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There is continued interest in DNA photo-oxidation by
intercalating compounds due to its possible role in photo-
therapeutic applications[1] and in the details to be learned
about the fundamental processes of photo-induced electron
transfer (ET) in biological systems.[2] However, accurate
descriptions of the processes influencing ET require knowl-
edge of the intercalator�s location in a DNA sequence that
may contain multiple binding sites. Attempts to address this
issue have been made by covalently tethering the intercalator
to an oligodeoxynucleotide (ODN) strand,[3] although even in
this case the precise orientation of the intercalating ligand is
uncertain.

One interesting class of DNA-interacting compounds is
ruthenium polypyridyls, as their photophysical properties,
photochemical reactivity and DNA binding can be readily
controlled by variation of the chelating ligands,[2c] and this
area has also been the subject of recent insightful computa-
tional studies.[4] A significant development is the access to
detailed information on the binding modes of non-covalently
bound [RuL2(dppz)]2+ (dppz = dipyrido[3,2-a :2’,3’-c]phena-
zine) intercalators provided by crystal structures of L-[Ru-
(TAP)2(dppz)]2+ (L-1, Figure 1 a),[5a] L and D-[Ru(phen)2-
(dppz)]2+,[5b,c] and D-[Ru(bpy)2(dppz)]2+ [5d] in ODNs (TAP =

1,4,5,8-tetraazaphenanthrene, phen = 1,10-phenanthroline,
bpy = 2,2’-bipyridyl). Nevertheless, it can be unclear whether
these crystal structures reflect what occurs under more dilute
conditions in solution, where the majority of experiments on
ligand–DNA interactions are performed.

A striking revelation from crystallography has been from
the comparative study of L-[Ru(phen)2(dppz)]2+ bound to 5’-

{CCGGATCCGG}2 (A) and 5’-{CCGGTACCGG}2 (B) (Fig-
ure 1b,c and Supporting Information (SI), Figures S1 and S2)
where dppz intercalation occurs at the central 5’-TA-3’ but not
5’-AT-3’ sites.[5b] This observation is significant because bind-
ing at the TA step would remove the intercalator from the
readily oxidized guanine bases in these sequences.[6] It is
therefore intriguing to study these ODNs with the structurally
similar [Ru(TAP)2(dppz)]2+ (L-1), which, unlike the phen
analog, is known to efficiently photo-oxidize guanine.[7] In
particular, we aimed to demonstrate whether a TA versus AT
selectivity could be identified in solution and how this may
help our understanding of ET in these systems.

Figure 1. a) Structures of L-[Ru(TAP)2(dppz)]2+ and ODNs used in this
study. b,c) Crystal structures of L-[Ru(phen)2(dppz)]2+ bound to
b) ODN A and c) ODN B from Niyazi et al.,[5b] showing binding at
central T5A6:T5A6 step in {CCGGTACCGG}2 but not {CCGGATCCGG}2.
Intercalated complexes only are shown. Color code : Guanine, red;
cytosine, cyan; adenine, green; thymine, yellow; nitrogen, blue.

Abstract: Small changes in DNA sequence can often have
major biological effects. Here the rates and yields of guanine
photo-oxidation by L-[Ru(TAP)2(dppz)]2+ have been com-
pared in 5’-{CCGGATCCGG}2 and 5’-{CCGGTACCGG}2

using pico/nanosecond transient visible and time-resolved IR
(TRIR) spectroscopy. The inefficiency of electron transfer in
the TA sequence is consistent with the 5’-TA-3’ versus 5’-AT-3’
binding preference predicted by X-ray crystallography. The
TRIR spectra also reveal the differences in binding sites in the
two oligonucleotides.
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To determine whether exchanging the TA:TA step for
AT:AT would affect the behavior in solution the ET was
monitored using transient spectroscopy.[8] Parallel experi-
ments were performed using 1) transient visible absorption
(TrA) to track the formation and removal of the reduced Ru
species formed by ET,[7c,d] and 2) time-resolved IR (TRIR) to
probe the effect on the DNA by monitoring the nucleobase
vibrations.[9] Experiments were performed in D2O at 0.8:1
Ru:duplex ratios (400 mm Ru, 500 mm duplex), where on
average only one metal complex is available per duplex.

Picosecond-TrA measurements show that 400 nm laser
excitation of 1 in the presence of A results in removal of the
ground state (450 nm) and formation of a broad transient
feature (lmax = 600 nm) (SI Figure S3a), assigned to the
[RuIII(TAP)(TAP.�)(dppz)]2+* metal-to-TAP-ligand charge
transfer (MLCT) excited state.[7c,d] Subsequently the absorp-
tion at 600 nm decreases while simultaneously that at 515 nm
increases with a rate constant of 1/(480� 60) ps�1 (Figure 2a

and SI Figure S3a). This is comparable to that observed for L-
1 bound to other G-rich ODNs,[7e] and is ascribed to ET from
guanine and formation of the reduced metal complex [RuII-
(TAP)(TAPC�)(dppz)]+. The subsequent reverse ET was
monitored by TrA experiments on the ns timescale (Fig-
ure 2b) where the decay of the reduced species fitted to a rate
constant of 1/(17� 3) ns�1.

Strongly contrasting behavior was observed when the
experiment was repeated with B where the central step is
TA:TA. The TrA spectra recorded from ps to ns shows the
[RuIII(TAP)(TAPC�)(dppz)]2+ excited state and there was no
evidence for significant formation of the reduced species
(Figure 2a and SI Figure S3b). The excited state decayed with
a lifetime of 120� 15 ns (Figure 2b), which was significantly
longer than that observed with ODN A. However, it may be
noted that this lifetime is shorter than that for the excited
state of [Ru(TAP)2(dppz)]2+ either unbound (1080 ns) or
bound to a duplex that does not contain G (e.g. poly{dA-dT}2;
t = 1580 ns).[7b] This implies that excited-state quenching
occurs, but with a much lower rate than in A.

