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Introduction 

 Researchers in second language acquisition (SLA) face particular challenges when 

attempting to generalise study findings to a wider population. Study participants in SLA are 

often taken from convenience samples that are not truly random. For example, in a sample of 

students from local schools, the observations from individual students may be ‘clustered’ into 

classes, which in turn may be clustered by schools. It could be that performance within classes 

(and schools) may correlate in a way that is not observed between classes (and schools). The 

researcher would want to take this random variation within and between classes and schools into 

account to be sure that study findings generalise across the wider population. Additionally, 

second language (L2) learners constitute a heterogeneous group, in which participants within and 

across studies may differ in several non-trivial ways, such as language background, proficiency, 

length and type of language exposure, amongst many factors. It is often the case that researchers 

will average data across samples in an attempt to neutralise the effects of these many possible 

individual differences. While such averaging may lead to a ‘cleaner’ analysis, important 

individual differences between participants may be overlooked. 

In this paper, we provide an overview of a statistical analysis technique that applied 

linguists and L2 researchers might find useful in dealing with these and related problems, namely 

mixed-effects models. Hierarchical mixed-effects models were devised to deal with precisely the 

types of clusterings of observations that are often found in SLA settings (see e.g. Goldstein, 

1987; Raudenbush & Bryk, 2002). Mixed-effects models also easily allow for the inclusion of 

multiple participant-level and stimulus-level independent variables in a single analysis, 

potentially offering a fruitful way of examining how individual differences may affect L2 

acquisition. We begin by providing an overview of mixed-effects models and their potential 
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benefits for L2 researchers, before providing a practical example of how such analyses can be 

conducted using the statistical software package R (R Development Core Team, 2014). As a 

relatively new advancement in statistical analysis in the language sciences, standards of best 

practice in the use of mixed-effects models are still being developed. We will thus conclude by 

offering some advice on how researchers using mixed-effects models might best report such 

analyses. R code and an example dataset are provided as online supplemental materials. 

Mixed-effects models 

Consider a study investigating the processing of English agreement morphology in 

German and Chinese learners of L2 English. The researcher may construct a series of sentences 

with grammatical and ungrammatical agreement morphology, and then have participants read the 

sentences on a computer and press a button to measure the time taken to read each sentence. In 

this study, the researcher would want to examine how the independent variables of interest, L1 

background (German vs. Chinese) and sentence grammaticality (grammatical vs. 

ungrammatical), influence the dependent variable, the reaction times for the sentences. One 

hypothesis that could be tested would be that adequate acquisition of English agreement 

morphology should lead to longer reaction times for ungrammatical than grammatical sentences. 

In a statistical analysis of such data, the independent variables are modelled with fixed effects, 

while random variation in the sample is modelled using random effects. A model with both fixed 

and random effects is a mixed effects model. 

It could be that the researcher tested German learners from three different classes in the 

same language school, and Chinese learners from three classes as well.  As mentioned above, in 

this type of design the students can be thought of as being hierarchically ‘clustered’ into different 

classes (Goldstein, 1987). The statistical analysis of the reaction time data will obviously need to 
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take into account random variance across the students sampled, but the different classes may also 

add random variance that should also be taken into account. For example, assume that on 

average the Chinese learners had slower reaction times than the German learners. From such a 

finding one might conclude that L1 language background influences the processing of English 

agreement morphology. However, this conclusion might be premature if the clustering of 

students into classes is ignored. An assumption of parametric statistical tests is that individual 

observations are independent of each other. However, observations within classes are not truly 

independent, as the performance of students within the same class may correlate in a way that is 

not observed between students in different classes. For example, one class may have a 

particularly good teacher that makes performance in that specific class different to other classes. 

In the current example, it could be that only one particular class of Chinese learners performed 

slowly, while the other two classes behaved more similarly to the German learners. In this case, 

once the random variation between classes is taken into account, it would be premature to make 

any strong conclusions about the role of L1 background in the processing of English agreement 

morphology. Mixed-effects models with hierarchical or nested random effects were developed 

to account for this type of nested random variation (Goldstein, 1987, 1995; Raudenbush & Bryk, 

2002; Snijders & Bosker, 1999). 

Students in classes can also vary in a non-nested fashion. For example, students in the 

same class may come from different families, and students from the same family might be in 

different classes. In this case, while students are nested in both classes and families, classes are 

not nested under families and neither are families nested under classes. Rather, classes and 

families are crossed at the same level of sampling. Mixed-effects models can model both nested 
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and crossed sources of random variation using nested and crossed random effects (Raudenbush, 

1993). 

In this example, L1 background is tested between two groups of learners. Performance on 

the reaction time task may however be tested within participants. For example, the researcher 

may have adopted a repeated measures design in which all the participants rated a series of ten 

grammatical and ten ungrammatical sentences. The data in this type of repeated measures study 

may vary randomly in different ways. For example, individual participants may differ randomly 

in their overall reaction times. Some particularly alert participants may on average have 

relatively faster reaction times than other participants (irrespective of grammaticality), while 

other participants may on average have slower reaction times (a slow participant may have 

randomly had a particularly bad nights’ sleep for example). Additionally, participants may differ 

in their sensitivity to the grammaticality manipulation. Some participants may have much slower 

reaction times for ungrammatical than grammatical sentences, while other participants may show 

a similar trend but with a smaller difference. Some participants may have similar reaction times 

for grammatical and ungrammatical sentences, while some may even have slower reaction times 

for grammatical than ungrammatical sentences. Different types of random effects are required to 

model these different types of random variation. A random intercept takes into account how each 

participant’s average reaction times (irrespective of grammaticality) may differ, while random 

slopes are required to take into account any variability in sensitivity to the repeated measures 

grammaticality manipulation (see Barr, Levy, Scheepers & Tily, 2013 for further discussion). In 

an entirely between-groups design, only random intercepts are required to account for the 

random variation in the data. In our example, participants are either in the Chinese or the German 

group, so we cannot estimate a by-participant slope for ‘language group’ (a participant cannot be 
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repeatedly tested on both the values of ‘language group’ – they are in either the Chinese or 

