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Abstract 

The evolution of fungicide resistance in the cereal pathogen Zymoseptoria tritici, is a serious 

threat to the sustainability and profitability of wheat production in Europe. Application of 

azole fungicides has been shown to affect fitness of Z. tritici variants differentially, so it has 

been hypothesised that combinations of azoles could slow the evolution of resistance. This 

work was initiated to assess the effects of dose, mixtures and alternations of two azoles on 

selection for isolates with reduced sensitivity and on disease control. Naturally infected field 

trials were carried out at six sites across Ireland and the sensitivity of Z. tritici isolates 

monitored pre- and post-treatment. The azoles epoxiconazole and metconazole were applied 

as solo products, in alternation with each other and as a pre-formulated mixture. Full and half 

label doses were tested. The two azoles were partially cross-resistant, with a common azole 

resistance principal component accounting for 75% of the variation between isolates. 

Selection for isolates with reduced azole sensitivity was correlated with disease control. 

Decreased doses were related to decreases in sensitivity but the effect was barely significant 

(P = 0.1) and control was reduced. Single applications of an active ingredient (a.i.) caused 

smaller decreases in sensitivity than double applications. Shifts in sensitivity to the a.i. 

applied to a plot were greater than to the a.i. not applied, and the decrease in sensitivity was 

greater to the a.i. applied at the second timing. These results confirm the need to mix a.i.s 

with different modes of action.  

Introduction 

Septoria tritici blotch (STB) caused by the ascomycete pathogen Zymoseptoria tritici 

Quaedvl. & Crous, (synonym: Mycosphaerella graminicola) is the main disease of winter 

wheat grown in Europe (Cools & Fraaije, 2013). If left unchecked it has the potential to 

reduce yields of susceptible cultivars by anything up to 50% (Burke & Dunne, 2008). 
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Cultural control practices, e.g. late sowing, can be used to reduce the damage caused by STB 

(Shaw & Royle, 1993), but can limit yields themselves (Green & Ivins, 1985). Whilst host 

resistance is available it often imposes yield penalties and therefore commercially available 

wheat cultivars are likely be high yielding but only moderately resistant to diseases  such as 

STB (Brown, 2002). Control of STB is therefore currently largely reliant on the timely 

application of fungicides. Unfortunately the development and widespread occurrence of 

resistance to the quinone outside inhibitor (QoI) and methyl benzimidazole carbamate (MBC) 

classes of fungicides in European Z. tritici populations has reduced the number of effective 

groups of fungicides available for STB control (Fraaije et al., 2005). Those now available 

include the multisite inhibitors such as chlorothalonil and folpet which act as protectant only 

and the succinate dehydrogenase inhibitors (SDHIs) and sterol 14α-demethylation inhibitors 

(DMIs) which provide protectant and eradicant activity. The development of insensitivity in 

Z. tritici to these remaining chemistries poses a threat to the future control of STB in Europe. 

Whilst the multisite inhibitors are at a low risk of resistance, the risk to DMIs has been 

classified as medium (Brent & Hollomon, 2007) and the risk of resistance to the SDHIs in Z. 

tritici is regarded as high (Fraaije et al., 2012). Therefore, the development of anti-resistance 

strategies to prolong the effective life of both these groups of fungicides is much needed.      

The DMI fungicides have been widely used in cereal production since the 1980s 

(Hollomon et al., 2002). The azoles, largely represented by the triazoles but also including 

the triazolinthione derivative prothioconazole and the imidazole prochloraz, are the main 

chemical group within the DMI class.  Since the development of resistance to the QoIs, the 

azoles have been the backbone of STB control in winter wheat (Fraaije et al., 2007). For 

more than a decade, a progressive reduction in sensitivity to azoles has been observed in 

European Z. tritici populations (Stammler & Semar, 2011). This reduction in sensitivity has 

been attributed to a number of different mechanisms, including amino acid alterations in the 
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target site (14α-demethylase or CYP51), overexpression of the target site, and, perhaps, 

increased efflux of the fungicides (Cools & Fraaije, 2013). Since the early 1990s, alterations 

in the CYP51 gene have been identified, many of which had only slight effects on sensitivity 

to the majority of azoles (Cools & Fraaije, 2013). However, these early alterations may have, 

over the past 10-15 years, facilitated the emergence of alterations which affect the binding of 

specific azoles, leading to a reduction in sensitivity (Mullins et al., 2011). Many of these 

changes can alter the sensitivity to specific azoles differently, as highlighted by Fraaije et al. 

(2007). For example, the now common I381V mutation is strongly selected by both 

tebuconazole and metconazole but the same mutation is selected against by the imidazole, 

prochloraz. The V136A mutation, however, makes Z. tritici more sensitive to tebuconazole 

but less sensitive to prochloraz (Fraaije et al., 2007). Since 2008, isolates of Z. tritici with 

reduced sensitivity to epoxiconzole and prothioconazole have become common in Ireland. 

While these variants have predominantly had the CYP51 alterations V136A and S524T 

(Stammler & Semar, 2011), and even though the S524T mutation has the effect of reducing 

sensitivity to many azoles (Cools et al., 2011) sensitivity to metconazole and tebuconazole 

has been maintained (O'Sullivan & Kildea, 2010). This apparent lack of cross-resistance 

suggests that using multiple azoles in combination, either as mixtures or sequentially, may 

provide a means of decreasing selection for isolates with reduced sensitivity while 

maintaining disease control (Cools & Fraaije, 2013).  

Evolution of resistance can be divided into three phases (Van den Bosch et al., 2011). 

In the emergence phase, resistance arises due to mutation and/or invasion. The selection 

phase occurs when the resistant isolates increase as a proportion of the whole population due 

to the application of fungicide. Finally, in the adjustment phase, resistance is so common that 

agronomic practices need to be adjusted to deal with it (Van den Bosch et al., 2011). 
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Management of resistance during each phase may differ, but this paper focusses on the 

selection phase. 

Combinations of fungicides intended to slow down the selection of resistance usually 

involve fungicides with different modes of action. However, due to the commercial 

preference for fungicide products with activity against multiple fungal targets, combining 

azoles has become increasingly common in fungicide programmes on winter wheat. 

