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INFERRING THE STRUCTURE OF THE SOLAR CORONA AND INNER HELIOSPHERE DURING THE
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ABSTRACT

Observations of the Sun’s corona during the space era have led to a picture of relatively constant, but cyclically
varying solar output and structure. Longer-term, more indirect measurements, such as from 10Be, coupled by other
albeit less reliable contemporaneous reports, however, suggest periods of significant departure from this standard.
The Maunder Minimum was one such epoch where: (1) sunspots effectively disappeared for long intervals during
a 70 yr period; (2) eclipse observations suggested the distinct lack of a visible K-corona but possible appearance of
the F-corona; (3) reports of aurora were notably reduced; and (4) cosmic ray intensities at Earth were inferred to be
substantially higher. Using a global thermodynamic MHD model, we have constructed a range of possible coronal
configurations for the Maunder Minimum period and compared their predictions with these limited observational
constraints. We conclude that the most likely state of the corona during—at least—the later portion of the Maunder
Minimum was not merely that of the 2008/2009 solar minimum, as has been suggested recently, but rather a state
devoid of any large-scale structure, driven by a photospheric field composed of only ephemeral regions, and likely
substantially reduced in strength. Moreover, we suggest that the Sun evolved from a 2008/2009-like configuration
at the start of the Maunder Minimum toward an ephemeral-only configuration by the end of it, supporting a
prediction that we may be on the cusp of a new grand solar minimum.
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1. INTRODUCTION

The “Maunder Minimum” is a period of time between
approximately 1645 and 1715 when the observed number of
sunspots all but disappeared (Eddy 1976). Although it can be
argued how accurate the sunspot record was during this
interval, the low numbers cannot be due to a lack of
observations; a number of well-known astronomers, including
Giovanni Domenico Cassini, regularly made observations of
the Sun during this time. During the same period, as we will
discuss in more detail below, the number of aurora decreased,
cosmic ray fluxes increased, and the Sun’s corona apparently
lost its visible structure.

Broadly speaking, we can differentiate between two distinct
ideas for the state of the solar corona during the Maunder
Minimum. The first, and original idea was of a corona that was
radically different from what we observe today (Eddy 1976;
Parker 1976; Suess 1979). The second, and currently more
favored interpretation is of a corona that was not significantly
different than the one observed during the recent and somewhat
unique solar minimum of 2008/2009 (e.g., Svalgaard &
Cliver 2007).

In his landmark paper, Eddy (1976) reviewed an extensive
range of available data associated with this time period,
including auroral records, sunspots, carbon-14 records, and
eclipse observations. From the (i) prolonged absence of

sunspots; (ii) reduction in aurora reports; (iii) decrease in
14C (suggesting a significant increase in cosmic ray flux hitting
the Earth); and (iv) absence of any structured corona during
eclipses, he inferred that, to manifest such phenomena, the
solar corona must have existed in a unique configuration. He
suggested that “the solar wind would have blown steadily and
isotropically, and possibly at gale force, since high-speed
streams of solar wind are associated with the absence of closed
structure in the solar corona.” He concluded that, based on
eclipse observations, there likely was not any K-corona present,
and that, in fact, what was observed could have been from dust-
scattered light (i.e., the F-corona). When asked about the
Maunder Minimum, Parker (1976) suggested “In view of the
absence of a white light corona, we may conjecture whether the
Sun was entirely shrouded in a coronal hole, yielding a fast
steady solar wind, or whether there simply was no solar wind at
all. I would guess the former, but I know of no way to prove the
answer.” Suess (1979) expanded on these views: “Firstly, C-14
data indicate an enhanced cosmic ray intensity, with the
conclusion that the interplanetary magnetic field was smooth
and perhaps of low intensity. Secondly, the apparent absence of
a corona during eclipses requires low coronal density,
suggesting an absence of closed magnetic loops. Thirdly, the
absence of sunspots eliminates the possibility of a solar
maximum type of corona of low emission intensity and implies
a low large-scale photospheric field intensity. Finally, the
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absence of mid-latitude aurorae implies either that the solar
wind speed or the IMF intensity, or both, were low and not
irregular.”

More recently, the idea that the Maunder Minimum was
radically different than anything witnessed during the space era
has come to be replaced with the idea that the recent, and
arguably unique (at least on the timescale of a century) solar
minimum of 2008/2009 provided an accurate proxy for
Maunder Minimum conditions. This perspective has been built
up on two primary fronts. First, Svalgaard & Cliver (2007)
proposed that there appears to be minimum value (∼4.6 nT) in
the strength of the interplanetary magnetic field. It is important
to recognize, however, that the proposal by Svalgaard & Cliver
(2007) was a hypothesis rather than a robust, empirically
determined result and is based on geomagnetic observations
from 1835 onwards, an interval that includes neither the Dalton
nor the Maunder minima. Other authors have argued that the
occurrence probability of open solar flux (OSF) and near-Earth
IMF becomes smaller at lower values (e.g., Lockwood
et al. 2014a) and hence the lowest value seen in a given
interval does not, in itself, set a physical limit. In addition, it
has been pointed out that arguments supporting a floor are
implicitly based on the concept that the OSF and near-Earth
IMF depend only on the simultaneous sunspot number,
whereas successful continuity modeling of OSF is based on
the idea that the prior history of sunspot numbers is also
important (Lockwood et al. 2014b). Although the strength of
the near-Earth IMF has apparently returned to the roughly
similar values since the start of the space era, there is no
guarantee that this must remain so; in fact, the precise value of
this “floor” had to be lowered (Cliver & Ling 2011) as we
witnessed the minimum of 2008/2009 (Crooker & Owens 2010;
Cliver & Ling 2011). Second, Schrijver et al. (2011) argued
that there exists a minimum state of solar magnetic activity,
associated with the presence of small-scale ephemeral regions.
They concluded that “the best estimate of magnetic activity...
for the least-active Maunder Minimum phases appears to be
provided by direct measurements in 2008–2009,” although
they acknowledged that the presence of a large-scale dipolar
field may not be representative of the deepest portions of the
Maunder Minimum. Cliver (2012) noted that a minimal solar
activity state such as that characterized by the small-scale
ephemeral regions of Schrijver et al. (2011) is a requirement
for a floor in the IMF. Finally, in perhaps what could be
described as a compromise between these two extreme views,
Wang & Sheeley (2013) presented a solution where the
photospheric field consisted of ephemeral regions with a
reduced, but not absent global dipole. They reasoned that a Sun
consisting exclusively of ephemeral regions would generate no
IMF, in conflict with the apparent continuation of the solar
cycle (albeit much reduced) during the Maunder Minimum
(e.g., Ribes & Nesme-Ribes 1993; Cliver et al. 1998;
McCracken et al. 2013).

Most recently, McCracken & Beer (2014) reviewed the
cosmogenic records (10Be and 14C), concluding that inferred
cosmic ray intensities during the Maunder Minimum were
significantly greater than those during the 2008/2009 mini-
mum, and, in addition, the inferred heliospheric magnetic field
(∼2 nT) was half the value measured in 2009 by in situ
spacecraft.

In this study, we apply a global MHD model to infer the
most likely configuration of the solar corona (and by extension,

the inner heliosphere) that is consistent with the observations
associated with the Maunder Minimum. In Section 2, we
review, re-analyze, and extend previous studies of the limited,
and often indirect observations of the period between 1645 and
1715. In Section 3, we introduce a set of possible configura-
tions of the photospheric magnetic field that may have existed
during the Maunder Minimum, and use them to drive MHD
simulations. In Section 4 we describe our MHD formalism,
paying particular attention to the unique aspects that make it
applicable and relevant for studying the Maunder Minimum.
We then describe the model results and relate them to the
observations, allowing us to refute some configurations, while
finding support for others. Finally, in Section 5 we summarize
the main points of this study, and discuss the implications in
terms of both understanding the Maunder Minimum and other
periods of inactivity, and the likelihood of future grand minima.

