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A two-component, supramolecular polymer blend has been designed using a novel p-electron rich bis-
perylene-terminated polyether. This polymer is able to self-assemble through electronically comple-
mentary pep stacking interactions with a p-electron-deficient chain-folding polydiimide to afford
thermally healable polymer blends. Model compounds were developed to assess the suitability of the
deep green complexes formed between perylene residues and chain-folding bis-diimides for use in
polymer blends. The polymer blends thus synthesised were elastomeric in nature and demonstrated
healable properties as demonstrated by scanning electron microscopy. Healing was observed to occur
rapidly at ca. 75 �C, and excellent healing efficiencies were found by tensometric and rheometric ana-
lyses. These tuneable, stimuli-responsive, supramolecular polymer blends are compared to related
healable blends featuring pyrene-terminated oligomers.
© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Directed, non-covalent interactions are an essential tool in the
formation of supramolecular polymer assemblies [1]. Such mate-
rials typically comprise low- or medium-molecular weight species
capable of strong, highly directional and stimuli responsive in-
teractions. The ‘switchable’ nature of such supramolecular poly-
mers has been investigated for a wide range of potential
applications including adhesives, surface-coatings and, most
recently, healable materials [2,3]. Polymers with the ability to
repair themselves after damage [4e10] could extend the lifetime of
materials in a variety of applications. Healable polymeric systems,
both autonomic [11e16] and stimuli responsive [17e25], have been
obtained through a variety of approaches, including the use of
encapsulated liquid monomers and microvascular networks
[11e16], irreversible covalent bond formation [17], reversible co-
valent bond formation [18,19,26e29], and reversible supramolec-
ular interactions [3].
; fax: þ44 (0)118 378 6331.
.M. Colquhoun), w.c.hayes@
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In the field of supramolecular polymers, materials based on
hydrogen bonding [30e34], metal-ligand interactions [22,35], or
pep stacking interactions [25,36e40] have all been shown to
exhibit healable characteristics.pep Stacking interactions between
pyrene and naphthalene diimides have been well-documented in
the literature [25,36e40], and have recently been used to great
effect in the formulation of healable materials. Alternative p-elec-
tron rich species such as naphthalene are also known to form stable
complementary supramolecular complexes in solution and the
solid state with p-electron deficient species [41e46]. However,
there has been only limited investigation of the ability of other p-
electron rich aromatics to form p-stacked complexes with naph-
thalene diimides. Perylene is known to form stable complexes with
macrocyclic aromatic ether imide sulfones [47] and is an example of
an alternative aromatic moiety which could be employed to form
pep stacking interactions with chain-folding aromatic diimides to
yield healable materials (Scheme 1).

Here we report first on a model-compound study, aimed at
determining the suitability of perylene/chain-folding diimide
complexes in supramolecular assembly. This revealed a five-fold
increase in association constant Ka when compared to the analo-
gous pyrene-based system. Guided by these findings, we developed
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Scheme 1. Schematic of a complementary pep stacking polymer-blend between a perylene terminated polymer (green) and chain-folding polydiimide (blue/black/grey), illus-
trating the process of breaking the polymer matrix by disengaging the weaker supramolecular interactions before applying an appropriate stimulus to facilitate healing. (The
naphthalene-diimide residues (grey) spaced by extended polymer residues do not form chain-folding sequences). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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a perylene-terminated polyether that, when blended with a chain-
folding polydiimide afforded a novel, healable supramolecular
polymer system. The supramolecular polymer blend exhibited
excellent retention of tensile modulus (10 MPa) over three break/
heal cycles, as well as good recovery of the modulus of toughness.

2. Results and discussion

2.1. Model compound studies

To achieve a complementary, two component pep stacking
polymer blend, the design of the chain-folding diimide is crucial.
Computational studies [48] have shown that two p-electron-
deficient naphthalene diimide moieties, separated by a flexible
linker and terminated with a branched alkyl group, give rise to a
chain-folding motif 1 which exhibits a pair of strong face-to-face
pep stacking interactions with the p-electron rich guest pyrene,
2 (Scheme 2 and SI Fig. S1). In the presentwork, a comparable study
was carried out using the more extended fused-ring hydrocarbon
perylene, 3 (Scheme 2).

Computational modelling (SI Fig. S2) of the interaction between
3 and a simplified chain-folding bis-diimide motif predicted for-
mation of a 1:1 pep-stacked complex with an average distance of
3.5 Å between the carbon atoms of the complexingp-systems, close
to the optimumvan derWaals contact distance and consistent with
values previously reported for pep stacking interactions [41,49,50].
Experimentally, spectroscopic analysis of an equimolar blend of 1
(Scheme 2) and 3 by UV-visible spectroscopy (SI Fig. S3), fluores-
cence (SI Fig. S4) and 1H NMR (SI Fig. S5) spectroscopy indeed
Scheme 2. Complexation of pyrene (2) and perylene (3) by complementary pep
showed that a dark green “charge-transfer” complex was formed,
resulting in fluorescence quenching and a strong upfield shift in
aromatic proton resonances as a consequence of mutual ring-
current shielding. Determination of the binding constant for the
1:1 complex between the chain-folding bis-diimide and perylene
(1 þ 3) by 1H NMR spectroscopy revealed a ca. five-fold increase in
association constant (Ka ¼ 227 M�1) when compared to the anal-
ogous pyrene-based system (1 þ 2, Ka ¼ 50 M�1) (SI Figs. S6eS11
and SI Equation S1). This result was consistent with values previ-
ously reported [48] by Burattini et al. where the binding constant
for the corresponding pyrenyl system (1þ 2) was calculated by UV-
vis spectroscopy to be to be 80 M�1 and also by Colquhoun and co-
workers who demonstrated [47] that perylene bound more
strongly than pyrene to a macrocyclic ether sulfone diimide by one
order of magnitude.