German group). For within group variables, random slopes are required to account for the 

random variation in the repeated measures. It is imperative to stress the importance of random 

slopes in a repeated measures design, as not including random slopes in the presence of 

considerable random slope variance can lead to drastically increased Type I error rates (for 

further discussion, see Barr 2013; Barr et al. 2013; Schielzeth & Forstmeier, 2009). 

A standard analysis of this type of study may involve calculating an average reaction time 

for the grammatical and ungrammatical conditions for each participant and then submitting these 

averages to a 2x2 ANOVA with the factors L1 background (German vs. Chinese) and 

grammaticality (grammatical vs. ungrammatical). This analysis would test whether the results 

generalise from the L2 learners sampled to the wider learner population. As highlighted by Clark 

(1973) however, not only can we consider the participants in the study as being sampled from a 

wider population, the same too can also be argued for the linguistic materials. That is, the ten 

grammatical and ungrammatical sentences tested are a sample of the possible English sentences 

with these properties. This leads to the possibility that it could be, for example, that any results in 

the analysis averaged over participants are carried largely by a few of the experimental items 

rather than the item set as a whole. To overcome this ‘language-as-fixed-effect’ fallacy, Clark 

originally suggested that a single analysis (dubbed min F’) be performed that takes into account 

random variation arising from both the participants and the materials tested. In practice however, 

researchers have tended to conduct an analysis with the data averaged over participants (the F1 

analysis) and a second analysis averaged over the linguistic items (F2). A result is then 

considered reliable if it is significant by both participants and items. However, while the F1 

analysis takes into account random subject variance and the F2 analysis random item variance, 
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neither analysis provides a true solution to Clark’s problem, as they do not take both sources of 

variation into account at the same time. Mixed-effects models offer a solution to this problem. 

Just as classes and families can be considered crossed random effects, so too the participants and 

items in a language experiment are crossed at the same level of sampling. As such, mixed-effects 

models with crossed random effects for subjects and items offer a better solution to the 

‘language-as-fixed-effect’ fallacy than separate subjects and items analyses (Baayen, Davidson 

& Bates, 2008; Locker, Hoffman & Bovaird, 2007).
1
 

Traditional ANOVA requires a balanced dataset with no missing cells. One reason data is 

averaged over participants (and items) is to ensure this assumption is met. While averaging 

obviates problems with regards to missing data, it leads to the possibility that the averages for 

each subject and/or item are not based on the same amount of data (if individual data points are 

missing, the participant/item averages will not all be based on the same number of observations). 

Mixed-effects models do not require balanced datasets and can be conducted on the raw data 

with no prior averaging. It is this non-averaging of data that allows for the simultaneous 

estimation of crossed random effects. In the case of subjects and items, this also means that it is 

possible for the researcher to include any number of participant-level and item-level covariates in 

a single analysis, assuming there is sufficient data to model such effects, allowing for a level of 

analysis not possible in procedures that require prior averaging (Baayen et al. 2008). 

Parametric statistics should only be used if assumptions about the data are met. The 

reporting of whether assumptions are met is rare in SLA (Plonsky, 2011; Plonsky & Gass, 2011). 

Mixed-effects models with a continuous dependent variable make similar assumptions regarding 

                                                 
1
 See Barr et al. (2013) for in-depth discussion and comparison of how traditional ANOVA 

analyses and mixed-effects models perform, particularly with regards to protection from Type I 

error rates, based on a series of simulations. 
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normality as ANOVA. However, models for other distributions are available. Logit mixed-

effects models for example can be used to analyse data with a binomial dependent variable, such 

as a binary grammaticality judgement (see Jaeger, 2008 for review). Mixed-effects models do 

not make assumptions of homoscedasticity or sphericity and are robust against missing data, 

assuming that it is missing completely at random (Quene & van den Burgh, 2008). These 

properties make mixed-effects models not only suitable for the analysis of standard experimental 

paradigms that researchers may typically analyse with ANOVA, but also other types of 

unbalanced paradigms with missing data, such as corpus analyses and longitudinal studies (see 

e.g. Collins, 2006; Goldstein, 1987, 1995; Raudenbush, 2001; Singer, 1998). 

In the following section, we provide a practical example of how such analyses can be 

carried out in R (R Core Team, 2014). R is an open source, command-line driven statistical 

software package. It is beyond the scope of the current chapter to provide an in-depth 

introduction into R syntax. We direct the interested reader to Baayen (2008), Gries (2013) and 

Vasishth and Broe (2010) for accessible introductions, which also include chapters on mixed 

effects models. See also Cunnings (2012) and Cunnings and Finlayson (under review) for further 

worked examples, including longitudinal analysis. 

