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Methods to explicitly represent uncertainties in weather and climate models have been
developed and refined over the past decade, and have reduced biases and improved
forecast skill when implemented in the atmospheric component of models. These
methods have not yet been applied to the land surface component of models. Since the
land surface is strongly coupled to the atmospheric state at certain times and in certain
places (such as the European summer of 2003), improvements in the representation of
land surface uncertainty may potentially lead to improvements in atmospheric forecasts
for such events.
Here we analyse seasonal retrospective forecasts for 1981-2012 performed with the
European Centre for Medium-Range Weather Forecasts’ (ECMWF) coupled ensemble
forecast model. We consider two methods of incorporating uncertainty into the
land surface model (H-TESSEL): stochastic perturbation of tendencies, and static
perturbation of key soil parameters.
We find that the perturbed parameter approach considerably improves the forecast of
extreme air temperature for summer 2003, through better representation of negative
soil moisture anomalies and upward sensible heat flux. Averaged across all the
reforecasts the perturbed parameter experiment shows relatively little impact on the
mean bias, suggesting perturbations of at least this magnitude can be applied to the land
surface without any degradation of model climate. There is also little impact on skill
averaged across all reforecasts and some evidence of overdispersion for soil moisture.
The stochastic tendency experiments show a large overdispersion for the soil
temperature fields, indicating that the perturbation here is too strong. There is also
some indication that the forecast of the 2003 warm event is improved for the stochastic
experiments, however the improvement is not as large as observed for the perturbed
parameter experiment.
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Received . . .

1. Introduction

Seasonal climate models are able to make predictions of average
conditions for several months ahead by making use of the
predictability arising from slowly evolving components of the
climate system such as the ocean, the land surface and ice.
Two main sources of uncertainty in seasonal forecasts come
from imperfectly known initial conditions, impacting forecast
error through non-linear error growth, and model uncertainty,
which has its source in many places, for example: physical

approximations, upscale error arising from unresolved processes

and imperfectly known model parameters. Methods have been

developed at numerical weather prediction centres around the

world to explicitly represent this latter source of uncertainty in

the atmosphere, which have consistently demonstrated positive

impacts on biases, model skill and reliability, for the medium-

range (Palmer 2012) and more recently at seasonal timescales

(Weisheimer et al. 2014). However no such attempt has yet been
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made for the land surface, which in general represents an under-
exploited source of seasonal predictability for the atmosphere
(Seneviratne et al. 2012).

Land surface predictability arises in part from slow variations in
soil moisture, which is a key element in the coupling between the
land and atmosphere (Seneviratne et al. 2010). It is helpful here to
consider the classical two-regime conceptual hydrological model,
which describes an energy limited regime (where soil moisture
content is high and evapotranspiration is limited only by available
energy) and a soil moisture regime (where moisture availability
constrains evapotranspiration).

In the soil moisture regime negative soil moisture anomalies
limit evapotranspiration and can lead to strong coupling
with atmospheric temperature via positive feedback. Reduced
evapotranspiration (and therefore latent heat flux) causes an
energy imbalance at the surface, which is resolved by an
increase in sensible heating of the atmosphere, leading to a rise
in atmospheric temperature, increased evaporative demand and
further decreases in soil moisture.

The strength of land-atmosphere coupling was the focus of
the GLACE multimodel intercomparison study (Koster et al.
2004; Seneviratne et al. 2006). Here it was found that derived
coupling strengths between the land and the atmosphere varied
widely between models, however some similarity was found in the
spatial patterns, enough to identify consistent ‘hotspots’ of land-
atmosphere coupling, with the strongest coupling located over
Africa, central North America and India. Significant interannual
variation in the strength of coupling has also been demonstrated
(Guo and Dirmeyer 2013).

This temporal and spatial variability in coupling strength
between the land and the atmosphere suggests that the impact of
modifications of the land surface component of climate models
may be most apparent for ‘hotspot’ areas, and also during periods
of particularly strong coupling. One such period was the 2003
European summer, during which the positive feedback process
between soil moisture and air temperature was active (Fischer
et al. 2007a,b; Miralles et al. 2012). The severe impacts of this
warm event have been discussed elsewhere (e.g. Robine et al.
2008), and it is likely that successful anticipation of similar
events in future will form a key element of climate service
provision. However state-of-the-art seasonal climate models have
previously had difficulty simulating the 2003 event (Weisheimer
et al. 2011a). Here we focus on forecasts for summer 2003 over
Europe, considering whether improved representations of land
surface uncertainty give any improvement in the forecast.