2.2. Polymer synthesis and characterisation

Having completed a model compound study, which clearly
demonstrated that perylene binds more strongly with the chain-
folding bis-diimide motif than does pyrene, the synthesis of a
perylene terminated polymer, 4, was identified as the next step in
creating healable polymer blends with copolyimide 5 (Schemes 3
and 4).

In order to generate perylene-terminated polymers for direct
comparison with results on pyrene-based systems previously
described by Hart et al. [39], 3-perylenebutyric acid, 6, was iden-
tified as a potentially valuable terminating unit (Scheme 4). Frie-
deleCrafts acylation of perylene, 3, with themonomethyl ester-acyl
-stacking with the chain-folding bis-diimide receptor 1 (R ¼ 2-ethylhexyl).



Scheme 3. Schematic of perylene terminated polymer 4 (green) and chain-folding polydiimide 5 (blue/black/grey) and their supramolecular blend. Insert shows the structure of the
pep stacked complex with p-electron rich perylene end-groups (green) and p-electron deficient naphthalene-diimide units (blue) linked by a triethylenedioxy unit to form a
chain-folding, complexing sequence. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Scheme 4. Synthesis of perylene-terminated poly(ethylene glycol) 4 by DCC-mediated coupling of perylenebutyric acid 6with bis(3-aminopropyl) terminated poly(ethylene glycol)
(Mn ¼ 1500 Da) 8.
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chloride of succinic acid at room temperature gave 3-(3-
perylenoyl)propanoic acid methyl ester 7 [51], in good yield
(75%). It is known that perylene is only acylated at the C3 position
under these reaction conditions [52], yielding the mono-
substituted product after purification by flash chromatography. 3-
Perylenebutyric acid 6 [51] was then obtained from 7 by the
Huang-Minlon modification [53,54] of the Wolff-Kishner reduction
[55]. The pre-polymer bis(3-aminopropyl)-terminated poly(-
ethylene glycol), 8, (Mn ¼ 1500 Da) was then end-capped with 3-
perylenebutyric acid 6 via DCC-mediated coupling to afford a
perylenyl-terminated, divalent poly(ethylene glycol) 4 (Scheme 4).
Analysis of the resulting polymer 4 by 1H NMR spectroscopy
revealed no mono-end-capped product, nor residual, unfunction-
alised pre-polymer. Mass spectrometric (MALDI-TOF) analysis was
also undertaken (SI Fig. S12) with a low intensity UV laser which
revealed a sodiated molecular ion corresponding to Mn at
2204.81 Da, ([C118H176N2O35Na]þ), with an average of 32 repeating
ethylene glycol units. This result is good agreement with the value
of Mn (2204.20 Da, [C118H176N2O35Na]þ) calculated for the divalent,
perylene terminated polymer 4. The mass difference between sig-
nals in themolecular ion series corresponds to 44 Da, themolecular
weight of one poly(ethylene glycol) repeat unit, with the overall
pattern corresponding to themolecular weight distribution present
in the pre-polymer.

A p-electron deficient polymer was also required in order to
produce an electronically-complementary system that might be
anticipated to show healing characteristics when blended with the
p-electron rich, perylene-terminated polymer 4. A chain-folding
diimide copolymer [36] (SI Fig. S13) with Jeffamine® D-400 mid-
blocks, 5, was therefore synthesised [36] (Mn ¼ 2240 gmol�1,
Ðm ¼ 1.87) to allow direct comparisonwith previous work inwhich
it was blended with a pyrenyl-terminated polyether [39].

2.3. Polymer complexation in solution

pep-Stacked supramolecular polymer blends [4 þ 5] were ob-
tained by mixing complementary polymer solutions (1 � 10�3 M
with respect to binding motifs, CHCl3/TFA, 9:1 v/v) in equimolar
ratios with respect to equivalent weights of the binding motifs (SI
Fig. S14) as suggested by our model compound studies. A deep
green solution was formed instantaneously from solutions of the
pale yellow perylenyl polymer 4 and the orange/brownpolydiimide
5. This dramatic change in colour results from the appearance of a
new, broad absorption band centred at 611 nm in the visible



Fig. 1. Inherent viscosities of individual polymers (4, 5) and the equimolar (with
respect to binding motifs) polymer blend [4 þ 5] at 10 mg mL�1 in chloroform/hex-
afluoroisopropanol (9:1, v/v). Viscosities are the mean of four repeat measurements in
each case.
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spectrum (SI Fig. S15) of the blended solutions [4 þ 5], as was
observed in the UV-visible spectra of the analogous model com-
pounds (SI Fig. S3). Absorption at this wavelength is strongly
indicative of a newly formed charge-transfer complex between the
p-electron-rich perylene moiety and p-electron-deficient, chain-
folding diimide [48].