Unfortunately, not much is known about how such combinations alter the evolution of Z. 

tritici sensitivity. Most of the few sources of empirical data available for azole mixtures 

measured only STB control (Kendall & Hollomon, 1994, Kendall et al., 1996, Du Rieu et al., 

1994), rather than the impact on Z. tritici sensitivity. A single report included azole mixtures 

(imidazole and triazole fungicides) in the context of resistance management (Fraaije et al., 

2011). It suggested that using mixtures of azoles which differentially select specific 

mutations can lead to a decrease in the frequency of isolates with reduced sensitivity, but it 

depends on the components of the mixture. Similarly, there is very little empirical 

information available on how alternations of azoles affect selection for isolates with reduced 

azole sensitivity. Hobbelen et al. (2013) reviewed models which study the effects of mixtures 

and alternations as anti-resistance strategies and found that most were designed to study 

combinations of low- and high-risk fungicides. None of these models discussed in depth the 

mixing or alternation of fungicides which target the same site.   

In addition to the above recommendations, the reduction of fungicide dose has been 

suggested as an anti-resistance strategy (van den Bosch et al., 2014), particularly in the 

selection phase. However, where isolates with reduced sensitivity are present in a large 

proportion in the population, reducing the recommended dose per application is likely to lead 

to a reduction in disease control, potentially making such a strategy impractical (Hobbelen et 

al., 2011a).  
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The aim of the work reported here was to test the following hypotheses. Firstly, that 

combinations of azoles, either in mixtures or alternated at different application timings, will 

slow the rate at which reduced sensitivity to either active ingredient is selected in field 

populations of Z. tritici.  Secondly, lower than recommended doses at each application will 

decrease selection for isolates with reduced sensitivity. To test these hypotheses, field trials 

using commercially available products in high disease pressure environments were combined 

with sensitivity testing of Z. tritici isolates sampled pre- and post-fungicide application.  

Materials and methods 

Trial design and fungicide application 

Field trials were conducted during 2010-11 and 2011-12 at six locations in wheat-growing 

areas of Ireland (Table 1). All trials were laid out as complete randomised block designs with 

four replicate blocks, each containing 10 fungicide treatments and an untreated control. Plots 

were 2.5m × 10m with a 30-40cm path between plots. Zymoseptoria tritici was allowed to 

develop naturally in each trial.  Experimental treatments consisted of two foliar fungicide 

applications (referred to as T1 at GS 32-37 and T2 at GS 39-53 depending on site (Zadoks et 

al., 1974)) of the azoles epoxiconazole (Opus®, BASF) and metconazole (Caramba®, BASF) 

as solo products, in alternation with one another at the different timings or as a mixture of 

both (Gleam®, BASF), and all of the above at full and half the recommended dose (see Table 

2 for further details).  Both fungicides were widely used in Ireland. All fungicides were 

applied in 200L/ha water using a knapsack sprayer with compressed air. 

Disease and yield assessments 

Disease was assessed at GS 69-73 on the flag leaf of ten main tillers chosen at random, at 

approximately equal distances apart in each plot. The flag leaf was assessed because it has 
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most influence on yield. The percentage leaf area with STB was visually estimated. Plots 

were harvested each year using a specially adapted combine harvester.  The grain from each 

plot was weighed and the moisture content determined in a representative sample from each 

plot.  Yields were then calculated as t/ha at 15% moisture. 

Sampling Zymoseptoria tritici 

To determine the distribution of fungicide sensitivity in the Z. tritici population prior to 

spraying, each site was sampled. In 2011 approximately 100 diseased leaves and in 2012 

approximately 50 diseased leaves were collected from each of the trial sites, sampled 

uniformly from across the whole site. At the second sampling time (six weeks post T2 

fungicide application), approximately 40 diseased flag leaves were collected, without regard 

to disease severity, at roughly equal distances apart within each plot. The flag leaf was 

chosen because it represents the close to final reproducing population on the crop. At the 

Stamullen and Knockbeg sites in 2011, disease levels were too low six weeks after T2 so 

sampling was conducted eight weeks after the T2 fungicide application.  At these two sites, 

disease levels were still low after eight weeks and diseased leaves were actively sought. The 

diseased leaves from each plot were air dried for five days at room temperature and then 

stored at -20°C awaiting pathogen isolation. 

Isolating Zymoseptoria tritici  

Isolations were carried out according to Kildea (2009). Briefly, diseased leaves (cut to fit four 

in a 10cm petri dish) were washed in running tap water for two hours before being surface 

sterilised (immersed in 70% ethanol for 20 seconds, 10% sodium hypochlorite for 2 minutes 

and triple rinsed with sterile distilled water). The leaves were subsequently dried using tissue 

paper and placed, exposed pycnidia facing upwards, on water agar, then incubated in the dark 

at 18°C for 24-48 hours to promote sporulation.  Following incubation, a single cirrus from 

each leaf was picked using a fine sterile needle and streaked onto potato glucose agar (PGA) 
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(Sigma-Aldrich, St. Louis, MO, USA) amended with 50mg/l chloramphenicol and 50mg/l 

streptomycin.  Petri dishes were sealed and incubated in the dark at 18°C for 4-6 days. 

Isolates were sub-cultured onto antibiotic amended PGA (as above), sealed and incubated at 

18°C for a further three days. Pure cultures were scraped from the plates and individually 

stored in 30% glycerol at -80°C until further use.  

