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Regional climate impacts of a possible future grand
solar minimum
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Any reduction in global mean near-surface temperature due to a future decline in solar

activity is likely to be a small fraction of projected anthropogenic warming. However,

variability in ultraviolet solar irradiance is linked to modulation of the Arctic and North

Atlantic Oscillations, suggesting the potential for larger regional surface climate effects. Here,

we explore possible impacts through two experiments designed to bracket uncertainty in

ultraviolet irradiance in a scenario in which future solar activity decreases to Maunder

Minimum-like conditions by 2050. Both experiments show regional structure in the

wintertime response, resembling the North Atlantic Oscillation, with enhanced relative

cooling over northern Eurasia and the eastern United States. For a high-end decline in solar

ultraviolet irradiance, the impact on winter northern European surface temperatures over the

late twenty-first century could be a significant fraction of the difference in climate change

between plausible AR5 scenarios of greenhouse gas concentrations.
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T
he past few decades have been characterized by a period
of relatively high solar activity. However, the recent
prolonged solar minimum and subsequent weak solar

cycle 24 have led to suggestions that the grand solar maximum
may be at an end1. Using past variations of solar activity
measured by cosmogenic isotope abundance changes, analogue
forecasts for possible future solar output have been calculated. An
8% chance of a return to Maunder Minimum-like conditions
within the next 40 years was estimated in 2010 (ref. 2). The
decline in solar activity has continued, to the time of writing, and
is faster than any other such decline in the 9,300 years covered by
the cosmogenic isotope data1. If this recent rate of decline is
added to the analysis, the 8% probability estimate is now raised to
between 15 and 20%.

A number of studies have indicated that the decreases in global
mean temperature associated with a future decline in solar
activity are likely to be relatively small3–7. However, variability in
ultraviolet solar irradiance has been linked to changes in surface
pressure that resemble the Arctic and North Atlantic Oscillations
(AO/NAO)8–10 and studies of both the 11-year solar cycle11,12

and centennial timescales13 suggest the potential for larger
regional effects. The mechanism for these changes is via a
stratospheric pathway, a so-called ‘top-down’ mechanism, and
involves altered heating of the stratosphere by solar ultraviolet
irradiance. Anomalous temperatures in the region of the tropical
stratopause give rise to changes in the subtropical stratospheric
winds, in geostrophic balance with the modified equator-to-pole
temperature gradient. This signal then propagates poleward
and downward and is amplified by altered planetary wave
activity8 before being communicated throughout the depth of the
troposphere in the Pacific and Atlantic basins14. This mechanism
can also drive changes in tropical lower stratosphere
temperatures, which can additionally affect the troposphere15.

There is currently uncertainty regarding the ultraviolet
variability that accompanies changes in total solar irradiance
(TSI)16. Recent satellite measurements from the Spectral
Irradiance Monitor (SIM) on the Solar Radiation and Climate
Experiment satellite17 show that the variability in ultraviolet over
part of the declining phase of solar cycle 23 might be considerably
larger than indicated by previous estimates17,18.

Here, our experiments aim to explore the impact of this
uncertainty in ultraviolet in the future Maunder Minimum
scenario2, using both Naval Research Laboratory Spectral Solar
Irradiance model output19 and the SIM data as a basis to estimate
lower (EXPT-A) and upper (EXPT-B) bounds for the change in
ultraviolet.

Regional structure is found in the wintertime response in both
experiments, with enhanced relative cooling over northern
Eurasia and the eastern United States. For EXPT-B, the change
in winter northern European surface temperatures over the late
twenty-first century is found to be of similar magnitude to the
difference between RCP6.0 and RCP4.5 projections for this
region. We conclude that solar forcing may be an important
source of uncertainty in regional climate projections.

