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Summary:  45 

1. Soil carbon (C) storage is a key ecosystem service. Soil C stocks play a vital role in 46 

soil fertility and climate regulation, but the factors that control these stocks at regional 47 

and national scales are unknown, particularly when their composition and stability are 48 

considered. As a result, their mapping relies on either unreliable proxy measures or 49 

laborious direct measurements.  50 

2. Using data from an extensive national survey of English grasslands we show that 51 

surface soil (0-7cm) C stocks in size fractions of varying stability can be predicted at 52 

both regional and national scales from plant traits and simple measures of soil and 53 

climatic conditions.  54 

3. Soil C stocks in the largest pool, of intermediate particle size (50-250 µm), were best 55 

explained by mean annual temperature (MAT), soil pH and soil moisture content. The 56 

second largest C pool, highly stable physically and biochemically protected particles 57 

(0.45-50 µm), was explained by soil pH and the community abundance weighted mean 58 

(CWM) leaf nitrogen (N) content, with the highest soil C stocks under N rich 59 

vegetation. The C stock in the small active fraction (250-4000 µm) was explained by a 60 

wide range of variables: MAT, mean annual precipitation, mean growing season 61 

length, soil pH and CWM specific leaf area; stocks were higher under vegetation with 62 

thick and/or dense leaves.  63 

4. Testing the models describing these fractions against data from an independent 64 

English region indicated moderately strong correlation between predicted and actual 65 

values and no systematic bias, with the exception of the active fraction, for which 66 

predictions were inaccurate.  67 

5. Synthesis and Applications: Validation indicates that readily available climate, soils 68 

and plant survey data can be effective in making local- to landscape-scale (1-100,000 69 
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km2) soil C stock predictions. Such predictions are a crucial component of effective 70 

management strategies to protect C stocks and enhance soil C sequestration. 71 

 72 

Keywords: carbon storage, carbon sequestration, community weighted mean, pH, particle 73 

size fractions, soil carbon, soil organic matter. 74 

 75 

Introduction 76 

 77 

Soil carbon (C) stocks exceed those in both vegetation and the atmosphere by 2-3 times, and 78 

play a vital role in climate regulation and the maintenance of soil fertility (Trumper et al. 79 

2009), but these stocks vary by orders of magnitude over regional and national scales, even 80 

within a single ecosystem type (Bellamy et al. 2005: Carey et al. 2008). Presently, their 81 

mapping either relies upon proxy measures that are often poor estimates of actual soil C 82 

stocks, particularly at local scales (Jones et al. 2005; Eigenbrod et al. 2010; Stevens et al. 83 

2013), or direct measurements, which are expensive and laborious (Bellamy et al. 2005; Carey 84 

et al. 2008). Models are also used to predict soil C, but these are typically used to make large-85 

scale or scenario based projections and not fine-scale, extensive soil C stock mapping 86 

(Schimel et al. 1994; Smith et al. 2005).  87 

  Improved predictions of soil C stocks should be possible if the factors determining 88 

national, regional and local distributions of soil C are better understood. It has long been 89 

known that soil C is controlled by a wide range of factors (Jenny 1941; Schimel et al. 1994), 90 

that can be viewed as forming a ‘hierarchy of controls’ (Diaz et al. 2007, De Vries et al. 91 

2012), which impact the basic processes of plant growth and organic matter decomposition 92 

and stabilisation. At the apex of the hierarchy is climate, which controls the metabolism of 93 
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plants, fauna and microbes (Burke et al. 1989. Schimel et al. 1994; Conant et al. 2011) and 94 

determines rates of rock weathering (White 1997), thus influencing soil properties. The next 95 

level in the hierarchy are soil abiotic properties, such as texture and pH, which are largely 96 

controlled by underlying geology and processes of weathering (Jenny 1941; White 1997), and 97 

which in turn influence soil C storage by affecting plant growth and microbial activity (Pietri 98 

and Brookes 2008; Schmidt et al. 2011). At a local level, soil C storage is also strongly 99 

affected by land use type and intensity, which has an array of impacts on soil C cycling 100 

(Conant, Paustain & Elliot 2001; Smith 2014). Moreover, climate, soil properties and 101 

management all influence the composition and growth of the vegetation, which in turn affects 102 

the amount and chemistry of plant inputs, and the turnover of soil organic matter (SOM) 103 

