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ABSTRACT

Current methods for initialising coupled atmosphere-oceanforecasts often

rely on the use of separate atmosphere and ocean analyses, the combination

of which can leave the coupled system imbalanced at the beginning of the

forecast, potentially accelerating the development of errors. Using a series

of experiments with the European Centre for Medium-range Weather Fore-

casts coupled system, the magnitude and extent of these so-called initialisa-

tion shocks is quantified, and their impact on forecast skillmeasured. It is

found that forecasts initialised by separate ocean and atmospheric analyses

do exhibit initialisation shocks in lower atmospheric temperature, when com-

pared to forecasts initialised using a coupled data assimilation method. These

shocks result in as much as a doubling of root-mean-square error on the first

day of the forecast in some regions, and in increases that aresustained for the

duration of the 10-day forecasts performed here. However, the impacts of this

choice of initialisation on forecast skill, assessed usingindependent datasets,

were found to be negligible, at least over the limited periodstudied. Larger

initialisation shocks are found to follow a change in eitherthe atmospheric or

ocean model component between the analysis and forecast phases: changes

in the ocean component can lead to sea surface temperature shocks of more

than 0.5 K in some equatorial regions during the first day of the forecast. Im-

plications for the development of coupled forecast systems, particularly with

respect to coupled data assimilation methods, are discussed.
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1. Introduction36

The use of a coupled atmosphere-ocean model, in preference to an atmosphere-only modelling37

approach, is essential in order to achieve skillful forecasts of climate on the seasonal timescale and38

beyond, and is increasingly being recognised to provide benefits at shorter forecast lead times too39

(e.g., Fu et al. 2007; Klingaman et al. 2008; Vitart et al. 2008; Janssen et al. 2013; Shelly et al.40

2014). A major challenge of the coupled forecasting approach lies in the initialisation, the goal of41

which is to incorporate information from the observationalnetwork in both atmosphere and ocean42

into the corresponding model components in an optimal manner. This is commonly achieved43

through data assimilation (DA), performed using one of a number of established methods for each44

model component (e.g., Daley 1991; Anderson et al. 1996).45

The data assimilation strategy used by operational centresin recent years to initialise coupled46

forecasts (e.g., Saha et al. 2006; Molteni et al. 2011; Arribas et al. 2011; MacLachlan et al. 2014) is47

to perform separate analyses of the atmosphere and ocean. A sea surface temperature (SST) prod-48

uct is used to prescribe the boundary condition of the atmospheric model, and the ocean model49

is constrained by either near-surface atmospheric fields orexplicitly specified surface heat, mo-50

mentum and freshwater fluxes, typically obtained from an atmospheric analysis or from a gridded51

observational product. One-directional coupling during the initialisation may be achieved with52

this approach, by using the result of the atmospheric analysis to provide the boundary condition53

for the ocean model (e.g., Balmaseda et al. 2013). However, the use of different models for the54

analysis and forecast phases can further complicate matters, particulary when producing histor-55

ical hindcasts (re-forecasts) for calibration purposes using past initial conditions computed with56

previous model code versions. In this context, obtaining truly balanced initial conditions requires57
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allowing for some degree of atmosphere-ocean coupling to occur during the analyses themselves,58

as well as the use of the same coupled model in the analysis andforecast phases.59

Various possible coupled data assimilation systems exist,exhibiting varying strengths of cou-60

pling between the atmosphere and ocean. Several operational centres are pursuing such methods61

(Saha et al. 2010; Lea et al. 2014; Alves et al. 2014), including the European Centre for Medium-62

range Weather Forecasts (ECMWF) which has developed a prototype for a coupled assimilation63

system that ingests simultaneously atmospheric and ocean observations (Laloyaux et al. 2015).64

In this system, information is allowed to cross the interface through the multiple integrations of65

the coupled model performed during the assimilation process, ensuring a consistent atmosphere-66

ocean analysis is produced (in the sense that each of the two model components have knowledge67

about the boundary fluxes of the other component, and have been able to establish a balance with68

one another in this context). Forecasts can be initialised from the output of this coupled analysis.69

ECMWF operational coupled forecasts currently, however, continue to use the uncoupled analysis70

method for initialisation.71

In choosing an initialisation method, particularly for relatively short-range coupled forecasts,72

it is important to ensure that the two model components are consistent with one another at the73

commencement of the forecast, in order to avoid the generation of ‘initialisation shocks’ (alterna-74

tively, coupling shocks, or spin-up effects) (Rahmstorf 1995; Zhang et al. 2007; Balmaseda et al.75

2009; Zhang 2011). The likely existence of initialisation shocks in the coupled model context76

has been acknowledged, particularly in a seasonal forecasting context (Balmaseda and Anderson77

2009; Marshall et al. 2011), but neither their formation norimpact in short-range forecasts using78

a full atmosphere-ocean global climate model has been explored in detail, to our knowledge. A79

particular problem lies in separating out signals of initialisation shock — that is, those that result80

purely from an imperfect initialisation method — and those of model drift, which occurs regard-81

4



less of the initialisation method used, due to the existenceof biases, physical or dynamical, in the82

model (e.g., Magnusson et al. 2013; Wang et al. 2014). Measuring the magnitude of initialisation83

shock and investigating its causes are important steps in maximising the effectiveness of coupled84

forecasts and in pointing the way towards possible improvements to conventional methods.85

Here, we define initialisation shock relatively broadly, toencompass several possible causes,86

each of which we are able to isolate using the experiments that follow:87

1. An imbalance, in the vertical fluxes of any of heat, momentum or freshwater, between the88

atmosphere and ocean initial states, formed due to insufficient communication between the89

two model components during the calculation of the initial conditions. This situation can arise90

if model components are coupled to forcing fields other than those of the coupled system91

during initialisation, such that the near-surface regionsof each component are compatible92

with the relevant forcing fields but will not, in general, be compatible with each other. As a93

result, when the two components are combined at the beginning of the forecast, rapid changes94

in surface fluxes are expected, as the two components exchange heat, momentum and/or95

freshwater in order to establish a new thermodynamical balance. This rapid adjustment could96

have an undesirable impact on the forecast.97

2. The use of different models, or different versions or configurations of the same model, to98

provide the initial state (for either component) and to compute the forecast. A common99

example of this is the use of a popular reanalysis such as ERA-Interim (Dee et al. 2011) to100

directly initialise an atmospheric model different to the one used to generate the reanalysis101