Results
Solar forcing scenarios. The future solar forcing scenarios are
imposed on an ocean–atmosphere climate model following the
representative concentration pathway (RCP) 8.5 for the period
2005 to 2100. Information on the model, experiment ensemble
sizes and details of the construction of the solar forcing scenarios
can be found in Methods. The scenarios are illustrated in Fig. 1,
which shows the time variation in TSI and ultraviolet irradiance
(defined here to be in the range 200–320 nm) for the control
(hereafter CTRL-8.5) and experiments with respect to the mean

of CTRL-8.5. The mean difference relative to the repeated solar
cycle in CTRL-8.5 is a reduction in TSI of 1.74 W m� 2 (0.127%)
for EXPT-A and 1.76 W m� 2 (0.129%) for EXPT-B. For the
ultraviolet component, the reduction is 0.25 W m� 2 (0.91%) for
EXPT-A and 1.76 W m� 2 (6.43%) for EXPT-B.

Global mean temperature response. As a result of the decrease
in solar irradiance, both experiments show widespread cooling
with respect to CTRL-8.5 (Fig. 2). The relative annual global
mean near-surface temperature change for the period 2050–2099
is a cooling of 0.13 and 0.12 �C for EXPT-A and EXPT-B,
respectively. This offsets or delays the global warming trend by
B2 years and is small compared with the modelled global
warming. This is consistent with other recently published
results3–7, which indicate that any change in global mean
temperature due to a future prolonged solar minimum would
do little to substantially offset or delay the warming due to
projected increases in long-lived greenhouse gases. A comparison
of forcings and responses can be found in ref. 20. In some of these
studies, potential for regional variation is indicated4,6,7, and we
now explore this in more detail in our experiments.

Northern hemisphere winter response. In our experiments,
while cooling is evident year round, the largest and most coherent
anomalies are in the northern hemisphere in boreal winter and
spring. Much of this structure can be explained by a relative
change in atmospheric circulation. During December to February,
a negative AO/NAO-like mean sea-level pressure pattern is seen
in both experiments (Fig. 3a,e). Over the North Pacific, the
deepened Aleutian low is consistent with the observed pressure
response to changes in solar activity10,21,22. In the Atlantic sector,
EXPT-B has a stronger and more significant response, showing a
weakening in the NAO (defined for the model as the difference in
sea-level pressure between gridpoints nearest to the Azores and
southwest Iceland) of 1.8 hPa, which is a notable proportion of
the interannual standard deviation of 7–8 hPa. Again, the NAO
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Figure 1 | Future solar forcing scenarios. Variations in solar forcing

for Total Solar Irradiance (W m� 2) and ultraviolet irradiance in the

200–320 nm spectral band (W m� 2) relative to the mean of the repeated

cycle in CTRL-8.5 for (a) CTRL-8.5 (black), (b) EXPT-A (blue) and

(c) EXPT-B (red). The value of this mean is 1,366.2 W m� 2 for TSI

and 27.4 W m� 2 for the ultraviolet band.
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pattern is consistent with the observed response associated with
the 11-year cycle over the recent re-analysis period11, which has
been found to be significant and maximizes at a lag of B3–4
years for the period 1870–2010 (ref. 10). Relative to the historical
control period (1971–2000), CTRL-8.5 has a negative shift in
the NAO with a significant decrease of 3.2 hPa for the
period 2050–2099 (not shown). This is broadly consistent with
other modelling studies where the models have well resolved
stratospheres23,24.

There are marked regional differences in the wintertime
pattern of cooling in the northern hemisphere with enhanced
cooling over northern Eurasia and in the eastern U.S. in
both experiments (Fig. 3b,f). Average temperature changes for
northern hemisphere geographic regions25 (Table 1) show overall
cooling, but with significant and larger or comparable cooling for
EXPT-B in the above regions consistent with the stronger
negative NAO/AO in this experiment. Cooling to the east of
Greenland in EXPT-B, and to a lesser extent in EXPT-A, is
associated with a relative increase in the southward transport of
sea ice by the East Greenland current (not shown); however, the
observed relationship between the NAO and East Greenland sea
ice is thought to be epoch dependent26, and different models
show a range of such relationships27, so this element of our
model’s response may not be robust.