Land surface uncertainties are in part related to parameters and
their high spatial variability. Heterogeneity of land cover and soil
type in the land surface is not captured by the coarseness of typical
climate model resolution (typically of the order of 100km). Some
effort is made to deal with this, for instance in H-TESSEL a
tiling system is used for the surface. However parameterization
of soil moisture transport equations assumes homogeneity of
parameters across each model grid box, which can lead to overly-
deterministic simulations. Furthermore, parameters linking soil
type to hydraulic dynamics are represented in models with too
much confidence. Models use exact hydraulic parameters, yet
observational studies have shown that the standard deviation of
soil parameters for a particular soil type is often larger than
the mean (Carsel and Parrish 1988), indicating land surface
parameterization is unrealistically deterministic, with scope for
improvement. Furthermore, the problem of unrepresented land
surface uncertainty will be exacerbated by the trend toward
higher resolution of climate models, which expose the model
development process to the limits of our knowledge of what is
actually occurring in the surface and subsurface hydrology (Beven
et al. 2014).

Several methods have been suggested to incorporate uncertain-
ties into models, based on the philosophy of ensemble forecasting.
Here we explore the application of two of these methods to the
land surface, for ECMWF’s land surface scheme H-TESSEL. We
focus on how these modifications impact simulation of the 2003
European summer, and beyond this consider their impact on mean
biases, ensemble spread, deterministic and probabilistic skill. A
description of the modelling framework, experimental design and
verification follows in section 2. Section 3 describes results and
section 4 contains a discussion.

2. Methodology

2.1. Modelling framework

We used the seasonal forecasting system setup that mimics
the setup of System 4, the seasonal forecast system currently
operational at ECMWF to perform a set of retrospective
forecasts for the past (hereafter referred to as hindcasts). The
atmosphere model is IFS (CY36R4) at T255 horizontal resolution
(corresponding to gridboxes 80 km wide at the equator) with
91 vertical levels. The ocean model is NEMO at approximately
one degree resolution, with 42 vertical levels. Initial conditions
come from the ERA-Interim reanalysis (Dee et al. 2011) for the
atmosphere, from ORA-S4 (Balmaseda et al. 2013) for the ocean,
and the ERA-Interim Land reanalysis (hereafter ERA-Land, ?)
provides initial conditions for the land surface.

The land surface model used here is H-TESSEL, the Tiled
ECMWF Scheme for Surface Exchanges over Land (TESSEL)
with revised land surface hydrology (Balsamo et al. 2009),
comprising a surface tiling scheme and a vertically discretized
soil. The surface tiling scheme allows each gridbox a time-varying
fractional cover of up to six tiles over land (bare ground, low
and high vegetation, intercepted water, and shaded and exposed
snow) and two over water (open and frozen water). Each tile has
a separate energy and water balance, which is solved and then
combined to give a total tendency for the gridbox, weighted by
the fractional cover.

The vertical discretization has soil layers below ground at 7, 21,
72 and 189cm. The soil heat budget follows a Fourier diffusion
law, with net ground heat flux as the top boundary condition and
zero flux at the bottom. Subsurface water fluxes are determined by
Darcy’s law, used in a soil water equation solved with a four-layer
discretization shared with the heat budget equation.

Vertical movement of water in the unsaturated zone of the soil
matrix is described by Richards’ equation for flow of water in the
subsurface (Richards 1931), often used in soil physics and land
surface models (Hillel 1998). It is shown in equation 1

∂θ

∂t
=

∂

∂z

(
λ
∂θ

∂z
− γ
)

+ Sθ, (1)

where θ is water content of the soil, γ is the hydraulic
conductivity, λ is the hydraulic diffusivity, Sθ is a volumetric sink
term associated with root uptake, z is the vertical height above a
reference point and t is time.

