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Abstract Pronounced intermodel differences in the projected response of land surface precipitation (LSP)
to future anthropogenic forcing remain in the Coupled Model Intercomparison Project Phase 5 model
integrations. A large fraction of the intermodel spread in projected LSP trends is demonstrated here to be
associated with systematic differences in simulated sea surface temperature (SST) trends, especially the
representation of changes in (i) the interhemispheric SSTgradient and (ii) the tropical Pacific SSTs. By contrast,
intermodel differences in global mean SST, representative of differing global climate sensitivities, exert
limited systematic influence on LSP patterns. These results highlight the importance to regional terrestrial
precipitation changes of properly simulating the spatial distribution of large-scale, remote changes as
reflected in the SST response to increasing greenhouse gases. Moreover, they provide guidance regarding
which region-specific precipitation projections may be potentially better constrained for use in climate
change impact assessments.

1. Introduction

Projected changes in regional land surface precipitation (LSP) frequency, intensity, and duration—which in
certain locations show little intermodel consistency in even their sign—are considered among the least
robust signatures of anthropogenic climate forcing [Allen and Ingram, 2002; Murphy et al., 2004; Neelin et al.,
2006]. Previous studies have examined the influence of simulated land-atmosphere coupling [Seneviratne
et al., 2010], internal variability [Sorteberg and Kvamsto, 2006; Deser et al., 2012a], dynamics [Woollings, 2010],
and physics [Piani et al., 2007] on intermodel variations in terrestrial precipitation trends. Despite the well-known
influences of ocean processes upon regional- to global-scale precipitation variations across multiple timescales
[Giannini et al., 2003; Schubert et al., 2004; Meehl and Hu, 2006], and upon oceanic precipitation in particular
[Ma and Xie, 2013; Frierson et al., 2013], the relationship between intermodel differences in projected sea surface
temperature (SST) and regional LSP trends has not yet been well determined.

Here the goal is to examinewhether systematic intermodel differences in the secular (i.e., long-term, nonperiodic)
changes to the ocean state (in contrast to internal or natural variability) have leading associated patterns of
intermodel variability in projected terrestrial (i.e., land surface) precipitation trends in the latest generation
of Coupled Model Intercomparison Project Phase 5 (CMIP5) models [Taylor et al., 2012]. In describing these
relationships, we are careful to avoid implying that SST has a causal role because on climate change timescales
the SSTs adjust to surface heat flux equilibrium in concert with the atmosphere column (with the exception
of regions influenced by changes in ocean heat transport [e.g., Chou et al., 2006]). Clearer insights on such causal
mechanisms—which, in fact, may be quite limited [He et al., 2014]—are only obtained through energy budget
considerations [e.g., Kang and Held, 2012]. Nonetheless, SST remains a useful diagnostic variable for the present
aim: identification of remote influences on intermodel differences in LSP, whether via tropical ocean to land
influences akin to El Niño–Southern Oscillation (ENSO) teleconnections (for which SSTs play an active role)
and/or local- to global-scale changes in energy budgets (for which SSTs play a more passive role) [e.g., Kang
et al., 2009; Frierson and Hwang, 2012; Frierson et al., 2013; He et al., 2014].
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2. Data and Methods

For this study, we use data from CMIP5
simulations forced by the Representative
Concentration Pathway (RCP) 8.5, which
imposes an effective 8.5W/m2 forcing
by the year 2100. Output from one
ensemble member from eighteen (18)
models for the period 2006–2100 is used
(listed in supporting information Table S1).
The data analyzed comprise 20 year
running mean values of LSP and 20 year
running mean values of SSTs (supporting
information). In order to evaluate
intermodel trend differences against
model simulated internal variability,
we further analyze (1) a 1000 year
preindustrial control run; i.e., greenhouse
gas forcing is prescribed to preindustrial
levels, of the Community Climate System
Model version 4 (CCSM4; model
specifications can be found in Gent et al.

[2011]) generated as part of CMIP5; and (2) 30 simulations of a single model (the CSIRO-Mk3.6.0 [Rotstayn et al.,
2012]) forced by the RCP8.5 scenario.