(Cornwell et al. 2008; De Deyn, Cornelissen & Bardgett. 2008; De Vries et al. 2012).  104 

Although it has long been acknowledged that the above factors are the primary 105 

regulators of soil C storage, their interdependence makes estimating their relative importance 106 

challenging. While some studies emphasise the importance of soil physical and chemical 107 

properties (Christensen 2001; Schmidt et al. 2011), there is also evidence that plant 108 

community composition plays a significant role (De Deyn, Cornelissen, & Bardgett 2008). 109 

While the importance of vegetation properties has long been recognised, and is represented in 110 

C models (Parton et al. 1993, Smith et al. 2005), they have typically been viewed only from a 111 

tissue chemistry perspective, and the importance of other plant traits have rarely been 112 

considered. This may be an oversight as plant species vary along a ‘fast-slow’ traits axis, 113 

which distinguishes between fast growing species with rapidly decomposing litters and fast 114 

tissue turnover times and their opposite (Reich 2014). Accordingly, if species effects on 115 

ecosystem function are proportional to their biomass (Grime 1998), then community 116 

abundance weighted means (CWM) of species-level traits may explain variation in soil C 117 

storage and sequestration (Garnier et al. 2004). In line with this prediction, recent work shows 118 
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that CWM trait measures can explain ecosystem-level variation in plant production, 119 

decomposition, photosynthesis, respiration and soil C concentration, and microbial 120 

community composition (Garnier et al. 2004; Diaz et al. 2007, De Vries et al. 2012; Grigulis 121 

et al. 2013; Everwand et al. 2014). While such studies point to the tractability of scaling up 122 

from traits of individual plants to ecosystem properties, the capacity of this approach to 123 

predict soil C at spatial scales large enough to matter to C stock management is unknown.   124 

Another drawback of existing methods of soil C stock prediction is that they typically 125 

predict only the total amount of soil C and not its composition (Jones et al. 2005; Stevens et 126 

al. 2013). Soil C is diverse in its chemistry and interactions with soil particles, and as a result 127 

soil C particles vary greatly in their turnover rates (Trumbore 2000, Schmidt et al. 2011). 128 

Accordingly, soil C storage and sequestration is determined not just by the total soil C pool, 129 

but also by the half-lives of soil C components, which can be categorised into pools of 130 

varying stability (Schimel et al. 1994: Trumbore 2000). Such pools are arbitrarily defined but 131 

are represented in modern soil C models. Measuring them is inherently difficult, so we lack 132 

reliable baseline data on the amount of C in these pools for most of the Earth’s land surface. 133 

While isotopic techniques (13C and 14C) can be employed (e.g. Trumbore 2000; Marschner et 134 

al. 2008), their use is impractical in large-scale surveys given their high cost and requirement 135 

for specialist equipment and personnel. An alternative approach is to use more readily 136 

measurable size and density fractions, which broadly correspond to C turnover times 137 

(Christensen 2001; Marschner et al. 2008). Fresh C inputs are predominantly found in large 138 

particles that constitute the active fraction, which turns over within months to a few years, 139 

making it the source of most soil C fluxes. In contrast, C found in particles of intermediate 140 

size is typically humified organic matter (OM) that turns over on decadal timescales; while 141 

small and dense soil particles of physically and chemically protected soil comprise the stable 142 

C fraction. This typically turns over on the scale of centuries to millennia and is crucial to soil 143 
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C sequestration (Schimel et al. 1994; Trumbore 2000; Christensen 2001). While relationships 144 

between many of the aforementioned drivers and total soil carbon over large scales have been 145 

quantified previously (e.g. Burke et al. 1989), their relationship with different C size fractions 146 

has received very little attention (Evans, Burke & Lauenroth et al. 2011). The relative 147 

importance of the aforementioned drivers in determining stable soil C may differ from those 148 

controlling rapid turnover fractions, and this could explain discrepancies between studies of 149 

soil C drivers, which typically focus upon total soil C. 150 

In this study we set out to identify which factors best explain national scale patterns of 151 

different C fractions in the surface soil (0-7cm) of grassland. This was done for two reasons: 152 

a) to identify the potential abiotic and biotic (i.e. plant traits) determinants of these fractions at 153 

large spatial scales; and b) to assess the potential for using a combination of simple plant trait 154 

and abiotic measures that are readily available to surveyors to predict these soil C stocks, i.e. 155 

to identify potential variables to be used in pedotransfer functions and/or ecological 156 

production functions for these fractions. To do this we generated linear mixed-effects 157 

statistical models describing national scale patterns of surface soil C in different size fractions 158 

across a wide spectrum of the soil and climatic conditions found across England, and a broad 159 

range of grassland types (including calcareous, mesotrophic, wet and acid, Rodwell 1992). 160 