Sample data: Linck et al. (2009) immersion study 

In this section, we reanalyze data from a previously published study as a worked out 

demonstration of how to fit and interpret mixed effects models in R. In the original study, the 

authors examined the impact of the context of L2 learning on L1 and L2 lexical processing for 

adult learners (for a more complete description, see Linck, Kroll, & Sunderman, 2009). Two 

participant groups were included in the analysis: a group of immersed learners studying abroad, 

and a comparison group of classroom learners at their home university who had no immersion 
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experience. For this demonstration, we focus on the data from a translation recognition task. In 

this task, participants were presented with a sequence of word pairs – an L2 word followed 

immediately by an L1 word. Participants were instructed to indicate, with a button press, whether 

the two words were correct translations of one another. The materials included correct 

translations requiring a ‘yes’ button response (e.g., cara—face), and a variety of incorrect word 

pairs requiring a ‘no’ button response. The distractor (‘no’) trials included critical item word 

pairs that were related in form (e.g., cara—card) or meaning (e.g., cara—head), and control item 

word pairs that were unrelated to one another (e.g., cara—lake). To the extent that participants 

were affected by the form or semantic relationship of the critical distractor pair, the authors 

expected to see slower responses on those items compared to the unrelated control distractor 

items, i.e. they predicted a relatedness effect. The critical research question that we focus on here 

was: does this relatedness effect vary by group (immersed vs. classroom) and by distractor type 

(form vs. semantic)?
2
 

This research question reflects a 2 (group) x 2 (distractor condition) x 2 (relatedness) 

factorial design. For the traditional by-subjects (or F1) ANOVA approach, we would model the 

aggregated data using a mixed model ANOVA, with group being a between-subjects factor and 

both distractor condition and relatedness being within-subjects factors. The distinction between 

between- and within-subjects factors is important in appropriately partitioning the variance in 

this dataset. In particular, the within-subject repeated measures ANOVA accounts for the 

structure inherent to the dataset by explicitly modeling the relationships between data points 

(e.g., different condition means coming from the same participant). This is precisely what we 

                                                 
2
 The original analysis also included the factor grammatical class (i.e., whether the two words 

came from the same or different classes). However, here we exclude this factor to simplify the 

analyses and exposition, and thus the results will not exactly match those initially reported by 

Linck et al. (2009). 
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aim to do when fitting mixed effects models – appropriately account for the structure in the data 

by explicitly modeling these relationships. Consider the mixed effects analog to the F1 ANOVA. 

For the fixed effects, we would include the factorial combination of the three factors of group, 

distractor condition, and relatedness. The random components account for the fact that we have 

tested multiple participants and importantly have multiple observations per participant (i.e., 

participants have been measured repeatedly). For this, we include random intercepts to account 

for overall mean differences between subjects, and random slopes to allow sensitivity of the 

repeated measures factors (distractor condition, relatedness, and their interaction) to vary by 

subject.  

Setting up the dataset 

To fit a mixed effects model in R, the first step is to ensure that the dataset is setup in the 

“long format” with a separate row for each unique observation (i.e., trial, with multiple rows per 

subject) and columns indicating grouping factors. The example below demonstrates this format. 

The data from this example are available in the “rt_data.txt” supplementary file available on the 

journal’s website. Here, the head function in R is used to show the top six rows of the R 

dataframe rtdata, which we will subsequently analyse using mixed effects models. 

> head(rtdata) 

 

  Subject item     z.acc related  type  group    RT 

1     301   59 -1.599547    -0.5  -0.5   -0.5  1159 

2     301   63 -1.599547    -0.5  -0.5   -0.5  1449 

3     301   57 -1.599547    -0.5  -0.5   -0.5   482 

4     301   58 -1.599547    -0.5  -0.5   -0.5   558 

5     301   61 -1.599547    -0.5  -0.5   -0.5   817 

6     301   62 -1.599547    -0.5  -0.5   -0.5   544 

 

 In this example, the RT column contains the reaction time data from each individual trial. 

The column Subject identifies each participant, while item identifies the different linguistic 

stimuli tested. The related and type columns identify the experimental manipulation, the 
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group column denotes the participant’s group membership, and the z.acc column is a subject-

level covariate (standardized z-score of each participant’s overall percent correct on the 

translation recognition task). Note that subject-level covariates are merged with the trial-level 

data, leading to each subject’s z.acc value being repeated on all trials; this is how subject-level 

predictors should be coded for use in lmer. Once in this format, mixed effects models can be fit 

to the data. 

As with standard regression, it is important to consider the coding scheme used with 

categorical factors (e.g., treatment coding, contrast coding), as they impact the interpretation of 

the model coefficients (see Gelman & Hill, 2007; Pedhazur 1997; Raudenbush & Bryk, 2002).
3
 

By default, R applies treatment coding to all character vectors and factors. Using treatment 

coding, a reference level is defined for the categorical factor and all other levels are compared to 

that reference level. For the present analyses however, the three categorical factors were recoded 

to use contrast coding in order to more closely match the inferences drawn from ANOVA. This 

was done by converting each predictor variable into a numeric variable with the values of -0.5 

and 0.5 (e.g., for related, unrelated = -0.5, related = 0.5; see sample code in Online 

Supplemental Materials). The result can be seen above in the output from the head function. 

Contrast coding is recommended with two-level factors, as it can prevent some convergence 

issues by reducing multicollinearity among the predictors.  