(the reanalysis may then be described as ‘non-native’ with respect to the forecast model). The102

result could be an initial state that is incompatible with new model’s attractor, resulting in an103

adjustment at the beginning of the forecast.104
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3. The instantaneous removal of bias correction terms in oneof the model components, resulting105

in an abrupt change in the dynamics of the component at the beginning of the forecast, even106

in the absence of any model drift (this effect is explained inmore detail in Section 3d).107

This initialisation shock definition is not intended to be a complete list of the contributors to spin-108

up effects in a model forecast: development of forecast errors due to model biases, in what would109

be considered ‘standard’ model drift, isnot included, since this process is unavoidable even with110

a balanced initialisation using the same models as the forecast itself. Further, model adjustments111

occurring as a result of the more general problem of assimilating observational information in112

the initial conditions but not in the forecast itself, are not explicitly considered, as these are also113

present in all of the forecast systems used in this work. The shocks that are discussed here are114

those deviations of the forecast from the truth that can demonstrably be reduced or eliminated115

through changes to the initialisation procedure. Also, we note that a similar initialisation problem116

exists for the coupling of atmosphere and land surface modelcomponents, but do not consider this117

here: we focus solely on atmosphere-ocean coupling.118

In this paper, we use the ECMWF analysis and forecast system, invarious configurations, to119

detect the occurrence of initialisation shocks in coupled forecasts; to quantify the contributions120

to these shocks of each of the mechanisms listed above; and toevaluate the impact of shock on121

coupled forecasts. By using forecasts initialised using coupled DA as a control, it is possible to122

isolate those deviations from a reference state that may be described as initialisation shocks, as a123

subset of the total model drift, which occurs also via the development of systematic model biases.124

We attempt to establish if effects can be reduced through changes to the initialisation method, and125

investigate the extent to which the presence of initialisation shocks might affect forecast skill.126
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The structure of the paper is as follows. The models and initialisation techniques used in the127

paper are introduced, and the experiments performed are defined, in Section 2. The results of these128

experiments, including identification of initialisation shocks and evaluation of forecast skill, are129

presented in Section 3. Implications for operational coupled forecasting are discussed in Section 4,130

and the key findings of the paper are summarised in Section 5.131

2. Methods132

a. Models and experiments133

The coupled DA system recently developed at ECMWF, called the Coupled ECMWF ReAnal-134

ysis system (CERA), is presented and described in detail in Laloyaux et al. (2015). The CERA135

system is based on an incremental variational approach in which the misfits with ocean and atmo-136

spheric observations are computed by the ECMWF coupled model.Both atmospheric and subsur-137

face ocean observations are assimilated within a common 24-hour assimilation window, leading to138

the computation of a coupled atmosphere-ocean analysis. The CERA system uses recent versions139

of the Integrated Forecast System (IFS), at a spectral resolution of T159 with 137 vertical levels,140

for the atmosphere, and the Nucleus for European Modelling of the Ocean (NEMO) model, in the141

ORCA1 configuration (corresponding to a horizontal resolution of around 1◦ in midlatitudes and142

1/3◦ at the equator, with 42 vertical levels) for the ocean (see Table 1 for details of CERA and the143

other analyses used in this paper).144

For the purposes of understanding this paper, additional important points to note regarding the145

CERA system are that SST is nudged towards a gridded observational product during the cou-146

pled model integrations, rather than being explicitly assimilated, and that bias correction (see147

Section 3d) is not used in the ocean. The initialisation method used in CERA is presented dia-148
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grammatically in Fig. 1, along with the other approaches to ocean-atmosphere data assimilation149

that are relevant to this paper. It is intended that the degree of coupling present in the CERA150

method is sufficient to ensure a consistent initial ocean-atmosphere state, and thus (along with a151

consistency of models between analysis and forecast) avoidinitialisation shocks of the types listed152

in the previous section.153

Using CERA, coupled reanalyses were performed covering threetwo-month test periods (to154

provide some coverage of the seasonal cycle): Apr–May 2008,Dec–Jan 2008/9 and Aug–Sep155

2010. 10-day forecasts were initiated at 5-day intervals during these periods, at 00:00 UTC, using156

the CERA analysis to provide the initial conditions in both theatmosphere and the ocean. This157

set of 30 forecasts is named C1 (for ‘Coupled’; see Table 2). These forecasts were run with the158

same model configuration (versions and resolutions) as usedin CERA. While the three periods159

used cover a somewhat limited range (less than 3 years) of thepossible background states of the160

climate system, the consistency of results (shown in the next section) across the three periods gives161

confidence that our forecast sets are adequate for determining the relative importance of each of162

the sources of shock.163

Uncoupled analyses were also performed during these periods. The atmospheric analysis (which164

is referred to as Uatmos) used the observed SST products as the lower boundary condition, and165

this analysis was then used as the upper boundary condition during the ocean analysis (referred to166

as Uocean), with heat, freshwater and momentum fluxes from Uatmos applied as daily averages167

(in the same manner as described in Balmaseda et al. (2013)). The same subsurface observations168

were assimilated, and the same SST nudging scheme was used, as in CERA. A set of forecasts,169