These quantified the relative importance and predictive capacity of several abiotic factors and 161 

various CWM plant traits with strong hypothetical or known links soil C cycling (De Deyn, 162 

Cornelissen, & Bardgett 2008). We hypothesised that stocks of the active soil C fraction are 163 

best predicted by the drivers of plant inputs to soil and the decomposability of these inputs 164 

(e.g. climate and plant traits), while the stable fraction is better explained by soil physical and 165 

chemical properties (e.g. soil texture and pH). We focussed on grasslands because they cover 166 

~30% of the Earth’s land surface and store ~23% of the global terrestrial ecosystem C stock 167 

(Trumper et al. 2009). Moreover, in the United Kingdom (UK), where our study was 168 
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performed, they cover 36% of the land surface and contain an estimated ~32% of national soil 169 

C stocks (Ostle et al. 2009).  170 

  171 

Materials and Methods 172 

 173 

GRASSLAND SURVEY 174 

 175 

This work was conducted as part of a broader investigation aimed at quantifying relationships 176 

between agricultural intensification, botanical composition and soil properties, including 177 

microbial community composition, in temperate grasslands (De Vries et al. 2012). We 178 

sampled from twelve English regions during June and July 2005 (see Fig.1). Within each 179 

region there were five sites, each containing three fields, but subject to three broad 180 

management regimes: unimproved (U) and often designated as SSSI (Site of Special 181 

Scientific Interest), semi-improved (SI) or improved (I) grassland, resulting in a total of 180 182 

fields (Fig. S1 in Supporting Information). The survey represented the broad habitat 183 

classifications of acid (33 fields), calcicolous (42 fields), mesotrophic (81 fields) and wet 184 

grasslands (24 fields), the main grassland types in the UK (Rodwell 1992), and fields were 185 

allocated to land management intensity categories based on consultation with farmers and 186 

land managers, and expert opinion. This process also ensured that adjacent fields were of 187 

similar soil type and topography. Typically, unimproved grasslands receive <25 kg N ha-1 y-1 188 

and are lightly grazed by livestock and cut annually for hay, whereas semi-improved and 189 

improved grasslands receive 25-50 kg N ha-1 y-1 and >100 kg N ha-1 y-1, respectively, and are 190 

subject to higher grazing pressures and more frequent cutting for silage (Critchley, Fowbert & 191 

Wright 2007). This broad classification of grasslands has been used widely (e.g. De Vries et 192 
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al. 2012; Grigulis et al. 2013), and reflects the typical grassland farming systems that are 193 

found across the United Kingdom and other parts of Europe (Rodwell 1992).  194 

There were many different plant community types present in the more botanically 195 

diverse unimproved grasslands, but the improved categories were mainly the Lolium perenne 196 

(L.) dominated MG6 and MG7 communities of the UK’s National Vegetation Classification 197 

(Rodwell 1992). Within each field, percentage cover of each plant species was visually 198 

estimated from three random 1m2 quadrats within a 25 × 25 m plot of homogeneous 199 

vegetation. These three cover values were averaged to obtain field level abundance estimates. 200 

Within each quadrat, five random 2cm diameter 7cm deep soil cores were taken and pooled. 201 

The use of 7 cm deep cores follows the UK’s Department of Environment, Food and Rural 202 

Affairs (DEFRA) recommended sampling depth for assessment of soil abiotic properties in 203 

permanent grassland (DEFRA 2010), and was selected to capture the zone of soil most 204 

influenced by plant traits, and of greatest C content relative to sub-surface soil. We recognise 205 

that significant soil C stocks are found at depth in grasslands (Jobbagy and Jackson 2000), but 206 

sampling the whole soil profile was beyond the scope of this study, especially given the 207 

comprehensive suite of vegetation and soil properties measured.  208 

 209 

SOIL ANALYSIS 210 

 211 

Soil samples were sieved (4 mm), homogenised and air-dried, and analysed for moisture 212 

content, total C and pH, using standard methods (see Allen 1989 and Appendix A in 213 