Mixed effects models in R using ‘lme4’ 

The lme4 package (Bates, Maechler, Bolker, & Walker, 2013) in R is used to fit mixed 

effects models by calling the lmer function. We explore the syntax and results of mixed effects 

                                                 
3
 For a comparison of various coding schemes, see 

http://www.ats.ucla.edu/stat/r/library/contrast_coding.htm 

http://www.ats.ucla.edu/stat/r/library/contrast_coding.htm
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models fit with the lmer function by building up from simple to more complex statistical 

models fit to the example dataset.  

Model 1: Factorial effects varying by subject 

The primary research question in our working example is whether the effects of lexical 

and semantic relatedness differ between the two groups of learners (classroom vs. immersed). 

The target inferences are captured by the factorial combination of the within-subjects factors of 

related and type and the between-subjects factor of group. Because different individuals 

might respond differently to the within-subjects factors, we want to allow the two repeated 

measures main effects and their interaction effect to vary randomly by subjects. This is achieved 

by including by-subject random slopes for these effects. Note that this specification follows 

precisely from the traditional F1 repeated measures ANOVA, except that we can fit the model to 

the raw observed data without need for aggregation within conditions. This factorial model 

would be fit to the rtdata dataframe with the following code: 

 
> m.factors.Rsub <- lmer(data = rtdata, 

formula = RT ~ related*type*group + (1+related*type|Subject)) 

 

R is an object-oriented language. That is, when fitting a model, rather than calling a process and 

waiting for the results to print to the screen, you instead create a data object where the output 

from the analysis is stored for later examination. The left-pointing arrow <- is an assignment 

operator and instructs R to do whatever is on the right side of the arrow and save it in the object 

on the left. In this case, we create a mixed effects model object called m.factors.Rsub using 

the lmer function (note the object name is arbitrary). The first argument of the lmer syntax, 
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data = rtdata, specifies the dataframe being analysed.
4
 Then, the formula for the model is 

specified with the dependent variable RT on the left side of the tilde (~) and the fixed and 

random effects on the right. We first specify the factorial fixed effects with the code related 

* type * group, while (1+related*type|Subject) denotes the by-subject random 

effects. Specifically, the code specifies a random intercept for subjects and by-subject random 

slopes for the two repeated measures main effects and their interaction. Note that the code 

(1|Subject) could be used to specify random intercepts only (but no slopes) for each 

subject. Here however, as the main effects and interaction for related and type are repeated 

measures manipulations, random slopes for these effects are included.
5
 However, as group is a 

between-subjects factor, a by-subject random slope for group cannot be included in the model 

(i.e., subjects cannot vary on the effect of group, because they are either classroom or immersed 

learners). Note also, that we cannot include random slope interactions when a repeated measure 

interacts with a between subjects variable. Although a random slope for the related by type 

repeated measures interaction is included, we do not include a random slope for the related 

by group interaction, or any of the other possible interactions that involve the between groups 

manipulation (see Barr, 2013). Once the model is fit, we can display the results using the 

summary command on the resulting model object as below. 

 
> summary(m.factors.Rsub) 

 

Linear mixed model fit by REML ['lmerMod'] 

                                                 
4
 By explicitly specifying each argument (e.g., data = rtdata), the order of arguments in 

the call to lmer is flexible; that is, we could rearrange them to first specify the formula followed 

by the data and the model be the same. 
5
 Note that the asterisks (*) in this formula are a shorthand for the factorial combination of mains 

effects and interactions. Specific interactions can be specified with a colon (:). For example, the 

factorial combination of random slopes here could also be specified with the code related + 

type + related:type. 
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Formula: RT ~ related * type * group + (1 + related * type | Subject) 

   Data: rtdata 

 

REML criterion at convergence: 36741.1 

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-2.4030 -0.6418 -0.2238  0.4117  4.4114  

 

Random effects: 

 Groups   Name         Variance Std.Dev. Corr              

 Subject  (Intercept)   41690.3 204.18                     

          related         754.0  27.46   -0.73             

          type            760.7  27.58   -0.80  0.99       

          related:type   2687.2  51.84   -0.06  0.73  0.65 

 Residual              112885.5 335.98                     

Number of obs: 2534, groups:  Subject, 45 

 

Fixed effects: 

                   Estimate Std. Error t value 

(Intercept)         937.839     31.365  29.901 

related              51.644     14.112   3.660 

type                  1.178     14.125   0.083 

group               -31.411     62.730  -0.501 

related:type         52.149     28.104   1.856 

related:group        18.906     28.224   0.670 

type:group          -21.843     28.249  -0.773 

related:type:group  108.375     56.209   1.928 

 

Correlation of Fixed Effects: 

            (Intr) relatd type   group  rltd:t rltd:g typ:gr 

related     -0.193                                           

type        -0.219  0.124                                    

group       -0.111  0.023  0.028                             

related:typ -0.006  0.097  0.115  0.004                      

related:grp  0.023 -0.100  0.000 -0.193  0.005               

type:group   0.028  0.000 -0.100 -0.219 -0.005  0.124        

rltd:typ:gr  0.004  0.005 -0.005 -0.006 -0.100  0.097  0.115 

 

The resulting output contains three main sections: the model summary, the random 

effects components, and the fixed effects (and associated correlation matrix). The first few lines 

contain the model summary, including a statement of the type of model (here fit with restricted 

maximum likelihood, or REML) and the model formula. 