In-vitro sensitivity testing 

The sensitivity of all isolates to epoxiconazole and metconazole was determined using a 

microtitre plate assay as described by Kildea (2009). Briefly, technical grade epoxiconazole 

and metconazole (purchased from Sigma-Aldrich Co.) were dissolved in 100% methanol and 

added to Potato Dextrose Broth (PDB) (Sigma-Aldrich Co.) to give final test concentrations 

of 30, 10, 3.3, 1.1, 0.37, 0.123, 0.04, and 0 mg/l of which 150µl was added to wells of flat 

bottomed sterile 96-well microtitre plates (Sarstedt AG & Co., Germany). Inoculum of each 

isolate was produced by spotting 30µl of the stock solutions stored at -80°C on PGA and 

incubated for three days at 18°C.  Test suspensions were made in PDB and adjusted to a final 

concentration of 1x10⁵ spores/ml, 50µl of which was added to the wells of the microplates 

containing the different fungicide concentrations. Each plate consisted of a negative control 

(PDB only), a positive control (isolate 4465, of Irish origin and kindly supplied by BASF) 

and 10 experimental isolates. In some exceptional cases, isolate 4465 did not produce 

sufficient spores to allow for the inclusion of a positive control in all test plates. Two 

replicate plates were tested at the same time, sealed with parafilm, stored in sealable bags to 

reduce condensation and incubated in the dark at 18°C for 7 days. Due to the large number of 

isolates in the whole experiment, isolates from the same plot, field replicate, site or treatment 

were not necessarily tested on the same date. Fungal growth was assessed as a measure of 

light absorbance at 405nm using Synergy-HT plate reader and Gen5™ microplate software 

(BioTek Instruments, Inc., USA).    
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Statistical analysis 

The fungicide dose reducing growth in the microplate wells by 50%  (EC50) was determined 

by fitting a logistic curve to percentage inhibition data generated from the optical density 

measurements for each isolate using XLfit (IDBS Inc., UK). Where a plate had a reference 

isolate, EC50 values from that plate were adjusted for differences in the reference isolate 

between plates according to Mavroeidi and Shaw (2005). The subsequent analysis was 

weighted to allow for the increased variance of observations from plates where the EC50 of 

the reference isolate could not be measured. Observations from plates with a successful 

reference isolate measurement were given a weight of 1 and a value of 1-(variance within the 

standards/variance in isolates from plates with standards) given otherwise. All statistical 

analyses were carried out in GenStat 14
th

 Edition (VSN International Ltd. United Kingdom). 

Differences between plate replicates were analysed using ANOVA. As the numbers of 

isolates with successfully measured EC50 values varied between plots, the data were not 

balanced. Treatment differences were therefore analysed and means constructed using 

Restricted Maximum Likelihood (REML). Data from the early sampling time (Pre-T) were 

analysed using REML, whilst data from the later sampling time were analysed using REML 

with contrasts (Crawley, 2005), using the FCONTRASTS procedure. Contrasts were 

constructed to specifically test the hypotheses in the model (Table 3), with 4 additional 

contrasts included in the analysis but not shown because of non-significant results.  Each 

contrast - a weighted comparison between a set of means, with weights adding to zero - 

represents a single degree of freedom in the data. Contrasts were constructed to be as 

independent as possible from the other contrasts; in fully balanced data they would be 

completely independent. This means that the significance tests for each hypothesis examined 

were independently valid. In the model, treatment (11 levels) was considered a fixed effect, 

whilst site (six levels) and replicate (four levels) and site.treatment were considered random 
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effects. Contrasts were estimated separately for sensitivity to epoxiconazole and metconazole. 

Principal Components Analysis (PCA) was used to determine the common effects of using 

epoxiconazole and metconazole on overall sensitivity, and to look at how selection by 

epoxiconazole and metconazole affected specific resistance to each active ingredient (a.i.). 

Sensitivity data were subjected to PCA based on sums of squares and products. Principal 

component scores, PC1 and PC2, were analysed using REML with contrasts.  

Disease severity data were square root (sqrt) transformed and differences between treatments 

were analysed using ANOVA with a factorial plus control procedure. Disease severity data 

were correlated with the sensitivity data using general linear regression including differences 

in sensitivity between sites as a factor. Differences in yield were analysed using ANOVA 

with a factorial plus control procedure and the relationship between yield and disease control 

was estimated using general linear regression including site differences, but assuming a 

common slope. 

Results 

The sensitivity of 3707 single pycnidial Z. tritici isolates were determined. Due to 

contamination or no growth of some isolates on some plates, 3703 were tested for sensitivity 

to epoxiconazole, and 3683 isolates were tested for sensitivity to metconazole (Table 3). 

Sensitivity data were not determined for the half-dose alternation treatments in 2011-12. 

There was no statistical difference (P = 0.9) between replicate plate measurements of each 

isolate and therefore mean EC50 values for each isolate were used in the subsequent analysis.   

Variability before fungicide applications 

Isolates from the population prior to fungicide applications (Pre-T) ranged in sensitivity to 

epoxiconazole from a log10EC50 (mg l
-1

) of -2.38 to 0.51 (a ratio of 776), and to metconazole 

from a log10EC50 (mg l
-1

) of -2.38 to 1.35 (a ratio of 5370) (Fig. 1).  At this sampling time 
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sensitivity to epoxiconazole was similar at all sites (Fig. 1a, P = 0.15), but sensitivity to 

metconazole differed between sites (Fig 1b, P < 0.001).  

Main contrasts 

Main effects rather than specific differences between the effects of particular treatment 

patterns at individual sites and years of observation would be relevant to the choice of overall 

resistance management strategy, so main effect contrasts are reported, using site and site 

interactions as random factors in the mixed effect REML model. Zymoseptoria tritici isolates 

sampled from treated plots were less sensitive to both epoxiconazole and metconazole than 

isolates from the untreated plots (P < 0.001 and P < 0.001 respectively, Table 4, contrasts 1a 

and 1b) with large reductions in sensitivity at some sites, for example at Duleek, Julienstown 

and Killeagh, there was a two to four-fold decrease in sensitivity to epoxiconazole and at 

Stamullen, a 44-fold decrease was observed (Table 3a). All treatments containing 

epoxiconazole selected more for reduced sensitivity to epoxiconazole than those treatments 

with none (P < 0.001, Table 4, contrast 2a). The same was seen for sensitivity to 

metconazole, where all treatments containing metconazole selected more than treatments 

without metconazole (P = 0.002, Table 4, contrast 2b). There was no significant difference 

between the effect of the mixture and the solo epoxiconazole on sensitivity to epoxiconazole 

(P = 0.3, Table 4, contrast 3a) or between the effect of the mixture and the solo metconazole 

on sensitivity to metconazole (P = 0.42, Table 4, contrast 3b). Zymoseptoria tritici isolates 

from treatments which received two applications of epoxiconazole were less sensitive than 

those that received only one, although the difference was not quite significant (P = 0.09, 