The quadrupole surface temperature response associated with a
decrease in the AO/NAO28 is evident when the global warming
spatial pattern, defined for the purposes of this demonstration as
the mean temperature in CTRL-8.5 at a lag of 2 years, has been

removed (Fig. 3c,g). The general pattern of warming over
northeastern North America/Greenland and southern Europe/
northern Africa and cooling over southeastern North America
and northern Europe can be seen more clearly in EXPT-B
(Fig. 3g). Analysis of the stratospheric circulation20 indicates that
these changes are associated with a ‘top-down’ stratospheric
pathway, as identified in a number of solar studies8,9,12.

In EXPT-B, precipitation (Fig. 3h) increases in a wide band
across the Atlantic and southern parts of Europe, extending
eastwards across the Eurasian continent. There are decreases in
precipitation over northern Europe. In general, EXPT-A (Fig. 3d)
shows a similar but noisier response, with less significant signals.
These changes are associated with a southward shift of the
jet stream and decreased (increased) blocking over southern
(northern) Europe in the experiments20.

Changes in the frequency of extreme events are also affected.
CTRL-8.5 shows a large decrease in frost days (20–35 days per
winter) over much of southern and central Europe, northern
Africa and southeast US for 2050–2099 relative to the historical
simulation (1971–2000). There are also large changes over sea
areas on the Canadian east coast and to the east of Greenland
associated with the retreat of sea ice owing to anthropogenic
climate change (Fig. 4a). In EXPT-B (Fig. 4c), and to a lesser
extent in EXPT-A (Fig. 4b), we can see the clear signature of the
negative AO/NAO with increases of a few frost days per winter in
northern Europe and southeast US relative to CTRL-8.5, again
consistent with NAO variability on other timescales29.

European winter response. Examining the European response
in more detail, average temperature changes for a northern
European region are shown in Fig. 5. Relative to the historical
period (1971–2000), RCP4.5 and CTRL-8.5 show substantial
warming with a mean difference for 2050–2099 of 4.1 �C and
6.6 �C, respectively. EXPT-A and EXPT-B follow the same
trajectory as CTRL-8.5, but with a reduced warming. Relative
to CTRL-8.5, we find decreases in regional temperature for
2050–2099 of 0.4 �C (EXPT-A) and nearly 0.8 �C (EXPT-B).
This regional cooling is therefore a notable fraction, B30% for
EXPT-B, of the difference between the temperature changes for
CTRL-8.5 and RCP4.5. Indeed, compared with temperature
changes for a more comprehensive range of scenarios run using a
closely related model30, the difference between CTRL-8.5 and
EXPT-B is similar to the difference between RCP6.0 and RCP4.5
for this region (Fig. 5, inset).

Both RCP4.5 and CTRL-8.5 show significant increases in
winter precipitation for northern Europe for 2050–2099 relative
to the historical period, with a 12% increase for CTRL-8.5
(Fig. 6a). As expected with the more negative NAO-like pattern in
the solar scenarios, the associated southward shift in the storm
track acts to oppose this trend, with both EXPT-A and EXPT-B
showing a relative decrease in precipitation compared with
CTRL-8.5. In addition, the more southerly storm track enhances
precipitation for southern Europe which tends to lessen the
drying trend in this region in RCP4.5 and CTRL-8.5 (Fig. 6b).
The CMIP5 multi-model ensemble projects drying for the
Mediterranean region31, so in this sensitive region, wintertime
alleviation is likely to be important. However, we note that the
changes in this region are small and the confidence is relatively
low. As with temperature, the changes in precipitation associated
with the solar scenarios, are again large fractions of the absolute
difference between CTRL-8.5 and RCP4.5; B65% for northern
Europe and 90% for southern Europe in EXPT-B, although the
uncertainty for southern Europe is large.