Supporting Information for methods). Standardized wet sieving (De Deyn et al. 2011) was 214 

then used to separate the soil particles and the C within them into the active (250-4000 μm), 215 

intermediate (50–250 μm) and stable fractions (0.45-50 μm) (see Appendix A. for details). To 216 
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calculate soil C stocks on a per-area basis bulk density (BD) was calculated from core volume 217 

and dry soil weight after removing all stones and roots >3mm diameter. It is possible that 218 

black C (charcoal) and inorganic C was present in our samples, though the proportion of these 219 

factions is likely to be small (see appendix A). Soil texture was classified by expert judgment 220 

and transformed into clay-silt-sand percentages using the central point of each category of the 221 

triangular classification developed by the Soil Survey of England and Wales (Hodgson 1997).  222 

 223 

CLIMATE DATA 224 

 225 

Both long-term climate data from Met Office UKCP09 databases (Jenkins, Perry & Prior 226 

2009) and the grassland survey data were assigned to 5 × 5 km grid cells. Mean annual 227 

temperature (MAT) and mean annual precipitation (MAP) were calculated from monthly data 228 

from 1981-2006. Mean growing season length (MGSL) values were taken from the UKCP09 229 

database containing monthly values from 1961-2003 and calculated as the number of days 230 

bounded by a daily temperature mean > 5 °C and < 5 °C after 1st July for more than five 231 

consecutive days. Mean growing degree days (MGDD) was the day-by-day sum of the mean 232 

number of degrees by which air temperature exceeded 5.5 °C. It was calculated using the 233 

mean of values from 1961-2006. The differences in time periods between these measures 234 

reflect data availability in the UKCP09 database.  235 

 236 

PLANT TRAIT DATA 237 

 238 
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Plant species composition data were combined with database values of plant traits to give 239 

field level CWMs for plant traits with hypothetical links to soil processes (Garnier et al. 2004; 240 

Diaz et al. 2007; De Deyn, Cornelissen, & Bardgett. 2008, De Vries et al. 2012). To do this 241 

trait values were assigned to all plant species occurring in the 180 fields sampled and plant 242 

cover was used as the CWM weighting measure. Values for leaf dry matter content (LDMC) 243 

were taken from a published account of plant species in northern England (Grime, Hodgson & 244 

Hunt 2007). Values for specific leaf area (SLA), relative growth rate (RGR), and leaf nitrogen 245 

content (leaf N) were obtained from the TRY database (Kattge et al. 2011), which contains 246 

trait data from a wide range of authors and environments. See Appendix A for details of trait 247 

measurement and justification of trait choice.  248 

 249 

STATISTICAL MODELLING 250 

 251 

The grassland survey, climate and trait data were combined to form a single dataset (see Table 252 

S1 to see the range of conditions covered) that was used to parameterise and test the 253 

likelihood of competing mixed-effects statistical models according to a model selection 254 

procedure (Pinheiro and Bates 2000). A separate model was created to describe each soil C 255 

fraction as well as total C. Our model selection approach involved adding explanatory 256 

variables in fixed sequential order a according to our hypothesised ‘hierarchy of controls’ 257 

(Appendix A, Diaz et al. 2007). The process started with variables describing climatic 258 

conditions (MAP, MAT, MGSL, MGDD), then added physical and chemical soil properties 259 

that are driven mainly by underlying geology and local hydrology (soil pH, sand silt and clay 260 

content and soil moisture). The third set of terms was linked to management. Here, contrasts 261 

were made between three competing management terms, which either had three levels U, SI 262 
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and I or two, with either SI and U or SI and I merged. Finally we added trait CWMs to 263 

estimate plant functional trait effects. CWM’s for RGR, SLA, LDMC and leaf N were placed 264 

in the model in all combinations of one and two traits. Although microbial data were available 265 

(De Vries et al. 2012) they were not used to predict C stocks as they are not readily 266 

measurable by most surveyors. All models were linear mixed-effects models with a random 267 

effect for site to account for the spatial clustering of triplicate fields. Mixed models were 268 

fitted using maximum likelihood and the lme function of the statistical software R version 269 