Irradiation of a solution of the perylene terminated polymer 4
(CHCl3/TFA, 9:1 v/v) with a standard laboratory UV-light source
(310 nm) revealed a typical blue emission from the perylene end-
groups (SI Fig. S16). On blending with the non-fluorescent poly-
diimide 5 in an equimolar ratio with respect to binding motifs, the
perylene fluorescence was observed to diminish dramatically. To
quantify this fluorescence-quenching further, fluorescence spec-
troscopy (SI Fig. S17) was used to probe the characteristics of the
individual polymers (4, 5) and the corresponding blend [4þ 5]. The
emission spectrum of the perylene terminated divalent polymer 4
reveals characteristic bands for monomeric perylene at 484 and
512 nm, whilst the chain-folding polydiimide 5 was essentially
non-fluorescent in agreement with visual observations. The su-
pramolecular blend between the bis-perylenyl terminated polymer
and chain-folding polydiimide [4 þ 5] revealed almost complete
quenching of the perylene monomer emissions, indicative of
complementary pep stacking as previously found in this work by
computational modelling and model compound studies.

To further investigate the nature of the pep stacking interaction
between the bis-perylenyl terminated polymer 4 and the chain-
folding polydiimide 5, 1H NMR spectroscopy was used in probing
the solution behaviour of complementary p-electron-rich and p-
electron deficient polymers. Thus, 1H NMR spectra of the blended
polymer [4 þ 5] (equimolar with respect to the binding motifs,
1 � 10�2 M, 10% TFA in CDCl3, (v/v)) were compared to spectra
obtained for the individual components (SI Fig. S18). The singlet
associated with the aromatic protons of the p-electron-poor
naphthalenediimide residues 5 (8.80 ppm) experiences a signifi-
cant upfield shift (>0.30 ppm) when blended, as a result of ring-
current shielding by the intercalating perylene end-groups 4
within the chain-folding bis-diimide motif. In addition, the ‘naph-
thyl’ protons of the polydiimide polymer 5 split into distinct pop-
ulations between bound sequences (8.50e7.60 ppm) and
sequences which are non-binding (8.65 ppm). Resonances associ-
ated with the perylenyl end-group are also seen to shift upfield and
become broader in appearance. The complex pattern observed for
the bound naphthyl and perylenyl proton resonances in the poly-
mer blend arises from the range of different binding sequences
[56,57] within the random co-polymer backbone (i.e. dimer, trimer,
etc.) whilst the broad nature of the proton resonances for both p-
electron-rich and p-electron deficient species indicates that the
system is approaching slow exchange on the NMR timescale.

Inherent viscosity (hinh) measurements [10 mg mL�1, chloro-
form/hexafluoroisopropanol (9:1, v/v), 25 �C] of the individual
components and the blended solution gave further proof of su-
pramolecular network formation between complementary poly-
mers (Fig. 1). Blending the perylene terminated polymer 4
(hinh ¼ 0.14 dL g�1) and polydiimide 5 (hinh ¼ 0.20 dL g�1) in a 1:1
molar ratio with respect to binding units gave rise to a solution
which demonstrated an increase in inherent viscosity
(hinh ¼ 0.27 dL g�1; c.f. calculated average of 0.17 dL g�1) as a result
of the formation of an extended supramolecular polymer network
in solution.

2.4. Polymer films and healing studies

To investigate the formation of pep stacked polymer complexes
in the solid state, films of the individual components 4 and 5, and of
the blend [4þ 5], were drop-cast from2,2,2-trichloroethanol onto a
PTFE plate and dried by progressively increasing the temperature to
80 �C (Fig. 2). The polydiimide 5 film was found to be extremely
fragile, as described in the literature [25], whilst the new, bis-
perylene-terminated poly(ethylene glycol) 4 was a viscous oil.
Films cast from the divalent perylene end-capped polymer blended
with the p-electron deficient polydiimide [4 þ 5] (1:1 with respect
to binding motifs) gave rise to deep green peelable materials. The
resulting robust, elastomeric films clearly demonstrated that
complementary pep stacking was not only retained in the solid
state, but also led to formation of strong, self-supporting films from
non-film-forming precursors. Previous studies [25,36,39] demon-
strated not only the requirement for electronically complementary
binding motifs in producing homogenous polymer blends, but also
in generating healable polymeric materials. By way of a control
experiment, the chain-folding polydiimide 5 was blended with the
non-functionalised PEG pre-polymer 8 and films were cast under
analogous conditions to test their film-forming properties. This
“control blend” [5 þ 8] produced a just-peelable but very fragile
film (SI Fig. S19).