Hydraulic conductivity is calculated with the van Genuchten
formulation (van Genuchten 1980), introduced as part of the
improved H-TESSEL model. This scheme is favoured by soil
scientists as it has shown good agreement with observations in
intercomparison studies (Shao and Irannejad 1999) and is given
by

γ = γsat
[(1 + (αh)n)1−1/n)− (αh)n−1)]2

(1 + (αh)n)(1−1/n)(l+2)
, (2)

where α, l and n are soil dependent soil texture parameters and
h is soil water potential (the potential energy of soil water due to
hydrostatic pressure). h is linked to θ by the expression
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θ(φ) = θr +

θs − θr
(1 + αh)1−1/n

, (3)

where θr and θs are residual and saturated soil moisture content
respectively.

H-TESSEL also introduced a spatially-varying soil type
map (previously in TESSEL soil parameters were spatially
homogenous). This map comes from the Food and Agriculture
Organization (FAO) soil type map of the world (FAO 2014), which
describes a large variety of soil types at relatively high spatial
resolution (around 30 arc seconds, corresponding to roughly
1km).

For inclusion in H-TESSEL, the FAO soil types are simplified
to six categories, and then prepared for use with IFS resolution
by taking the dominant FAO soil type within an IFS grid box
as representative of the entire box. The typical seasonal climate
forecast resolution is of the order of 100km, so any variability in
soil type on scales lower than this is essentially ignored in the
model. In reality soil properties exhibit variability on an order
of magnitude at least a thousand times smaller than this, on the
order of metres (e.g. Trangmar et al. 1986), suggesting that there
is significant uncertainty associated with this approximation.

A second uncertainty arises from the fact that each H-
TESSEL soil type has a single value for each of the van
Genuchten parameters. Each soil type has a different van
Genuchten parameter; those used in H-TESSEL are shown in
table 1, calculated for simplified soil types from measurements
of parameters of large soil samples (Cosby et al. 1984).

Texture α (m1) l n γsat (10−6ms−1)

Coarse 3.83 1.250 1.38 6.94
Medium 3.14 -2.342 1.28 1.16

Medium-fine 0.83 -0.588 1.25 0.26
Fine 3.67 -1.977 1.10 2.87

Very fine 2.65 2.500 1.10 1.74
Organic 1.30 0.400 1.20 0.93

Table 1. Default soil parameters used in IFS/H-TESSEL for the six IFS soil
types.

Again, reality exhibits more variability. The observed mean
and standard deviations of hydraulic conductivity for several
soil types, calculated from a large number of soil samples, are
reproduced in table 2. Here the standard deviation is often larger
than the mean, suggesting that the real world has a much higher
spread in soil response to moisture input than the model simulates.

Soil type µ σ

Clay 0.56 1.17
Clay loam 0.72 1.94

Loam 2.89 5.06
Silt 0.69 0.92

Silt loam 1.25 3.42
Silt clay 0.06 0.31

Table 2. A subset of the mean (µ) and standard deviation (σ) of saturated
hydraulic conductivity measured for a selection of soil types, reported in
Carsel and Parrish (1988). Units are 10−6ms1.

Land surface uncertainties are not represented in the IFS,
however atmospheric uncertainties are, and a significant amount
of research has gone into developing these schemes. In the
IFS, model uncertainty is dealt with through the stochastically
perturbed parameterized tendencies scheme (SPPT, Palmer et al.
2009) and the stochastic kinetic backscatter scheme (SKEB,

Shutts 2005; Berner et al. 2009). We use the SPPT scheme as
a basis for one of our experiments and so provide some further
details below.

Uncertainty associated with atmospheric parameterization of
sub-grid scale physical processes results in errors to the tendencies
(that is, the changes in a variable from one time step to the next due
to the parameterization). The SPPT scheme attempts to sample
this error with an ensemble by perturbing the total tendencies
for temperature, winds and humidity fields at every timestep by
a dynamic spatially-correlated random number field. That is, the
total parameterized tendency X for each variable is perturbed via
multiplicative noise, i.e.

Xp = (1 + rµ)X, (4)

where Xp is the perturbed tendency, r is a random number and
µ ∈ [0, 1] is a factor used for reducing the perturbation amplitude
close to the surface and in the stratosphere.

The random number comes from an evolving 2-dimensional
field, correlated in space and time, produced by a spectral pattern
generator (SPG), evolving parallel to the main simulation. This
SPG is a three-scale two-dimensional autoregressive process
(AR1) and has been designed to mimic the typical scales present
in the atmosphere related to the error fields. The total random
field at any instant is a summation of three independent AR1
processes, each with a characteristic decorrelation length and
time: 500/1000/2000km and 6/72/720hr for the small to large
scales respectively. The standard deviations of the amplitudes of
the perturbations for the small, medium and large scales are 0.52,
0.18 and 0.06, resulting in a total pattern in which the small scales
are perturbed more strongly. These scales have been chosen as
representative of the approximate scales of the atmosphere.