We note that low solar activity does not guarantee cold
conditions in any specific European winter as additional
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variability is introduced by other factors. The 360-year Central
England Temperature record for December–February shows that
the coldest winters in the UK occurred at low solar activity, but,
for example, 1685/6, near the centre of the Maunder minimum,
was the 5th warmest winter in the entire record32. This highlights
the fact that solar variability acts only to bias the intrinsic year-to-
year variability, which remains substantial for this region33. An
example of this from all simulations is that for 12 of the 50
individual years in the period 2050–2099, the warmest ensemble
member for northern European winter comes from EXPT-B
(Fig. 7).

Possible feedback mechanisms. It has been suggested that
solar variability may have affected past variations in North
Atlantic temperature and salinity34. A positive ocean–atmosphere
feedback on the cold northern European temperatures could
occur through altered Atlantic heat content35 and we see a clear
signal of a reduced meridional surface temperature gradient over
the west North Atlantic for EXPT-B (Fig. 3f). Feedbacks could

also occur through decreased Atlantic meridional overturning
circulation (AMOC) associated either with the persistent negative
NAO forcing36 or with more complex sea ice–ocean–atmosphere
mechanisms37–39. However, there is uncertainty in the sign
of the AMOC response to declining solar activity, with two
recent studies suggesting a relative strengthening, associated
with weaker radiative forcing and a possible change in
stratosphere–troposphere coupling6 or increased evaporation
and densification in the North Atlantic40. In our experiments,
we find little appreciable change in the AMOC relative to
the anthropogenically forced decreasing trend in CTRL-8.5
(not shown). Both experiments show significant changes in
tropical precipitation associated with shifts in the Intertropical
Convergence Zone, with a southward shift in the Atlantic.
These changes are of a pattern and magnitude that has been
shown elsewhere41 to be capable of inducing a compensating
strengthening of the AMOC of the magnitude required to balance
the effects of negative NAO forcing. However, detailed analysis
of the mechanisms of AMOC response is beyond the scope of
this paper.
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Table 1 | Regional winter temperature response.

EXPT-A EXPT-B EXPT-A EXPT-B

North Europe �0.42 �0.75 Greenland �0.26 �0.13
Mediterranean �0.25 �0.23 Western North America �0.05 �0.11
North Asia �0.38 �0.53 Central North America �0.24 �0.34

Eastern North America �0.45 �0.43
Alaska �0.31 �0.17

Mean winter (December to February) regional near-surface temperature change (�C, land points only) for 2050–2099 for EXPT-A and EXPT-B relative to CTRL-8.5. Significance with a 90% confidence
interval is shown in bold.
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Discussion
Numerous studies have identified links between past climate and
solar variability42,43. During the Maunder Minimum (1645-1715),

very few sunspots were seen despite regular observations44. If the
past relationships between TSI and ultraviolet irradiance and
sunspots are the same as are observed for modern solar variability,
then a decline in both TSI and ultraviolet for this period can be
assumed. The Maunder Minimum coincided with more severe
winters in the UK and continental Europe32 and many
reconstructions45,46 suggest atmospheric conditions were broadly
comparable with the regional effects on European atmospheric
circulation found here. Some modelling studies13,47 also support
the idea that similar regional cooling and circulation changes
occurred during this period. On longer timescales, cosmogenic
isotopes provide a proxy for TSI variations and only indirect
meteorological information is available, nevertheless linkages can
be made. For example, lake sediments have been analysed to
demonstrate that a grand minimum of solar activity, the Homeric
Minimum (B2,750–2,550 years before present), affected climate
conditions through western Europe through altered regional
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circulation consistent with the negative phase of the NAO48. While
these paleoclimatic studies appear largely consistent with our
model result that weak solar ultraviolet irradiance can have a
significant impact on European winter circulation through
‘top-down’ dynamical forcing, detailed modelling and attribution
for these events is beyond the scope of this paper. We note that, to
date, a variety of strengths of model response for past events have
been obtained13,47,49, which could, in part, be related to
uncertainties in solar forcing and to the efficiency of the
‘top-down’ mechanism in different models14.