Rheometric analysis of the equimolar (with respect to binding
units) blend between 4 and 5 revealed a sharp fall-off in melt-
viscosity with increasing temperature, as indicated by the change
in rheometric shift factor, aT. This factor is approximately the ratio
of the terminal viscosity at a given temperature to that at 30 �C, and
is seen to fall precipitously with temperature, especially above
60 �C (Fig. 3). Overall, aT falls bymore than five orders of magnitude
between 30 and 90 �C, and the sharp increase in the gradient of this
plot at about 60 �C suggests that, above this temperature, the new
material should show a markedly enhanced ability to flow and re-
heal when compared to conventional thermoplastics.

Healing was initially demonstrated by heating a damaged film
(ca. 50 mmwide cut) of the supramolecular polymer blend [4þ 5] at
10 �C min�1 in an environmental scanning electron microscope
(ESEM) from ambient temperature (Fig. 4). Upon reaching ca. 75 �C,
healing of the damaged area was seen to initiate and the damaged
area began to seal from the top of the cut down to its widest point.

After further heating to 100 �C and finally to 125 �C, the cut had
demonstrated almost complete healing. To investigate whether the
healing action was indeed the result of supramolecular in-
teractions, ESEM analysis was carried out on a control blend be-
tween the poly(ethylene glycol) pre-polymer 8 without the p-
electron rich perylene units and the chain-folding polydiimide 5 (SI
Fig. S20). The control sample was cut and heated at 10 �C min�1

under analogous conditions to the healable polymer blend [4 þ 5].



Fig. 2. Films of: (at left) the perylenyl terminated polyether 4; (at right) the chain-folding polydiimide 5; and (centre) the equimolar (with respect to binding motifs) blend [4 þ 5].
All three films were cast from solution in 2,2,2-trichloroethanol and dried at room temperature for 24 h before drying at 40 �C for 24 h and finally at 80 �C for 24 h.
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The fracture was observed to narrow somewhat during the heating
ramp, but crucially, no significant healing was demonstrated by the
control material [5 þ 8], and indeed the cut still remained very
evident at 125 �C.

To quantify the healing efficiencies of the supramolecular
polymer blends, a test-strip of film (0.2e0.3 mm in thickness and
4.0mm inwidth) was elongated to failure by tensile tests over three
test/break/heal/test cycles at 20 �C, at a Hencky strain rate of 0.1 s�1

(Fig. 5) [25,40].
The pristine film of the polymer blend [4þ 5] exhibited a tensile

modulus (E) of 10 MPa (Fig. 6a), and the healing efficiency relative
to the pristine material was maintained at 100% over three break/
heal cycle. Samples were overlapped slightly to facilitate healing
and then heated on a PTFE plate to 125 �C for 30min, before cooling
to room temperature. A decrease in tensile modulus was noted
when compared to the tensile modulus of the analogous pyrenyl
polymer blend (29 MPa) [39]. Although the association constant for
perylene is greater than that of pyrene, it is possible that the ‘on-off’
rate [58] has a greater influence on the tensile properties of the
material than the association constant in this instance. The
modulus of toughness (Fig. 6b) of the pristine polymer blend is
0.89 MPa, compared to a value for the divalent pyrenyl analogue of
1.45 MPa. Although the magnitude of the modulus of toughness
initially decreases by 36% (0.57MPa) after the first break/heal cycle,
a steady increase is observed, retaining up to 97% (0.86 MPa) of the
original value after three break/heal cycles. This trend indicates that
equilibrium is being reached within the polymer blend over a
number of healing cycles. Whilst the strain to break decreases be-
tween the pristine and healed samples (370% to ca. 200%, Fig. 5),
Fig. 3. Variation of rheometric shift factor, aT (a function of melt-viscosity), with
temperature for the supramolecular polymer system [4 þ 5].
once broken a second and third time, the value remains constant.
The reduction in breaking strain could be explained by loss (<5%) of
water, as observed by TGA, which may be plasticising the polymer.
Alternatively, as healing takes place at elevated temperatures, the
polymeric chains may reorganise into a more ordered state, thus
becoming less elastomeric and therefore possessing less freedom to
elongate when strain is applied.

The rate of healing in the polymer blend [4 þ 5] was also
investigated (Fig. 7) by dynamic shear at three different tempera-
tures (50, 75 and 125 �C, respectively). The initial modulus was
obtained in the linear region from a strain sweep at a frequency of
100 rad s�1 before the sample was broken by a use of a high strain
amplitude of 100% and 100 rad s�1 for 5 min at the corresponding
temperatures. Time sweeps at the given temperature were then
carried out to heal the sample. At 50 �C the sample recovered 87% of
G0 after 40 min of healing, whereas full recovery of G0 was observed
after 40 min at 75 �C. When the sample was heated to 125 �C, the
material demonstrated 100% healing efficiency within 14 min,
clearly demonstrating the tunable thermoreversibility of the su-
pramolecular interaction.
3. Conclusions