2.11.1 (Pinheiro and Bates 2000). Throughout the modelling process quadratic terms were 270 

used when the optimum of biological activity occurs at intermediate levels (i.e. for 271 

temperature, pH, and moisture). See appendix A and Table S2 for details. 272 

The explained variance of the final model was calculated as the r2 when fitting a linear 273 

regression to the actual data, with the predicted values of the model as the explanatory 274 

variable. To estimate the variance explained by the fixed effects, we used the method of 275 

Nakagawa and Schielzeth (2013), which partitions explained variance by comparing the fit of 276 

model predictions to the data when these terms are absent from the model to calculate a 277 

‘marginal R2’ (R2M). We also used this technique to estimate the proportion of unique (total) 278 

variance explained by each class of variable in the model (soil, climate, plant traits). The 279 

importance of each variable in the model was also estimated by observing AIC change (Δi) on 280 

deletion.  281 

 282 

MODEL VALIDATION 283 

 284 

To validate the fitted models we collected new data for all the variables retained in the models 285 

(Tables 1 and 2) in 20 fields in the county of Northumberland, England in summer 2012. This 286 
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is a separate region to the north east of the original 12 (Fig. 1). Methodology was identical to 287 

before with the exception of site selection. In this case we intentionally chose sites covering a 288 

wide range of the predictor variables found in the original dataset, but excluded sites from 289 

outside these ranges to avoid extrapolation (Table S1), because our models were not 290 

mechanistic. To validate the fitted models, predictor variable values for the Northumberland 291 

sites were fed into the fitted models to produce estimated values. These were then compared 292 

to actual values using Pearson’s correlation and paired t-tests. 293 

 294 

Results 295 

 296 

Total soil C stock to 7cm depth was best described (Table 1, S3; explained variance (EV) = 297 

74.2%, R2M = 26.9%) by a quadratic relationship for mean annual temperature (MAT) (Fig. 298 

2a), with C stocks being lowest at intermediate temperatures of ~8.5°C. This temperature 299 

effect accounted for 13.7% of unique variance. Variation in total soil C stock was also related 300 

to soil pH, with stocks being lowest at intermediate pH values of ~6 (Fig. 2a) (quadratic 301 

relationship). Finally, soil C stocks were related to soil moisture and maximal at moisture 302 

levels of ~100%, on a dry soil weight basis. Together these soil terms accounted for 15.2% of 303 

unique variance.  304 

Models explaining the three component fractions differed greatly in the variables they 305 

contained, indicating that each is controlled by different factors. The active fraction (4000-306 

250 μm) (Fig. 3, Table 1, S4) accounted for 11.1% of total C stocks across grasslands, and the 307 

model describing it accounted for 41.0% of its variation (R2M = 37.6%) and contained five 308 

variables, each strongly linked to plant productivity and litter decomposition. The most 309 

important of these were quadratic relationships with MAT (Fig. 2b) and MAP; stocks of this 310 
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C fraction were highest in cold, wet conditions. This pool was also positively associated with 311 

mean growing season length (MGSL), presumably via higher net primary productivity, and 312 

resulting inputs of C to soil (Table 1). Together, these climate factors accounted for 22.0% of 313 

unique variance. Soil pH accounted for 8.7% of unique variance and also displayed a 314 

quadratic relationship with the active C fraction, being greatest in acidic soils. Finally, we 315 

found that the active C fraction was predicted by the CWM of SLA; stocks were higher under 316 

vegetation with thick and/or dense leaves. This trait measure accounted for 4.3% of unique 317 

variance.  318 

The intermediate fraction (50–250 μm) represented 54.7% of total soil C stocks to 319 

7cm depth across grasslands (Fig. 3) and was described by a model that was very similar to 320 

that describing total C stocks (EV = 78.4%, R2M = 19.9%, Table 1, S5); the retained terms 321 

described quadratic relationships with MAT (Fig. 2c), soil moisture and pH (Fig. 2c). Stocks 322 

of this C fraction were lowest in soils of neutral grassland and at intermediate climates (MAT 323 

~9 oC, pH ~6). Of the retained variables climate terms were marginally more important 324 