To quantify the intermodel differences in structural LSP trends and their relation to intermodel differences in
SSTs, we perform a “Principal Uncertainty Pattern” (PUP) [Langenbrunner et al., 2013] analysis utilizing both
empirical orthogonal function (EOF) analysis and Canonical Correlation Analysis (CCA). Generically, EOF
analysis is a univariate variance decomposition algorithm designed to maximize the variance explained by a
given mode of variability within a specific data set, while CCA is a multivariate regression algorithm designed
to maximize the correlation between the modes of variability from different data sets [Bretherton et al.,
1992; Barnett and Preisendorfer, 1987; Graham et al., 1987; Cherry, 1996; Anderson, 2003]. Similar to previous
intermodel and intramodel analyses [e.g., Deser et al., 2012a; Ma and Xie, 2013], variance/correlation is not
calculated across time, t, but across models, m. Utilizing the EOF algorithm (see supporting information)
we obtain a set of principal component (PC) model weightings that explain the greatest amount of variability
in intermodel SST trend differences, ΔT(x2, m). By contrast, utilizing the CCA algorithm (see supporting
information) we obtain a set of canonical factor (CF) model weightings that isolate the highest correlated
modes of variability between intermodel LSP trend differences, ΔP(x1, m), and SST trend differences,
ΔT(x2,m). Here ΔP(x1,m) is the linear trend of the LSP, as defined according to the standard CMIP5 protocol for
trend analysis (see supporting information), normalized by the standard deviation of nonoverlapping 20 year
means taken from the preindustrial control run of the given model, m, at the given grid point, x1, so as
to represent the change relative to low-frequency internal variability within the given model at the given
grid point (hereafter the normalized LSP trends). ΔT(x2, m) is the linear trend of the SSTs, normalized by
the standard deviation of the intermodel trends at a given grid point, x2 (which in the model-index domain
is equivalent to standardizing in the time domain). All model data have been interpolated to a common
5° × 5° grid.

3. Results

We first illustrate the multimodel mean terrestrial precipitation trends at each grid point based upon 20 year
running mean values of normalized LSP (Figure 1). In many places, LSP trends exceed (1σ) decadal-scale
variability by the end of 21st century; however, uncertainty persists over broad areas in which the
Intergovernmental Panel on Climate Change (IPCC) standard for “large change with high model agreement”
remains unmet [Intergovernmental Panel on Climate Change (IPCC), 2013], in agreement with previous studies of
both intermodel and intramodel uncertainty in precipitation trends [Deser et al., 2012a].

Figure 1. Multimodel mean precipitation trend estimate based upon 18
CMIP5 model simulations forced by the RCP8.5 scenario for the period
2006–2100. Multimodelmean derived from the 18 normalized precipitation
trend values at each grid point, defined as the difference in the linearly
interpolated 20 year mean precipitation values between the last 20 year
period and first 20 year period and normalized by the standard deviation of
nonoverlapping 20 year means taken from the preindustrial control run of
the given model at the given grid point. Units: (%). Red dots indicate grids
in which the normalized trends do not (i) exceed 2 standard deviations of
internal variability (approximately equivalent to ±√2 × 200%) or (ii) do not
show 90% agreement in the sign of the change—the IPCC standard criteria
representing large change with high model agreement.
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Previous work [e.g., Ma and Xie, 2013]
has shown that intermodel variability in
oceanic precipitation trends is determined
in part by the magnitude of the mean
SST trendwithin a givenmodel, as well as
by the spatial structure of that trend. To
assess whether similar behavior holds
for LSP, the leading mode of intermodel
SST variability, as determined via EOF
analysis, is isolated. Using the PC model
weights, we then calculate the composite
mean intermodel differences in LSP
and SST trends between the three
models with the most positive and the
most negative weights (Figure 2); the
corresponding model weights along
with the full regression of the intermodel
differences in LSP and SST trends on
these weights are shown in the
supporting information Figure S1.
Overall, the leading mode of SST trend
variability is positive everywhere,
indicating that the leading PC of
intermodel SST differences is associated

with global mean SST increases (supporting information Figure S2). The largest related LSP changes occur
over Australia, South America, the Horn of Africa, and the Arctic. Elsewhere, this relationship is relatively weak
and sparse, as compared with the leading modes of covariability (see below).