U1 (for ‘Uncoupled’), with the same resolution as C1, was run using initial conditions obtained170

from these analyses. We refer to this set as ‘uncoupled’, though in fact a degree of one-directional171

coupling does exist in the initialisation, through the use of the completed atmospheric analysis172
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during the ocean analysis. Note, also, that the name U1 refers to the uncoupled nature of the173

analyses only: all forecasts performed here use a coupled system. Comparison of U1 to C1 will174

reveal the impact on forecasts of the use of coupled DA in creating the initial conditions. With175

respect to the other experiments detailed subsequently, the key feature of U1 is the use of the same176

operational ocean and atmosphere models in analyses and forecasts.177

A third set of forecasts, M1 (for ‘Model change’), was performed, using the same coupled fore-178

cast model versions as used by C1 and U1. In this set, atmosphere and ocean components were179

initialised using uncoupled reanalyses, namely ERA-Interim (Dee et al. 2011) for the atmosphere,180

and ORAS4 (Balmaseda et al. 2013) for the ocean. These reanalyses were performed with the181

atmospheric and ocean components of the ECMWF coupled forecasting system model, respec-182

tively (again using a gridded SST product as atmospheric boundary conditions and for ocean SST183

nudging), but in both cases older, deprecated model versions were used (see Table 1), creating an184

inconsistency between the analyses and forecasts. In the case of the atmosphere, the resolution185

between analysis and forecast also differed: ERA-Interim used a resolution of T255 L60, whereas186

the M1 forecasts were run at T159 L91. In the ocean, analysis and forecast resolutions were the187

same (ORCA1, 42 vertical levels, as previously). In M1, as in U1, there is some degree of coupling188

in the initialisation, as ORAS4 was forced by ERA-Interim fluxes during the assimilation.189

This method, involving older model versions (and possibly lower resolutions) in the creation190

of initial conditions, is commonly used for the production of historical hindcasts that are needed191

for the calibration of operational seasonal forecasts (e.g., Arribas et al. 2011), and changes in192

model version from analysis to forecast may also be a featureof the operational seasonal forecasts193

themselves (Molteni et al. 2011).194

Details of all the forecast types are summarised in Table 2. Note that in each case, the initial195

SST values used are taken from the ocean component of the analysis, rather than the atmospheric196
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component (Fig. 1). In short, the comparison between U1 and C1is designed to reveal the shock197

that occurs (in U1) due to atmosphere-ocean imbalance in theinitial conditions, while the com-198

parison between M1 and U1 is aimed at investigating the sensitivity of forecasts to the choice of199

uncoupled (re)analysis products used for initialisation,i.e. how this choice of initialisation product200

can generate shocks of the second and third ‘types’, as listed in the previous section. It is expected201

that any shocks will be detectable within the 10-day range ofthe forecasts.202

Two further sets of forecasts are added later (see Section 3d, and Table 2), to distinguish between203

the second and third sources of shock. Additionally, several 7-month forecasts are performed204

(see Section 4), to briefly examine the potential for initialisation shocks to impact the forecast on205

monthly timescales.206

b. Forecast evaluation methods207

In the results that follow, two common metrics, root-mean-square error (RMSE) and anomaly208

correlation coefficient (ACC), are used to measure forecast bias and skill respectively. RMSE is209

sensitive to mean drift so is used to detect shocks and identify absolute-value differences between210

forecast types. The centred version of ACC, as used here, is insensitive to mean drift (forecast211

and reference anomalies are calculated with respect to their individual climatologies) so is used212

to measure forecast skill. For each forecast type, RMSE is calculated with respect to the analysis213

that was used to initialise that forecast (specifically, CERA for C1, U atmos and Uocean for U1,214

and ERA-Interim and ORAS4 for M1). ACC is calculated for daily mean precipitation, and all215

forecasts are evaluated against an independent observational dataset (i.e. one not assimilated dur-216

ing any of the analyses), from the Global Precipitation Climatology Project (GPCP; a daily-mean217

dataset at 1◦ spatial resolution) (Huffman et al. 2012), so as to avoid biasing the calculation towards218

one of forecast types, as would be the case if a particular analysis were used. In the calculation219
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of ACC, forecast and observation ensemble means (averaged over the 30 start dates, at consistent220

lead times) are used as the climatologies (with respect to which anomalies are computed), since221

no longer record is available for the forecasts.222

In several of the figures shown, confidence intervals, with respect to forecast biases or skill being223

significantly different from the corresponding values in C1,which is taken as a baseline case, are224

used. These are calculated using a non-parametric bootstrapping approach to account for the finite225

sample size, (following Goddard et al. 2013; Smith et al. 2013) (details of the procedure are given226

in the Supplementary Information).227

3. Results228

a. Shock in the lower atmosphere229

In U1 and M1, the one-way coupling during the assimilation phase is such that continuity from230

analysis to forecast is provided in the ocean — by virtue of its forcing by the same atmospheric231

analysis used to provide the initial atmospheric state — butnot in the atmosphere. The change in232

SST forcing experienced by the atmosphere at the beginning of the forecast is the switch from a233

gridded, observed product to the ocean analysis field, whichitself was produced using nudging of234

SST towards the same observed product (Fig. 1). Therefore, the shock in the near-surface atmo-235

sphere can be expected to be a function of the accuracy with which the ocean analysis Uocean236

reproduces the SST field towards which it has been nudged.237

Fig. 2(a) shows the root-mean-square difference (RMSD) between the SST seen by the atmo-238

sphere during analysis (i.e. the gridded observed products) and the SST produced by the ocean239

analysis Uocean as initial conditions for the U1 forecasts. Discrepancies are largest in regions240

of large SST temporal variability, near the northern hemisphere western boundary currents, in the241
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eastern tropical Pacific (particularly during Aug–Sep 2010, when tropical instability waves are242

most active) and in the Antarctic Circumpolar Current. These are also areas in which model bi-243

ases, which the assimilation attempts to correct, are large. It is these areas in which shocks due to244

component imbalance may be expected.245

Fig. 3 shows the RMSE, after 12 hours, of forecast air temperature at 1000 hPa, for C1 (com-246

pared to CERA), U1 (compared to Uatmos) and M1 (compared to ERA-Interim), averaged over247

all forecast start dates. Widespread errors are present in C1(Fig. 3(a)), forming due to the pres-248

ence of biases in the models and to any imperfections in the coupled analysis initialisation method.249