Table 4, contrast 4a). Treatments which applied metconazole twice selected significantly 

more for sensitivity to metconazole (P = 0.03, Table 4, contrast 4b) than the treatments which 

applied metconazole only once. The order in which the a.i. was applied in the alternation had 

no effect on sensitivity to epoxiconazole (P = 0.1, Table 4, contrast 5a) or sensitivity to 
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metconazole (P = 0.9, Table 4, contrast 5b). Even though full doses tended to cause a slight 

increase in selection for isolates with reduced sensitivity to both fungicides (ns, P = 0.12, 

Table 3) averaged over all treatments the difference between half doses and full doses was 

not significant for sensitivity to either epoxiconazole or metconazole (P = 0.2 and P = 0.2 

respectively, Table 4, contrasts 6a and 6b). Interactions between dose and contrasts 2-5 were 

tested but all were non-significant (data not shown). 

Principal components analysis 

The first principal component (PC1: a measure of common sensitivity to both epoxiconazole 

and metconazole) accounted for 75% of the total variation amongst the isolates (Fig. 2). The 

loadings for each variable were almost equal, meaning sensitivity to both epoxiconazole and 

metconazole made an almost equal contribution to the variation between isolates.  PC1 

differed significantly between the untreated and treated plots (P < 0.001, Table 5, contrast 1a) 

and between the solo products and the mixture (P = 0.002, Table 5, contrast 3a). All other 

contrasts, including the interactions between dose and contrasts 2-5, were non-significant. 

The second principal component (PC2: a measure of the distinction between sensitivity to 

epoxiconazole and metconazole) accounted for the remaining 25% of total variation (Fig. 2). 

PC2 differed between the solo a.i.s (P < 0.001, Table 5, contrast 2b). Also, the order of a.i.s 

in the alternation treatments affected selection on PC2 (P = 0.05, Table 5, contrast 5b) but 

this effect differed between doses (P = 0.01, data not shown). All other contrasts were non-

significant. 

Disease severity and its relationship with selection 

Untreated control plots had the most disease at all sites (P < 0.001); with an average of 12% 

(3.46 sqrt %) disease severity on the flag leaf at GS 69-73 (Fig. 3). Significant differences in 

disease severity in the untreated plots were observed between sites (P < 0.001); Julienstown 

had the most disease in untreated plots, with 25% (4.964 sqrt %) of the flag leaf infested with 
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STB, and Stamullen had the least, with 0.3% (0.510 sqrt %). Significant differences in 

disease severity in the treated plots were observed between sites (P < 0.001); Stamullen had 

the least disease after treatment, with 0.05% (0.22 sqrt %) and Julienstown and Killeagh had 

the most, both with 3.5% (1.87 sqrt %) disease on the flag leaf. The full dose treatments 

controlled STB better than their half dose counterparts (P = 0.015). Disease control differed 

between treatments (P < 0.001); with the mixture providing significantly better disease 

control (0.78% disease severity (0.88 sqrt %)) than any of the other treatments (average 

2.17% (1.47 sqrt %) disease severity). There was an inverse relationship between disease 

severity and sensitivity of isolates to epoxiconazole and metconazole (Fig. 4a, R
2
 = 0.48, P < 

0.001 and Fig. 4b, R
2
 = 0.60, P < 0.001 respectively; common slope but intercepts differing 

between sites). 

Yield 

Untreated control plots yielded significantly less than treated plots (P < 0.001, Table 6). 

Yield improvements after fungicide application varied between sites (P < 0.001, Table 6). 

Oak Park, Duleek and Knockbeg each had an improvement of 2 t/ha after fungicide 

treatments whereas Stamullen had the lowest with an improvement of only 0.1 t/ha, 

consistent with the low untreated disease severity. Averaged over all treatments, full doses 

provided significantly higher yield than the half doses, and the half doses were significantly 

better than no fungicide (P = 0.001, Table 6). No differences in yield were seen between the 

two solo a.i.s, the two alternations or the mixture (P = 0.17, Table 6). There was a significant 

inverse relationship between disease and yield; but both the slope and intercept of this varied 

between sites (Fig. 5, R
2
 = 0.98, P = 0.014). 
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Discussion 

To prolong the life of fungicides, strategies which delay both emergence and selection of 

resistant strains, without compromising yield, are needed. In these experiments, where STB 

was the dominant disease, yields achieved were directly related to the control of disease and 

associated with greater selection for isolates with reduced sensitivity. This confirms the 

findings of Mavroeidi and Shaw (2006) who demonstrated that when the azole 

fluquinconazole was applied as a solo product, selection was positively correlated with 

control. In the current study, the increase in isolates with reduced sensitivity was proportional 

to the reduction in disease severity at each site, irrespective of the initial sensitivity of the 

population. Whilst the use of six sites with varying sensitivity to both epoxiconazole and 

metconazole presents difficulties in determining the effects of individual treatments, the 

results are a realistic representation of the response of the Irish Z. tritici population, which 

varies in sensitivity to azoles. 

With high levels of phenotypic variation between isolates at each site early in the 

season, a wide base from which selection could occur was present. Irrespective of application 

pattern (solo, mixture or alternation) or dose, all fungicide treatments significantly decreased 

the sensitivity of Z. tritici to both epoxiconazole and metconazole. The presence of cross-

resistance between both azoles tested, as identified in the PCA, explains this common effect 

of fungicide treatment on sensitivity.  Conversely, the PCA did highlight that this cross-

resistance was not complete, with 25% of the variation amongst the isolate collection 

resulting from differences between the azoles.  This may have contributed to the results from 

the REML and PCA which showed that each fungicide differentially selected. Even though 

epoxiconazole and metconazole target the same protein, earlier evidence showed that 

different azoles select for different CYP51 genotypes (Fraaije et al., 2007, O'Sullivan & 

Kildea, 2010, Stammler & Semar, 2011). There is evidence of considerable evolution in the 
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CYP51 gene (Cools & Fraaije, 2013) and recent work has identified CYP51 alterations which 

can reduce sensitivity to the majority of azoles, in particular the S524T mutation (Cools et al., 

2011) and the V136A + I381V combination (Stammler et al., 2008), as well as strains which 

overexpress the target gene (Cools et al., 2012).  