We note that there are some uncertainties in our model
response to solar forcing. The peak-to-trough variability in global
mean temperature for the 11-year solar cycle is B0.06 �C but
observational estimates suggest this may be too small. For
example, a signal of B0.1 �C was obtained using a multivariate
analysis with up-to-date estimates of natural (including volcanic
aerosols) and anthropogenic forcing50. In general, climate models
appear to underestimate this variability5. The modelled Atlantic
atmospheric circulation response may also be larger if, as has
recently been suggested, the ocean feedback is underestimated in
the model35.

The changes in TSI that are applied in our experiments
are representative of current scientific understanding31 and
are smaller than those reported in earlier IPCC reports. The
ultraviolet changes are designed to bracket the current
uncertainty in spectral irradiance at these wavelengths, but we
note that EXPT-B is likely to be at the high end of any estimate of
ultraviolet change and the appreciable changes in climate that we
find should therefore be viewed as a high estimate in this respect.
This research highlights the need for accurate and long-term
measurements of spectral solar irradiance to reduce current
uncertainties.

In the solar scenario presented here, there is a gradual descent
to Maunder Minimum-like conditions, which are then main-
tained for a period of 50 years until the end of the experiment.
A modelling study which includes representation of the end of a
solar minimum7 indicates that global mean temperatures
approach the reference model climatology within a few years of
a return to the reference solar forcing. Although timescales may
depend on the exact details of the forcing scenario and model, we
would expect a reversal of the climate impacts described in our
experiment following the end of the event. Estimates of the
duration of grand solar minima, based on model reconstruction
from 14C data51 and from 10Be data52, vary from a few decades to
more than 100 years53.

The latest data1 (updated October 2013) on sunspot number,
near-Earth interplanetary conditions, cosmic ray fluxes and
geomagnetic activity are all consistent with the most rapid
fall scenario used here2. All these data are in the upper
5 percentile of the distributions (lower 5 percentile in the case
of cosmic rays which anti-correlate with solar activity) of
predictions extended to these parameters53. Note also that these
statistical predictions51 are very similar to the predictions made
using spectral techniques54. Thus all the current indicators
are consistent with the most extreme decline discussed by
Lockwood2. However, it should be remembered these predictions
are statistical and not physical in nature, being based on past
behaviour.

The northern hemisphere winter regional temperature and
precipitation changes associated with the reduced solar forcing
can amount to a substantial fraction of the difference between
plausible RCP scenarios. Our results therefore suggest that
uncertainties in natural forcing, in this case both the uncertainty
in future solar output and uncertainty in spectral solar irradiance,
should be taken into account alongside uncertainties in emissions
in future climate forcing scenarios.

Methods
The control model. We use the Met Office Hadley Centre general circulation
model, HadGEM2-CC (carbon cycle)55, with historical and future forcings
specified according to the Fifth Coupled Model Intercomparison Project (CMIP5)
as used in HadGEM2-ES (Earth System)30. This version of HadGEM2 is a ‘high
top’ model with 60 vertical levels and an upper boundary at 84 km, so is capable of
resolving relevant stratospheric processes56–58. The horizontal resolution is 1.875�
longitude by 1.25� latitude. The ocean resolution is 1�� 1�, increasing in the
tropics to 0.3�, with 40 vertical levels. The TSI is partitioned across six shortwave
spectral bands (0.2–10 mm) with spectral changes associated with changing TSI
accounted for. For the historical period, the TSI and spectrally resolved irradiance
(SSI) used is that recommended by CMIP5 (Lean, Calculations of solar irradiance,
http://sparcsolaris.gfz-potsdam.de/cmip5.php, accessed 2 June 2009 from the
earlier fuberlin site), with a repeating 11-year cycle, based on the period 1998–2008,
imposed for future scenarios. Time-varying ozone distributions include a
component related to solar variability30.