These errors do not constitute the initialisation shock that is being investigated here, according to250

our earlier definition. Therefore, C1 is taken as a baseline case, such that any further deviation251

of a forecast from its reference analysis should represent ashock imparted by an initialisation252

procedure that differs from that of C1.253

Relative to C1, U1 (Fig. 3(b)) shows, over the ocean, small but significant increases in RMSE in254

several areas, which are generally those areas in which the RMSE between the two SST fields, as255

shown in Fig. 2(a), is largest. This air temperature shock signal in U1 therefore appears to develop256

primarily due to the change in SST forcing felt by the atmosphere after the transition from the257

analysis to the forecast phase. Correlations between the initial SST discrepancy and the 12 h air258

temperature error in U1 minus that in C1, calculated across the 30-date forecast set, are significant259

in the same areas of strong SST variability (Fig. S1(a)), confirming that the development of air260

temperature biases in excess of those found in C1, can be attributed to the imbalance between261

atmosphere and ocean at the beginning of the U1 forecasts. These air temperature shocks are262

generally of magnitude 0.2 K or less, but compared to the small baseline RMSE seen in most areas263

in C1 (Fig. 3(a)), they represent substantial error amplifications: RMSE is increased by 50% or264
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more in the eastern equatorial Pacific, eastern tropical Atlantic, northern Pacific and across most265

of the Southern Ocean, and it is more than doubled in the Gulf Stream and Arctic regions.266

The difference between ORAS4 SST and the gridded products used by ERA-Interim (Fig. 2(b))267

shows a similar spatial pattern to the differences between the operational analyses, but with slightly268

larger values (by an average of∼15%) in most areas, indicating a greater imbalance and larger269

discontinuity felt by the atmosphere at the beginning of a forecast. These increases in RMSD are270

partly the result of small differences between the SST products used by ERA-Interim and ORAS4271

during two of the three periods covered by these experiments. However, the 1000 hPa air tempera-272

ture shock in M1 (Fig. 3(c)) is rather different to that in U1:RMSE is increased relative to C1 over273

most of the ocean, in contrast to the limited areas of amplification seen in U1. Correlations be-274

tween initial SST discrepancy and 12 h air temperature shockare again significant in some regions275

(Fig. S1(b)), but are uniformly weaker than those of U1, suggesting the existence of another source276

of air temperature shock in M1. Also, there is little significant correlation to explain the shocks in277

parts of the North Pacific, the Southern Ocean near Antarctica and in the Arctic, in which regions278

(along with most of the globe) the bias is increased several times over its baseline (C1) values.279

The additional source of atmospheric initialisation shockin M1 is the change in both atmosphere280

and ocean model versions that occurs between analysis and forecast, combined with the change281

in atmospheric vertical resolution. The change in atmospheric model is likely to be the more282

important with respect to shock in the atmosphere, though the change of ocean model could also283

contribute (as explored further in the next subsection). Model differences lead to a shock that284

increases errors above those of C1, over most of the planet, bythe end of the first day.285

Fig. 4 compares the RMSE in air temperature throughout the atmospheric column after 24 hours286

in the forecast types C1, U1 and M1, each evaluated against theanalysis used for their initialisa-287

tion, averaged over the Niño3 region (150–90◦W, 5◦N–5◦S). In agreement with the interpretation288
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of the U1 near-surface temperature shock as arising from theinitial atmosphere-ocean imbalance,289

statistically significant differences in RMSE between U1 andC1 are limited to the lower atmo-290

sphere (at and below∼ 850 hPa). In M1, however, RMSE is amplified compared to C1 at all291

pressure levels, implying the occurrence of a shock that is spread throughout the atmosphere. This292

effect might very well arise from the difference in verticalresolution that exists between analysis293

and forecast (60 and 91 vertical levels respectively), together with differences in physics between294

the two model versions. Note that the errors at this point in the forecast are generally at least as295

large as differences between the three analyses.296

So, although atmospheric initialisation shocks do occur asa result of imbalanced initial condi-297

tions (i.e. shocks of the first ‘type’ as listed in Section 1),the evidence here suggests that these298

are smaller than the adjustments that occur following a change in the atmospheric model (shocks299

of the second type). In the present case the change is merely from an older to a newer version300

of the same model, and a larger effect can be anticipated if initial conditions are obtained from a301

structurally different model altogether.302

Fig. 5 shows the evolution of the air temperature forecast error at 1000 hPa for C1, U1 and303

M1 against their own analyses, averaged over the Niño3 region. The larger error growth in U1304

compared to C1 results from the SST discrepancies shown in Fig. 2(a) during the first day, and305

the effects of the shock are felt out to at least 10 days’ lead time, through a∼ 5–10% increase306

in RMSE, showing that initialisation shocks have the potential to impact medium-range (as well307

as short-range) forecasts. In M1, the effect of the difference in vertical resolution between the308

forecast and the reference analysis can be seen at lead timet = 0, and RMSE rises sharply on day309

one of the forecast, indicating a strong shock following thechange in model version/resolution.310

Part of the difference between M1 and U1 may be attributable to the lower vertical resolution of311
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M1 (the number of vertical levels in the lowest∼ 1 km is reduced by around a third compared to312

U1).313

b. Shock in the upper ocean314

In the upper ocean, markedly different bias development is seen in M1 compared to the other315

two forecast types, particularly near the equator. Fig. 6 plots the time series in SST averaged in the316

Niño3 region, for the three forecast types and their corresponding analyses, in the period Dec–Jan317

2008/9 only. In M1, a large shock occurs at the beginning of the forecast, and a cold bias of around318

0.5 K has formed after 6 hours, the first output point in the forecast series. A shock of around this319

size forms consistently (±20%) in each of the 10 forecasts in this period, and the identification320

of this error is clearly not sensitive to the reference SST used. The other two periods, shown in321

Fig. S2, feature similar cold shocks, but with different magnitudes. The shock is therefore a robust322

effect, but shows some seasonal variation, due to seasonal variation in the difference between the323

climatological states of the analysis and forecast versions of the ocean model. After the initial324

shock, a correction is seen to occur; nevertheless, by day 10, the M1 error is still significantly325

larger than errors in the other forecasts. In this case, the initialisation shock has increased the326

forecast error, though in general the shock need not be of thesame sign as the forecast drift (see327

e.g. Fig. S2(a)). A similar shock, though with smaller magnitude, is seen in the eastern equatorial328