The impact of SPPT on model biases and forecast skill has
been very positive. At the medium range the skill of tropical
850hPA temperature is much improved, with forecasts including
stochastic parameterization showing the same level of skill at
six days from initialization than forecasts without show after
two. The reliability of precipitation forecasts over Europe is also
improved for these forecasts (Palmer et al. 2009). At seasonal
scales, SPPT helps to reduce excessively strong convection over
the Maritime Continent and the tropical Western Pacific, leading
to reduced biases of the outgoing longwave radiation (OLR),
cloud cover, precipitation and near-surface winds (Weisheimer
et al. 2014). The stochastic perturbation also improves statistics
of the Madden-Julian oscillation and reduces errors in the forecast
of El Niño.

In this paper we describe attempts to incorporate land
surface uncertainties into ECMWFs seasonal forecasting model,
following an SPPT-like approach where we perturb tendencies
to soil fields, and a perturbed parameter approach where soil
parameters are perturbed directly. A description of the control
model setup and the perturbation experiments follows.

2.2. Experimental design

Several seasonal hindcast experiments have been run, in each case
with a different method of uncertainty representation for the land
surface.

We focus on hindcasts of boreal summer for the period 1981-
2012, by initialising the model on the 1st May for each year
and running each hindcast forward for four months, with each
experiment having 25 perturbed ensemble members. The control
experiment has no land surface perturbation and differences here
arise only from the stochastic schemes used in the atmosphere and
from the initial conditions. For the two experiment types, further
differences arise from the land surface perturbed tendencies and
parameters.

This article is protected by copyright. All rights reserved.
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2.2.1. Stochastically perturbed tendencies

For the stochastically perturbed tendency experiments we mimic
the SPPT atmospheric scheme. At each time step, the total
tendency from the soil moisture and temperature fields arising
from the H-TESSEL parameterization are perturbed with the
instantaneous field generated by the SPG. All four layers are
perturbed equally, and the pattern generated uses a different initial
seed from the SPPT, so that the perturbation fields used for the
atmosphere and the soil are uncorrelated.

Three stochastically perturbed tendency experiments are
carried out, each using a different weight for the three scales
in the SPG. The first uses the same weighting as SPPT
(standard deviations of small/medium/large set as 0.52/0.18/0.06),
the second uses a field with all scales weighted equally
(0.32/0.32/0.32), whilst the third uses a mirrored version of SPPT
scales (0.06/0.18/0.52), such that the largest scales are perturbed
most. For each experiment the standard deviation of each pattern
is chosen such that the root of the sum of the squared value (i.e.
the standard deviation of the total pattern) is kept constant.

The SPG is in a general way intended to have a spectrum
roughly similar to the scales present in the atmosphere (thus, the
small/fast scales dominate). Since the decorrelation time scales
associated with soil anomalies are somewhat larger than the
atmosphere we chose to experiment with different SPG scales, as
we consider that a larger scale pattern may be more appropriate
for the land surface.

2.2.2. Perturbed parameters

The perturbed parameter experiment focuses on two key soil
parameters: α and γsat (see equation 2, 3 and the associated
discussion for details). These particular parameters have been
chosen as previous studies found them to be particularly sensitive
(Cloke et al. 2008). A static perturbation is used, where each
ensemble member takes a different combination of perturbation
to the two parameters, which remains constant for the length of
the integration. Perturbations are taken from the set {-80%, -
40%, 0, 40%, 80%}, where the perturbation percentage applies to
the default parameter for the soil type at a particular gridpoint.
A 25 member ensemble is then generated by applying all the
perturbation combinations to the two parameters.

The magnitude of the maximum perturbation was guided
by some initial experiments, which indicated that using lower
maxima of 20% and 40% had little observable impact on the
hindcasts (N.B. a perturbation of 80% is still well within the
observed variation in parameter values from the mean for most
soil types, see table 2).