(11.8% unique variance) than soil terms (9.6% unique variance).  325 

The stable soil C fraction (0.45-50 μm), which comprised 32.4% of the total C stocks 326 

across grasslands (Fig. 3), was not explained by climate or management variables. The model 327 

(EV = 74.2%, R2M = 17.53%, Table 1, S6) indicated a strong and quadratic relationship with 328 

soil pH, with the highest stocks being found in neutral and alkaline grassland soils (Fig 2d). C 329 

stocks in this fraction also increased subtly with increasing CWM leaf N content. This trait 330 

effect accounted for far less variance (1.9% unique variance) than pH (14.16% unique 331 

variance).   332 

Comparison of predicted and observed values of soil C stocks demonstrated that the 333 

fitted models made reasonably reliable predictions of observed stocks of total C and the 334 
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intermediate and stable fractions but not the active fraction (Fig. S2). Correlations between 335 

predicted and observed values were r = 0.57-0.64, and there was no significant difference 336 

between them (paired t-tests P>0.05, t = <2, d.f. = 19), with the exception of the active 337 

fraction (r = 0.03, P<0.05) (Table S7, Fig. S1).  338 

 339 

Discussion 340 

 341 

Our results indicate that regional and national patterns of C fractions in the surface soils of 342 

grasslands can be predicted using fairly simple measures of the abiotic environment and 343 

community-level plant traits. Reasonably accurate prediction of soil C stocks across broad 344 

gradients of soil and ecosystem types has been achieved previously using dynamic models 345 

(e.g. Parton et al. 1993) and proxy measures (Paruelo et al 1998; Jones et al. 2005). However, 346 

it has not, to our knowledge, been achieved for different size fractions of soil C within a 347 

single land use type, as shown here. The relationships identified here may not always be 348 

mechanistically causative because climate, management and underlying geology all directly 349 

affect soil C stocks whilst also selecting for different plant trait syndromes (De Vries et al. 350 

2012), making trait measures an integrated measure of the environment. Nevertheless, all 351 

terms in the models accounted for unique variation, meaning that these relationships strongly 352 

indicate the primary regulators of these soil C fractions. Importantly, we found that several 353 

factors that influence soil C stocks at small scales, such as agricultural management (Conant, 354 

Paustain & Elliot 2001) and soil texture (Christensen 2001), do not explain national patterns 355 

in C stocks at these shallow depths. In contrast, plant traits did explain the C stocks of certain 356 

fractions. The surprising lack of soil texture effects on soil C pools may be because soil C is 357 

controlled by soil physical properties that were not captured by our field assessment, e.g. 358 
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mineral surface charges (Schmidt et al. 2011) and secondary and tertiary aspects of soil 359 

structure that determine the availability of C to decomposers, e.g. compaction, 360 

microaggregates and macropores (Christensen 2001). Alternatively, the lack of soil texture 361 

effects may be due to low data resolution or the rarity of clay rich soils sampled (Table S1). 362 

We also highlight that although plant traits explained a small proportion of variance their 363 

importance may be greater than it appears in our models, given their correlation with many of 364 

the other descriptor variables and their place at the base of our hierarchy of controls and 365 

modelling procedure.  366 

Looking at each model in turn provides insight into the factors driving each pool and 367 

emphasises the need to view soil C as a heterogeneous material when attempting to 368 

understand its dynamics and meaningfully quantify C stocks. The active fraction model 369 

demonstrates that stocks in this fraction are highest where plant growth is high (high MAT 370 

and MGSL), but decomposition is possibly slow (low pH and high MAP) (Cornwell et al. 371 

2008; Pietri and Brookes 2008). Despite a low overall model fit, there was, as hypothesised, a 372 

strong relationship with the CWM of SLA. Where vegetation possessed leaves that were thin 373 

and/or low density and lacked more slowly decomposing structural materials (Reich 2014), 374 

stocks of this fraction were lower (Fig. 2b), a finding that is consistent with previous studies 375 

linking SLA to litter decomposition rates (e.g. Garnier et al. 2004). The poor predictive 376 

capacity of our active fraction model may be due to the dynamic nature of this pool, which is 377 

highly variable seasonally (Christensen 2001). It may be better predicted by models in which 378 

plant production and decomposition are more explicitly defined.  379 

Unlike the other C fractions the stable pool was not explained by climate, possibly 380 

because much of this C would have entered this pool and become stabilised in different 381 

climatic conditions to those experienced today. This finding is consistent with some large-382 

scale gradient studies, which show stable soil C stocks to be largely insensitive to temperature 383 
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(Conant et al. 2011), although in other regions (e.g. Inner Mongolia) mineral associated C is 384 

the largest C pool and shows a strong relationship with climate (Evans, Burke & Lauenroth 385 