The second output section provides information on the random components and the 

number of observations, including the number of unique levels of the grouping factor(s) – here, 

Subjects. In the table of random effects, any varying intercept(s) and slope(s) are grouped by the 
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grouping factor over which they vary. For each random component, a variance and standard 

deviation are provided. When multiple correlated random effects are included in the model, their 

correlation matrix appears on the right side of this section. The final line of the table provides the 

residual variance.  

The third output section provides the parameter estimates for the fixed effects, along with 

their standard errors and t-values. Note that no p-values are provided, as there is still debate 

regarding how the appropriate degrees of freedom for such t-statistics with linear mixed effects 

models should be calculated (see Baayen 2008: 247-248; Baayen et al. 2008: 396-399). As such, 

there are different ways to test significance in a mixed effects model. One rule of thumb is to 

take t values above 2.0 as being statistically significant (Gelman & Hill, 2007). Another way is 

to estimate p values from the t distribution as below (from Baayen 2008: 248). 

 
> 2 * (1 – pt(abs(X), Y – Z)) 

 

Here, X is the t value, Y the number of observations and Z the number of fixed effects 

parameters. One can also perform a model comparison between a model with the fixed effect of 

interest and a reduced model that excludes this fixed effect (for details on the model comparison 

approach, see Barr et al., 2013: 276-277; Gelman & Hill, 2007). If excluding the fixed effect 

leads to a significant decrease in goodness of fit of the model (i.e., if the model comparison χ
2
 

test is significant), this suggests that the fixed effect is significantly contributing to the model. 

For our purposes, we rely on the ‘|t| ≥ 2.0’ rule of thumb for evaluating significance. Looking at 

our example, we see that the main effect of relatedness is significant, and the 3-way interaction is 

nearly significant (t = 1.93). Indeed, using the formula above, 2 * (1 – pt(abs(1.928), 

2534 - 8)), reveals that the 3-way interaction is marginally significant (p = .054). With 

regard to our research question, this suggests that participants were significantly slowed by the 
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relatedness of the critical distractor items, and that the two groups of participants differed 

(marginally) in the patterns of interference across the two distractor conditions.  

Extension 1: Allowing effects to vary by Subjects and Items 

Depending on the nature of the dataset at hand, there may be other factors that still need 

to be controlled for. In the example, because the dataset was produced by sampling a subset of 

items from a population of possible word pairs, the standard approach in psycholinguistics would 

be to also model item as a random effect. This would typically involve a separate by-items (F2) 

analysis. As mentioned above, one advantage of mixed effects models is that it is possible to 

simultaneously include crossed random effects of both subjects and items in the same analysis. 

In our working example, we can take the previous lmer call and simply add an additional 

parenthetical term (group|item) to specify effects varying by item: 

 
> m.factors.Rsubit <- lmer(data = rtdata,  

formula = RT ~ related*type*group + (1+related*type|Subject) + 

(group|item)) 

 

 

Note that even though we have not explicitly specified a by-item random intercept, the model 

includes a by-item random intercept for items (R automatically includes this even without 

specifying it with “1 + ”) and also a by-item random slope for group. Although the factor 

group was manipulated between participants, it is manipulated within items because the same 

items were presented to both groups of participants. As such, a random slope allows the group 

effect to vary by item, whereas related and type were both manipulated between items 

and therefore cannot vary by item and thus do not require by-item random slopes. The output 

below (edited for space) provides a summary of this model. 

 

> summary(m.factors.Rsubit) 
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Linear mixed model fit by REML ['lmerMod'] 

Formula: RT ~ related * type * group + (1 + related * type | Subject) + 

(group | item) 

   Data: rtdata 

 

Random effects: 

 Groups   Name         Variance Std.Dev. Corr              

 item     (Intercept)   11615.9 107.777                    

          group            18.2   4.266  1.00              

 Subject  (Intercept)   41994.4 204.925                    

          related         777.5  27.884  -0.92             

          type            832.3  28.850  -0.93  1.00       

          related:type   2019.0  44.933  -0.20  0.57  0.54 

 Residual              101676.0 318.867                    

Number of obs: 2534, groups:  item, 375; Subject, 45 

 

Fixed effects: 

                   Estimate Std. Error t value 

(Intercept)         940.182     31.911  29.462 

related              53.856     17.624   3.056 

type                  3.676     17.667   0.208 

group               -31.040     62.829  -0.494 

related:type         57.309     34.905   1.642 

related:group        17.942     27.100   0.662 

type:group          -21.085     27.205  -0.775 

related:type:group  115.491     53.315   2.166 

 

 

Here, the first section of the output shows our expanded model formula that now includes 

random components varying by both subject and item. The second section now provides the 

variance and SD for the random effects varying by both subject and item. Note that separate 

correlation matrices are provided for the random subject effects and random item effects. Finally, 

the fixed effects table shows us that the related effect is still significant and positive; 

moreover, the 3-way interaction is now significant. 

Extension 2: Controlling for potential confounds (covariates) 

Another benefit of employing mixed effects models is that it is relatively easy to control 

for potential confounds by simply adding predictors to the model.
6
 In our example, one potential 

                                                 
6
 Covariates can also be incorporated into ANOVAs. However, because no prior aggregation is 

required with mixed effects models, continuous predictors can simultaneously be incorporated 

into any level of analysis (i.e. subjects and items), which is difficult in analyses requiring prior 

aggregation (Baayen et al., 2008). 
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concern is that any group differences may not be due to the group factor (i.e., immersion vs. 

classroom-only learning context), but instead may simply reflect differences in L2 proficiency. 