Atlantic (see Fig. S3).329

The source of this drift is dynamical differences between the two ocean model versions (as used330

in ORAS4 and M1 respectively; see Tables 1 and 2), combined with differences in ocean analysis331

methodology. Upper ocean vertical profiles in the Niño3 region, plotted in Fig. 7, show that the332

ORAS4 analysis (run with NEMO v3.0) features stronger (by up to 50%) upwelling velocities333

than CERA and Uocean at 50 m depth and below. All three analyses are nudged tothe same (or334
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a very similar) SST field (analysed Niño3 SSTs show a spread of∼ 0.2◦ K), and the zonal wind335

forcings supplied to the ocean analyses (from CERA, Uatmos and ERA-Interim) are very similar336

(not shown), so differences in upwelling must be due to oceanmodel differences between the two337

versions used to perform the analyses, and differences in the treatment of model bias during the338

analysis (examined further in Section 3d). The shock that occurs in Nĩno3 in the M1 forecasts339

does so as a result of the use of the ORAS4 equatorial ocean state as initial conditions in the340

newer version of NEMO, which normally (in Uocean, with no bias correction) produces realistic341

near-surface temperatures with much weaker upwelling. Thestronger vertical velocities, as well342

as colder waters at 50–150 m, while not necessarily less realistic than Uocean, cause the rapid343

surface cooling due to their incompatibility with the forecast model. The partial recovery of Niño3344

SST in Fig. 6 can be interpreted as the equatorial ocean circulation adjusting (weakening) through345

the use of the newer model version. Differences between the analyses vary seasonally, correlated346

with the size of the SST shock in M1 in the three forecast periods. A similar explanation can be347

found for the (weaker) shock that occurs in the eastern equatorial Atlantic.348

Returning to Fig. 6, it is seen that the drift in C1, which can again be taken as a baseline case, is349

small in Niño3 in this season, though more substantive drifts do occur in other seasons (Fig. S2).350

In U1, a cold bias can be seen to form at the beginning of the forecast. However, the source of this351

bias is not the same as that of the M1 shock. The source is the weak diurnal variation present in352

SST in the Uocean analysis, as a result of the use of daily-mean fluxes in its production. Since353

forecasts are initialised at 00:00 UTC, a longitude-dependent bias forms once the coupled forecast354

model generates a larger diurnal SST signal. In the eastern Pacific, the initial SST value, which is355

essentially a daily-mean value, is too cold given the local time of day (seen by comparing the C1356

and U1 lines att = 0), so, as the region cools in the evening, a bias develops relative to Uocean.357

The opposite effect occurs in the Indian Ocean (Fig. S3(b)).C1, on the other hand, does not show358
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this drift, as the CERA ocean analysis includes some diurnal SST variation by virtue of its frequent359

coupling to the atmosphere during the analysis. The time-of-day effect might be considered to be360

a legitimate form of shock (in line with the definition given in Section 1), stemming from a lack of361

coupling during the ocean analysis. However, in principle it is possible to obtain a stronger SST362

diurnal cycle from an uncoupled ocean analysis by forcing using a higher-frequency atmospheric363

flux product.364

Errors introduced due to this effect are of order 0.1 K, and appear to account for most of the365

U1 drift in this region, which is otherwise not much different to that of C1, implying a limited366

impact of imbalance-driven shock on SST. Nevertheless, correlations between the SST and air367

temperature shocks do suggest that part of the U1 SST drift inthe eastern Pacific arises due to a368

compensatory ocean cooling in response to the overlying atmospheric cold shock (Fig. 3(b)).369

c. Impact on forecast skill370

Having established that initialisation shocks do occur in the upper ocean and in the atmosphere371

in the forecasts initialised using uncoupled data assimilation, we now investigate whether or not372

these shocks have any detrimental impact on the forecast skill, using daily average precipitation373

rates evaluated against GPCP observed rates. The use of an independent reference dataset such as374

this is the only way to meaningfully compare forecast skill among the different experiments, since375

each was initialised using a different analysis.376

Fig. 8 shows that, in both the tropics and extratropics, differences in forecast skill between377

C1 and U1, which should form solely due to the effects of shock due to initial imbalance, are378

very small and generally not significant, implying that the impact on forecast skill of this type of379

initialisation shock is, using this broad measure, slight.Although, where differences in these wide380

regional averages do briefly reach 90% significance (on two occasions in the northern extratropics)381
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they do so with larger skill scores in C1 than in U1. A similar evaluation of skill in 1000 hPa382

temperature, measured against an independent reanalysis,also resulted in negligible differences383

between C1 and U1 (not shown). A much larger forecast set may benecessary to assess confidently384

the penalty in skill arising from imbalance-driven shock, since it appears to be a very small one,385

as far as can be determined from this set.386

The precipitation forecast skill of the M1 forecasts (not shown) is consistently lower, by∼ 0.03,387

than C1 and U1. While this could suggest a sustained impact following the initialisation shock388

due to the change in model version, it is perhaps more likely to be a symptom of the slightly389

lower vertical resolution used in M1, and of the less accurate initial atmospheric state provided by390

ERA-Interim compared to the initial states used in C1 and U1.391

d. Sensitivity to ocean initial conditions392

Although dynamical differences between the two ocean modelversions were seen earlier to393

explain at least partly the SST shock in M1, there is another difference between the ocean initial-394

isation methods of M1 and U1 — the use of bias correction during the analysis in M1, and not in395

U1. Bias correction during the assimilation attempts to prevent the rapid destruction of increments396

by a biased model, and has an impact on ocean velocities, particularly close to the equator, where397

model biases tend to be large due to uncertain wind stress forcing of the upper ocean (Bell et al.398

2004; Balmaseda et al. 2007). The use of bias correction leadsultimately to a different ocean initial399

state, in the same way as does the use of a different model during analysis. To clarify the reasons400

for upper ocean shock in M1, a further two sets of forecasts, M2 and M3, were run. Both used401