A novel supramolecular binding motif between a known p-
electron deficient chain-folding residue and the p-electron rich
perylene unit has been designed, synthesised, implemented in
polymer blends, and the properties of the derived materials
explored. Computational modelling strongly suggested formation
of pep stacking interactions between the electronically comple-
mentary motifs, and model compounds were then synthesised and
the binding interactions between a chain-folding bis-diimide 1 and
perylene 3 investigated. This study confirmed the presence of new
charge-transfer absorption in the visible spectrum, resulting in a
dark green complex in solution (lmax ¼ 608 nm). The new pep-
stacked complex demonstrated quenching of the characteristic
perylene fluorescence and exhibited a much higher association
constant (Ka ¼ 227 M�1) with the chain-folding bis-diimide 1when
compared to a pyrene analogue (Ka ¼ 50M�1). Perylenebutyric acid
6 was readily synthesised and appended to a linear bis(3-
aminopropyl) terminated poly(ethylene glycol) to produce a poly-
mer 4which was formulated into an equimolar blend (with respect
to binding motifs) of complementary p-electron deficient and p-
electron rich polymers [4 þ 5]. A film of [4 þ 5] film was damaged
by cutting and shown to heal on heating, as visualised by ESEM.
Tensometry revealed the film to have a tensile modulus of 10 MPa



Fig. 4. False-colour ESEM images of the healable polymer blend [4 þ 5] containing equimolar amounts (with respect to binding motifs) of perylene terminated polymer 4 and chain-
folding polydiimide 5. Micrographs were taken at (a) 25 �C, (b) 75 �C and (c) 125 �C. The images demonstrate both formation of a homogenous blend and the healability of the
polymer at elevated temperatures. Scale bar represents 220 mm.
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which showed 100% recovery over three break/heal cycles. The
modulus of toughness (0.89 MPa) was also recovered almost
completely after three break/heal cycles. Temperature-dependent
healing studies revealed the polymer to be fully healed after
40 min at 75 �C, or after 14 min at 125 �C, demonstrating the
versatility of the new perylene-based supramolecular polymer
system and the ability to tailor pep stacking interactions to pro-
duce healable materials.

4. Experimental

4.1. Methods and materials

Reagents and solvents were purchased from Sigma Aldrich and
were used without further purification, with the exception of
dichloromethane which was dried by distillation from calcium
hydride under argon. Proton NMR (400 MHz) and 13C NMR
(100 MHz) spectra were obtained on a Bruker Nanobay 400 spec-
trometer using CDCl3 or CDCl3/trifluoroacetic acid (9:1 v/v) as
solvent, with TMS as internal standard. Infrared (IR) spectroscopic
analysis was carried out using a Perkin Elmer 100 FT-IR instrument
with diamond-ATR sampling accessory and samples either as solids
or oils. Environmental scanning electron microscopy was carried
out using an FEI Quanta FEG 600 instrument equipped with a
heating stage. Ultraviolet-visible spectra were measured on a Var-
ian Cary 300 spectrophotometer with heating attachment, using
1 cm2 quartz cuvettes, in the wavelength range 350e800 nm.
Fluorescence spectroscopy was carried out in chloroform using a
Varian Cary Eclipse fluorescence spectrophotometer and a 1 cm2

quartz cuvette, exciting at 345 nm and recording emissions in the
wavelength range 350e700 nm. Matrix-assisted laser desorption-
ionization time-of-flight mass spectra (MALDI-TOF MS) were ob-
tained using a Bruker Daltonics Ultraflex 1 spectrometer operating
in reflection mode. The instrument was calibrated using a standard
Fig. 5. Stress/strain curve demonstrating the elongation to break of the polymer blend
[4 þ 5] over three break/heal cycles.
peptide mixture (Bruker Daltonics, calibration standard II), and 2,5-
dihydroxybenzoic acid (DHB) was used as the matrix. A typical
method of sample preparation follows: a solution of the analyte in
acetonitrile (3 mL, 5 mg mL�1) was combined with 3 mL of a freshly
prepared matrix solution (20 mg mL�1 in 1:1 acetonitrile/water
with 1% v/v TFA). Aliquots (1 mL) were then spotted onto a ground
steel MALDI target plate and left to dry in air prior to analysis. Gel
Permation chromatography (GPC) data were collected using an
Agilent Technologies 1260 Infinity Series chromatograph. Samples
were dissolved in THF which was also used as the eluent, with
poly(styrene) standards for calibration. Inherent viscosities were
measured in chloroform/hexafluoroisopropanol (9:1, v/v) on a
Schott-Ger€ate CT-52 auto-viscometer using a size 03 Ubbelohde
capillary in a thermostatted water bath at 25 �C. Differential
scanning calorimetry (DSC) was carried out using a TA Instruments
Q2000 calorimeter. Samples for DSC were heated to 110 �C to
remove residual solvent, cooled to �90 �C, and then re-scanned
from �90 to 250 �C. Dynamic mechanical analysis was carried
out using a TA Instruments RSA III at 23 �Cwith a Hencky strain rate
of 0.1 s�1. Samples were 0.20e0.30 mm in thickness, cut to di-
mensions of approximately 4 � 40 mm. Uniform films with a
thickness of 0.2e0.3mmwere tensile tested to break, and the edges
of the broken samples were then overlapped, pressed gently on a
pre-heated PTFE plate, and healed in an oven at 125 �C for 30 min.
The rheological characteristics of the polymer were studied in a
nitrogen atmosphere using a strain control rheometer, ARES-G2,
from TA Instruments, using parallel stainless steel 8 mm diameter
plates. The samples were pressed into discs with a diameter of
8 mm and a thickness of approximately 0.3e0.4 mm. Strain sweeps
at a frequency of 100 rad s�1 were carried out before a frequency
sweep was run to assess the linear regime. The frequency sweeps
from 0.1 rad s�1 to 100 rad s�1 were conducted in the linear regions
with a strain of 3e5% at different temperatures, including 30, 40,
50, 60, 70, 80, and 90 �C, respectively. The master curve at a
reference temperature of 30 �C was constructed from these fre-
quency sweeps, from which the shift factor aT was extracted.
Rheological healing studies were conducted at three different
temperatures, 50, 75, and 125 �C. The initial modulus was obtained
in the linear region from a strain sweep at a frequency of
100 rad s�1. The samples were broken at a high strain of 100% and
100 rad s�1 frequency for 5 min at the desired temperatures. A
strain of 3%was used for samples at 50 and 75 �C, and 8% for healing
at 125 �C, at a frequency of 100 rad s�1 for time sweeps, to
dynamically heal the samples after breaking.
4.2. Preparation of bis-perylene-terminated poly(ethylene glycol)
(4)

