parameters for Λ-1 and Δ-1 bound to ODNs 

 τ515 nm forward (ps) τ515 nm reverse (ns) rel. yield
a
 

 Λ Δ Λ Δ Λ Δ 

(GC)5 760 ± 80 650 ± 70 12 ± 2 7.5 ± 0.7 0.5 1.1 

G5C5 550 ± 70 770  ± 80 5.5 ± 0.6 7.9 ± 0.8 1.2 1.0 

A 410 ± 40 730  ± 70 17 ± 3 8 ± 1 0.7 1.1 

a
relative yield defined as ΔOD515 nm (1 ns delay)/ΔOD600 nm (1 ps delay)

28
 

 

In order to monitor the subsequent decay of the reduced Ru species, TA experiments were 

recorded on the nanosecond timescale (see Figure 3 and ESI Figure S5). Kinetic fits at 515 nm 

(Table 1) show that the loss of the reduced species occurs with a similar rate for Δ-1 bound to all 

three sequences (8 ± 1 ns). By contrast, Λ-1 showed significant differences in reverse ET rate 

between the three sequences ranging from 5.5 ns ({G5C5}2) to 17 ns (ODN A). The {G5C5}2 

system is the only one where reverse ET is more efficient for Λ-1 than Δ-1 
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Figure 3. Ns-TA spectrum of 400 µM Λ-[Ru(TAP)2(dppz)]
2+

 in the presence of 500 µM 

{G5C5}2 with corresponding ground state spectrum. Inset: monoexponential kinetic fit at 515 nm. 

λexc = 400 nm, 1 μJ (region around 400 nm removed due to scatter from laser). In 50 mM 

phosphate (pH 7) in D2O with 50 µm pathlength.  

 

Measurements were then performed in the IR region to observe the effects on the DNA. As DNA 

does not absorb the 400 nm pulse, any DNA features present in the TRIR spectra must arise due 

to a photosensitized process. The ps-TRIR spectra for Λ-1 with {G5C5}2 is shown in Figure 4 

(see also ESI Figures S6 & S7).  
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Figure 4. Ps-TRIR spectrum of 400 µM Λ-[Ru(TAP)2(dppz)]
2+

 in the presence of 500 µM 

{G5C5}2 with ground-state FTIR of {G5C5}2 Inset: exponential fits to grow-in of G carbonyl 

bleach at 1680 cm
-1

 and G radical cation at 1700 cm
-1

 λexc = 400 nm, 1 μJ. In 50 mM phosphate 

(pH 7) in D2O with 50 µm pathlength 

 

 

 

The majority of the features below 1500 cm
-1

 arise due the metal complex. Above 1500 cm
-1

 

bleaching bands are observed that correspond to DNA nucleobase vibrations. At early times (< 

20 ps), bleaches are observed at 1650 cm
-1

 and 1680 cm
-1

, the regions where the C=O bands of C 

and G absorb, respectively. These bands recover somewhat but then re-bleach over a 1-2 ns 

timescale, corresponding to a decrease in the population or intensity of C=O stretching bands due 

to photo-oxidation of guanine in the GC base-pair. Kinetic fits to these bands yield rates that are 

similar to those measured by TA (in {G5C5}2 τ at 1680 cm
-1

 is 460 ± 70 ps for Λ-1, 970 ± 150 ps 

for Δ-1; ESI Figure S7 & Table S1)). Notably, there is also formation of a transient species at 

1700 cm
-1

, which has been assigned as the G radical cation
29 

formed from the photosensitized 

oxidation of a guanine base by the Ru complex. A kinetic fit to the growth of this feature gives a 

rate (430 ± 80 ps) consistent with that recorded from the bleach of the G band and from the psTA 

spectra. This absorption has been observed in directly UV- excited GC systems,
30-31

 and has also 

been observed in the case of polynucleotide-bound Re dppz complexes,
32

 providing direct 

evidence for G oxidation that is difficult to obtain by UV/visible techniques. Where experiments 

were performed in the ns region (for Λ-1 and Δ-1 with ODN A), these bands recovered with 

rates similar to those recorded by TA (recovery of G bleach at 1680 cm
-1

 is 15 ± 3 ns for Λ-1 and 
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11 ± 2 ns for Δ-1; ESI Figures S8 & S9 and Table S1) confirming that the decay of the reduced 

Ru complex corresponds to back electron transfer to oxidized DNA.  

      The main observation between the three sequences is that Λ-1 shows a large variation in 

yield of reduced species, and in rate of back electron transfer, while these parameters are all 

similar for Δ-1. To explain this behavior we considered whether we can predict, using available 

crystal structures, how the electron transfer processes depend on the geometry at the binding site. 

