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Abstract Model projections of heavy precipitation and temperature extremes include large uncertainties.
We demonstrate that the disagreement between individual simulations primarily arises from internal
variability, whereas models agree remarkably well on the forced signal, the change in the absence of internal
variability. Agreement is high on the spatial pattern of the forced heavy precipitation response showing

an intensification over most land regions, in particular Eurasia and North America. The forced response of
heavy precipitation is even more robust than that of annual mean precipitation. Likewise, models agree on
the forced response pattern of hot extremes showing the greatest intensification over midlatitudinal land
regions. Thus, confidence in the forced changes of temperature and precipitation extremes in response to a
certain warming is high. Although in reality internal variability will be superimposed on that pattern, it is the
forced response that determines the changes in temperature and precipitation extremes in a risk perspective.

1. Introduction

More frequent and intense climatic extremes are considered as a manifestation of climate change that would
have severe socioeconomic and ecological impacts [Seneviratne et al., 2011]. Models consistently project
increases in global average quantities of heavy precipitation intensity and frequency along with rising
temperatures [Collins et al., 2013], which is consistent with physical considerations [Allan and Soden, 2008;
Lenderink and Van Meijgaard, 2008]. For the global mean, the magnitude of the projected change is
dependent on the model used, but there is strong agreement across the models over the direction of
change [Tebaldi et al., 2006; Min et al., 2011; Sillmann et al., 2013]. However, the geographical pattern of
changes in heavy precipitation intensity by the middle or the end of the 21st century is highly uncertain, and
at the grid point scale model simulations strongly differ in magnitude and sometimes even in sign [Fischer et al,,
2013; Kharin et al.,, 2013; Sillmann et al., 2013]. For a given emission scenario these uncertainties arise from
parametric and structural model uncertainties and from internal variability.

For mean precipitation changes, disagreement in sign is often found where projected changes are small and
still within the modeled range of internal variability, that is, where a response to anthropogenic forcings has
not yet emerged locally in a statistically significant way [Schaller et al., 2011; Tebaldi et al., 2011; Power et al.,
2012]. As a consequence the area fraction of model agreement is found to increase only if the signal increases
[Knutti and Sedldcek, 2013].

For hot and cold temperature extremes there is a reasonable model agreement on the overall spatial pattern by
the end of the 21st century [Orlowsky and Seneviratne, 2011; Sillmann et al., 2013] and overall simulated trends
have been found to be consistent with observed trends [Sillmann et al., 2014]. However, high variability is
superimposed upon the signal, which represents, for instance, a challenge to model evaluation of local changes
in the observational period [Perkins and Fischer, 2013; Fischer and Knutti, 2014]. Likewise, heavy precipitation
occurs irregularly and has a substantially higher year-to-year variability than mean precipitation. Thus, internal
variability is the dominant uncertainty contribution for the intensification of precipitation extremes at local to
regional scale even by the mid-21st century [Fischer et al., 2013]. Only when aggregated over continental to
global scale, the models agree on the fractional changes in the intensity of changes in extremes across
the globe [Fischer et al., 2013]. Put simply, models agree on the fraction of land that experiences a certain
near-term intensification in heavy precipitation but disagree where they occur.

Does this imply that models show no robust response in the geographical patterns of heavy precipitation
intensification to global warming? The answer depends on the definition of robustness or model agreement,
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which is often ambiguous. For a given emission scenario two model simulations may disagree due to

(1) a different underlying forced model response or (2) due to a different realization of internal variability
[e.g., Hawkins and Sutton, 2009]. It is widely acknowledged that a single transient simulation of a coupled
climate model should not be expected to follow the time evolution of the observations, due to the lack of
predictability of internal variability at multidecadal timescales [Branstator and Teng, 2010; Branstator et al.,
2012; Meehl et al., 2014]. Likewise, individual simulations for the future even from the same model do not
agree in the presence of internal variability [Deser et al., 2012a; Fischer et al., 2013; Deser et al., 2014]. Many
multimodel intercomparison studies only take into account one realization per model and define robustness
as agreement over the outcome of an individual realization, e.g., the change projected for the real world

in 2080-2099. Alternatively, one can quantify agreement on the underlying long-term response in the
absence of internal variability, the forced response. This ambiguity is not relevant for century-scale global mean
temperature projections where agreement on individual realizations and agreement on forced response may
be very similar, because the variability contribution is small. However, for regional intensification of heavy
precipitation extremes robustness statements are distinctly different for the two definitions.