An unexplored element of the PP experiment is the question of
model spin-up and initialisation. The initial state from ERA-Land
used was created by running the unperturbed model in an offline
run with ERA-Interim forcing, generating initial land surface
states. However, the ensemble members of the PP experiment
are each essentially a different version of the model, and so
presumably would calculate each a different initial state when
run in the same way as the ERA-Land initial state generation.
This means there is likely to be some spin-up time in the
PP experiment, where ensemble members move toward their
individual model climatologies, different from the unperturbed
climatology.

For the top soil level this spin-up is only likely to be a few
days and deeper levels will take longer to relax. It is unclear to
what extent this may impact results as the process of a model
adjusting to its forcing can bias land surface simulations (Rodell
et al. 2005; Shrestha and Houser 2010). Work is in progress to
explore this question in the current experimental setup, including
the creation of and experiments with initial conditions using this

Table 3. A list of the short names and descriptions of land surface perturbation
experiments carried out.

ID Description

ST1 Stochastic tendencies, default scales of the SPG
ST2 Stochastic tendencies, all scales weighted equally
ST3 Stochastic tendencies, largest scales weighted

most (mirror scales)
PP Perturbed parameters α and γsat

perturbed ensemble. However here we assume the impact on
results is minimal.

Hereafter experiments are referred to by a short name, these are
summarized in table 3.

2.3. Assessing model performance

We first investigate the ‘hotspots’ of strong land-atmosphere
coupling, following the definition of Seneviratne et al. (2006),
where a negative correlation between air temperature and
evaporation indicates a strong coupling region. We diagnose this
coupling for the ERA-Interim reanalysis and all the experiments,
using the Pearson’s correlation coefficient (Wilks 2011) between
June/July/August (JJA) 2m air temperature and evaporation.
For the experiments the correlation is calculated between the
ensemble mean of the forecast and the observations.

Following this we consider the predicted anomalies corre-
sponding to the 2003 summer, and subsequently the average
model performance over all hindcast years. Here we describe the
methodology followed for verification, the reference data used and
the metrics used.

The soil fields considered are temperature and moisture in the
top level. As a reference for these soil fields throughout, we verify
against the reanalysis dataset ERA-Land, which was created by
forcing H-TESSEL with high quality atmospheric data (?).

To consider the potential impact on the atmosphere, we
consider 2m air temperature, precipitation, surface and latent heat
fluxes. We use the ERA-Interim reanalysis as a reference for these
(Dee et al. 2011), except for precipitation, for which we use the
GPCP monthly precipitation analysis (Adler et al. 2003).

For the analysis of summer 2003, we use the probability
of summer 2m air temperature falling in the upper quintile as
an indicator of the forecast probability. That is, we calculate
the percentage of ensemble members in which month 2-4
(corresponding to the forecast for June-August for a May start
date) falls in the upper quintile of the climatological distribution.
The upper quintile threshold is calculated across all ensemble
members and years, on a grid point basis. We also consider the
ensemble mean anomalies, which are calculated with reference to
the hindcast period 1981-2012.

In addition to this we calculate the climatological Probability
Density Function (PDF) of 2m air temperature for the experiments
over Southern Europe (10W-40E, 30-48N, following Weisheimer
et al. 2011a) and the forecast PDF for 2003. To convert the discrete
ensemble members into a smooth probability distribution, we use
affine kernel dressing (Bröcker and Smith 2008), where kernel
parameters are fitted by minimum continuously ranked probability
score estimation (Wilks 2011).

For the analysis across the hindcasts, we focus on predictions
for JJA, looking at the impact of the perturbations on the ensemble
mean biases in land and atmospheric variables.

To measure the impact of the perturbation on ensemble
dispersion, we consider the spread/error ratio. In a perfect system
the ensemble spread gives a measure of forecast uncertainty and so
ideally would be equal to the error of the forecast. To quantify this,

This article is protected by copyright. All rights reserved.
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we calculate the standard deviation of the ensemble divided by
the root mean square error of the ensemble mean, averaged across
all hindcast years. A spread/error ratio greater than 1 indicates
that the field tends to overdispersion and issues underconfident
forecasts, whilst a ratio less than one indicates a tendency for
underdispersion and overconfident forecasts.