Recent theoretical modelling of the potential emergence and subsequent selection of 

resistant or partially resistant strains (Hobbelen et al., 2013, Hobbelen et al., 2014, 

Mikaberidze et al., 2014, Van den Bosch et al., 2011) predicts that mixtures of fungicides, 

whether high-risk:high-risk or high-risk:low-risk combinations, will prolong the effective life 

of the most at-risk partner. Unlike these models, our experiments used a mixture of 

fungicides with medium-resistance-risk and belonging to the same chemical class. Mixtures 

expose a pathogen population to different modes of action, albeit simultaneously rather than 

sequentially as with alternations. Each component of a mixture should control a proportion of 

the isolates selected by the other component, thereby reducing the overall selection compared 

to using a single fungicide. When the effects of treatments on sensitivity were studied for 

each a.i. separately, the expected positive effect of mixing two components was not seen. 

Further, when the effects common to both epoxiconazole and metconazole sensitivity were 

analysed using PCA, the mixtures were seen to select significantly more than the solo 

treatments. This increase in selection by the mixture, which contained 90% of the solo 

epoxiconazole dose and 92% of the solo metconazole dose, could simply be due to a further 

dose effect (Fig. 6).  Alternatively, interactions between the fungicides in the mixture are 

likely to have some effect on both disease control and selection. Synergism between the 

fungicides could explain the improvement in disease control (Kendall & Hollomon, 1994) 

and the absence of a reduction in selection (Shaw, 1993). Shaw (1993) suggested that such 

synergism could be used to reduce selection by using the minimum fungicide dose needed for 

adequate control, however, in these results the half-dose of the mixture gave almost as much 
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control as the full dose, so is not the minimal effective dose . Like the alternation treatments, 

this mixture does not conform to those usually prescribed for anti-resistance purposes, as 

reviewed by van den Bosch et al. (2014) and van den Bosch et al. (2014b); it is a mixture of 

two azoles which display a moderate to high level of cross-resistance.  

Limiting the number of applications of an a.i. decreased the selection of isolates 

which were less sensitive to that a.i. In the treatments where only one application of 

metconazole was made, the population was significantly more sensitive than the treatments 

where two applications were made. Even though this was just non- significant at the 5% level 

for sensitivity to epoxiconazole (P = 0.09), the same pattern was seen. This supports the 

fungicide resistance model by Hobbelen et al. (2011b) in which a significant increase in the 

selection ratio with an increase in spray numbers was predicted. Increasing the time span 

whereby a fungicide is in contact with the pathogen increases the fitness advantage of those 

strains able to survive in its presence, resulting in resistance build up (van den Bosch et al., 

2014).  Applying the same a.i. at each treatment time i.e. solo treatments and mixtures, 

increases that time span. Alternations on the other hand allow time between applications of 

the same fungicide for back-selection of susceptible strains. It could be argued that the 

alternation treatments in this study do not reduce this time span as strong cross-resistance was 

evident between the fungicides, however, PC2 of the PCA demonstrated the benefit of the 

alternation treatments. Isolates from plots treated with metconazole first and epoxiconazole 

second were less sensitive to epoxiconazole, and those from plots treated with epoxiconazole 

first and metconazole second were less sensitive to metconazole i.e. the most recently applied 

fungicide had the greatest effect on selection. No comparable findings in an agricultural 

setting are available. The model of Hobbelen et al. (2013) included alternations of fungicides 

with different modes of action and predicted it would delay the selection of strains with 

reduced sensitivity. While different sequences of fungicides were included in the model, this 
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effect of the order of fungicide was not predicted. The model was based on selection within 

the entire upper canopy and not just a single leaf layer subjected to only the most recent 

fungicide, as described in this study. If looking at selection from season to season i.e. the 

inoculum left to infect the following crop, then using the whole canopy seems sensible and 

order of use probably would not have a significant effect. On the other hand, the current data 

indicated that selection within season and the inoculum most likely to contribute to epidemic 

progress i.e. that on the uppermost leaf which received the last treatment, may well be 

affected by order of use and may affect disease control..  

Although there was a trend for the half doses to decrease selection, averaged over all 

application strategies this decrease was not significant. As expected, full doses provided 

significantly better disease control and, where there was high disease pressure, higher yields. 

While full doses of fungicide are designed to provide the best possible disease control and are 

recommended as an anti-resistance strategy by manufacturers, Van den Bosch et al. (2011) 

reviewed the available literature and concluded that all models and most experimental studies 

show that selection of strains with reduced sensitivity increases with dose. However, the 

same study highlighted that where insensitivity develops gradually, such as Z. tritici 

insensitivity to DMIs, there may be exceptions to this rule. They suggested that in this case it 

is possible that the dose response curves of the sensitive strains and less sensitive strains 

converge within the permitted dosage, reducing the fitness advantage of the less sensitive 

strains; in this case higher doses may actually reduce selection.  It is possible that the 

response curves of the majority of isolates in this study converge at the maximum doses used, 

leading to a reduction of the overall fitness advantage of the insensitive strains and modest 

levels of selection. The plateauing of sensitivity following treatment with half and full rates 

of the mixture may be a further example of convergence. It is, however, probable that the 

population examined is in fact in the adjustment phase of resistance evolution, where the 
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minimum rates of azoles required for effective control are now larger than before. Inferior 

disease control and lower yields makes reducing rates of azole fungicides impractical when 

they are used alone, but in cases of diseases which are in the selection phase of resistance 

development, the minimum rates required for effective control may be lower, and using lower 

rates is a practical strategy for reducing selection. The contrast representing comparison of 

doses was made within a product type; it is possible that the mixture comparison was in the 

plateau of the dose response curve, reducing the size and significance of the overall contrast.  