2. OBSERVATIONS DURING THE MAUNDER MINIMUM

Although a number of studies since J. Eddy’s landmark
paper (Eddy 1976) have revised and refined our interpretation
of the available but limited observations associated with the
Maunder Minimum, it is worth reviewing them here, both to
point out where they led to definitive inferences and where they
remain ambiguous. Additionally, it affords us an opportunity to
offer our own interpretation.
The observations we consider here are: (1) the sunspot time

series; (2) aurora reports; (3) cosmic ray fluxes as inferred
from 10Be and 14C records; and (4) eclipse observations.
Figure 1 summarizes the first three of these records stretching
back from near-present day to the Maunder Minimum. In the
following subsections, we consider each in more detail.

2.1. Sunspot Observations

Figure 1(a) summarizes the sunspot record back in time to
1610 (Lockwood et al. 2014a, 2014b; Lockwood &
Owens 2014). This is the parameter that originally defined
the Maunder Minimum, although the numbers themselves have
undergone significant revision since they were first presented
by G. Spörer and E. W. Maunder in the late 19th century
(Sporer 1887; Maunder 1894). As a practical definition, we
follow the consensus of identifying the Maunder Minimum as
the time period between ∼1645 and ∼1700–1715 when
sunspots all but disappeared. It is important to emphasize,
however, that they did not disappear entirely; there were
isolated observations of sunspots throughout this period.
The sunspot record is not without error or uncertainty,

however. First, we must confront the claim that the reduction in
sunspot number (SSN) was not due to processes at the Sun, but
from a lack of observations. Hoyt & Schatten (1996) examined
how well sunspots were observed during the Maunder
Minimum, concluding that 68% ± 7% of the days were
observed. Therefore, the paucity of sunspots was due to them
not being observed, not from there being no observations.
Second, the apparent lack of sunspots may have been caused by
atmospheric effects, such as the presence of volcanic ash
masking the sunspots or increasing the threshold for detection.
Third, revisions to the sunspot record have been proposed over
the years (e.g., Hoyt & Schatten 1998; Clette et al. 2014;
Lockwood et al. 2014a). Although this could have a
quantitative effect on the record, it is unlikely to change the
basic, qualitative profile shown in Figure 1(a).
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Assuming that the SSN record is a reliable proxy for the
number of sunspots, we infer that in ≈1645 they suddenly, and
almost completely “turned off,” and remained so until
∼1700–1715, depending on how you interpret the extremely
small cycle starting shortly after 1700. Thus, from the
perspective of the SSN, the Maunder interval was a period of
constant inactivity. It is worth noting here that the point in the
solar cycle at which the Maunder Minimum began could have
important theoretical ramifications. Mackay (2003) argued that
if the Maunder Minimum began at solar maximum, this would
have led to a configuration with effectively no unipolar polar
fields. In contrast, if it began near, or at solar minimum, strong
unipolar polar fields would have been present that may have
remained intact to a large extent throughout the interval.

At the risk of over-interpreting the signal, the SSN record
during the Maunder Minimum further suggests that sunspots
did cluster into perhaps half-a-dozen or so small peaks that may
be suggestive of a continued solar cycle within the Maunder
Minimum. Additionally, these cluster peaks, and the under-
lying base, tended to decrease slightly, perhaps suggesting that
the Sun sank to even lower states of inactivity during the 70 yr

period. Ribes & Nesme-Ribes (1993) analyzed measurements
made at the Paris Observatory and concluded that: (1) the solar
cycle continued to operate during the Maunder Minimum; and
(2) the majority of sunspots appeared in the southern
hemisphere, clustered around ∼10°S.

2.2. Aurora Observations

Records of aurorae date back thousands of years (Sis-
coe 1980), but, again, come with caveats. Does the absence of
an aurora mean that one did not occur, or just that it was not
reported? Additionally, different records provide, at best, only
threshold indicators of geomagnetic activity. Consistent
observations at mid-latitudes, for example, will not contain
modest geomagnetic events that reveal themselves only at high
geomagnetic latitudes. Perhaps the strongest statement we can
make is that if an aurora was observed, then it probably
happened (allowing for confusion with other atmospheric
phenomena), whereas, if none were reported, it may or may not
mean that none occurred. Thus, the auroral record, at least older
than a century, at best provides a lower limit of geomagnetic
activity.
In spite of these limitations, several records exist and have

been analyzed in detail. Here, for illustration, we rely on the
dataset reconstructed by Réthly & Berkes (1963), however, our
conclusions would not be affected had we used another set of
measurements (e.g., Schröder 1992; Silverman 1992). We
consider the raw counts and smoothed profile shown in
Figure 1(b) to make the following points. First, geomagnetic
activity did not cease during the Maunder Minimum period.
Second, activity was higher both before and after the Maunder
Minimum. Third, there is a tentative suggestion of a solar cycle
modulation in the number of aurora days.
The presence of any aurora indicates that the Sun, through

the solar wind, was connected to the Earth’s upper atmosphere.
To generate aurora at middle and low latitudes requires a
dawn–dusk electric field, which in turn, requires a roughly
radially directed solar wind carrying a Bz magnetic field.
Additionally, the energy to accelerate ions and electrons toward
Earth and generate aurora by bombarding oxygen and nitrogen
atoms is supplied from the kinetic energy density of the solar
wind flow (Cowley 1991). We conclude then, that Parker’s
suggestion that there might not be any solar wind at all, is not
consistent with these observations.
Since these observations were made at mid-European

latitudes, we can also infer that they were probably related to
relatively substantial geomagnetic storms. This, in turn,
suggests that they originated not from corotating interaction
regions, which would tend to produce minor events, but from
coronal mass ejections (CMEs). Further, we could anticipate
that these CMEs were associated with the appearance of the
relatively few sunspots that were present, signaling the
presence of active regions. It is from active regions that the
strongest (i.e., fastest and largest field strengths) CMEs are
typically produced. Unfortunately, the limited number of
auroral sightings during the Maunder Minimum (one at most
(at all latitudes) in any one year, except once when two were
observed) does not allow us to make a meaningful correlation
between sunspot number and number of aurorae. In contrast,
later in the record, there is a significantly clearer correlation
between the temporal location of the peaks in the two time
series (although no obvious association in their amplitude).

Figure 1. The evolution of various solar-related parameters from 1600 through
2012: (a) the yearly sunspot number (Lockwood et al. 2014a); (b) the number
of aurora per year (Réthly & Berkes 1963, p. 1523); (c) beryllium-10
measurements (Berggren et al. 2009); and (d) carbon-14 measurements
(Reimer et al. 2004). The circles in (b) and (c) represent the original data at
yearly resolution. See text for more details.
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2.3. Cosmic Ray Fluxes Inferred from Cosmogenic Records

Cosmogenic radionuclides are rare isotopes created when a
high-energy cosmic ray interacts with the nucleus of an atom in
the Earth’s atmosphere. The two principal types used in long-
term solar studies are 10Be and 14C. Here, we focus principally
on the former, since it is more directly relatable to cosmic ray
intensities (Steinhilber et al. 2012). High-energy galactic
cosmic ray particles impact primarily atmospheric nitrogen or
oxygen, producing 10Be, which then becomes attached to
aerosols. Depending on where the 10Be is produced it may take
from weeks (troposphere) to a year or two (stratosphere)
before being deposited in the polar ice caps. Since climate/
precipitation effects can modulate the 10Be concentrations
within the ice, care must be taken when interpreting the records
as a measure of cosmic ray intensities. The general consensus,
however, is that 10Be records provide, primarily, a measure of
production rates (Usoskin 2008).