The relevant structures determined by our group have been predominately with the lambda 

enantiomer. For this isomer the preferred intercalation site is at a pyr.C/G.pur base-pair 

(TC/GA
16

; CC/GG
17

). It may be noted that the dppz ligand shows good overlap with both purines 

in the GG or GA step (Figure 5a), as measured by the angle (60) between the long axis of the 

dppz ligand and the P-P vector.  

 

Figure 5. (a) Canted intercalation of Λ-[Ru(TAP)2(dppz)]
2+

 at GG/CC step in 

{CCGGATCCGG}2, obtained using the crystal structure of Λ-[Ru(phen)2(dppz)]
2+

 in the same 

sequence with phen ligands replaced by TAP
5a

 and (b) derived model for the Δ enantiomer in the 

same GG/CC step showing more symmetric binding and less overlap with G. The phosphates 
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used to define the intercalation angle are also highlighted; (c) view showing Ru-guanine and 

TAP-guanine orientation and separation in (a) 

 

However, for the delta enantiomer, modeling into the same step (Figure 5b) gives an increase 

in the angle to 75, with an attendant decrease in the extent of overlap between the purine 

chromophores and the dppz ligand with consequent reduction in binding affinity.
33

 We therefore 

propose that for Δ-1, if only a single binding site is occupied,
34

 it is preferentially at a GC/GC 

step. As this step is common to all three sequences, this may explain why the parameters for 

electron transfer are similar for the delta enantiomer in each sequence. Our previous X-ray 

structural work also show this site is disfavored by the lambda enantiomer.
17

 Note also that for 

symmetrical steps such as GC/GC and CG/CG, we have shown that the overlap of the dppz 

ligand with guanine is less than in the case of the lambda enantiomer with GG/CC, and this will 

be the case at any symmetrical step.
17

 This may account for the substantial differences in electron 

transfer yield for the lambda enantiomer in {(GC)5}2 compared to {G5C5}2. We suggest therefore 

that binding to GG steps may account for some of the difference observed for Λ-1, due to the 

lower oxidation potential of consecutive Gs compared to a single G.
35

 As the oxidation potential 

is likely to be lower even further for a run of 5 Gs, this may partially explain the trend in ET 

yield for Λ-1 bound to the three sequences (5G > 2G >1G). Interestingly, while there are 

significant changes in yield in these three systems, the rates of forward ET do not vary to the 

same extent, and do not always correlate with the changes in yield (for example the rate of 

forward ET is slower for Λ-1 bound to {G5C5}2 compared to ODN A). A possible explanation tis 

that the complex is bound at various sites – in some of which the forward electron transfer is fast, 

whereas in others the rate is slow and on a timescale comparable to the back electron transfer.  
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 It may be noted that for other reported intercalator systems the yields and rates of ET are not 

necessarily proportional.
37

. In the case of [Ru(TAP)2(dppz)]
2+

, the electron transfer is likely to 

occur to the metal centre, suggesting that forward ET may be determined by the Ru-G distance 

(4.6 Å in the structure in Fig. 5c). However if the dppz ligand is involved, the degree of coupling 

between the dppz and π-stacked guanine moiety may be important, and the rates and yields may 

be determined by a subtle interplay of Ru-G separation and the overlap of the guanine and dppz 

systems.  

 Although initial reduction occurs at the Ru metal centre, the extra electron in the reduced 

complex is known to be localized on the TAP ligands,
9
 hence the rate of reverse ET may be 

affected by the orientation and separation of the TAP ligand relative to the nearest guanine (see 

Figure 5c). The most efficient reverse transfer observed is for Λ-1 in the presence of {G5C5}2. 

This may be due to the proximity of the TAP ligand to the 5' G of the G-run. By contrast, the 

TAP ligands in Δ-1 is closer to C if the complex is bound at the GC/GC step. The rate of back 

electron transfer, and TAP-guanine orientation, is also likely to influence the possible formation 

of any permanent photoadduct, such as the TAP-guanine adduct formed from [Ru(TAP)2(bpy)]
2+

 

in the presence of DNA
6,37

 (as can be seen in Figure 5c, the TAP ligand is orthogonal to 

guanine.) However it is not clear at present whether the differences observed in transient 

spectroscopy result in enantioselective DNA damage, although it is noteworthy that higher yields 

of reduced species are sometimes accompanied by a more rapid reverse transfer in our 

measurements, which may protect DNA from permanent damage.  

 In summary, this work reveals striking difference in the behavior of the two enantiomers 

and demonstrates the complexity in the reactivity of Ru(II) complexes with DNA. We hope that 

our understanding of the structural factors influencing these processes may be aided by X-Ray 

crystallography as more structures are resolved. 
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