Where only combinations of azoles are used, it seems that limiting the number of 

applications of an individual a.i. is the most important strategy for managing azole 

sensitivity; having two azoles which select differentially, and using each sequentially rather 

than simultaneously, will slow down the selection of strains with reduced sensitivity to those 

azoles. Additionally, and essential for resistance management, while disease control achieved 

by the alternations was the same as that of solo products and control by both were poorer than 

the mixtures, the yields were not significantly different. This strengthens the case for 

choosing azole alternations over azole mixtures or solo azole a.i.s, and emphasises that 

aiming for perfect disease control may incur costs and increase selection without increasing 

output. But in the long term, azole combinations are probably unsustainable. The cross-

resistance observed makes long term benefits from using combinations of azoles unlikely, 

and highlights the need for the inclusion of alternative chemistries in fungicide programs. 

However, the individual components of a mixture should be effective in their own right; 

otherwise they do not protect the other component. Our results demonstrate that anti-

resistance recommendations for fungicides with distinct modes of action are not always 

effective when using combinations of azoles, and advice to combine azoles which select for 

different resistance alleles or loci is vulnerable to continuing genetic change in the pathogen. 
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Figure 1 Frequency distribution of log EC50 values for sensitivity to epoxiconazole (top) and 

sensitivity to metconazole (bottom) from Pre-T collections of Zymoseptoria tritici sampled 

from each of the six sites, illustrated with box and whisker plots. The line through the box 

represents the median. The crosses represent outliers. Number of Pre-T isolates tested from 

each site; Duleek n = 33; Julienstown n = 29; Killeagh n = 20; Knockbeg n = 25; Oak Park n 

= 21; Stamullen n = 48. Sensitivity to epoxiconazole did not differ between sites (P = 0.15) 

whereas sensitivity to metconazole did (P < 0.001).  
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Figure 2 Correlation matrix with Principal Component axes superimposed. PC1 accounts for 

75% variation, PC2 accounts for 25% variation. 
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Figure 3 Effect of individual treatments
 
on disease severity on the flag leaf at GS 69-73 

averaged over all six sites. Disease severity refers to the proportion of the flag leaf covered in 

Septoria tritici blotch (square root transformed). Error bars are 1 SED. Treatment 

information: abbreviations denote the first and second sprays. E: epoxiconazole; M: 

metconazole; Un-T: untreated control. 
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Figure 4 Fitted and observed relationship between (a) sensitivity to epoxiconazole and 

disease severity, R
2
 = 0.48, P < 0.001; common slope = -0.074; intercept for Duleek = 0.256; 

Julienstown = 0.252; ; Killeagh = 0.122; Knockbeg = -0.004; Oak Park = 0.135; Stamullen = 

0.264 and (b) sensitivity to metconazole and disease severity R
2
 = 0.60, P < 0.001, common 

slope = -0.096; intercept for Duleek = -0.227; Julienstown = -0.355; Killeagh = -0.177; 

Knockbeg = -0.345; Oak Park = -0.361; Stamullen = -0.153. The topmost regression line 

corresponds to the topmost site, labelled on the left of the graph, and so on down. 
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Figure 5 Fitted and observed relationship between yield and disease severity R
2
 = 0.98, P = 

0.014; Duleek: Y = 0.208 + -0.047X; Julienstown: Y = -0.102 + -0.308X; Killeagh: Y = -

0.046 + 0.065X; Knockbeg: Y = -0.13 + 0.073X; Oak Park: Y = -0.094 + 0.167X; Stamullen: 

Y = 0.022 + 0.24X. The topmost regression line corresponds to the topmost site, labelled on 

the left of the graph, and so on down. 
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Figure 6 Effect of total azole dosage on the sensitivity of isolates to epoxiconazole (a) with an 

average SED of 0.069 and metconazole (b) with an average SED of 0.07. Treatment 

information: abbreviations denote the first and second sprays. E: epoxiconazole; M: 

metconazole; Un-T: untreated control. 
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Table 1 Site details, year each site was included, timing of fungicide applications and growth stage at which fungicides were applied (GS) 

Site 

(Coordinates) 
Year Cultivar 

Septoria 

resistance 

rating
 a
 

Date of first 

application 

(T1) 

GS
 b

 

at T1 

Date of second 

application (T2) 

GS
 b

 at 

T2 

Date of disease 

assessment 

GS at disease 

assessment 

Duleek            

(53.673502, -

6.374087) 

2011 Cordiale 4 28
th

 April 33 19
th

 May 51 27
th

 June 71 

Julienstown        

(53.679806, -

6.309156) 

2012 Cordiale 4 3
rd

 May 33 29
th

 May 39 26
th

 June 73 

Killeagh           

(51.940363, -

8.026993) 

2012 Einstein 5 2
nd

 May 37 23
rd

 May 45 25
th

 June 73 

Knockbeg       

(52.856745, -

6.943295) 

2011 Cordiale 4 7
th

 April 32 11
th

 May 39 21
st
 June 71 

Oak Park        

(52.863676, -

6.914563) 

2012 Cordiale 4 4
th

 May 32 6
th

 June 43 28
th

 June 73 

Stamullen         

(53.613615, -

6.311924) 

2011 Einstein 5 28
th

 April 32 19
th

 May 45 27
th

 June 69 

a 
Resistant rating on a scale of 1-9, 1 = susceptible, 9 = resistant (DAFM https://www.agriculture.gov.ie/publications/2013/ ) 

b
 GS Growth stage  (Zadoks et al., 1974) 

  

https://www.agriculture.gov.ie/publications/2013/
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Table 2 Treatments used: application pattern, dose rates applied, fungicides used and actual amount of active ingredient (a.i.) at each treatment time 

Application 

pattern 

Treatment 

name a 
Dose b  

Active ingredient (a.i) applied Litres/ha applied at each of 

T1 & T2 (total a.i. applied)
 d

 T1 c T2 c 

Un-Treated Un-T 0 None None N/A (0 g) 

Solo EE 1 Epoxiconazole Epoxiconazole 1.5 (249 g) 

 

MM 1 Metconazole Metconazole 1.5 (180 g) 

 

ee 0.5 Epoxiconazole Epoxiconazole 0.75 (124.5 g) 

  mm 0.5 Metconazole Metconazole 0.75 (90 g) 