2011). In contrast, but in line with our hypotheses, the stable C pool was strongly influenced 386 

by soil pH. Higher stocks in more neutral and alkaline soils may reflect greater microbial 387 

processing of SOM in higher pH soils, resulting in greater transfer of C to chemically 388 

protected pools (Fornara et al. 2011). There was also a relatively small and unexpected effect 389 

of CWM leaf N content, which might be explained by N rich plant material reducing the need 390 

for ‘microbial mining’, a process where soil microbes decompose SOM to acquire N (Craine, 391 

Morrow & Fierer 2007). Given that CWM leaf N is higher in improved, fertilised grasslands 392 

(De Vries et al. 2012), it might also reflect higher inorganic N availability in a more 393 

statistically parsimonious way than the deleted management term. Management was not 394 

retained in any of our models, and this may reflect the very broad categories used, which 395 

cover a range of fertilizer and mowing regimes, and grazing intensities. Gathering detailed 396 

and accurate data for such factors requires considerable effort and plant traits, which respond 397 

to all these factors, may act as a good proxy substitute for them.  398 

Models describing the total C stocks and the intermediate fraction were extremely 399 

similar, which is unsurprising given that most soil C was in the intermediate fraction. The 400 

decline of soil C stocks at intermediate pH is likely caused by the balance of two contrasting 401 

processes: reduced decomposer activity and the accumulation of plant inputs in low pH 402 

conditions (Pietri and Brookes 2008), and greater transfer of C to the stable C fraction in more 403 

neutral and calcareous soils (Fornara et al. 2011). The moisture term in the total C model 404 

demonstrates that stocks peaked at soil moisture levels typical of waterlogged, or wet 405 

grasslands where soil microbial activity is low. The lack of plant trait terms in these models 406 

may reflect the fact that most older soil C has either undergone chemical and/or physical 407 
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transformation into more complex forms, or because current plant community composition 408 

does not reflect its origin.  409 

Previous studies have shown that regression models can predict soil C variation using 410 

climate and soil texture data at very large scales and within several continents (>100,000 km2) 411 

(Burke et al. 1989, Paruleo et al. 1998, but see Evans, Burke and Lauenroth 2011). Our 412 

findings indicate that a combination of plant trait data and simple climate and soil measures, 413 

can also help to predict regional and national scale soil C stocks (1-100,000 km2) in the 414 

surface soil, in a range of C pools of varying stability. It is possible that this approach could 415 

greatly improve regional and national level predictions of surface soil C stocks compared to 416 

current land cover proxy methods (Eigenbrod et al. 2010). Climate data are available for 417 

many parts of the world, soil pH can be measured quickly and with little equipment, and 418 

many countries produce regular national surveys of plant community composition (e.g. Carey 419 

et al. 2008). Furthermore, large international trait databases now exist (Kattge et al. 2011) and 420 

some traits, such as leaf N, may also be predictable from remote sensing (Dahlin, Asner & 421 

Field 2013). Our approach may also prove complementary to current soil C mapping 422 

approaches, which use a combination of dynamic models such as CENTURY (Parton et al. 423 

1993) and RothC (Smith et al. 2005), direct measurements (Bellamy et al. 2005; Carey et al. 424 

2008) and proxy measures (Jones et al. 2005; Eigenbrod et al. 2010), in two ways. First, it 425 

could be used to parameterise the starting conditions for soil C pools in models; and, second it 426 

could provide more extensive and fine-scale coverage than might be possible from direct 427 

measurement, e.g. for cases in which landowners seek to map soil C.   428 

The large amount of variation captured by the random effects in our models is likely 429 

to represent site differences in geology and legacies of landscape history (e.g. land use and 430 

glaciation), which may already be captured in coarse scale soil surveys. The measures here 431 

could help refine these coarse maps using local scale-information about soils, climate and 432 
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plant communities. Similarly, this approach could help refine existing models that use proxy 433 

measures with extensive geographic coverage (e.g. land cover and climate) (e.g. Jones et al. 434 