The forced response and a single realization also differ in terms of their spatial heterogeneity. At the regional
scale even multimodel mean patterns of future heavy precipitation intensification look patchy [Goubanova
and Li, 2007; Radermacher and Tomassini, 2012; Rajczak et al., 2013; Vautard et al., 2014]. This may either point to
a high spatial heterogeneity in the physical processes leading to intensified heavy precipitation or result from
a strong internal variability. Here we isolate the pattern of changes in heavy precipitation intensity and hot
extremes in the absence of internal variability and assess for which areas and variables these patterns are robust
across models.

2. Model Experiment and Observational Data

We analyze daily and monthly output of historical simulations for the period 1901-2005 as well as future
projections forced with RCP8.5 for the period 2006-2100. We use output of 15 CMIP5 models that provide
all the necessary output to analyze changes in hot and heavy precipitation extremes (see Table S1 in

the supporting information). To avoid an overestimation of model agreement due to obvious model
dependencies coming from the same modeling centers, we only use one model per modeling center by
selecting the newest version or the one with the highest resolution. Thereby, we reduce but do not
eliminate model dependencies [Masson and Knutti, 2011; Knutti et al., 2013]. For the models HadGEM-ES,
CSIRO-Mk-3-6-0, CanESM2, and EC-EARTH, for which four or more initial condition members are available
(see Table S1), we use all the different realizations to test our estimates in a perfect model framework
and to explore the benefits of multimember experiments to estimate the forced signal. The simulations
are supplemented with a nine-member ensemble performed with the Community Earth System Model
(CESM) version 1.0.4 including the Community Atmosphere Model version 4 (CAM4) and fully coupled
ocean, sea ice, and land surface components [Hurrell et al., 2013]. The nine members are initialized from
different states of the preindustrial control simulation and differ in their initial conditions of the ocean,
atmosphere, sea ice, and land components. Thereby, the nine CESM members use the exact same setup as
the CMIP5 simulations.

The changes in mean and extremes of temperature and precipitation are expressed as local changes in
degree C and percentage per degree C global warming. Agreement across models is quantified with two
different metrics expressing (a) the agreement of the spatial pattern and (b) the agreement on the magnitude
of the local change signals. The first metric is the area-weighted pattern correlation calculated for all possible
pairs of models in the multimodel ensemble. The pattern correlation for all possible combinations of models
is then averaged to obtain one estimate of pattern agreement across the experiments. The second metric
quantifies the relative uncertainty against the mean signal, a ratio of uncertainty versus signal, similar to the
signal-to-noise ratio. The relative uncertainty of the local signal is expressed as the ratio of the uncertainty,
i.e., one standard deviation across the multimodel range and the multimodel mean change. First, this relative
uncertainty metric is calculated at each grid point, and second, we calculate the area-weighted global median
to get a robust global estimate. The local relative uncertainty metric may reach extremely high values when
the local multimodel mean changes are nearly zero, but the global median is insensitive to these local outliers
and yields a robust global metric of model agreement on the climate change signal.
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Figure 1. Model agreement on the change in heavy precipitation intensity in individual realizations and forced signal: (left)
Change in 20 year means of annual 1 day precipitation maxima (Rx7day) in 1986-2005 with respect to 1901-1920 as
simulated by the first member of CESM1-CAM4, HadGEM2-ES, EC-EARTH, CanESM2, and CSIRO-Mk3-6-0. Changes are
expressed as local percentage changes per degree multimodel mean global warming. (right) Annual Rx7day per degree
global warming of the respective model derived from a linear regression for the period 1901-2100. Regression slopes are
averaged across 4-10 initial condition members of the same models.
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Figure 2. Model agreement for changes in mean and extremes of precipitation and temperature: (blue lines) Pattern agreement expressed as average of the pattern
correlations (blue solid) across all combinations of 15 CMIP5 GCMs and (blue dashed) across members of the same model where available. (red lines) Agreement on
the magnitude of the climate change signal expressed as the area-weighted median of the relative uncertainty range calculated at each grid point. The grid point scale
uncertainty range is expressed as the one standard deviation across (red solid) multimodel range divided by the multimodel mean change and (red dashed) one
standard deviation across the multimember range divided by the multimember mean change. The latter expresses the highest agreement possible given the level of
noise in a perfect model case. Red and blue filled dots indicate the estimates for the five models shown in Figure 1 for which at least four members are available and open
dots the estimates for 15 GCMs with one member available.

We focus on two extreme indices recommended by the World Meteorological Organization CCl/Climate
Variability and Predictability/JCOMM Expert Team on Climate Change Detection and Indices [Zhang et al.,
2011], the intensity of hot extremes (TXx, the annual maximum of the daily maximum temperature),
and heavy precipitation intensity (Rx7day, the maximum 1 day precipitation in a year).