Alternation EM 1 Epoxiconazole Metconazole 1.5 (214 g) 

 

ME 1 Metconazole Epoxiconazole 1.5 (214g) 

 

em 0.5 Epoxiconazole Metconazole 0.75  (107 g) 

  me 0.5 Metconazole Epoxiconazole 0.75 (107 g) 

Mixture  EMEM 1 
Epoxiconazole  

& metconazole 

Epoxiconazole  

& metconazole 
3 (390 g) 

  emem 0.5 
Epoxiconazole  

& metconazole 

Epoxiconazole  

& metconazole 
1.5 (195 g) 

a 
Abbreviations denote the first and second sprays.  Un-T= untreated control; E or e: epoxiconazole; M or m: metconazole; uppercase: full dose; lowercase: half dose 

b 
Application dose at Treatment 1 and Treatment 2;

 
1 = the full label recommended dose, 0.5 = half the label recommended dose 

c
 Epoxiconazole = Opus Max, Metconazole = Caramba, Epoxiconazole + Metconazole = Gleam. All fungicides are BASF products 

d 
Active ingredient (a.i.) per litre of product; Opus max: 83 g/l; Caramba: 60 g/l; Gleam: 37.5 g/l epoxiconazole + 27.5 g/l metconazole 
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Table 3 Mean sensitivity (log10EC50 mg/l) of individual treatments, including pre-treatment, over all sites to (a) epoxiconazole and (b) metconazole, and 

broken down into treatment means per site 

 a Sensitivity to epoxiconazole (log10EC50 mg/l) 

 

Experiment average Site 

Treatment
a
 N Mean SE 

Duleek 

(n=770) 

Julienstown 

(n=449) 

Killeagh 

(n=502) 

Knockbeg 

(n=710) 

Oak Park 

(n=490) 

Stamullen 

(n=782) 

Pre-T 176 -0.479 0.0711 -0.457 -0.427 -0.480 -0.641 -0.449 -0.403 

Un-T 357 -0.377 0.0687 -0.438 -0.355 -0.344 -0.464 -0.330 -0.328 

EE 391 -0.042 0.0685 -0.112 0.141 -0.012 -0.135 -0.114 -0.014 

MM 388 -0.209 0.0686 -0.151 0.001 -0.292 -0.393 -0.347 -0.079 

ee 325 -0.131 0.0691 -0.258 -0.055 0.031 -0.369 -0.218 0.079 

mm 356 -0.292 0.0688 -0.274 -0.199 -0.283 -0.536 -0.269 -0.195 

EM 379 -0.173 0.0687 -0.235 0.077 -0.368 -0.258 -0.266 0.006 

ME 371 -0.054 0.0687 -0.058 0.140 0.038 -0.313 -0.302 0.162 

em 168 -0.167 0.0832 -0.191 * * -0.404 * 0.030 

me 172 -0.111 0.0825 -0.011 * * -0.435 * 0.039 

EMEM 313 -0.034 0.0694 0.081 0.370 -0.189 -0.342 -0.133 -0.012 

emem 307 -0.044 0.0692 0.142 0.217 -0.181 -0.321 -0.054 -0.090 
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 b Sensitivity to metconazole (log10EC50 mg/l)  

 

Experiment average Site 

Treatment
a
 N Mean

 b
 SE 

Duleek 

(n=762) 

Julienstown 

(n=448) 

Killeagh 

(n=503) 

Knockbeg 

(n=708) 

Oak Park 

(n=489) 

Stamullen 

(n=773) 

Pre-T 176 -0.780 0.0606 -0.893 -0.713 -0.505 -0.957 -0.865 -0.728 

Un-T 350 -0.765 0.0583 -0.902 -0.918 -0.837 -0.730 -0.525 -0.678 

EE 389 -0.650 0.0581 -0.694 -0.725 -0.672 -0.717 -0.653 -0.449 

MM 388 -0.507 0.0582 -0.635 -0.502 -0.568 -0.540 -0.509 -0.293 

ee 325 -0.673 0.0586 -0.856 -0.864 -0.679 -0.733 -0.508 -0.406 

mm 356 -0.533 0.0583 -0.631 -0.679 -0.385 -0.649 -0.423 -0.437 

EM 379 -0.507 0.0582 -0.690 -0.357 -0.595 -0.615 -0.368 -0.406 

ME 366 -0.591 0.0584 -0.654 -0.514 -0.565 -0.666 -0.706 -0.444 

em 166 -0.641 0.0766 -0.823 * * -0.821 * -0.289 

me 170 -0.570 0.0758 -0.609 * * -0.734 * -0.403 

EMEM 312 -0.453 0.059 -0.419 -0.187 -0.508 -0.619 -0.614 -0.378 

emem 306 -0.505 0.0587 -0.499 -0.390 -0.525 -0.642 -0.529 -0.452 
a 
Treatment information in Table 2. Briefly, Pre-T=pre-treatment sample, Un-T= untreated control, abbreviations denote the first and second sprays; E or e: epoxiconazole; M 

or m: metconazole; uppercase: full dose; lowercase: half dose 

b
 Overall treatment means were calculated using REMLwith site, site.treatment and replicate within site.treatment as random factors 

N = total number of isolates from each treatment group.  

n = total number of isolates from each site 
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Table 4 Independent single degree of freedom contrasts between treatments for (a) epoxiconazole and (b) metconazole sensitivity 

      Treatment coefficients* included in each contrast question 

Contrast  
Contrast 

sizes 
P a Un-T

 b EE  MM  ee mm EM ME  em me EMEM  emem 

Epoxiconazole              

1a. Effect of fungicide 0.253 <0.001 -10 1 1 1 1 1 1 1 1 1 1 

2a. Treatments with any epoxiconazole 

cf. those without 
0.155 <0.001 0 1 -4 1 -4 1 1 1 1 1 1 

3a. Mixture cf epoxiconazole solo -0.048 0.3 0 1 0 1 0 0 0 0 0 -1 -1 

4a. Treatments with two applications of 

epoxiconazole cf. those with one 
0.064 0.09 0 1 0 1 0 -1 -1 -1 -1 1 1 

5a. Order of application of a.i. in 

alternation 
-0.086 0.1 0 0 0 0 0 1 -1 1 -1 0 0 

6a. Effect of dose 0.046 0.2 0 1 1 -1 -1 1 1 -1 -1 1 -1 

              