ERA-Interim as the atmospheric initial conditions, like M1,and both used the same resolutions as402

M1, but with different initialisations for the ocean.403
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Forecasts M2 used as initial conditions a different ocean analysis, one identical to ORAS4 but404

run without bias correction (ORAS4nobiascrtn; see Balmaseda et al. (2013)). Due to a limited405

number of available restart files for this analysis, a smaller set of 6 forecast start dates were run406

in Apr–May 2008 and Dec–Jan 2008/9, and no forecasts were possible in Aug–Sep 2010, so407

Aug–Sep 2008 was used instead. For all start dates used for M2, corresponding M1 forecasts408

were also run, enabling an accurate comparison between these two forecast types, to isolate the409

roles of changing model version and the use of bias correction, in initialisation shocks originating410

in the ocean. Then, to complete the attribution of shocks to the three sources identified in the411

introduction, a set of forecasts M3 was run (for the same 30 start dates as in M1) using the new412

uncoupled ocean analysis (Uocean) as the ocean initial conditions. The results of M2 should413

isolate the contribution to the shock in the ocean of the removal of bias correction at the beginning414

of the forecast, as distinct from the contribution from a change in model version, while M3 should415

confirm that ocean shocks are predominantly caused by changes in the ocean component between416

analysis and forecast (and not by changes in the atmosphericcomponent).417

In M2, the shock at Nĩno3 (Fig. 9(a)) is only slightly weakened relative to M1 — there is418

an average reduction of∼ 25%, with little variation across the three seasons — and is virtually419

unchanged in the eastern Atlantic (Fig. S4(a)). This confirms that the change in ocean model420

version, rather than the use of bias correction during the analysis, is the dominant cause of these421

equatorial cold shocks. Subsurface profiles (not shown) show that ORAS4nobiascrtn upwelling422

velocities in the Nĩno3 region are up to 25% weaker than those in ORAS4, explainingthe reduced423

surface cold shock.424

In other areas, the shock in SST and/or air temperature is slightly increased in M2 relative to M1425

(see Fig. S4(a) and (b)). Thus, the inclusion of bias correction in the initialising ocean analysis426

(and its removal during the forecast) imparts small shocks to the upper ocean and to the lower427
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atmosphere (possibly through an increased component imbalance), which can either amplify or428

reduce the existing shocks following the change in model. Inthe tropics, the use of bias correction429

generally has a negative impact on the forecast, as it shiftsthe ocean analysis circulation into a430

state that cannot be maintained for any significant length oftime from the beginning of the forecast,431

therefore resulting in an adjustment.432

In M3, errors in the ocean develop in a similar manner to thoseof U1, as the two share the same433

ocean initial conditions. The large M1 shocks at Niño3 (Fig. 9(b)) and in the eastern equatorial434

Atlantic (see Fig. S4(c)) are entirely absent, confirming that the ocean initialisation is the source435

of the M1 shocks. The air temperature shock in the eastern Pacific (Fig. S4(d)) is also reduced,436

relative to M1 — the lack of cold shock in the underlying SST islikely the main reason for this,437

since the two biases (in SST and 1000 hPa temperature) are strongly correlated in this area in438

M1. A reduction in atmospheric shock here may arise also due to the slightly better initial balance439

present in this area in M3 (which is very similar to the balance in U1, shown in Fig. 2(a)) compared440

to M1. Elsewhere, air temperature RMSE is very similar to thatof M1, confirming that it is the441

change in atmospheric model version that produces a large component of these widespread biases442

on the first day. The influence of the atmospheric initialisation on SST can be seen in the slightly443

increased SST drift in M3 compared to U1 (Fig. 9(b)).444

4. Discussion445

The results presented above suggest a definite impact on short-range forecasts of changes in446

ocean or atmosphere model between analysis and forecast, but show only a small (though signifi-447

cant) effect due to an imbalance in the initial conditions. An important factor in the performance448

of C1 and U1 forecasts is the use of nudging towards a complete gridded SST product, rather than449

assimilation of individual SST observations, in the ocean analyses. This ensures that Uocean450
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SSTs remain, almost everywhere, very close to the observational product, the field that is seen by451

the atmosphere during Uatmos (see Fig. 2(a)). While this is beneficial with regard to minimising452

initialisation shock in U1, direct assimilation of satellite SST observations may be preferred to453

nudging in ocean analyses, since the latter is currently done by modifying air-sea fluxes rather454

than the ocean model itself (Balmaseda et al. 2013). If assimilation is used, any gaps in obser-455

vational coverage will lead to periods without observational increments during which uncorrected456

model SSTs could diverge substantially from the field seen bythe atmosphere. This would result457

in imbalances that are more temporally variable, and at times larger, than those shown in Fig. 2.458

Therefore, the differences in C1 and U1 forecast RMSE and skillshown here should perhaps459

be taken as a lower limit. That is, the benefits of coupled DA toforecasting may be felt more460

strongly if assimilation of SST is used rather than nudging in the uncoupled ocean analysis, at461

least in any data-sparse regions. Where SST nudging is used inconjunction with one-directional462

coupling of separate ocean and atmosphere analyses, the gains in forecast skill due to reductions in463

initialisation shock following the implementation of a coupled DA system similar to CERA may,464

based on these results, be small. This is more a statement of the acceptable degree of balance465

achieved in the U1 initialisation than a criticism of coupled DA. Additionally, coupled DA may466

result in a more accurate analysis than uncoupled assimilation (Laloyaux et al. 2015), which could467

lead to further gains in forecast skill, separate to any achieved through reductions in initialisation468

shock, although this was not the case in the precipitation results shown here.469

With regard to the relative merits of a more strongly coupledDA method (one involving the470

modelling of cross-covariances to spread information between the two model components), while471

this offers the potential to produce a more balanced initialstate than is produced by CERA, which472

should in itself lead to better forecasts, it seems unlikelythat forecast skill will be further improved473
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specifically by a reduction in initialisation shock, judging by the similarity in skill between C1 and474

U1 (Fig. 8).475

To mitigate the shocks that can result from the use of bias correction in the ocean analysis476