In panel (c) of Figure 1 we show the 10Be record as reported
by Berggren et al. (2009). The individual circles are yearly
measurements of concentration. The black/blue curve repre-
sents an 11 yr running average. We note several points. First,
the solar cycle is clearly seen, particularly after 1895 (the
beginning of the “Gleissberg” minimum). Second, the absolute
concentration varies by a factor of ∼2.5 over the 400 yr
interval. Third, the three established minima (Maunder, Dalton,
and Gleissberg) all coincide with local peaks in concentration.
Fourth, a striking feature is that, unlike the sunspot record, the
Maunder Minimum as viewed through 10Be was not steady.
The 10Be data steadily increased from 1.75 × 104 atoms/g to
over 3 × 104 during the 70 yr interval. Thus, at least from a
cosmic ray perspective, the Maunder Minimum period was a
period of evolution, not constancy.

If we assume that the 10Be fluctuations are a reasonable
fiduciary for variations in CR flux, we might infer that the CR
flux increased by almost a factor of two, suggestng a
commensurate decrease in the strength of the interplanetary
magnetic field. In fact, the relationship between CR flux and
the strength of the IMF is considerably more complicated
(Usoskin 2008). We will return to this point in Section 2.5,
where we consider the modulation potential.

The 10Be record also calls into question the idea that the
Maunder Minimum interval is substantially the same as the
2008/2009 minimum. In particular, the recent minimum is a
snapshot of the Sun in time, whereas, as we have argued here,
the Maunder Minimum was an evolving configuration: If the
recent minimum is related to the Maunder Minimum, which
part is it associated with? Presumably, it would be the
beginning, since we have not yet witnessed the 70 yrs of
little-to-no sunspots or the continual increase in cosmic ray
fluxes. We conclude then, that at best, the 2008/2009 minimum
may turn out to be the first minimum that defined the start of a
descent toward a new grand minimum.

Finally, in panel (d) of Figure 1 we show yearly averages of
the 14C record as reported by Reimer et al. (2004). Again, a
large value of 14C suggests a stronger flux of cosmic rays,
which in turn suggests a lower interplanetary field, possibly in
conjunction with a relatively flat HCS. We note the almost
monotonic increase from 1600 until shortly after 1700,
consistent with the 10Be record. Between then and 1955, it
appears to generally decrease, except for two “recoveries”
when it rises. The first occurred in ∼1800 and the second,
shortly before ∼1900, coinciding with the Dalton and

Gleissberg minima. Above-ground nuclear tests began in
1955 rendering the time series from this point forward useless
for present purposes. In fact, secular variations after
≈1850–1900 are probably dominated by the anthropogenic
effects of fossil fuel burning (Suess 1955).
Comparing the 14C and 10Be profiles, we note that, on the

largest scales, they convey a similar trend for the inferred flux
of cosmic rays. The three grand minima (seen as maxima in
these records) are approximately co-temporal and the general
variations about some reference point, say 1600, are reasonably
matched. One notable exception is that while the peak 10Be
values during the Maunder and Dalton intervals match one
another, they are substantially different in the 14C record,
perhaps the result of being superimposed on a monotonic
decrease from 1700 until at least 1955.
From this, we conclude that the cosmic ray flux was larger

during the Maunder Minimum than at any time over the last
400 yrs. Moreover, the flux of particles systematically
increased during the 70 yr interval, suggesting that the
minimum was “flat” only from the perspective of sunspots.
In summary then, the Maunder Minimum did not reach its most
profound state until 1698, 43 yrs after the “nominal” onset, as
defined by the sunspot record.

2.4. Eclipse Observations

Observations of eclipses during the Maunder Minimum are
strongly suggestive, but not conclusive, that the structured
corona observed in modern times during eclipses disappeared
(Eddy 1976). Here, we build upon, and add to the evidence
compiled by J. Eddy. As he noted, of the 63 possible solar
eclipses known to have occurred between 1645 and 1715, only
eight passed through Europe, and, of those, four (1652, 1698,
1706, and 1708) were captured by reports sufficiently detailed
to be of use for this study.
Dr. John Whybard gave an account of his, and that of the

vice-prefect’s observations of the 1652 solar eclipse in
Carrickfergus, located in County Antrim, Northern Ireland
(Wing 1656). He stated that the corona “had a uniform breadth
of half a digit, or a third of a digit at least, that it emitted a
bright and radiating light, and that it appeared concentric with
the Sun and moon when the two bodies were in conjunction.”
As reported by Grant (Grant 1852), M. M. Plantade and

Capies observed the eclipse of 1706 at Montpellier, located on
the south coast of France, in a way that was “clearer and more
precise than any other that had been hitherto recorded.” They
observed that “as soon as the Sun was totally eclipsed, there
appeared around the moon a very white light forming a kind of
corona, the breadth of which was equal to about 3′. Within
these limits the light was everywhere equally vivid, but beyond
the exterior contour, it was less intense, and was seen to fade
off gradually into the surrounding darkness, forming an
annulus around the moon of about 8 degrees diameter.”
Both sets of reports describe a structureless corona

composed of a ring of light circumscribing the entire moon.
Had the Sun displayed a dipolar or quadrupolar configuration,
such as any of the eclipses viewed in, say, the last century, we
might have expected the observers to note this fact.
The eclipse of 1715, which was well observed from London,

however, lays some doubt on this inference. Halley himself
reported that there “appeared a luminous ring around the moon
as on the occasion of the eclipse of 1706,” suggesting at least a
qualitative similarity between the two events. R. Cotes, on the
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other hand, wrote “besides this ring, there appeared also rays of
a much fainter light in the form of a rectangular cross...The
longer and brighter branch of this cross lay very nearly along
the ecliptic, the light of the shorter was so weak that I did not
constantly see it.” Eddy (1976) interpreted the longer, brighter
branch to be a description of a solar minimum streamer belt
configuration and the shorter branch to be polar plumes.
Additionally, observations of a “red flash” during the 1706 and
1715 eclipses suggest the presence of a significant photospheric
magnetic field (Foukal & Eddy 2007). The discrepancy
between these two accounts raises several issues. First, it is
possible that earlier accounts failed to acknowledge that there
was an underlying structure. Or, second, that the structured K-
corona had returned to the Sun by the time of the 1715 eclipse.

The eclipse of 1766, which was observed “in the Southern
Ocean by the persons on board the French ship of war the
Comte d’Artois,” provides clear evidence that “normal” solar
conditions had returned. Although totality only lasted some 53
seconds, the observers noted “a luminous ring about the moon,
which had four remarkable expansions situate at a distance of
90 [degrees] from each other.” From this we can infer that a
quadrupolar streamer structure was visible.

Finally, we remark that during the eclipses of 1652, 1698,
1706, and 1708, the corona was described as “dull or
mournful,” and often as “reddish,” which Eddy (1976)
suggested might describe how the zodiacal light component
(i.e., the F-corona) might look to an observer in the absence of
a K-corona.

In summary then, we conclude that: (1) the corona during
the Maunder Minimum was likely featureless, at least to the
extent that it was not commented on; (2) the coronal light that
was present was “reddish” and (3) coronal features likely
returned sometime between 1708 and 1766.