Metconazole 
             

1b. Effect of fungicide 0.198 <0.001 -10 1 1 1 1 1 1 1 1 1 1 

2b. Treatments with any metconazole 

cf. those without 
0.125 0.002 0 -4 1 -4 1 1 1 1 1 1 1 

3b. Mixture cf metconazole solo -0.038 0.4 0 0 1 0 1 0 0 0 0 -1 -1 

4b. Treatments with two applications of 

metconazole cf. those with one 
0.084 0.03 0 0 1 0 1 -1 -1 -1 -1 1 1 

5b. Order of application of a.i. in 

alternation 
0.006 0.9 0 0 0 0 0 1 -1 1 -1 0 0 
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6b. Effect of dose 0.044 0.2 0 1 1 -1 -1 1 1 -1 -1 1 -1 
a
 P-value (in parenthesis) is based on the F-distribution. Error term includes the interaction of treatment with site-year effect.  That is, P-values allow for variation in the 

effects of a treatment in different sites –years, and are therefore quite conservative 

b 
Treatment information in Table 2. Briefly, Un-T= untreated control, abbreviations denote the first and second sprays; E or e: epoxiconazole; M or m: metconazole; 

uppercase: full dose; lowercase: half dose 

*Each coefficient denotes the weight by which a mean value was multiplied to calculate the contrast 

  



35 

 

Table 5 Independent single degree of freedom contrasts between treatments in common azole sensitivity (PC1 in a principal component 

transformation of the data), and in the difference between epoxiconazole and metconazole sensitivity (PC2 in a principal component 

transformation of the data) 

      Treatment coefficients* included in each contrast question 

Contrast  
Contrast 

sizes 
P a Un-T

 b EE  MM  ee mm EM ME  em me EMEM  emem 

PC1 
             

1a. Effect of fungicide 0.319 <0.001 -10 1 1 1 1 1 1 1 1 1 1 

2a. Epoxiconazole solo cf. 

metconazole solo 
0.028 0.6 0 1 -1 1 -1 0 0 0 0 0 0 

3a. Mixture cf. solo fungicides 0.171 0.002 0 1 1 1 1 0 0 0 0 -2 -2 

4a. Treatments with two 

applications of a triazole cf. those 

with one 

0.015 0.8 0 1 1 1 1 -1.5 -1.5 -1.5 -1.5 1 1 

5a. Order of application of a.i. in 

alternation 
0.07 0.3 0 0 0 0 0 1 -1 1 -1 0 0 

6a. Effect of dose 0.066 0.12 0 1 1 -1 -1 1 1 -1 -1 1 -1 

              
PC2 

             
1b. Effect of fungicide 0.0055 0.9 -10 1 1 1 1 1 1 1 1 1 1 

2b. Epoxiconazole solo cf. 

metconazole solo 
0.214 <0.001 0 1 -1 1 -1 0 0 0 0 0 0 

3b. Mixture cf. solo fungicides 0.003 0.9 0 1 1 1 1 0 0 0 0 -2 -2 

4b. Treatments with two 

applications of a triazole cf. those 

with one 

-0.025 0.2 0 1 1 1 1 -1.5 -1.5 -1.5 -1.5 1 1 
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5b. Order of application of a.i. in 

alternation 
0.068 0.05 0 0 0 0 0 1 -1 1 -1 0 0 

6b.Effect of dose -0.002 0.9 0 1 1 -1 -1 1 1 -1 -1 1 -1 
a
 P-value (in parenthesis) is based on the F-distribution. Error term includes the interaction of treatment with site effect. That is, P-values allow for variation in the effects of a 

treatment in different sites –years, and are therefore quite conservative 

b 
Treatment information in Table 2. Briefly, Un-T= untreated control, abbreviations denote the first and second sprays; E or e: epoxiconazole; M or m: metconazole; 

uppercase: full dose; lowercase: half dose 

*Each coefficient denotes the weight by which a mean value was multiplied to calculate the contrast 
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Table 6 Differences in yield (t/ha) between treatments at each site, with cross-site analysis 

  Site 

Mean Treatment
a
 Duleek Julienstown Killeagh Knockbeg 

Oak 

Park Stamullen 

Un-T 8.52 4.13 4.82 12.42 5.17 7.32 7.07 

EE 10.46 5.68 5.97 14.82 7.19 7.80 8.65 

ee 10.00 5.36 4.98 14.83 6.91 7.62 8.28 

MM 10.82 5.84 5.70 14.73 7.62 7.44 8.69 

mm 10.31 5.28 5.35 13.40 6.74 7.41 8.08 

EM 10.62 5.83 4.82 15.32 7.30 7.38 8.54 

em 10.27 5.47 6.03 14.30 6.48 7.38 8.32 

ME 11.02 5.82 5.24 14.47 7.50 7.55 8.60 

me 10.52 5.39 5.44 14.50 6.76 7.21 8.30 

EMEM 10.98 6.49 6.41 14.30 8.14 7.27 8.93 

emem 10.76 6.03 6.16 14.04 7.42 7.41 8.63 

Mean 10.39 5.57 5.54 14.29 7.02 7.44 8.37 

        

 

P LSD (5% level) 

    Site <0.001 0.452 

    Product
b
 0.17 0.216 

    Rate
c
 0.001 0.193 

    Site.Product 0.6 0.527 

    Site.Rate 0.5 0.472 

    Product.Rate 0.8 0.249 

    Site.Product.Rate 0.9 0.609         
a 

Treatment information in Table 2. Briefly, Un-T= untreated control, abbreviations denote the first and second 

sprays; E or e: epoxiconazole; M or m: metconazole; uppercase: full dose; lowercase: half dose 

b 
Full and half rates of each treatment (Product) compared; EE+ee, MM+mm, EM+em, ME+me and 

EMEM+emem 

c 
Full rates cf. half rates; EE+MM+EM+ME+EMEM cf. ee+mm+em+me+emem 

 

 

 