Under an nitrogen atmosphere at 0 �C, bis(3-aminopropyl)
poly(ethylene glycol) 8 (1.21 g, 0.81 mmol) and 4-dimethylamino-
pyridine (0.10 g, 0.80 mmol) were mixed in dry dichloromethane



Fig. 6. (a) Tensile moduli and (b) Moduli of toughness of the blends containing the divalent perylenyl-polymer and chain-folding diimide [4 þ 5], demonstrating the recovery of
tensile modulus and modulus of toughness over 3 break/heal cycles.

Fig. 7. Recovery of storage modulus as a function of healing time for samples of [4 þ 5]
at 50, 75, and 125 �C.
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(500mL). Perylenebutyric acid 6 (0.60 g, 1.77mmol) was added and
stirred for 20 min at 0 �C, followed by dicyclohexylcarbodiimide
(0.40 g, 1.93 mmol). The suspension was warmed to room tem-
perature and subsequently stirred for 18 h before being cooled and
filtered. The filtrate was concentrated in vacuo and precipitated in
diethyl ether (300 mL) in a dry ice/acetone bath and filtered whilst
cold. The crude polymer was further purified by column chroma-
tography, eluting in chloroform/methanol (40:1) to yield 4 as an
orange-brown oil (1.60 g, 88%); FT-IR nmax/cm�1: 3525, 2868, 1644,
1547, 1465, 1387, 1343, 1279, 1241, 1101, 961, 841, 816, 765; 1H NMR,
(CDCl3, 400 MHz): d (ppm) ¼ 8.19e8.09 (8H, m, AreH), 8.7.91 (2H,
d, J¼ 8.5 Hz, AreH), 7.65 (4H, t, J¼ 6.0 Hz, AreH), 7.53e7.44 (6H, m,
AreH), 7.34 (2H, d, J ¼ 7.5 Hz, AreH), 6.39 (2H, br, CH2NHCO),
3.72e3.53 (192H, m, [O(CH2)2]n), 3.38 (4H, q, J ¼ 5.5 Hz, CH2NHCO),
3.06 (4H, t, J ¼ 7.5 Hz, CCH2CH2CH2CO), 2.27 (4H, t, J ¼ 7.5 Hz,
CCH2CH2CH2CO), 2.10 (4H, quin, J ¼ 7.5 Hz, CCH2CH2CH2CO), 1.77
(4H, quin, J ¼ 6.0 Hz, CH2CH2CH2NH); 13C NMR (CDCl3, 100 MHz):
d (ppm) ¼ 172.7, 137.8, 134.6, 133.0, 131.7, 131.3, 129.6, 129.0, 128.5,
127.7, 127.4, 127.0, 126.6, 126.5, 123.9, 120.1, 120.0, 119.7, 70.5, 70.4,
70.0, 69.1, 37.9, 36.1, 32.7, 28.9, 26.3; GPC (THF) Mn ¼ 1400 Da,
Mw ¼ 2258 Da, Ðm ¼ 1.61; MALDI-TOF MS (m/z) calc. for
C118H176N2O35Na¼ 2204.20 Da, found¼ 2204.81Da ± 44n Da; DSC:
Tg ¼ �44.8 �C.
Acknowledgements

We thank EPSRC and Domino Printing Sciences UK Ltd. for an
Industrial CASE PhD studentship (No. 10002591) in support of LRH.
Spectroscopic and thermal data were acquired using instrumen-
tation in the Chemical Analysis Facility (CAF) of the University of
Reading. The authors are grateful to the Electron Microscopy Lab-
oratory (EMLab) of the University of Reading for providing access to
the ESEM microscope. Funding for work at the University of Dela-
ware was provided by the Department of Materials Science and
Engineering, NIST, and the Center for Neutron Science through
award 70 NANOBIO H256.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://
dx.doi.org/10.1016/j.polymer.2015.03.028.