2.5. Cosmic Ray Modulation Potential

Variations in cosmogenic radionuclide records, and, in
particular 10Be and 14C, are believed to provide a measure of
solar activity (Usoskin 2008). To a rough approximation, their
values indicate the flux of cosmic rays impinging the upper
atmosphere. However, the transport and deposition mechan-
isms for both species are relatively complex and quite different
from one another, meaning that interpretation does not come
without important caveats.

A number of both empirical and physics-based models have
been developed to recover unbiased estimates of “solar
activity.” Here, we focus on the so-called modulation potential,
ϕ. As suggested by its name, ϕ is intended to capture the
variability in the observed cosmic ray flux in the vicinity of
Earth. Because these fluxes are modulated on a global scale, ϕ
is a global heliospheric quantity, capturing the physical
processes of: (1) diffusion of particles due to scattering; (2)
convection in the solar wind; and (3) adiabatic losses. The
following empirical estimate for ϕ provides an intuitive way to
understand it:

f f f b= +
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where F is the OSF, α is the tilt angle of the HCS, and p is the
global magnetic polarity; p = 1 (−1) for positive (negative)
polarity periods. Best fit values for the constants are:

ϕo = 150MV, ϕ1 = 86MV, Fo = 2.5 × 1014Wb, αo = 91°,
and β = −0.03 (Alanko-Huotari et al. 2006).
From Equation (1), we can appreciate that during solar

minimum periods, when a  0 , the modulation potential is
linearly proportional to the open flux in the heliosphere. During
elevated periods of activity (and in the extreme that a  90 )
the modulation potential is more sensitive (up to the square) of
the open flux. Intuitively, this makes sense: during periods of
higher activity, as the heliospheric magnetic field strength
increases and the latitudinal extent of the HCS broadens there is
a larger barrier for cosmic rays to impact the Earth. In contrast,
when the HCS becomes flat, and the field strength reduces, the
structure of the solar wind provides less of an impediment to
the propagation of these particles. Of the two parameters, since
α varies between 10° and 90° every 11 yrs, it does not impact ϕ
as much as F, which varies by more than a factor of two.
Moreover, α must oscillate between these extremes every
cycle, and cannot drift beyond them on longer times scales as
can F. Therefore, we conclude that long-term variations in ϕ
likely represent changes in the large-scale heliospheric
magnetic field strength.
Armed with this simplified picture, we can now interpret

several reconstructions of the modulation potential shown in
Figure 2. The solid colored lines show various estimates of ϕ
using both 10Be and 14C records. The black solid line is an
11 yr running mean of monthly averages (black points) of ϕ
derived from neutron monitor and ground-based ionization
chamber measurements. The approximate match between the
cosmogenic records and the neutron monitor measurements
gives us some confidence that present day values can be—at
least roughly—compared with historical estimates, particularly
during the deepest portion of the Maunder Minimum (≈1700).
However, more important than the absolute values is the
variability in the cosmogenic data between 1600 and 2000. If
we assume that, to first order, ϕ is providing a proxy for the
strength of the heliospheric magnetic field, then its strength
during the Maunder Minimum was as much as 500/50 = 10
times lower than it was during the decade beginning in 2000.
Additionally, the field strength during the early 1600s, which, it
could be argued, was the beginning of a long term, monotonic
decrease in field strength, is approximately the same as the

Figure 2. Temporal evolution of a selection of estimates for the modulation
potential (ϕ). Following Usoskin (2008), S04 refers to Solanki et al. (2004),
M05 refers to McCracken et al. (2005), M07 refers to McCracken & Beer
(2007), U03 refers to Usoskin et al. (2003), MC04 refers to McCracken et al.
(2004), and U11 refers to Usoskin et al. (2011). The first three profiles are
based on carbon-14 records, the next two are based on beryllium-10, and the
final profile shows direct neutron monitor and ground-based ionization
chamber measurements both on monthly averages (dots) and an 11 yr running
mean (solid black curve).
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inferred field strength today, reinforcing the suggestion by
Barnard et al. (2011) that we may be entering a grand solar
minimum, similar to the Maunder interval.

These profiles also promote the idea that the Maunder
Minimum was not an extended interval of constant inactivity,
as might be inferred from the sunspot record, but a progressive
drop, culminating in a deep minimum. It is worth noting,
however, that while this minimum could indicate that the Sun
had reached some “floor” level of activity, this is not
necessarily the case. The decay implied by the 10Be data
might have continued had solar activity, and the magnetic flux
emergence associated with it, not recovered. That recovery
itself may have been triggered by a certain level of activity
being reached or it might have resulted from independent
processes, in which case, even 1700 does not set a base level
for solar activity. It should be noted, however, that Steinhilber
et al. (2012), who estimated ϕ from the common cosmic ray
intensity record, showed that values during the Maunder
Minimum were the lowest reached during any time within the
last 10,000 yrs.

3. CANDIDATE SCENARIOS FOR THE SUN’S
PHOTOSPHERIC MAGNETIC FIELD DURING THE

MAUNDER MINIMUM

The Sun’s photosphere provides a convenient boundary from
which to base our calculations. First, the photospheric magnetic
field is well observed by both ground-based and space-based
solar observatories. Second, the transition from a flow-
dominated to a magnetic field-dominated environment occurs
at the photosphere. In principle then, assuming that all of the
salient physical processes are included in the models, and that
the model results are not strongly dependent on the values of
free parameters (i.e., coefficients in the formulation of the
relevant physics that are not well constrained), specification of
the photospheric magnetic field should be sufficient to
reconstruct the global structure of the corona and inner
heliosphere. Such models are frequently applied to data from
the modern era driven by the observed photospheric magnetic
field, in an effort to understand the large-scale structure of the
corona and inner heliosphere, and generally match the observed
large-scale structure of the inner heliosphere (e.g., Riley et al.
2011, 2012).

The distribution of magnetic field in the photosphere during
the Maunder Minimum, however, is subject to considerable
speculation. We have reasonably reliable evidence that few or
no sunspots were observed during this period, suggesting the
absence of active regions. Theoretically, several studies have
speculated on various aspects of the Maunder Minimum solar
field. Schrijver et al. (2011) argued that small-scale fields
associated with ephemeral regions must have persisted during
even the deepest portion of the interval. Mackay (2003)
proposed that the Maunder Minimum must have commenced
at, or near solar minimum: had it started at solar maximum,
there would have been no reversal of the polar fields, in
apparent conflict with evidence that the solar cycle continued to
operate during this 70 yr period (e.g., Beer et al. 1998; Cliver
et al. 1998; Usoskin et al. 2001; Miyahara et al. 2004; Berggren
et al. 2009). It is also worth noting, however, that it is possible
that the cyclic behavior during the Maunder Minimum was not
a reduced-amplitude version of what is seen in more active
intervals. Owens et al. (2012) have argued that the cycles
originate from variations in the loss rate of OSF rather than the

variations in production rate, which dominate in more active
periods. In addition, Usoskin et al. (2014) presented some
evidence that during the Maunder Minimum the Sun was in an
entirely different mode of variation. Thus, one approach to
deducing the photospheric field during this interval is to
construct a range of possible scenarios and test their predictions
against the available, albeit limited observations.
From the discussion in Section 2.5, it is reasonable to

discount the extreme possibility, raised (but not necessarily
advocated) by Parker (1976), that the entire visible magnetic
field disappeared. While this would provide an obvious means
for removing all sunspots, we know: (1) that there were very
occasional sunspots during the Maunder interval; (2) there
were occasional geomagnetic storms; and (3) at least the
suggestion of some form of a solar cycle still operating during
this interval. The continued, sporadic appearance of sunspots
suggests that magnetic flux continued to emerge through the
photosphere, albeit at a much lower rate. The occasional
geomagnetic storms suggest a continued magnetic connection
between the solar surface and Earth’s magnetosphere. And the
maintenance of a solar cycle (albeit potentially a rather
different one) suggest that the field did not “extinguish” itself,
which, from a theoretical perspective, would be difficult to
envisage.
Thus, we suggest that the most radical scenarios for the