(Fig. 9(a)), it can be argued that the bias correction term, estimated during the initialisation phase,477

should be maintained during the forecast itself. This wouldnot only reduce the overall initialisa-478

tion shock, but would also slow the model drift. However, this is not possible in forecasts using479

uncoupled initialisation methods (such as U1, M1 and M2), due to the different biases present in480

the forced ocean model compared to the coupled forecast model (and potentially differences be-481

tween the analysis and forecast models themselves). Such a method would be possible in a forecast482

of type C1, however, and the viability and usefulness of this approach should be investigated.483

A further consideration, not described so far in this paper,is that large adjustments in the upper484

ocean (evidence of which was seen in Fig. 6) could generate shock signals that propagate beyond485

the 10-day duration of the forecasts shown here, due to the longer dynamical timescale of the486

upper ocean. Several exploratory 7-month forecasts, whichare described in the Supplementary487

Information, have shown evidence of spurious Rossby waves propagating westward in the equato-488

rial Pacific, following a change in ocean model version between analysis and forecast. Significant489

differences in the upper ocean between forecasts of type M1 and M3 were seen at lead times of490

up to 7 months (see Figs. S5 & S6). The impact on seasonal forecasts of using non-native ocean491

models for initialisation is a possible area for further study.492

The results of this work should serve as useful guidance for medium-range and seasonal fore-493

casting at operational centres. Besides finding hints of a slight increase in atmospheric forecast494

skill when using coupled DA rather than uncoupled assimilation methods for initialisation, we495

have also shown that initialisation shock can be generated through the use of non-native models496

for the creation of initial conditions. Depending on the resources available to an operational centre,497
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using initial conditions derived from an older version of the operational forecast model, possibly498

at lower resolution, or from another model entirely, may be the most practical option for seasonal499

forecasting. Even if not the case for the forecast itself, this may be more common in performing500

the set of calibration hindcasts (e.g., MacLachlan et al. 2014) that forms an essential component of501

a seasonal forecast (and is also valuable at shorter ranges (Hamill et al. 2004)). The hindcasts are502

used to compute a posteriori bias correction terms, so it is important that the temporal evolution503

of bias in the hindcasts is as similar as possible to the development of bias in the forecast (as dis-504

cussed by Hamill et al. 2004). In either case, it has been shown that using non-native analyses for505

forecast or hindcast initialisation does result in substantial initialisation shocks in both atmosphere506

and ocean.507

Various studies have declined to use non-native atmospheric analyses directly as initial condi-508

tions for coupled forecasts, preferring to nudge towards these analyses (e.g., Hudson et al. 2011)509

or to initialise a model atmosphere by forcing with observedSSTs (e.g., Alessandri et al. 2010).510

The results above confirm that there is indeed good reason to avoid direct use of a non-native anal-511

ysis (even when derived from the same model ‘family’) in initialisation, in the ocean as well as512

in the atmosphere, if possible. The detrimental aspect of nudging a forecast model towards such513

an analysis lies in the production of initial conditions that may lie further from the truth, and the514

optimal nudging strength — one which balances accuracy in the initial state with minimisation of515

shock, so as to produce the most skilful forecast — is likely to be strongly model dependent. For516

example, we have not investigated whether or not a forecast system initialised from ERA-Interim517

and ORAS4, and comprised of model versions 31r2 and 3.0 (see Table 1), outperforms M1 in518

forecast skill by removing a major component of the initialisation shock at the expense of using519

deprecated, and inferior, forecast models. The decision over whether or not to use the operational520

forecast system without also generating initial conditions using the same system will depend on521
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the degree of improvement offered by the newer system in comparison to the one which generated522

the initial conditions that are already available. Our results do suggest that, where possible, initial523

conditions for both forecasts and hindcasts should be obtained through analyses using the same524

models.525

5. Conclusions526

We have identified initialisation shocks in sets of coupled forecasts for which the initial condi-527

tions were obtained using uncoupled data assimilation in the atmosphere and ocean. Three distinct528

sources of shock, with varying degrees of impact on the forecasts, have been identified:529

1. A lack of balance between the atmospheric and oceanic components of the initial state exerts530

an influence on the forecast drift, as seen through the comparison of forecast types C1 and531

U1. Initialisation shocks of this type occur most strongly in regions of large SST temporal532

variability. Their impact on forecast skill, measured by ACCin total precipitation rates,533

appears to be neutral. This source of shock may be atypicallyweak in the present case due534

to the use of SST nudging in the ocean analysis, which limits the size of atmosphere-ocean535

imbalances that can form in the initial conditions.536

2. A change in model version from analysis to forecast, whichoccurs in the atmosphere in M3537

and in both ocean and atmosphere in M1 and M2, leads to larger and more widespread initial-538

isation shocks. These occur due to differences between model attractors, and are particularly539

strong in the equatorial ocean, in the present case. Oceanicshocks have the potential to exert540

an influence on the seasonal timescale.541

3. The use of bias correction during the ocean analysis, and its removal during the forecasts, can542

impart further initialisation shocks in the upper ocean, atleast when different model versions543
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are used for analysis and forecast. These shocks are generally less substantial than those544

caused by the change in model.545

These results strengthen the case for operational seasonalforecasting centres to perform new ocean546

and atmosphere reanalyses, and consistent sets of calibration hindcasts, whenever the operational547

model is upgraded. The benefit to forecasting of aiming to minimise initialisation shock by using548

coupled data assimilation to produce these analyses, rather than performing uncoupled assimila-549

tion using the operational models, is less clear, but may emerge more strongly if assimilation of550

SST is used in preference to nudging towards a gridded product, during the ocean analysis.551
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Name Atmosphere/ocean Model version Resolution SST treatment

CERA Atmosphere and ocean 40r1 and 3.4 T159L137 and ORCA1 OSTIA/NCEP (nudged)

U atmos Atmosphere 40r1 T159L137 OSTIA/NCEP (prescribed)

ERA-Interim Atmosphere 31r2 T255L60 OSTIA/NCEP (prescribed)

U ocean Ocean 3.4 ORCA1 OSTIA/NCEP (nudged)