To address this concern, we can include a measure of L2 proficiency as a covariate in the model, 

so that any effect of group then reflects differences due to group membership above and beyond 

any individual differences in L2 proficiency. 

In the sample dataset, to control for L2 proficiency, we include an additional predictor - 

overall accuracy in the translation recognition task (z.acc). Proficiency was a between-subjects 

variable but a repeated measures variable within items. Therefore we allow z.acc to vary by 

item but not Subject. To incorporate this covariate into our previous model, we add it to the 

right-hand side of the formula equation in two places: outside of the parentheses as a main effect 

that does not interact with the other variables, and within the parentheses to indicate it varies by 

item. We then examine the results with a call to summary. 

 
> m.factors.covariates <- lmer(data = rtdata,  

formula = RT ~ z.acc + related*type*group + (related*type|Subject) + 

(z.acc + group|item)) 

 

> summary(m.factors.covariates) 

 

Linear mixed model fit by REML ['lmerMod'] 

Formula: RT ~ z.acc + related * type * group + (related * type | Subject) +      

(z.acc + group | item) 

   Data: rtdata 

 

Random effects: 

 Groups   Name         Variance Std.Dev. Corr              

 item     (Intercept)  11948.5  109.31                     

          z.acc         6583.5   81.14   -0.87             

          group         2683.9   51.81    0.51 -0.86       

 Subject  (Intercept)  29511.3  171.79                     

          related        523.7   22.88   -0.58             

          type           833.9   28.88   -0.76  0.97       

          related:type  3214.5   56.70    0.04  0.79  0.62 

 Residual              95602.1  309.20                     

Number of obs: 2534, groups:  item, 375; Subject, 45 

 

Fixed effects: 

                   Estimate Std. Error t value 

(Intercept)         938.865     27.154   34.58 
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z.acc              -115.835     27.612   -4.20 

related              60.754     16.376    3.71 

type                  6.225     16.621    0.37 

group                 9.379     54.067    0.17 

related:type         58.287     33.193    1.76 

related:group        21.011     26.515    0.79 

type:group          -20.645     27.054   -0.76 

related:type:group  108.317     54.039    2.00 

 

 

Examining the results, we see in the second section of the output that z.acc has been 

added to the random effects structure for item. In the third section, we now see a parameter 

estimate for the covariate with an absolute t-value greater than 2 indicating that variation in RTs 

were significantly accounted for by L2 proficiency. Note, however, that both the relatedness 

effect and the three-way interaction still remained significant, suggesting that group differences 

could not solely be accounted for by L2 proficiency.  

Extension 3: Modeling binary outcomes 

So far, we have focused on fitting linear mixed effects models to data with a continuous 

dependent variable. However, in L2 research, it is not uncommon to have binary outcomes (e.g., 

correct/incorrect, grammatical/ungrammatical). We can analyze such binary outcomes by using 

the mixed effects implementation of logistic regression, or mixed logit models. Recent work 

indicates that mixed effects modeling of binary outcomes is superior to simply computing the 

average scores by subjects (e.g., proportion correct) for each condition and then analyzing those 

results with ANOVA (see Jaeger, 2008). That approach is problematic, in part, because the 

outcome is not on a continuous scale, but rather is bounded at zero and one, violating one of the 

assumptions of ANOVA. This issue does not affect logistic mixed effects models, although 

problems can arise when there is no variability in responses for a cell within the research design.  

The supplementary file “acc_data.txt” contains data with a binary dependent variable. 

This file contains accuracy data (rather than reaction times) under the variable acc (coded as 1 = 
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correct and 0 = error). With this coding scheme, we are now modeling the probability of making 

a correct response, without need of prior aggregation. The analysis of binary dependent variables 

is similar to the method we used before, except that we now use the function glmer 

(generalized linear mixed model) and the dependent variable is specified as a binary outcome 

(rather than continuous) with the family = binomial argument. 

 
> m.acc.Rsubj.items <- glmer(data = accdata,  

formula = acc ~ related*type*group + (related*type|Subject) + 

(group|item), family = binomial) 

 

The glmer call above produced a message warning of failed convergence (“Model 

failed to converge with max|grad| = 0.226126 (tol = 0.001, component 18)” and 

“Model failed to converge: degenerate Hessian with 4 negative eigenvalues”), 

indicating that the model did not produce stable results. To remedy this, we chose a different 

optimizing function using the control argument and refit the model (see Recommendations 

section below for discussion of this and other steps to follow when encountering convergence 

issues): 

 
> m.acc.Rsubj.items_opt2 <- glmer(data = accdata,  

formula = acc ~ related*type*group + (related*type|Subject) + 

(group|item),  

family = binomial, 

control = glmerControl(optimizer = "bobyqa")) 

 

 

This successfully produced a stable model. When we examine the output using the 

summary function (see below), the first difference relative to the linear models we fit before can 

be seen in the first section of the output, where it identifies the model as a generalized linear 

mixed model - a useful confirmation that the binary data were treated as binary outcomes, rather 

than zeroes and ones on a continuous scale. As before, in the second output section we can 
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obtain variance and correlation values for the random components. In the third section of the 

output, however, the output has changed slightly - in addition to the fixed effect parameter 

estimates and SEs, we now have z-values in place of t-values, along with their associated p-

values. With logistic mixed effects models, the underlying distribution of the parameter estimates 

is assumed to be normal and therefore probability values can be computed from the normal 

distribution. In contrast, parameters in linear mixed effects models are assumed to follow the t-

distribution, and it is unclear how to best determine the degrees of freedom for computing their 

probability value. The interpretation of the parameter values also changes for logistic regression. 