Maunder Minimum photosphere may have contained only
small-scale ephemeral flux, random in amplitude and position,
but substantially less (say, one third to an order of magnitude)
than currently observed ephemeral regions. Figures 3(e) and
(f) summarize a photosphere composed of only parasitic
polarity (i.e., small-scale ephemeral regions) of strength ±10
and ±3.3 G, respectively. Strong field magnetic elements in the
photosphere are typically ∼1 kG; however, flux densities are
dependent on resolution. The value of ±10 G was chosen to
match observed values from synoptic magnetograms assembled
at this resolution (1° × 1°) during the 2008 time period, while
the ±3 G value is simply a 1/3 scaling. In these scenarios there
are no large-scale polar fields, i.e., the dynamo as we know it
would have ceased to operate. Evolutionarily, we might
anticipate that this state was arrived at slowly as the polar
fields decayed, not being replaced by poleward-migrating flux
from sunspots, which had disappeared. Thus, this might
represent the state of the Sun late in the Maunder Minimum
interval.
At the other end of the spectrum, the most conservative

scenario would be that the Maunder Minimum period was no
different than the recent minimum of 2008/2009 (Figure 3(a)).
If substantiated, this is an appealing result because all of the
modern era measurements, modeling, and inferences could be
applied to better understand, and constrain the Maunder
interval. However, the fact that the 2008/9 minimum follows
a strong cycle (# 23) and the subsequent emergence of cycle 24
(albeit a relatively weak cycle) indicates that the 2008/9
minimum is a very limited analog for the state of the Sun for
much of the Maunder Minimum.
To these scenarios, we add several alternatives. In the first

(Figure 3(b)), we superimpose an axial dipole of strength 3.3 G
on top of a parasitic polarity distribution with peak amplitude
of ±30 G. In the second (Figure 3(c)), we consider a dipole
only, with strength 3.3 G. The third scenario reproduces case
(b), except that the large-scale dipole is reduced to 1 G.

6

The Astrophysical Journal, 802:105 (14pp), 2015 April 1 Riley et al.



These six scenarios represent a wide possible array of
configurations for the distribution of flux in the photosphere
that may have existed during the Maunder Minimum.

4. GLOBAL MHD MODELING

A global MHD model of the solar corona and inner
heliosphere can provide a unique and powerful way to “self-
consistently” link the disparate observations discussed in
Section 2 and assess the likelihood that any of the scenarios
discussed in Section 3 are consistent or in conflict with these
observations. The model we describe in the following sections
contains the key elements that: (1) the primary driver is the
photospheric magnetic field; and (2) the heating of the corona
is a function only of the photospheric magnetic field strength.
Thus, the magnetic and emission properties of the corona are
coupled, and we can, at least in principle, apply the model to
epochs with significantly different properties.

4.1. Model Description

The MHD approximation is appropriate for large-scale, low-
frequency phenomena in magnetized plasmas such as the solar
corona. Using the photospheric magnetic field as the primary
driving boundary condition, as described in Section 3, we can
attempt to reproduce the Sun’s magnetic and emission
properties during during the Maunder Minimum by solving

the following set of viscous and resistive MHD equations:
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where B is the magnetic field, J is the electric current density,
E is the electric field, ρ, v, p, and T are the plasma mass
density, velocity, pressure, and temperature, = - ☉g rg R rˆ0

2 2

is the gravitational acceleration, η the resistivity, and ν is the
kinematic viscosity. Equation (8) contains the radiation loss
function Q(T) as in Athay (1986), ne and np are the electron
and proton number densities (which are equal for a hydrogen

Figure 3. Comparison of possible configurations of the Sun’s photospheric magnetic field during the Maunder Minimum period: (a) CR 2085; (b) parasitic polarity
(±30 G) plus large-scale dipole (3.3 G); (c) Large-scale dipole only (3.3 G); (d) parasitic polarity (±30 G) plus large-scale dipole (1 G); (e) parasitic polarity only
(±10 G); and (f) parasitic polarity (±3.3 G).
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plasma), γ = 5/3 is the polytropic index, Hch is the coronal
heating term (see below), and q is the heat flux.

For the present study, we have used a grid of
151 × 180 × 360 points in r × θ × ϕ. The grid resolution is
nonuniform in r with the smallest radial grid interval at = ☉r R
being ∼0.33 km. The angular resolution in θ and ϕ is 1°. A
uniform resistivity η was used, corresponding to a resistive
diffusion time τR ∼ 4 × 103 hr, which is much lower than the
value in the solar corona. This is necessary to dissipate
structures that cannot be resolved which are smaller than the
cell size. The Alfvén travel time at the base of the corona
(t = ☉R VA A) for =∣ ∣B 2.205 G and = -n 10 cm0

8 3, which
are typical reference values, is 24 minutes, and so the
Lundquist number t t » ´1 10R A

4. A uniform viscosity ν is
also used, corresponding to a viscous diffusion time τν such
that τν/τA = 500. Again, this value is chosen to dissipate
unresolved scales without substantially affecting the global
solution. Our model starts at the upper chromosphere and
includes the transition region (Lionello et al. 2009).

4.2. Coronal Heating

Global MHD models of the solar corona and inner helio-
sphere have demonstrated their ability to reproduce the
essential features of a range of measurements and observations
during the space era (e.g., Riley et al. 2011, 2012). A crucial
aspect and limitation of current capabilities concerns the
physical mechanisms that heat the corona. While it is generally
believed that it must involve the conversion of magnetic energy
into heat, it is not clear how this transformation takes place.
One scenario involves the dissipation of high-frequency waves,
while another relies on the rapid release of energy built up from
slow photospheric motions (e.g., Lionello et al. 2009). Phe-
nomenologically, it is well known that magnetic flux and X-ray
radiance are linearly correlated over many orders of magnitude
(Fisher et al. 1998; Pevtsov et al. 2003; Riley et al. 2010).

In this study, we take the pragmatic but necessary position of
specifying the heating as a function of magnetic field strength.
Specifically, we assume that the heating of the corona takes the
following form:

= +H H H (9)QS AR

=
+( )

H H f r
B

B B B
( ) (10)t

r r
cQS QS

0
2

=
æ

è
çççç

ö

ø
÷÷÷÷

H H g B
B

B
( ) (11)AR AR

0

0

1.2

where: = +q fB B Bt
2 2 , = ´ - -H 1.18 10 erg cm sQS

0 5 3 ,

=B 0.55 Gr
c , = ´ - -H 1.87 10 erg cm sAR

0 5 3 , and =B 1 G0 ,

= - -( )f r( ) exp
r R 1

0.2
, and = + -( )g B( ) 1 tanh B1

2

18.1

3.97
.

Although these functions are ad hoc, importantly, they
depend only on the strength of the magnetic field, and hence,
provided that coronal heating too depends only on field
strength, should be applicable to a range of values even outside
those that have been observed during the space era. Thus, by
demonstrating that the model can reproduce the basic features
of the observations during the space era, and requiring that the
heating profiles depend only on the magnetic field, that is, that
there are no additional free parameters, we have some

confidence that the heating profiles should be applicable when
applied to more extreme conditions.