3. Results and Discussion

Individual climate model simulations strongly disagree on the pattern of heavy precipitation changes during
the twentieth century (1986-2005 relative to 1901-1920) shown in Figure 1 (left). Positive and negative
changes show hardly any coherent pattern. Not a single grid point meets a rigorous model agreement
criterion, defined as agreement on the sign of local changes in 80% of the 15 models (not shown). Does this
imply that the simulations disagree because of fundamental differences in the way different models describe
complex local processes and feedbacks controlling changes in heavy precipitation? We here argue that
whether models agree or not depends on the definition of model agreement, which is often used in two
ambiguous ways. Agreement on the intensification of heavy precipitation is poor for individual realizations
of the twentieth century (Figure 1, left) but remarkably good on the forced signal of heavy precipitation
intensity derived from multiple realizations of individual models (Figure 1, right). The forced signal of heavy
precipitation is robust across models anywhere over land except for some arid to semiarid regions. In the
following, we discuss the differences and the implications for the interpretation of model uncertainties. In
order to systematically quantify agreement across CMIP5 models, we use two criteria, agreement on spatial
pattern and agreement on the magnitude of changes (see Methods for details), and illustrate them for weak
to strong climate change signals in Figure 2.
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Figure 3. Model robustness in forced signal: Multimodel mean changes in (a) heavy precipitation intensity, (b) annual
mean precipitation, (c) hot extremes, and (d) local summer mean temperature (June-July-August in Northern and
December-January-February in Southern Hemisphere) per degree global warming in 15 CMIP models. Estimates are
based on a linear regression of local changes with respect to global mean temperature change in the respective model
simulation in the period 1901-2100 (historical and RCP8.5). Stippling illustrates agreement in sign of changes across at least
12 of the 15 models (80% of models).

Over the historical period (1986-2005 relative to 1901-1920) agreement on percentage changes in heavy
precipitation per degree global warming is very poor. At most of the grid points the simulated changes even
differ in sign so that the range across the 15 models is large at all grid points (Figure 2a, red solid line). This is
not surprising since the disagreement at the grid point level across models and with observations of the past
decades primarily results from large internal variability and lack of a strong signal [Fischer and Knutti, 2014].

The role of internal variability is less important once the climate change signal becomes more dominant,
e.g., for the mid-21st century (2041-2060 with respect to 1986-2005). Changes are expressed as local
percentage changes per multimodel mean warming (roughly 2°C in the multimodel mean). The mean
pattern correlation across models is somewhat higher (r=0.30) than for the historical period (Figure 2a,
blue solid line) and the local spread is smaller (Figure 2a, red solid line and Figure S1) but the overall
agreement is still poor. Internal variability is dominant for heavy precipitation changes by the midcentury,
and even different realizations of the same model show a large spread (Figure 2a, dashed lines). One reason
for the disagreement in the magnitude of heavy precipitation changes is that the models differ in their
global warming by the mid-21st century. To account for the different rate of warming, we compare changes
for the 20 year period in which each model reaches a global mean temperature increase of 2°C. This slightly
improves the agreement in the magnitude of change (Figure 2a).

To understand to what extent the models agree in their response in the absence of any internal variability,
one can extract the underlying forced signal by averaging multiple initial condition realizations of the exact
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same model [Deser et al., 2012a, 2012b, 2014]. However, such experiments are computationally costly and are
only available for very few models. Here we use an alternative approach that maximizes the information
from individual model simulations. To avoid the limitation to 20 year periods, we estimate the forced signal
by a linear regression of the percentage change of annual 1 day heavy precipitation maxima (Rx1day) to
the annual global mean temperature over the simulation period 1901-2100. The assumption is that the relative
changes in heavy precipitation intensity scale linearly with the global mean temperatures (see discussion
below). If the regression method is applied to several realizations of the same model, the patterns and
magnitudes agree reasonably well (Figure 2 dashed blue and red lines), which confirms that this method
efficiently filters much of the variability and yields a reasonable estimate of the forced signal.

The forced signal patterns estimated by linear regression agree remarkably well across the 15 models
(r=0.51, Figures 2a and S2). Likewise, the agreement on the magnitude of changes is much better
(Figure S1) with a range that in many places is about 2-3 times smaller than expected from the 20 year
differences at 2°C warming (Figure 2a). This indicates that for the CMIP5 models the patterns of forced
heavy precipitation changes are remarkably consistent, with heavy precipitation becoming more intense
over basically all land regions north of 35°N (Figure 3a). Likewise, models consistently simulate more
intense precipitation across most of South America. For 73% of the land fraction at least 12 of the 15
models agree on the sign of the forced signal (Figure 3a). Over land, the discrepancies in the sign of the
forced signal are largest over Australia, North Africa, and Central America. Those are a consequence of
actual model differences in the forced response to global warming. Note that those are mostly arid to
semiarid regions in which the wettest day per year is often not particularly extreme in an absolute sense.