Grand solar minimum scenario. The solar forcing is based on the most rapidly
declining Lockwood2 solar activity scenario and uncertainty in future levels of
ultraviolet is explored with two experiments designed to bracket uncertainty in
ultraviolet spectral irradiance. Experiments are initialized from 1 December 2005
with the same initial conditions as the parallel CTRL-8.5 ensemble. The derivation
of the forcing is as follows:

EXPT-A. The future TSI for EXPT-A is constructed by relating changes in
the historical TSI to the past solar modulation parameter, then applying this
relationship to the future scenario for the parameter1,2. The SSIs are calculated by
extrapolation of second-order polynomial fits of SSI versus TSI from the CMIP5
historical forcing data set. This experiment describes a relatively modest change in
ultraviolet. The solar component in the prescribed ozone field also scales with the
change in TSI.

EXPT-B. For EXPT-B, 200–320 nm data from the SIM instrument (2004–2009) are
fitted to a typical solar cycle shape, giving an estimate for a peak-to-trough change
in ultraviolet of 1.17 W m� 2. The SIM data used in this study is based on more
reliable SORCE SIM Version 17 processing, but these results are consistent with the
published version, Version 22, available at: http://lasp.colorado.edu/home/sorce/
data/. Next, a scaling factor is derived between the Open Solar Flux (OSF) measure
of solar activity1,2 and ultraviolet. It is important to note that the use of the OSF
proxy introduces a secular change in the past (and predicted future) ultraviolet
irradiance that would not be obtained if other solar activity indices (such as the
F10.7 radio flux) were used: however, ultraviolet-driven changes in the stratosphere
are more highly correlated with OSF than indices such as F10.7 that do not show
the same secular trends59. The scaling used here is based on calculating the average
of peak-to-trough values in de-trended OSF data for the period 1982–2008 and
taking this average to be equal to the SIM data estimate giving a relationship of 2.19
OSF units equalling 1 W m� 2 of ultraviolet irradiance. The future projection in
ultraviolet forcing is calculated by scaling the OSF for the grand solar minimum
scenario, deriving a change in ultraviolet irradiance that would be consistent with
the SIM data scaling linearly with the assumed future trend in OSF. The baseline
period for normalizing the OSF with respect to the HadGEM2-CC historical
forcing is 1964–2008. In EXPT-B, only the ultraviolet (200–320 nm) component of
the shortwave irradiance is adjusted. Radiation bands 2 to 6 are unaltered, and so
retain variability on the 11-year timescale out to 2100. This means that the
reduction in TSI is by definition equal to the reduction in ultraviolet. In this
experiment, the prescribed ozone is the same as that in CTRL-8.5. This enables
direct comparison of the impact of UV changes with CTRL-8.5 and we believe it is
justified as the large change in ultraviolet is likely to dominate the change in
stratospheric heating in this case. We might expect inclusion of interactive ozone to
enhance the response, but think this is likely to be of secondary importance for
EXPT-B. However, we note that GCM studies have shown sensitivity to the
magnitude and distribution of specified ozone changes22,60.

Ensemble sizes and experiments used for comparison. HadGEM2-CC:
CTRL-8.5, EXPT-B and EXPT-A have three ensemble members, while RCP4.5
has just a single member. The historical runs have three ensemble members.

HadGEM2-ES: All RCPs and historical runs have four ensemble members.
All the results are for ensemble means, unless otherwise stated.

Statistics. Model statistical significance is tested using the Mann–Whitney test
(a nonparametric test) with the null hypothesis that the difference in means are not
significantly different from zero. One-tailed tests are used, given the prior evidence
for a negative AO/NAO response8,10.

Code availability. Due to intellectual property right restrictions, we cannot
provide either the source code or the documentation papers for HadGEM2. The
Met Office Unified Model (MetUM) is available for use under licence. A number of
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research organizations and national meteorological services use the MetUM
in collaboration with the Met Office to undertake basic atmospheric process
research, produce forecasts, develop the MetUM code and build and evaluate
Earth system models. For further information on how to apply for a licence,
see http://www.metoffice.gov.uk/research/collaboration/um-collaboration.
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