4.3. Computation of the Open Solar Flux

The OSF is that portion of the Sun’s magnetic field that
enters into the heliosphere (Lockwood 2013). Assuming
further that, on sufficiently long temporal scales, this flux is
independent of position in the heliosphere, as suggested by
Ulysses observations (Smith & Marsden 2003), in situ
measurements of the interplanetary magnetic field, BIMF, are
a proxy for the open flux. Multi-solar cycle measurements of
OSF demonstrate that the open flux roughly doubles between
solar minimum and solar maximum. Owens & Crooker (2006),
Riley et al. (2007) and Schwadron et al. (2010) have argued
that the measured flux at 1 AU consists of a relatively constant
background flux, with an additional contribution from CMEs,
which at solar maximum can be as large as the background
level.
Lockwood et al. (2009) have shown that OSF can be

predicted from near-Earth measurements of ∣ ∣Br
IMF provided the

radial IMF component Br
IMF is averaged over a day before the

modulus is taken. This averaging time scale is a compromise—
being short enough to avoid large-scale canceling out of the
genuine toward-and-away source structure yet long enough to
average out smaller scale structure in the IMF. This averaging
time constant was employed by Wang & Sheeley (1995), and
we can adopt their equation to estimate the magnitude of the
radial IMF at Earth from the MHD solution as:
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where ϕ denotes longitude, R radius of the Sun, Rs is the
radius of the source surface, typically R2.5 , rE is the distance
of the Earth from the Sun (1 AU), and the solid-angle integral
is computed over a sphere at the source surface.

4.4. Model Results

We used the six magnetic maps described in Section 3 to
compute MHD model solutions of the solar corona from 1 to
30 RS. The resulting magnetic field configurations are shown in
Figure 4. The same starting points were used in each panel,
corresponding to a mesh resolution of 10° in latitude and
longitude. We note several points. First, a relatively clear
streamer belt configuration can be discerned for cases (a)–(d):
field lines emanating from the polar regions extend into
interplanetary space and remain open. Those straddling the
heliospheric equator tend to be closed. Second, there is a
qualitative decrease in the amount of open flux in moving from
(a) to (f), at least based on the number of field lines drawn.
Third, there is a net decrease in the organization of field lines
from (a) to (f) (except for (c), which displays perfect axial
symmetry). This is particularly true for comparisons between
(a)–(d) and (e)–(f), the latter showing no obvious axis of
symmetry. Interestingly, (d), although displaying axial sym-
metry, appears to be tilted substantially with respect to the
rotation axis, presumably because of the presence of a coherent
feature in the parasitic polarity.
For each solution, we computed the open magnetic flux, as

defined by Equation (12). These are summarized in Table 1.
Our “standard run,” CR 2085, produced a radial IMF of 1nT at
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1 AU. Scenario (b) results in the largest radial IMF (2.4 nT),
then scenarios (c) through (f) yield progressively less radial
field. Radial fields of 1 nT and 2.4 nT correspond to OSFs of
2.8 × 1014Wb and 6.8 × 1014Wb, respectively. By way of
comparison, from modeling based on geomagnetic reconstruc-
tions of the OSF and continuity equations and using sunspot
numbers to compute the CME and hence flux emergence,
Lockwood & Owens (2014) recently arrived at OSF estimates
during the Maunder Minimum of between 0.8 × 1014Wb and
1.6 × 1014Wb, the uncertainty being derived from Monte-Carlo
analysis of the fitting, but also including the cyclic behavior
during the Maunder Minimum. Note that their plot shows
signed OSF and so values must be multiplied by two to

compare with the unsigned fluxes presented here. Thus their
values overlap with those derived here but are slightly lower on
average.
The largest proportional change occurs for (e) to (d)—a

factor of 4.1, followed by the change from (f) to (e)—a factor
of 3.6. The value computed for CR 2085 (scenario (a)), is
lower than estimates made using near-Earth spacecraft (and
earlier observations from Ulysses). However, the relative
variations in open flux between models and observations have
been shown to match well (Wang & Sheeley 1995). Stevens
et al. (2012) have investigated the known deficit in the open
flux produced by the models, suggesting that a better estimate
of some of the model parameters (e.g., coronal base
temperature) may resolve the difference. Additionally, more
recent analysis by Linker et al. (2012) suggests that current
synoptic maps may be underestimating the polar field strengths,
which would lead to a systematic reduction in the model
estimates for the open flux. For our purposes, assuming that the
relative differences are reasonably accurate, scenarios (e) and
(f) predict reductions over 2008 conditions of a factor of ≈3.4
and ≈12.5, respectively. Additionally, it should be noted that
the 2008 time period we are comparing to represents a
somewhat unique interval where the fields were lower by a
factor of 1.6 over the previous space era minima (Smith &
Balogh 2008), and general solar activity was estimated to be
the lowest it had been in the last century (e.g., Riley
et al. 2011). The range bracketed by scenarios (e) and (f) is

Figure 4. As Figure 3 but showing a selection of magnetic field lines drawn from a grid separated by 10° in latitude and longitude.

Table 1
Open Flux Estimates

Model Description Open Flux

(a) CR 2085 (06/26/09–07/23/09, polar field ∼1.9 nT) 1.0 nT
(b) Parasitic polarity (±30 Ga) + Large-scale

dipole (3.3 G)
2.4 nT

(c) Large-scale dipole only (3.3 G) 2.2 nT
(d) Parasitic polarity (±30 G) + Large-scale dipole (1 G) 1.2 nT
(e) Parasitic polarity only (±10 G) 0.29 nT
(f) Parasitic polarity only (±3.3 G) 0.08 nT

a Maximum amplitude.
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consistent with the difference between the curves in Figure 2
when contemporary values are compared with those in 1700.

We next consider the structure of the corona in white light
that these scenarios suggest. In Figure 5, we have computed the
simulated polarized brightness (pB) for each solution. These
were constructed by integrating the plasma along the line of
sight with a suitable weighting function (Billings 1966). We
have found that the model usually matches observed white light
images both from spacecraft and ground-based observations
during eclipses (Riley et al. 2001, 2011; Mikić et al. 2007;
Riley 2010). Scenario (a), which represents the corona during
the last solar minimum, displays the typical mid- and low-
latitude streamer structure we expect during the declining
phases and solar minimum. The recent minimum was unique in
that there were a larger number of pseudo-streamers present
than during the previous (1996) minimum, which led to a
broader and more structured “belt” of brightness around the
equator (Cliver & Ling 2011; Riley & Luhmann 2012). The
presence of unipolar polar fields is clearly seen by the dark
regions over both poles. Scenario (b), which represents an
idealization of scenario (a) by removing any large-scale active
regions, as well as scenario (c) for which the parasitic polarity
has been removed, present similar pictures. The closed, dipolar
fields bracketing the equator trap plasma that scatters photons
to the observer while the polar, open field regions retain only a
tenuous outwardly streaming flow of plasma that cannot be
easily seen in white light. Scenarios (e) and (f) are both much
darker and do not display any axial symmetry. It is likely that
scenario (f) would not be visible to the naked eye, especially if