Even when using the information for the 200 year period in the regression, the estimate of the forced signal is
still affected by internal variability. This is demonstrated by the regression-based estimates of the forced
signal from different simulations of the same model that agree well but not perfectly (Figure 2a, dashed
lines). Thus, ideally, the regression-based estimate can be averaged across multiple realizations of the same
model, in order to further average out the effect of internal variability. We therefore test the potential of
averaging regression-based estimates across multiple realizations of the same model, using the five models
shown in Figure 1 for which 4-10 realizations are available for the historical and RCP8.5 simulations from
1901 to 2100. The five models happen to agree on average somewhat less in their forced signal estimated
from a single member than the larger set of 15 GCM (Figure 2a open versus closed circles). However, the
agreement of the forced signal pattern derived from averaging regressions across several members (Figure 1,
right) reveals an even higher model agreement (r=0.60) than expected from single-member-based
estimates, and the range across local changes in magnitude is comparatively small (Figure 2a, closed circles).
The agreement is nearly as high for 5 day accumulated maximum precipitation (Figure S5). In summary, the
model agreement increases, the stronger the signal becomes, the more information of the time series is
included and the more simulations are averaged, an evolution that is summarized in Figure 2.

Annual mean precipitation has lower internal variability than heavy precipitation intensity and thus shows
better agreement even if the signal is not very pronounced such as for historical changes or changes at 2°C
global warming (Figure 2b). Nevertheless, even for annual mean precipitation, the robustness of the forced
response is substantially underestimated based on 20 year periods at 2°C warming (Figure 2b). This is
consistent with previous studies demonstrating that model disagreement on precipitation changes across
multimodel experiments is hampered by the internal variability [Schaller et al., 2011; Tebaldi et al., 2011].
Only if the signal-to-noise ratio becomes large, model projections become more consistent [Knutti and
Sedlacek, 2013]. Likewise, we here find that the regression-based estimates of the forced signal are in
reasonable good agreement across models (Figure 2b). The similarity of the patterns becomes particularly
evident if multiple members of individual models are considered (Figure S3) [Deser et al., 2014].

Interestingly, we find that the pattern of the forced response is more consistent for heavy precipitation
than mean precipitation (Figure 2a versus Figure 2b) despite the fact that annual mean precipitation
experiences much smaller year-to-year variability than heavy precipitation. Likewise, there is a substantially
larger area fraction at which the models agree on the forced signal of heavy precipitation (73%) than of
annual mean precipitation (27%) (Figure 3). Even the relative uncertainty on the magnitude of heavy
precipitation changes is substantially smaller than for mean precipitation changes (Figure 2). While heavy
precipitation is strongly controlled thermodynamically by an increased saturation water vapor pressure
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at higher temperature [Allan and Soden, 2008], mean precipitation is sensitive to both dynamic and
thermodynamic changes and constrained by longwave radiative cooling [Allen and Ingram, 2002].

We find that for hot and cold temperature extremes, agreement in the forced model response is also
substantially underestimated based on individual realizations of the twentieth century (Figures 2c and S5).
Models agree on the regression-based forced signal estimates that the greatest intensification of hot
extremes per degree warming occur over midlatitude land regions (Figures 3c and S4). Pattern correlations
are around 0.95 (Figure 2c) and almost as large for hot extremes as for the annual mean temperatures
(Figure 2d). Likewise, for cold extremes the forced response is robust across models (Figure S5) with
greatest changes per degree global warming expected over high latitudes (Figures S6 and S7). The changes
in hot and cold extremes show a similar pattern as the summer mean (Figure 3) and winter mean
temperature changes (Figure S6), respectively, but regionally tend to substantially exceed the rate of
mean changes.