ORAS4 Ocean 3.0 ORCA1 OSTIA/NCEP (nudged)

ORAS4nobiascrtn Ocean 3.0 ORCA1 OSTIA/NCEP (nudged)
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in the model versions and settings used for their initialisation (refer to Table 1). The sources of shock considered

are the three listed in Section 1.
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Name Details Resolution Atmos IC Ocean IC Sources of shock

C1 Coupled DA T159L137/ORCA1 CERA CERA Baseline

U1 Uncoupled analyses, T159L137/ORCA1 Uatmos Uocean Surface imbalance

consistent models

M1 Uncoupled analyses, T159L91/ORCA1 ERA-Interim ORAS4 Surface imbalance,

change in models model version change,

bias corr. removal

M2 Uncoupled analyses, T159L91/ORCA1 ERA-Interim ORAS4nobiascrtn Surface imbalance,

change in models model version change

M3 Uncoupled analyses, T159L91/ORCA1 ERA-Interim Uocean Surface imbalance,

change in atm. model model version change,

bias corr. removal
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Fig. 1. The initialisation (analysis) methods used for forecast sets C1(left), U1 (middle) and M1668

(right). Colour coding indicates differences in model version, and elements of the analyses669
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FIG. 1. The initialisation (analysis) methods used for forecast sets C1 (left), U1 (middle) and M1 (right).

Colour coding indicates differences in model version, and elements of the analyses that are not used in forecast

initialisation are marked with a diagonal line. (Forecast modelcomponents IFS, WAM and NEMO are the

atmospheric, wave and ocean components respectively.)
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FIG. 2. (a) Root-mean-square difference between Uocean SST and the SST used as forcing by Uatmos, at

the beginning of the forecasts, showing the imbalance present in the initialisation of forecasts U1; (b) the same

for ORAS4 and ERA-Interim, showing one of the sources of imbalancein the initialisation of forecasts M1.
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FIG. 3. 1000 hPa temperature forecast RMSE, relative to the analysis used as the initial conditions, for C1 (a),

U1 (b) and M1 (c), at 12 h lead time. Land areas are masked out, as the focus is on atmosphere-ocean imbalance.

Contours in (b) and (c) show differences in RMSE relative to C1, withblue (green) contours marking increased

(decreased) RMSE in U1 and M1. Contours are drawn at differences of 0.15◦C in (b), and at differences of

0.5◦C in (c). Only differences that are significant at the 90% level, estimated using the bootstrapping method,

are contoured.

727

728

729

730

731

732



0.0 0.2 0.4 0.6 0.8 1.0
RMSE / K

300

400

500

600

700

800

900

1000

P
re
ss
u
re
 /
 h
Pa

Mean atmospheric temperature RMSE, Nino3, lead 1 day (30 dates, 2008-2010)

C1 v CERA

U1 v U_atmos

M1 v ERA-Interim

CERA v U_atmos

CERA v ERA-Interim

FIG. 4. Air temperature RMSE profiles averaged over the Niño3 region (150–90◦W, 5◦N–5◦S), for C1 (blue),

U1 (orange) and M1 (black), evaluated against CERA, Uatmos and ERA-Interim respectively, and RMSD

profiles between CERA and the other two analyses (gray dashed andgray dotted). Filled (open) squares mark

output pressure levels where the RMSE difference between U1 or M1 and C1 is significant (not significant) at

the 90% level, estimated using the bootstrapping method.
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FIG. 5. 1000 hPa temperature forecast RMSE averaged over the Niño3 region for C1 (blue), U1 (orange) and

M1 (black) each evaluated against their own corresponding analysis, as labelled. RMSD between CERA and the

other two analyses are shown for comparison (gray dashed and gray dotted). Squares mark where points in the

U1 and M1 series are different from C1 at the 90% significance level, using confidence intervals calculated via

the bootstrapping method.
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FIG. 6. SST forecast and analyses time series for the 10 start dates in Dec–Jan 2008/9, averaged over the

Niño3 region. Forecast series are plotted at (0, 6, 12, 18, 24) hours, and every 12 hours thereafter; analysis series

for CERA and Uocean are plotted at the same frequency (Uocean features a very weak diurnal cycle), but only

daily means are plotted for ORAS4 (which also has a very weak diurnal cycle, not shown). Across the 10 start

dates, the magnitude of the drop from 0 to 6 hours in the M1 series ranges from 0.44 to 0.62◦C.
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(a)

(b)

FIG. 7. Niño3 ocean temperature (a) and upwelling velocity (b) profiles from the ocean analyses Uocean

(orange) and ORAS4 (black), relative to CERA, constructed using monthly means for the 6 months in 2008–

2010 during which forecasts were performed. Shading shows±1 standard deviation of the 6-month ensemble.

Upwelling velocity profiles for each of the three forecast periods are also shown explicitly for ORAS4 (dotted:

Apr–May 2008; dashed: Dec–Jan 2008/9; dash-dotted: Aug–Sep2010).
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FIG. 8. Anomaly correlation coefficient for precipitation, evaluated against GPCP daily averages, in the

tropics (20◦N–20◦S, dashed) and the northern extratropics (20–60◦N, solid). Squares mark where points in

the U1 series are different from C1 at the 90% significance level, using confidence intervals calculated via the

bootstrapping method. Anomalies are calculated with respect to climatologies taken as the mean of the forecast

period 2008–2010, which includes three different seasons, so some of the skill shown here is simply due to

seasonal variability.
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FIG. 9. (a) SST series for M1 and M2, and analyses ORAS4 and ORAS4nobiascrtn, in the Nĩno3 region

(where the largest shocks are produced in M1, M2 and M3); (b) SST series for U1, M1 and M3, and analyses

ORAS4 and Uocean, again in Niño3, averaged over the ensemble of 18 dates used for the M3 experiment.

Forecast series are plotted at (0, 6, 12, 18, 24) hours, and every 12 hours thereafter; analysis series Uocean is

plotted at the same frequency, but only daily means are plotted for ORAS4 and ORAS4nobiascrtn.
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