contrasted with the relative brightness of the preceding partial
eclipse. Scenario (e) is marginally more visible, and appears to
show some structure. Whether or not this would be reported, or
whether only the more dominant effect of a “halo” or “annulus”
would be noted by observers of the time is unclear. Scenario
(d), which in some sense was designed to bridge the gap
between (a)–(c) and (e)–(f) by reducing the dipole strength by
a factor of 3.3, clearly shows a streamer-belt-like configuration.
We conclude from these images that, had scenarios (a) through
(d) been in effect during the Maunder Minimum, observers
would probably have noted the existence of structure within the
white-light corona.
The white light we observe from the solar corona is made up

of two primary components: the K (kontinuierlich) and F
(Fraunhofer) corona. The K-corona is created by sunlight
scattering off free electrons, while the F-corona is created by
sunlight scattering off dust particles. Close to the Sun, the K-
corona dominates; however, beyond ≈3RS (the precise number
depending sensitively on the point of observations and solar
conditions), the brightness of the F-corona exceeds that of the
K-corona (Koutchmy & Lamy 1985). Here, it is important to
differentiate between brightness, B, and polarized brightness,
pB: while coronagraphs (and MHD simulation results) often
display images of pB, at visible wavelengths, the polarization
of the F-corona is nearly zero, hence it it not observed in
images of pB, even at larger distances. But, more importantly,
our eyes “see” B. Thus, to directly relate our simulation results
to the reports of eclipses during the Maunder Minimum, we
should limit ourselves to B.

Figure 5. As Figure 3 but showing simulated polarized brightness.
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Figure 6 is an estimate of the F-corona as it might have
looked during the Maunder Minimum using the formulae by
Koutchmy & Lamy (1985). In fact, this picture is indis-
tinguishable from how it would appear today, given that the
dust giving rise to it was formed from asteroid collisions and
cometary activity, for which the timescales are much longer.
We also have taken the liberty of using a red color table based
on work suggesting that there is a strong reddening of the
spectrum (see Koutchmy & Lamy (1985) and references
therein). It is, however, by no means certain that, if the K-
corona disappeared completely, the remaining F-corona would
appear as red as shown here. The main point to make is that the
F-corona shows no discernible structure with respect to
position angle. Although there is a slight variation between
the equator and pole, this would be imperceptible to the naked
eye. An observer fortunate enough to witness the F-corona
directly would report a smooth annulus or halo surrounding the
Sun, possibly reddish in color.

To make a direct comparison between the F- and K-coronae
during the Maunder Minimum, we computed simulated total
brightness (B) images, analogous to those shown in Figure 5.
From these, we extracted radial traces taken through the solar
equator for each scenario, and compared them with the F-
corona brightness estimates discussed above. These are shown
in Figure 7. We remark on the clear separation between
scenarios (a)–(d) and (e)–(f). The former dominate over the F-
corona (red) at least out to 2RS. The latter, however, are
dominated by the F-corona by 1.3 RS. Comparison with
Figure 5 suggests that the range between 1.3 RS and 2 RS is
precisely where coronal structure manifests itself in white-light
eclipse observations. Given the idealizations and approxima-
tions employed to arrive at this result, it is quite remarkable that
such a clear delineation occurs. Based on these results, then, we
would anticipate that an eyewitness to scenarios (e) or (f)
would not observe any structure of the true (K-) corona
because it would be obscured by the (potentially red) and
structureless F-corona. On the other hand, an observer of
scenarios (a)–(d) would likely see helmet streamer, pseudo

streamer, coronal hole, and plume structure before being
washed out by the F-corona.

5. DISCUSSION

Our results suggest that the most likely state of the corona
during the Maunder Minimum was not merely that of the 2008/
2009 solar minimum, but rather a state devoid of any large-
scale structure, driven by a photospheric field composed of
only ephemeral regions, and likely substantially reduced in
strength. The continued modulation of cosmic rays, including
the inferred presence of an 11 yr cycle, as well as albeit modest
auroral activity, requires both some magnetic field and a
continuing dynamo process. The lack of any observations
reporting coronal structure, the possible presence of an F-
corona, and likely decrease in the strength of the IMF also
contradict the idea that the Maunder Minimum Sun was no
different than in 2008/2009. It is worth noting that Schrijver
et al. (2011) and Svalgaard & Cliver (2007) based their
conclusions on assumptions or hypotheses, which were
extrapolated back to the Maunder Minimum Interval. Schrijver
et al. (2011) argued that there is a minimum state, or “floor” in
solar activity, associated with small-scale magnetic bipoles
(i.e., what we have called ephemeral regions). However, they
did not address whether or not polar coronal holes would have
been present during the Maunder Minimum. Svalgaard &
Cliver (2007) posited a similar “floor” but this time, in terms of
the strength of the interplanetary magnetic field. This was
based on 12 cycles of sunspot data and nuclide data going back
to 1500. The proposed floor of 4.6 nT, however, had to be
lowered as the 2008/2009 minimum dropped below the value
predicted for it.
Our analysis has been limited to qualitative inferences on the

likely state of the corona during the Maunder Minimum.
However, these are subjective, in the sense that two reasonable
people could disagree. For example, while the reports of a “red
erie glow” during some of the eclipse observations is
suggestive of the presence of an F-corona, one could argue
that these were the result of local atmospheric effects, or even
sensitivities unique to the observer. In an attempt to incorporate
various types of evidence to arrive at a more reliable estimate
for the probability that a given hypothesis is true, based on
various pieces of evidence, we can invoke a Bayesian type of
reasoning. In our case, scenarios (a)–(f) have captured two
distinct ideas. First, that the Maunder Minimum Sun was like
that in 2008/2009 (the “2008 Sun”) ((a)–(d)). And second,
that the Sun consisted exclusively of parasitic polarity, with no
large-scale dipole component (the “ephemeral-only” Sun,
(e)–(f)).
Table 2 lists each piece of evidence that might support either

the conclusion that the Maunder Minimum Sun was “2008-
like” or “ephemeral-like” based on our analysis in Section 2,
together with our informed guess about which scenario the
evidence supports. If we could derive reasonably accurate
likelihood ratios for each piece of evidence listed, we could
compute Bayesian estimates of the posterior odds ratio, and,
hence, the likelihood of one scenario occurring over another.
Unfortunately, we cannot; at best, we could argue that the
eclipse observations, for example, make it more likely than not
that the Sun was in an ephemeral-only state. On the other hand,
with exclusive scenarios, the odds must add to one, so that
many pieces of evidence modestly favoring one outcome, at the
same time discount the alternative. Thus, we suggest that the

Figure 6. Simulated image of the F-corona, based on the formula by Koutchmy
& Lamy (1985).
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list presented in Table 2 more strongly favors the “ephemeral-
like” scenario than might be otherwise intuited.

Our invocation of Bayesian methodology to argue that the
“ephemeral-only” Sun is strongly favored may seem awkward.
In fact, the case for the ephemeral-only Sun can be made
simply by scanning Table 2. However, the Bayesian approach
provides two advantages. First, it emphasizes that the
individual pieces of evidence combine in a multiplicative
fashion to support one hypothesis over the other. Second, it
provides a conceptual framework for understanding the fallacy
of arguments that seek to promote an alternative hypothesis by
attacking the credibility of the evidence supporting the former.
For example, consider observations of eclipses during the
Maunder Minimum. While one can argue that there may have
been omissions or even biases in the reports, this only goes to
the credibility of the evidence, that is, a measure of the error
bars. The most probable interpretation remains that these
observations tend—even if only slightly—to favor the
“ephemeral-only” picture, and they actively refute the “2008/
2009” scenario. As with error analysis in general, we derive the
best estimate of the parameter by multiplying the individual
parameters together, and then, we add the relative individual
errors. We may conclude that the errors are large enough that
they admit either hypothesis; however, our conclusion remains
that the most likely scenario is the “ephemeral-only” Sun.