In general, the linearly regressed estimates from different realizations of the same model agree well both in
their pattern and magnitude (dashed lines in Figure 2), which underlines that the internal variability is
efficiently filtered and linear regression on the global mean temperature is a reasonable rough estimate of
the forced signal. The linearity assumptions for relative changes in heavy precipitation are reasonably
justified as here shown for several regions in Figure S8. It does not hold everywhere and is only reasonable
as long as global temperature changes are relatively small. Amplification of hot extremes, e.g., by land
surface feedbacks [Seneviratne et al., 2006; Christensen et al., 2008; Fischer and Schdr, 2010] are not
problematic as long as the feedbacks are quasi-linear. However, there are obvious limits to the linearity of
this amplification, e.g., for soil moisture feedbacks if the wilting point is reached and soils are completely dry
[Fischer and Schdir, 2010; Bellprat et al., 2013]. Finally, there are areas where the sign of the precipitation
signal may reverse with increasing warming, e.g., in case of an equatorward shift of the Intertropical
Convergence Zone precipitation [Hawkins et al., 2014]. Despite these limitations, we argue that the
regression-based estimates of the forced signal are powerful, but ideally, it could be extracted from large
multimember ensembles for high-emission scenarios. To this end multiple realizations are critical and
daily and other high-frequency precipitation and surface air temperature from these simulations necessary
to thoroughly assess the forced response in extremes.

4. Conclusions

Projections of how regional to local temperature and precipitation extremes will change by the middle or
the end of the 21st century in the real world are very uncertain [Fischer et al., 2013; Kharin et al., 2013;
Sillmann et al., 2013]. In contrast, we have demonstrated that models are surprisingly consistent in their
forced response to a certain level of global warming, i.e., the changes in the absence of internal variability
that will ultimately emerge in the very long run. Models consistently show an intensification of heavy
precipitation across almost all land regions of Eurasia and North America. Interestingly, we find that both
the pattern and the magnitude of forced response are more robust for heavy precipitation than mean
precipitation. This is consistent with arguments that the signal to ratio, and thus the detectability of a
signal, is higher for heavy precipitation than for mean precipitation [Heger! et al., 2004; Fischer and Knutti,
2014], and consequently, in many places the heavy precipitation should emerge earlier from internal
variability than annual mean precipitation.

Likewise, for hot extremes the forced pattern is consistent across models, with greatest intensification of hot
extremes over the continental midlatitudes and warming of the hottest days that substantially exceed the
global mean temperature change. The difference is that the forced signal is unaffected by variability, whereas in
individual simulations of the twentieth and 21st century the change is dominated by internal variability. The
model agreement becomes only evident if changes are averaged over large areas [Sillmann et al., 2013],
aggregated in spatial probability density functions [Fischer et al., 2013] or if the noise is efficiently removed to
isolate the forced signal. It is sometimes argued that the forced response is irrelevant since also in reality it
will be superposed by high internal variability. However, in a risk perspective, it is the forced signal that
determines the probabilistic changes in return levels or return periods. The forced signal determines the
change in the expected probability of heavy precipitation or hot extremes, which ultimately underlies any
risk assessments, whereas the individual realizations correspond to the actual outcome.
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These results on one hand highlight the importance of large multimember ensembles for high-emission
scenarios that allow for a robust isolation of the forced signal through averaging a large number of runs.
Only this allows for an assessment of the robustness of projections and an isolation of actual model
differences. On the other hand, our findings in a broader sense also show the importance of specifying
whether model agreement or robustness refers to the forced signal or to individual realization. Likewise,
the level of confidence in projections of extremes, often given in assessment reports, depends whether a
statement applies to a single realization of the future or to the forced signal. Confidence in local changes
of heavy precipitation projected for the midcentury anywhere in Eurasia or North America is relatively
low, but this is not because models disagree on the response in heavy precipitation to a warming climate
but rather because the signal-to-noise ratio is small and internal variability may obscure or even reverse the
change. In contrast, confidence in the forced signal is high even at local to regional scales. Thus, it is very
likely that in the long run heavy precipitation and hot extremes intensify anywhere in Eurasia or North
America if the warming is large enough. Despite the agreement in the forced signal, models potentially
share common deficiencies and need to be further scrutinized with observations and our theoretical
understanding. Heavy precipitation is sensitive to the parameterization of convection, which involves large
uncertainties. At cloud-resolving scales the response of hourly heavy precipitation intensity may be
different to all the models used here [Kendon et al., 2014]. Changes in temperature extremes are sensitive to
changes in atmospheric blocking as well as land surface feedbacks, the representation of which is still
deficient in current climate models. Nevertheless, our findings demonstrate that amid all the complexity of
nonlinear processes controlling changes in hot and cold extremes and heavy precipitation, there may be
simplicity as proposed by Held [2014]. Here a remarkably simple first-order pattern emerges: as global
temperatures increase, the forced intensification of hot extremes and heavy precipitation is widespread
over most of the land region and consistency across models for these changes is high, in particular over
Eurasia and North America.
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