2005; Smith et al. 2005, Paruelo et al. 1998), by improving the characterisation of existing 435 

relationships and including trait based vegetation measures that are general, more detailed and 436 

mechanistically informative. Such an approach requires extension to a wider range of soil 437 

depths, environmental conditions and ecosystem types before it can be widely applied. 438 

Nevertheless, our results show that it has great potential, especially given the urgent need for 439 

large-scale, cost effective and accurate soil C stock characterisation. Such information is a 440 

precursor for the inclusion of soil C into C trading schemes and improved ecosystem service 441 

management.  442 
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Table 1. Selected models for total soil carbon to 7cm depth and soil carbon fractions of a range of size classes (kg C m-2) 583 

 Total soil carbon 

  

Active fraction 

 (4000-250 µm) 

Intermediate fraction  

(50-250 µm)  

Stable fraction (0.45-50µm) 

Variable Param. 

Est. 

AIC 

change 

(Δi)*  

P value* Param.  

Est. 

AIC 

change 

(Δi)* 

P value* Param.  

Est. 

AIC 

change 

(Δi)* 

P 

value* 

Param.  

Est. 

AIC 

change 

(Δi)* 

P 

value* 

Intercept    64.35  <0.0001 12.57  <0.0001 39.21  0.0001 4.22    0.12 

MAP (mm)     0.0001 -6.4e-4 14.21 0.0001       

MAP (mm)2     0.0001 5e-6 18.71 0.0009       

MAT (oC)  -10.72 14.64   0.025 -2.28 17.99 <0.0001 -6.91 10.37 0.0008     

MAT (oC)2      0.62 13.23   0.0067 0.11 8.97 <0.0001 0.40 10.81 0.0003    

Soil moisture (% dry weight)      0.035 -3.36   0.0002    0.021 2.05 0.049    

Soil moisture (% dry weight)2 -1.8e-4 -5.36 <0.0001    -1.1e-4 4.02 0.014    

MGSL (days)    0.010 4.17 0.013       

Soil pH    -5.86 18.89  -0.99 5.51 0.0086 -2.95 9.38 0.0012 -1.59 17.57 <0.0001 

Soil pH2     0.52 11.64  0.077 4.3 0.012 0.26 6.69 0.0032 0.16 2.35    0.037 

CWM SLA (mm2 mg-1)    -0.024 9.09 0.0009       

CWM leaf N content (mg N g-

1) 

         0.039 4.13    0.01 
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 aAssessed with a likelihood ratio deletion test. This was a single d.f. test for most terms but 2 for the main effects of variables with a quadratic 584 

function. In these cases both the main effect and the quadratic tern were removed. 585 
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Figure legends 586 

 608 

Fig. 1. Sampling regions within England. In each region five farms were selected and in each 609 

of these three fields were sampled, one unimproved grassland, one semi-improved and one 610 

improved. Regions are: (a) Worcester, (b) Upper Thames, (c) Somerset, (d) Devon, (e) 611 

Cotswolds, (f) High Weald, (g) South Downs, (h) Breckland, (i) Dales Meadows, (j) 612 

Yorkshire Ings, (k) Yorkshire Dales/South Lake District, (l) Lake District. In the validation 613 

region (m), Northumberland, 20 fields were sampled.   614 

 615 

Fig. 2. Fitted relationships between abiotic and plant community trait variables and grassland 616 

soil carbon stocks. In all figures the other variables in the models (Table 1) were held constant 617 

at their mean in the dataset (Table S1). Relationships are between: A) MAT and pH with total 618 

soil carbon stocks. B) MAT and mean annual precipitation with carbon in the active fraction. 619 

C) Soil pH and MAT with carbon in the intermediate fraction d) soil pH and the CWM of leaf 620 

nitrogen content and carbon in the stable fraction. Stocks are for the top 7 cm of the soil.  621 

 622 

Fig. 3. Changes in grassland soil carbon stocks across (A) temperature and (B) soil pH 623 

gradients. MAT is mean annual temperature. The stocks shown are the three size fractions 624 

predicted by the fitted models when all other variables are held constant at their mean in the 625 

dataset (Table S1).  626 
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Figure removed for file size reasons   630 
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