Next we examine the leading two modes of covariability associated with systematic differences in the
modeled LSP and SST trends, as determined via CCA. The composite mean intermodel difference maps for
LSP and SST trends between the three models with the most positive and the most negative CF weights
are shown in Figure 3; the corresponding model weights along with the full regression of the intermodel
differences in LSP and SST trends on these weights are shown in supporting information Figure S3 (see
also Figures 4a and 4c). Broadly, the leading mode of covariability (Figure 3a) involves intermodel differences
in LSP trends over West Africa, East and Southeast Asia, and Brazil related to intermodel differences in
interhemispheric SSTgradient trends resulting from large-scale differences in SST trends between hemispheres
(supporting information Figure S4a), with decreased LSP trends in the colder hemisphere reminiscent of
high-latitude ocean circulation and/or energy budget impacts on low-latitude precipitation (supporting
information Figure S4b), as noted in prior studies [e.g., Kang et al., 2009; Frierson and Hwang, 2012; Frierson
et al., 2013; Seo et al., 2014]. The second mode of covariability (Figure 3b) involves intermodel differences in
LSP trends over Indonesia, the Amazon, the southern portion of North America, and the Sahel related to
intermodel differences in SST trends across the Pacific Ocean basin, with additional intermodel differences
over the North Atlantic as well as the Indian Ocean. Based upon the magnitude of the LSP differences
associated with these two CFs, the structural uncertainties in SST trends (shown here) relate more to
intermodel differences in regional LSP trend variations (~25% variance explained) than the overall degree
of ocean warming itself (cf. ~8% variance explained—Figure 2).

We further seekmodes of natural variability—which are large contributors to intramodel differences in regional
circulation (and precipitation) trends [Deser et al., 2012a]—that could explain intermodel differences in the
projected SST trends. Using output from a 1000year preindustrial control simulation of CCSM4, we first
calculate low-frequency time series using 20 year runningmean values of SSTs and LSP at each grid point, as we
did with the RCP8.5 data analyzed above. We then perform a pattern correlation of the low-frequency SST
variations with the CF SST maps and regress the low-frequency SST and LSP variations found within the
preindustrial control simulation on the resulting time series (Figure 4). Overall, the first CF pattern of intermodel
differences in SST trends projects only weakly onto low-frequency internal variability within the control

Figure 2. Green/brown shading: intermodel differences in normalized
precipitation trends (as defined in Figure 1) based upon the difference
in the composite mean fields for the three models with the largest
positive and largest negative normalized model weightings for the first
principal component (PC) of intermodel sea surface temperature (SST)
trend differences—see supporting information Figure S1b for respective
models used in the composite mean. Units: (%). Red dots are same as in
Figure 1 and serve as reference for regions with persistent intermodel
differences in precipitation trends. Shading interval given by color bar to
the right. Red/blue shading: intermodel differences in normalized SST
trends based upon the difference in the composite mean fields for the
same set of three positive and three negative models. Values are unitless.
Shading interval given by legend at bottom.
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simulation’s SST evolution (Figure 4b);
given this weak projection on SST
variability, the LSP response is also
substantially reduced.

These results suggest that the first CF
pattern of intermodel differences in SST
and LSP trends is not related strongly to
natural modes of low-frequency internal
variability in the ocean but instead to
intermodel differences in the secular
changes of the ocean state itself.
Hypothetically, intermodel differences in
the applied radiative forcing—specifically
that associated with short-lived aerosol
loadings—could potentially account for
this interhemispheric contrast. Here we
note the recent work of Xie et al. [2013]
in which the historic ensemble of CMIP5
simulations was analyzed with respect
to aerosol forcing, revealing some
similarity to the spatial patterns evident
here (cf. Figure 2a from Xie et al. [2013]
and Figure 4). However, preliminary
examination of the intermodel
differences in clear-sky shortwave
radiation changes (supporting
information Figure S5) suggests little
if any link to downwelling shortwave
radiation at the surface (supporting
information Figure S5c), which would be
representative of intermodel differences
induced by changes in radiation
transmission and absorption associated
with altered chemical composition;
instead, intermodel differences in
clear-sky shortwave cooling in the

Northern Hemisphere seem to be largely confined to the land surfaces (supporting information Figures S5a
and S5b) suggesting a potentially more prominent role of ice-albedo feedbacks as a contributor to the
intermodel differences in the interhemispheric temperature gradient (as noted in other contexts by Chiang
and Bitz [2005]). Clearly, a more detailed analysis of the oceanic, terrestrial, and atmospheric energy budgets
will be required to elucidate the processes involved.