References

[1] Sivakova S, Rowan SJ. Chem Soc Rev 2005;34:9e21.
[2] Burattini S, Colquhoun HM, Greenland BW, Hayes W. In: Gale P, Steed J, ed-

itors. Supramolecular chemistry: from molecules to nanomaterials. John
Wiley & Sons Ltd; 2012.

[3] Hart LR, Harries JL, Greenland BW, Colquhoun HM, Hayes W. Polym Chem
2013;4:4860e70.

[4] Murphy EB, Wudl F. Prog Polym Sci 2010;35:223e51.
[5] Burattini S, Greenland BW, Chappell D, Colquhoun HM, Hayes W. Chem Soc

Rev 2010;39:1973e85.
[6] Bergman SD, Wudl F. J Mater Chem 2008;18:41e62.
[7] Wool RP. Soft Matter 2008;4:400e18.
[8] Hayes W, Greenland BW. Healable polymer systems. 1st ed. Cambridge: Royal

Society of Chemistry Publishing; 2013.
[9] Yang Y, Urban M. Chem Soc Rev 2013;42:7446e67.

[10] D€ohler D, Michael P, Binder WH. In: Binder WH, editor. Self-healing polymers:
from principles to applications. Weinheim: Wiley-VCH Verlag GmbH & Co;
2013.

[11] White SR, Sottos NR, Geubelle PH, Moore JS, Kessler MR, Sriram SR, et al.
Nature 2001;409:794e7.

[12] Cho SH, Andersson HM, White SR, Sottos NR, Braun PV. Adv Mater 2006;18:
997e1000.

[13] Keller MW, White SR, Sottos NR. Adv Funct Mater 2007;17:2399e404.
[14] Toohey K, Sottos NR, Lewis J. Nat Mater 2007;6:581e5.
[15] Caruso MM, Blaiszik BJ, White SR, Sottos NR, Moore JS. Adv Funct Mater

2008;18:1898e904.
[16] Toohey KS, Hansen CJ, Lewis JA, White SR, Sottos NR. Adv Funct Mater

2009;19:1399e405.
[17] Ghosh B, Urban M. Science 2009;323:1458e60.
[18] Chen X, Dam MA, Ono K, Mal A, Shen H, Nutt SR, et al. Science 2002;295:

1698e702.
[19] Amamoto Y, Kamada J, Otsuka H, Takahara A, Matyjaszewski K. Angew Chem

Int Ed 2011;50:1660e3.
[20] Adzima BJ, Kloxin CJ, Bowman CN. Adv Mater 2010;22:2784e7.
[21] Zheng P, McCarthy TJ. J Am Chem Soc 2012;134:2024e7.
[22] Burnworth M, Tang L, Kumpfer JR, Duncan AJ, Beyer FL, Fiore GL, et al. Nature

2011;472:334e8.
[23] Montarnal D, Cordier P, Souli�e-Ziakovic C, Tournilhac F, Leibler L. J Polym Sci A

Polym Chem 2008;46:7925e36.
[24] Wang Q, Mynar JL, Yoshida M, Lee E, Lee M, Okuro K, et al. Nature 2010;463:

339e43.
[25] Burattini S, Greenland BW, Hermida Merino D, Weng W, Seppala J,

Colquhoun HM, et al. J Am Chem Soc 2010;132:12051e8.
[26] Montarnal D, Capelot M, Tournilhac F, Leibler L. Science 2011;334:965e8.
[27] Capelot M, Montarnal D, Leibler L, Tournilhac F. J Am Chem Soc 2012;134:

7664e7.
[28] Barthel MJ, Rudolph T, Teichler A, Paulus RM, Vitz J, Hoeppener S, et al. Adv

Funct Mater 2013;23:4921e32.
[29] K€otteritzsch J, Stumpf S, Hoeppener S, Vitz J, Hager MD, Schubert US. Mac-

romol Chem Phys 2013;214:1636e49.

http://dx.doi.org/10.1016/j.polymer.2015.03.028
http://dx.doi.org/10.1016/j.polymer.2015.03.028
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref1
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref1
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref2
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref2
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref2
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref2
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref3
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref3
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref3
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref4
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref4
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref5
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref5
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref5
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref6
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref6
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref7
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref7
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref8
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref8
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref9
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref9
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref10
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref10
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref10
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref10
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref10
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref11
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref11
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref11
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref12
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref12
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref12
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref13
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref13
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref14
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref14
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref15
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref15
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref15
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref16
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref16
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref16
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref17
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref17
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref18
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref18
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref18
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref19
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref19
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref19
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref20
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref20
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref21
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref21
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref22
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref22
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref22
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref23a
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref23a
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref23a
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref23a
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref23
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref23
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref23
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref24
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref24
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref24
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref25
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref25
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref26
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref26
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref26
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref27
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref27
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref27
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref28
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref28
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref28
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref28