Experiments were then performed using TRIR in order to
observe directly the effect on DNA (Figure 3 and SI Fig-
ure S4). In the FTIR spectra, the region above 1600 cm�1 is
dominated by C (1650 cm�1) and G (1680 cm�1) carbonyl
vibrations, while L-1 has no significant bands in this region.[7d]

In the presence of ODN A, bleaching of the CG bands is
observed at early times (< 20 ps), before ET has occurred
(Figure 3a). This may be due to the intimate association of the
photoexcited complex with the nucleobases in the intercala-
tion site.[7c,10] (note that the ODN is not directly excited at
400 nm).

Subsequently the bleaches increase in magnitude and
a new transient feature emerges at 1700 cm�1, which has been
assigned as the G radical cation,[11] confirming the formation
of photo-oxidized G. On the nanosecond timescale this
feature decays and the bleaches recover (SI Figure S5),
consistent with the reverse ET recorded by ns-TrA for the
re-oxidation of reduced L-1.

Again, strongly contrasting behavior was observed when
L-1 was bound to ODN B (Figure 3b). Notably the structure
of the bleaches differs to those observed in ODN A, implying
that the environment of the complex is different. Also there is
no further bleaching of the GC bands over the 100 s of
picoseconds timescale as seen with ODN A and no evidence
for formation of the G radical cation (GC+). Interestingly the
spectrum in ODN B more closely resembles that found for the
complex bound to poly{dAdT}2 (SI Figures S6 and S7),
suggesting that the profile with ODN B is diagnostic of
binding primarily to an adenine–thymine rich site. Based on
these results, assignments may be proposed for the bleaches at
1621 cm�1 (A,nring), 1647 cm�1 (T,nring), 1672 cm�1 (T,nC4=O4),
and 1694 cm�1 (T,nC2=O2).[12]

Figure 2. Kinetics of L-[Ru(TAP)2(dppz)]2+ in ODN A (filled circles)
and ODN B (open triangles) from TrA spectra on a) ps and b) ns
timescales. Measured at 515 nm (except 1 + B in panel (b); 600 nm)
lexc = 400 nm.

Figure 3. TRIR spectra of L-[Ru(TAP)2(dppz)]2+ bound to
a) {CCGGATCCGG}2 and b) {CCGGTACCGG}2 at selected delays.
[Ru] = 400 mm, [ODN]= 500 mm in 50 mm phosphate-buffered D2O.
lexc = 400 nm (100 fs, 1 mJ). A baseline adjustment has been applied to
the spectra. ODN FTIRs are also shown.
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The above results demonstrate the sensitivity of the ET to
the reversal of a single base-pair step in the duplex. The
behavior when 1 is bound to ODN A is similar to that found
with G-rich ODNs such as {G5C5}2.

[7d] This suggests that the
complex is bound close to G,[13, 14] allowing efficient formation
of the reduced species and subsequent reverse ET. In support
of this hypothesis the TRIR signal obtained at 20 ps (i.e.
before ET occurs) shows strong bleach-bands associated with
G and C. While the complex intercalates at the C1C2:G9G10

step in the crystal structure,[5b] it is possible that the
C2G3:C8G9 site is also occupied in solution (Figure 4a,b).

By contrast to what is observed with ODN A, the TRIR
spectrum of L-1 bound to B is fully consistent with the
binding site being preferentially at the TA:TA step (Fig-
ure 4c). Steady-state UV/visible and luminescence experi-
ments are also consistent with this model, with slightly
stronger binding, and less emission quenching, when the
complex is bound to ODN B compared to ODN A (while the
structure of the native ODNs are similar, SI Figures S8–S10
and Table S1). Furthermore the yield of ET products is low,
showing that transfer of an electron to the metal complex
excited state only proceeds efficiently when it is inserted
beside a G–C basepair. This observation may be contrasted
with studies on tethered intercalators, where it was found that
the ET yield, though not necessarily the rate, was affected by
distance.[3b] This may suggest the involvement of different
mechanisms in our case, such as proton-coupled ET.[7b,c] Our
experiments are consistent with the reactive excited state
being a triplet ML(TAP)CT species, although a role for triplet
pp* state, as suggested by recent computational studies[4] (and
experiments on related systems)[15] cannot be excluded.

In summary, transient visible and IR spectroscopy
shows significant differences in guanine photo-oxidation
dynamics for L-[Ru(TAP)2(dppz)]2+ bound to either
{CCGGATCCGG}2 or {CCGGTACCGG}2. These results
confirm the prediction of a 5’-TA-3’ vs 5’-AT-3’ binding
preference for RuII dppz complexes, and show the sensitivity
of the electron transfer to a separation of one step between
donor and acceptor. This is further evidence of the impor-

tance of neighboring bases in the photo-oxidation of guanine
in DNA[14,16] Importantly we also report that the bleach bands
for the DNA obtained by TRIR allow the identification of the
binding site in solution. This observation should have more
general applicability to the study of DNA intercalators and
could offer an alternative to NMR studies, which are often
rather difficult to interpret.[17] It is hoped that the present
study and investigations on different ODN sequences will
shed further light on the structural factors governing binding
and photo-oxidation by intercalators, in both solution and
crystal states.

Keywords: DNA · electron transfer · photooxidation ·
ruthenium · time-resolved spectroscopy
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