By contrast, the second CF pattern of intermodel differences in SST trends appears to project onto the
low-frequency internal variability of the El Niño-Southern Oscillation (ENSO) or the broader Interdecadal Pacific
Oscillation within the control simulation (cf. Figures 4d and 20a from Deser et al. [2012b], both of which are
based upon output from the CCSM4). However, with the exception of Indonesia and possibly the Sahel, the
corresponding LSP variations are substantially reduced in the control simulation compared with those for the
intermodel trends. As such, it appears that the second leading mode of intermodel SST/LSP covariability is
related to intermodel differences in the evolution of the base state of the Pacific Ocean. These differences in
model evolution could be the result of either secular changes of the ocean itself or low-frequency internal
variations of the ocean/atmosphere system within the independent model runs. In either case, the spatial
form of the SST anomaly is reasonably colocated with areas that influence both the climatology and natural
variability of LSP and as such may be an indicator for an active role of SSTs in generating intermodel LSP
differences, rather than simply being a passive participant in surface heat flux balance response.

Figure 3. (a) Green/brown shading: intermodel differences in normalized
precipitation trends (as defined in Figure 1) based upon the difference in
the composite mean fields for the three models with the largest positive
and largest negative normalized sea surface temperature (SST) model
weightings associated with the first Canonical Correlation Analysis (CCA)
mode of coupled intermodel trend differences—see text. See supporting
information Figure S3b for respective models used in composite. Units: (%).
Red dots are same as in Figure 1 and serve as reference for regions with
persistent intermodel differences in precipitation trends. Shading interval
given by color bar to the right. Red/blue shading: intermodel differences in
normalized SST trends based upon the difference in the composite mean
fields for the same set of three positive and three negative models. Values
are unitless. Shading interval given by legend at bottom. (b) Same as
Figure 3a except for the composite mean fields associated with the second
CCA mode of coupled intermodel trend differences; see supporting
information Figure S3d for respective models used in composite.
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As a further check to determine whether modes of natural variability contribute to the leading modes of
intermodel differences in ocean-related LSP trends, we perform the CCA utilizing LSP and SST trends from
multiple (30) realizations of a single model (the CSIRO-Mk3.6.0). The leading mode of covariability across the
30 realizations of this model (supporting information Figure S6a) manifests differences in LSP trends over the
Indo-Australian monsoon region, the Amazon, and western Africa coupled to differences in SST trends across
the Pacific Ocean basin, as well as the Indian and North Atlantic Oceans. Broadly speaking, this behavior
mirrors the second leading mode of intermodel differences in ocean-influenced LSP trends, albeit with
region-specific differences, e.g., a lack of precipitation deficits in Asia and surpluses in North America. This
similarity suggests that low-frequency internal variations of the ocean/atmosphere systemwithin independent
model runs—here again related to the base state of the Pacific Ocean—can contribute substantially to
intermodel differences in LSP trends by the end of the 21st century.

By contrast, the second leading mode of covariability (supporting information Figure S6b) involves relatively
weak within-model differences in LSP trends, mainly over parts of the Amazon and the Boreal North related
to within-model differences in SST trends across all three ocean basins. This SST structure is qualitatively
similar to that associated with intermodel differences in global mean SST increases (cf. Figure 2) and captures
within-model variability in the global mean temperature trend and its relatively weak and sparse relationship
with LSP, similar to that found in the intermodel results. Further, none of the leading modes of covariability
show robust within-model differences in interhemispheric SST gradient trends; in line with the weak,
low-frequency internal variability revealed by the 1000 year preindustrial control run analysis, these results
suggest that the first CF pattern of intermodel differences in SSTand LSP trends arises from intermodel differences
in the secular changes of the ocean state itself, not natural modes of low-frequency oceanic variability.