L.R. Hart et al. / Polymer 69 (2015) 293e300300
[30] Cordier P, Tournilhac F, Souli�e-Ziakovic C, Leibler L. Nature 2008;451:977e80.
[31] Chen Y, Kushner AM, Williams GA, Guan Z. Nat Chem 2012;4:467e72.
[32] Bosman AW, Sijbesma RP, Meijer EW. Mater Today 2004;7:34e9.
[33] Folmer B, Sijbesma RP, Versteegen RM, van der Rijt JAJ, Meijer EW. Adv Mater

2000;12:874e8.
[34] Herbst F, Seiffert S, Binder WH. Polym Chem 2012;3:3084e92.
[35] Bode S, Zedler L, Schacher FH, Dietzek B, Schmitt M, Popp J, et al. Adv Mater

2013;25:1634e8.
[36] Burattini S, Colquhoun HM, Fox JD, Friedmann D, Greenland BW, Harris PJF,

et al. Chem Commun 2009:6717e9.
[37] Burattini S, Colquhoun HM, Greenland BW, Hayes W. Faraday Discuss

2009;143:251e64.
[38] Fox J, Wie JJ, Greenland BW, Burattini S, Hayes W, Colquhoun HM, et al. J Am

Chem Soc 2012;134:5362e8.
[39] Hart LR, Hunter JH, Nguyen NA, Harries JL, Greenland BW, Mackay ME, et al.

Polym Chem 2014;5:3680e8.
[40] Vaiyapuri R, Greenland BW, Colquhoun HM, Elliott JM, Hayes W. Polym Chem

2013;4:4902e9.
[41] Iverson BL, Lokey RS. Nature 1995;375:303e5.
[42] Nguyen JQ, Iverson BL. J Am Chem Soc 1999;121:2639e40.
[43] Cubberley MS, Iverson BL. J Am Chem Soc 2001;123:7560e3.
[44] Gabriel GJ, Iverson BL. J Am Chem Soc 2002;124:15174e5.
[45] Reczek JJ, Iverson BL. Macromolecules 2006;39:5601e3.
[46] Alvey PMP, Ono RJR, Bielawski CCW, Iverson BL. Macromolecules 2013;46:

718e26.
[47] Colquhoun HM, Zhu Z, Williams DJ, Drew MGB, Cardin CJ, Gan Y, et al. Chem

Eur J 2010;16:907e18.
[48] Greenland BW, Burattini S, Hayes W, Colquhoun HM. Tetrahedron 2008;64:

8346e54.
[49] Colquhoun HM, Zhu Z, Williams DJ. Org Lett 2003;5:4353e6.
[50] Hansen JG, Feeder N, Hamilton DG, Gunter MJ, Becher J, Sanders JKM. Org Lett

2000;2:449e52.
[51] Oskolkova OV, Saf R, Zenzmaier E, Hermetter A. Chem Phys Lipids 2003;125:

103e14.
[52] Zinke A, Troger H, Ziegler E. Berichte Dtsch Chem Ges 1940;73:1042e8.
[53] Huang M. J Am Chem Soc 1946;68:2487e8.
[54] Huang M. J Am Chem Soc 1949;71:3301e3.
[55] Rico P. Angew Chem Int Ed Engl 1968;7:120e8.
[56] Colquhoun HM, Zhu Z, Cardin CJ, Gan Y. Chem Commun 2004:2650e2.
[57] Colquhoun HM, Zhu Z, Cardin CJ, Gan Y, Drew MGB. J Am Chem Soc 2007;129:

16163e74.
[58] Tian F, Jiao D, Biedermann F, Scherman OA. Nat Commun 2012;3:1207.

http://refhub.elsevier.com/S0032-3861(15)00256-6/sref29
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref29
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref29
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref30
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref30
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref31
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref31
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref32
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref32
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref32
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref33
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref33
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref34
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref34
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref34
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref35
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref35
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref35
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref36
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref36
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref36
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref37
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref37
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref37
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref38
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref38
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref38
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref39
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref39
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref39
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref40
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref40
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref41
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref41
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref42
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref42
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref43
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref43
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref44
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref44
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref45
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref45
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref45
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref46
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref46
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref46
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref47
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref47
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref47
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref48
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref48
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref49
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref49
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref49
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref50
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref50
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref50
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref51
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref51
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref52
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref52
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref53
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref53
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref54
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref54
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref55
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref55
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref56
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref56
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref56
http://refhub.elsevier.com/S0032-3861(15)00256-6/sref57

	Perylene as an electron-rich moiety in healable, complementary π–π stacked, supramolecular polymer systems
	1. Introduction
	2. Results and discussion
	2.1. Model compound studies
	2.2. Polymer synthesis and characterisation
	2.3. Polymer complexation in solution
	2.4. Polymer films and healing studies

	3. Conclusions
	4. Experimental
	4.1. Methods and materials
	4.2. Preparation of bis-perylene-terminated poly(ethylene glycol) (4)

	Acknowledgements
	Appendix A. Supplementary data
	References