In brief, the scale of the model coefficients is now the log-odds of a correct response rather than 

the scale of the dependent variable (see Jaeger, 2008). Note that this is true of any logistic 

regression analysis, whether involving mixed effects or not (for a more detailed discussion, see 

Pedhazur, 1997).  

 
> summary(m.acc.Rsubj.items_opt2) 

 

Generalized linear mixed model fit by maximum likelihood (Laplace 

Approximation) ['glmerMod'] 

 Family: binomial  ( logit ) 

Formula: acc ~ related * type * group + (related * type | Subject) + (group |      

item) 

   Data: accdata 

Control: glmerControl(optimizer = "bobyqa") 

 

Random effects: 

 Groups  Name         Variance Std.Dev. Corr              

 item    (Intercept)  5.7523   2.3984                     

         group        0.1868   0.4322   -1.00             

 Subject (Intercept)  0.8481   0.9209                     

         related      1.2933   1.1372   -0.80             

         type         0.1237   0.3517   -0.77  0.90       

         related:type 0.5165   0.7187    0.53 -0.74 -0.37 

Number of obs: 2840, groups:  item, 376; Subject, 45 

 

Fixed effects: 

                    Estimate Std. Error z value Pr(>|z|)     

(Intercept)         5.651737   0.602725   9.377  < 2e-16 *** 

related            -2.255631   0.614562  -3.670 0.000242 *** 

type               -1.132694   0.585548  -1.934 0.053062 .   

group              -0.883673   0.819298  -1.079 0.280778     
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related:type       -0.180539   1.149877  -0.157 0.875239     

related:group      -0.003816   0.691384  -0.006 0.995596     

type:group          0.074080   0.584255   0.127 0.899103     

related:type:group -0.815222   1.163087  -0.701 0.483358     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Recommendations for reporting results 

The use of mixed effects models in the language sciences is a relatively recent analytical 

advancement, and unfortunately the standards in best practice of conducting and reporting mixed 

effects analyses are still maturing (though see Barr et al. 2013). We note the following 

recommendations that are based on ongoing discussions among scholars as well as our own 

experience working with mixed effects models and communicating their results. In particular, we 

emphasise the importance of explicitly stating the structure of your statistical model when it is 

reported. 

It is particularly important to describe the random effects structure of your analysis. 

Firstly, explain whether your model included crossed or nested random effects, which random 

intercepts and random slopes were included in the analysis, and the grouping factor(s) over 

which the intercepts and slopes varied. Deciding on what random slopes to include in a mixed 

effects model is a matter of contention. Barr et al. (2013) argue that in cases of confirmatory 

hypothesis testing, when a researcher has designed a study to test a specific set of hypotheses, the 

structure of the random effects should reflect the hypotheses being tested. In such cases, Barr et 

al. recommend that researchers should adopt the ‘maximal’ random effects structure possible 

based on the design of the study. That is, random slopes should be included for any repeated 

measures fixed effect that is of prime theoretical interest. In the final reaction time example 

above, we included random intercepts for subjects and items, by-subject random slopes for 

related, type and their interaction, and by-item random slopes for group and z.acc.  For 
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exploratory analyses, for example of corpus data, which may include a multitude of fixed effects, 

it may not be practical to include random slopes for all of the fixed effects being tested. In such 

cases, a possibility might be to only include random slopes if they provide a significantly 

improved model fit to the data compared to a model without them (see Baayen et al., 2008; 

Baayen 2008). For confirmatory hypothesis testing (i.e. the vast majority of experimental 

research conducted in the L2 literature), we suggest researchers adopt ‘maximal’ models (Barr et 

al., 2013). For exploratory research, it remains imperative to justify the random effects structure 

that was ultimately adopted. Regardless of the approach, a clear and explicit description of the 

random effects structure should be provided. 

Researchers should describe the software package used to conduct the analysis, including 

version number (e.g., lme4 version __ in R version __), as the underlying computations can 

vary between different analysis packages or even versions of the same package. The version 

numbers for R and each package can be obtained by using the sessionInfo function, as 

demonstrated in the sample code in the Supplemental Materials. The estimation method should 

be identified (e.g., maximum likelihood, restricted maximum likelihood), and it is also important 

to describe your dependent variable (e.g., continuous, binary outcome) and explain whether any 

transformations (e.g., log-transformation, z scores) were applied before analysis. For the fixed 

effects components, describe how you decided on what fixed effects to include – whether based 

on a priori theoretical motivations or empirically determined via exploratory analysis. For fixed 

effects that are categorical factors, explain the coding scheme that was used. For continuous 

fixed effects, describe any adjustments or transformations that were applied before analysis. 

When reporting the results of the fixed effects, include model estimates, standard errors and the 
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test statistic (e.g. t, z) for each fixed effect parameter. Explain how you assessed significance 

(e.g., t above 2). 