Our results and conclusions are sensitive to a number of
limitations and assumptions. Not withstanding the quality of
the observations and their interpretation, we have applied an
MHD code to an interval of time for which we have no
experience modeling. The need to invoke a heating mechanism
that likely tracks well with large changes in magnetic field
strength necessitated a prescription based only on the magnetic
field strength. In particular, we excluded an exponential heating
term, which we believe is a key component for heating the fast
solar wind (Lionello et al. 2009). We did, however, make
several test runs with this term on and off, finding that it did not
affect the amount of flux opened into the heliosphere in any
significant way. Additionally, we recognize that the actual
numerical values of the photospheric field strength observed
during the space era are not well determined (Riley
et al. 2014). However, on the scale of variability we are
exploring in this study, such uncertainties are unimportant.
More importantly, we have assumed that the heating is roughly
proportional to the field strength over (potentially) several
orders of magnitude. Although this is apparently borne out by
observations across a range of stellar objects (e.g., Fisher
et al. 1998; Pevtsov et al. 2003; Riley et al. 2010), it is not
necessarily the case that the Sun must adhere to such a rule.
Finally, we should note that our limited set of simulations does
not preclude a case where the dipole field strength is
sufficiently small that it would not conflict with the observa-
tions, and particularly the eclipse reports. However, any—even
modest—large-scale component is likely to break up the
random character of the ephemeral fields, imposing coronal
hole structure.
Our study suggests that the so-called “floor” in the strength

of the heliospheric magnetic field may have been substantially
lower than early estimates suggest (e.g., Svalgaard &
Cliver 2007; Owens et al. 2008). To deduce a revised floor
value of the near-Earth IMF strength, Cliver & Ling (2011)
used: (1) a precursor relationship between IMF strength at solar
minimum (Bmin) and the subsequent SSN maximum; and (2) a
correlation between the solar polar field strength and Bmin,
resulting in a new floor estimate of ∼2.8 nT. Cliver (2012)
suggested that the minimal magnetic state of the Sun
characterized by ephemeral active regions identified by
Schrijver et al. (2011) could be the source of such a floor.
This suggestion is supported by simulation (e) in Table 1 (only
ephemeral regions (±10 G), no polar fields) which, using a
regression relation between Br, B, and v (Cliver & Ling 2011),
produces a field strength of B = ∼2.1 nT for an assumed solar
wind speed of ∼300 km s−1.

Figure 7. Comparison of radial fall-off in brightness for the six model results
shown in Figure 5 with the brightness profile computed for the F-corona (red).

Table 2
Summary of Observational Evidence for Each of Two Possible Maunder Minimum Scenarios

Observation 2008 Sun Ephemeral Sun Notes

SSN × ✓ Strictly speaking, 2008/2009 cannot represent ∼1700 because sunspots have not been absent for the last 70 yrs
Aurora ? ? Difficult to assess because historical records are not currently maintained, and current measures are limited to

space era
10Be × ✓ When coupled with neutron monitor measurements and converted to modulation potential, 2008 was

significantly different than 1700
14C × ✓ Unfortunately, natural 14C measurements cannot be extended beyond 1950
Coronal Structure × ✓ Eclipse observations during MM are not unambiguous. However, argument can be made that a 2008 eclipse

would have been noted
Red Glow × ✓ Reports of an “erie” red glow are suggestive of an F-corona (and commensurately fainter, or absent K-corona)
11 yr Periodicity ✓ × Continued solar cycle suggests that circulation still proceeding, implying that polar fields continued to build-up

and decay
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A similar relationship in Rouillard et al. (2007) gives
∼2.5 nT. More recently, Lockwood & Owens (2011) devel-
oped a non-linear relationship between B and Br that gives
B = 1.8 ± 0.6 nT at the end of the Maunder Minimum
(Steinhilber et al. 2010).

Many dynamo models of the solar cycle succeed in
generating cyclic or pseudo-cyclic variability during Maunder
Minimum-like epochs of strongly suppressed activity. In
models where the polar fields are generated through turbulent
dynamo action within the convection zone, even if the strength
of the internal magnetic field were to fall below the sunspot
formation threshold, the cycle is actually still running. Cyclic
polarity reversals of the (weakened) surface dipole are
therefore expected to continue unabated (e.g., Beer
et al. 1998). In dynamo models where the surface dipole is
generated via the surface decay of active regions, the situation
is more delicate, but pseudo-cyclic variability can still be
produced during suppressed activity episodes. This can occur
either through transport and submergence of slowly decaying
residual magnetic fields (e.g., Charbonneau et al. 2004), or
intermittent active region emergences and/or secondary turbu-
lent dynamo action (e.g., Passos et al. 2014). Unfortunately,
the number of poorly constrained parameters and functionals in
most such models precludes any reliable prediction of the
strength of the residual surface magnetic field.

An important point to make is that the Maunder Minimum
was not a steady period of inactivity. Instead, it is likely that
there was a general progression to a progressively deeper
configuration during the 70 yr period. Therefore, it may be
more reasonable to compare the 2008/2009 solar minimum
with the initial descent into the Maunder Minimum; however, it
is unlikely that the last 5–10 yrs of the Maunder Minimum
looked anything like the recent minimum. Additionally, recent
work by Johnsen et al. (2014) suggests that the solar cycle 24
minimum was too brief to reach a true “floor” state, and, in
particular, that there remained a significant presence of
magnetic flux in the polar regions. Thus, we suggest that the
Sun’s magnetic field continued to evolve during the Maunder
Minimum and posit that this evolution is best represented by an
ever-decreasing surface field, and, in particular, the gradual
decay of the polar fields. These polar fields are the dominant
source of the open flux permeating the heliosphere and
modulating the flux of cosmic rays hitting Earth’s magneto-
sphere. By 1700, the Sun may have consisted of only small-
scale parasitic polarity field, with virtually no substantial large-
scale dipolar component.

Our results are in apparent conflict with several numerical
studies. Mackay (2003) used a magnetic flux transport model
to conclude that if the grand minimum started at solar cycle
minimum, then a large amount of unipolar flux may have
persisted in the polar regions of the Sun, whereas, if the
minimum had started at solar maximum, there may have been
little-to-no large scale magnetic flux on the Sun. Additionally,
Wang & Sheeley (2013) argued that an “ephemeral only” Sun
was not possible because the inferred interplanetary magnetic
field strength would be inconsistent with estimates based on the
10Be record. Their approach for estimating the open flux that a
distribution of randomly orientated small-scale dipoles would
produce, however, rested on a magnetostatic extrapolation of
the large-scale residual field produced by them. Importantly, it
did not take into account the fact that small loops would be
heated, expand, and potentially open up into the solar wind– a

result that could only be revealed using an MHD approach, as
described here. In fact, our results suggest that an ephemeral-
only Sun is capable of supplying an open flux that may be 1/10
to 1/3 of the value measured in 2008/2009, and clearly
consistent with the cosmogenic records.
In closing, our analysis of the available observations during

the Maunder Minimum, together with their interpretation
within the context of global MHD model results suggests that
this period was unlike anything we have observed in recent
times. The cosmogenic record suggests that the interval was not
static but continually evolving. We suggest that the period may
be bounded by the two states we have compared and contrasted
here: that of the 2008/2009 minimum and the ephemeral-only
Sun. Moreover, this supports the conjecture by Lockwood
(2013) that the Sun may be entering into the next grand
minimum.
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