4. Summary

Variations and trends in land surface precipitation (LSP) have important consequences for local and regional
adaptation and planning activities [Alley et al., 2003; Giorgi, 2005]; propensity for drought and flooding
[Entekhabi et al., 2010]; nonlinear climate feedbacks, particularly with regard to extreme temperatures

Figure 4. Projections of intermodel differences in sea surface temperature (SST) and land surface precipitation (LSP) trends
onto low-frequency modes of natural variability. (a) Red/blue shading: intermodel differences in SST trends correlated with
the normalized SST model weightings for the first CCA mode of coupled intermodel trend differences—see text. Values
are unitless. Shading interval given by color bar at bottom. Green/brown shading: intermodel differences in normalized
precipitation trends (as defined in Figure 1), correlated with the normalized SSTmodel weightings for the first CCAmode of
coupled intermodel trend differences. Values are unitless. Red dots are same as in Figure 1 and serve as reference for
regions with persistent intermodel differences in precipitation trends. Shading interval given by color bar to the right.
(b) Twenty year running mean values in SSTs (red/blue) and precipitation (green/brown) from the 1000 year preindustrial
control simulation, correlated with the time series generated by performing a year-to-year spatial correlation of the SST
anomaly map in Figure 4a with the 20 year running mean SST anomaly maps from the preindustrial control simulation.
Units/values are the same as in Figure 4a. (c, d) Same as Figures 4a and 4b except for second CCA mode of coupled
intermodel trend differences.
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[Seneviratne et al., 2006; Lorenz et al., 2010]; regional- and continental-scale carbon fluxes [St. Claire et al., 2009;
Van Der Molen et al., 2011]; and discontinuous transitions between ecological regimes [e.g., Higgins et al.,
2002]. Unfortunately, many terrestrial regions show little intermodel and intramodel consistency in the
response of LSP to increased anthropogenic emissions of radiatively active chemical constituents such as
carbon dioxide and other heat-trapping gases over the course of this century [Anderson et al., 2009; Deser
et al., 2012a; IPCC, 2013].

To better characterize sources of this regional inconsistency, we have performed a multivariate Principal
Uncertainty Pattern (PUP) analysis relating intermodel differences in LSP trends to intermodel differences in sea
surface temperature (SST) trends. Unlike for oceanic precipitation—particularly in the tropics where the
“warmer-get-richer” mechanism amplifies the SST-induced precipitation response in warmer models and
dampens it in colder models [Ma and Xie, 2013]—the magnitude of mean SST trends in response to intermodel
differences in global climate sensitivities is not a predominant driver of LSP trend differences. Instead, the
most prominent patterns of intermodel differences in coupled LSP and SST trends involve trends in (i) the
interhemispheric SST gradient and (ii) the distribution of tropical Pacific SSTs. The first, which is related to
intermodel differences in LSP trends over broad swaths of the globe—includingWest Africa, East and Southeast
Asia, and Brazil—projects only weakly onto low-frequency internal variability of the ocean, in either preindustrial
or future climate change scenarios. Hence, intermodel differences in LSP trends in these regions are most
likely related to systematic differences in the models’ structural representation of processes over broad
regions that are reflected in secular SST changes, such as remote energy budget changes. Projections of the
end-of-century response of precipitation in these land regions may thus potentially be improved through
better constrained estimates of interhemispheric responses to anthropogenic forcing. By contrast, the second
SST difference pattern—which is related to intermodel differences in land surface precipitation trends over
Indonesia, the Amazon, the southern portion of North America, and the Sahel—does project onto low-frequency
internal variations of the ocean. The spatial pattern of this mode is suggestive of an active oceanic influence, but
the similarity to patterns of natural variability also increases the requirements for distinguishing projected
precipitation responses to greenhouse gas forcings in these regions. Planning and adaptation strategies for
these regions should account for this additional source of uncertainty [e.g., Lempert et al., 2004].
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