Occasionally a mixed effects model can fail to converge as we saw with the accuracy 

analysis above. When this happens in R, the lmer function will display an error such as 

singular convergence, false convergence or iteration limit reached 

without convergence. This usually occurs when an overly complex model is fit to a 

dataset that is too sparse to accurately estimate one or more of the parameters. This can often be 

the case in complex designs with multiple random slope parameters. Although the summary 

command will provide a summary of the statistical model in such cases, the model estimates 

should not be interpreted or reported. Instead, a first step could be to see if the model will fit 

using other optimizing functions. For example, in the accuracy analysis above, we specified the 

“bobyqa” optimizer, which produced a stable model (see Supplemental Materials for details). If 

this does not resolve the issue, the model should then be simplified until convergence is 

achieved. Unfortunately there is currently no consensus on how this issue should be tackled 

(though see Barr et al. 2013: 275-276 for some discussion). When working with factorial 

combinations of factors (as in our example analysis), alternative approaches include (a) 

removing the correlations among random effects, (b) removing the random effect that is 

contributing the least amount of variance, or (c) removing the random slope for the highest-order 

interaction term, as the lower-level factors may already capture most relevant variability between 

the levels of the grouping factor. Whichever option is chosen, we again emphasise the 

importance of explicitness in reporting what criteria were used to overcome this issue. 
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As a concrete example, if we were to report the reaction time example above involving a 

covariate (model m.factors.covariates, see Extension 2), we would state the following. 

An example format for reporting mixed effects modelling results is provided below in Table 1. 

 

“Analyses were conducted using mixed effects models with crossed random effects for subjects 

and items using the lme4 package (version 1.1-7) of R (version 3.1.1). The analysis included 

contrast coded fixed effects for relatedness (-.5 = unrelated, .5 = related), distractor type (-.5 = 

lexical, .5 = semantic) and group (-.5 = classroom, .5 = immersed) in a 2x2x2 factorial design. 

Participant proficiency was assessed by inclusion of a continuous fixed effect predictor of overall 

accuracy in the translation recognition task (standardized as z-scores). Random effects were fit 

using a ‘maximal’ random effects structure (Barr et al. 2013). This included random intercepts 

for subjects and items, by-subject random slopes for relatedness, distractor type, and their 

interaction, and by-item random slopes for group and overall task accuracy. Models were fit 

using a maximum likelihood technique. A fixed effect was considered significant if the absolute 

value of the t statistic was greater than or equal to 2.0 (Gelman & Hill, 2007). Results indicated 

that the covariate of overall task accuracy was significantly related to performance (estimate = -

116, SD = 27, t = -4.20). There was also a significant main effect of relatedness (estimate = 61, 

SD = 16, t = 3.71), which was qualified by a significant relatedness x distractor type x group 

interaction (estimate = 108, SD = 54, t = 2.00). No other main effects or interactions were 

significant (all other ts < 1.76). The results of the final best-fitting model are reported in Table 

1.” 

 

Table 1. Example format for presenting results from a mixed effects model. 

Parameters  Fixed effects  Random effects 

      By Subject  By Items 
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 Estimate SE t   SD  SD 

Intercept 938.9 27.2 34.58 *  171.8  109.3 

z.acc -115.8 27.6 -4.20 *  --  81.1 

Related 60.7 16.4 3.71 *  22.9  -- 

Type 6.2 16.6 0.37   28.9  -- 

Group 9.4 54.1 0.17   --  51.8 

Related x Type 58.3 33.2 1.76   56.7  -- 

Related x Group 21.0 26.5 0.79   --  -- 

Type x Group -20.6 27.1 -0.76   --  -- 

Related x Type x Group 108.3 54.0 2.00 *  --  -- 

 

Note. z.acc = overall accuracy on the translation recognition task, standardized as z-scores. All 

factors were coded using contrast coding, as follows: Related (-.5 = unrelated, .5 = related), Type 

(-.5 = lexical, .5 = semantic), Group (-.5 = classroom, .5 = immersed). Model formula: RT ~ 

z.acc + related * type * group + (related * type | Subject) + (z.acc + group | item). 

* |t| > 2.0, indicating a significant effect (Gelman & Hill, 2007) 

 

If you employed a model comparison procedure to determine the best-fitting model (see 

Barr et al., 2013; Gelman & Hill, 2007), we recommend you consider reporting all preliminary 

models as supporting materials (e.g., in an appendix or online supplemental material). If taking 

this approach, be sure to include the model comparison statistics with associated p values. If the 

model comparisons are theoretically relevant or provide useful information for other scholars, 

you should consider including those relevant preliminary models in the main manuscript results 

table (for an example, see Hoffman & Rovine, 2007, Tables 3 and 4). 

Finally, it may benefit the readers to note any model checking steps you took to examine 

the goodness of the fit of the model.  These could include examination of residual plots (using 

the resid function in R) or the distributions of the random effects. R syntax for some example 

diagnostic checks is provided in the Supplemental Materials. 

Conclusions 

L2 researchers face a number of analytical challenges when attempting to generalise 

study findings from a sample of language learners to the wider population. Despite the varied 
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nature of SLA research, surveys of statistical analysis techniques used in L2 acquisition have 

noted a near ubiquitous use of ANOVA and t-test (Lazaraton, 2000; Norris & Ortega, 2000; 

Plonsky, 2011; Plonsky & Gass, 2011). Admittedly, some initial time investment on the part of 

the analyst is required to learn to fit and interpret mixed effects models appropriately, but this is 

true for any analytic technique. Nonetheless, with their flexibility and their ability to relax 

assumptions of traditional models, mixed effects models provide a single framework for a range 

of analyses while simultaneously providing advantages over more traditional methods (e.g., 

ANOVA). Mixed effects models constitute a powerful additional statistical tool that can aid 

researchers in SLA and applied linguistics in the analysis of a wide variety of data types from 

different experimental and non-experimental paradigms.  
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