Finally to consider probabilistic skill we use the Brier skill
score, which measures the skill at forecasting events (Brier 1950).
In our case the event we consider is a particular season falling in
either the upper or lower tercile of the climatological distribution,
interpreting this as an anomalously warm/cold or wet/dry season.
The Brier score is given by

BS =
1

n

n∑
i=1

(pi − xi)2, (5)

where pi is the forecast probability of occurrence of the
event i from a set of n forecast-observation pairs, and xi is a
corresponding binary value indicating occurrence/non-occurrence
in the observations (1/0 respectively). The Brier score takes a
value in the interval [0, 1] and is negatively biased when calculated
from a smaller ensemble; we employ here a correction which
estimates the score obtained by an infinite ensemble, described
in Ferro and Fricker (2012). Furthermore we present the score as
a skill score relative to climatology, as

BSS = 1−
BSfor
BSclim

, (6)

where BSfor is the Brier score for our forecast system and
BSclim is the Brier score obtained by a climatological forecast,
always issuing a forecast probability equal to the climatological
frequency. A BSS equal to 1 indicates a perfect forecast system,
and BSS equal to or less than 0 indicates one with a Brier score
equal to or worse than climatology.

A description of these results follows. Where presented,
confidence intervals are based on a 1000 member bootstrap
resampling. All model and reference data has interpolated to a
common 2.5 degree grid before analysis.

3. Results

3.1. Hotspots

Correlation between evaporation and 2m air temperature in JJA
is shown in figure 1, for ERA-Interim, the control run and
the PP experiment. Negative correlations here represent strong
coupling regions and potential hotspots, following Seneviratne
et al. (2006). Large negative correlations indicate regions where
high moisture availability leads to increased latent heat flux
through evapotranspiration and so lower levels of sensible heat
flux and air temperature. Conversely in these regions of negative
correlation, dry soil leads to a decrease in latent heat flux and a
corresponding increase in sensible heat flux and air temperature.
For ERA-Interim the hotspots are located over central North
America and Brazil, the Sahel, southern Africa, central Asia,
China, India and Australia.

For the control seasonal hindcast experiment the pattern is
quite similar, with a slight increase in the extent and strength of
the hotspot over North America, and an extension of the strong
coupling over South America such that it covers most of the
continent. Coupling is also present over Europe compared to
ERA-Interim, where it is absent, and similarly for the highest
latitudes in the east of Asia. Results for the PP experiment are
shown in figure 1c. The only difference between this experiment
and the control is the extent of the coupling in North America,
which in the PP experiment is closer to that seen from ERA-
Interim. This result is representative for the ST experiments (not

Figure 1. Correlation between JJA evaporation and 2m temperature, for (a) ERA-
Interim, (b) the control experiment and (c) the PP experiment. Large negative
correlations indicate regions of strong land-atmosphere coupling, following
Seneviratne et al. (2006). Areas of low climatological evaporation have been
masked.

shown), which also show a reduction in the strength of coupling
over North America.

The spatial pattern of the hotspots agrees with previous results
from the GLACE project (Koster et al. 2004) and from the
IPCC AR4 models (Seneviratne et al. 2006), which indicated
the strongest coupling over North and South America, the Sahel,
southern Africa, Central Asia and India. Despite the fact that
the average coupling strength shown here for Europe is low, the
magnitude of the coupling is variable in time and for this region it
has been shown that coupling was particularly high for the 2003
extreme warm event over Europe. It is to this event we turn now.

3.2. Impact on simulation of summer 2003 over Europe

Figure 2 shows the probability of 2003 summer 2m air
temperature falling in the highest quintile indicated by the
experiments. The percentiles in which JJA 2003 fell according to
the ERA-Interim reanalysis are indicated in figure 2a. The highest
quintile in the reanalysis extends over nearly all of Western

This article is protected by copyright. All rights reserved.
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Figure 2. 2m JJA average air temperature in 2003: (a) percentile for the season
from ERA-Interim, relative to its climatology, (b-f) probability of temperature for
the same period falling in the highest quintile for the experiments. In plots b-f the
areas where the probability is below the climatological frequency (20%) have been
masked.

Europe, from Ireland to the Black Sea, and from the north coast
of Africa to Scandinavia. Concurrently the temperature for regions
around the Caspian sea were equally extreme, falling in the lowest
deciles relative to the reference period.

The control (figure 2b) indicates slightly enhanced probability
of upper quintile temperature (compared with the climatological
frequency of 20%) over most of Europe, with a maximum
of around 40% over the Balkans. The stochastic perturbation
experiments follow a similar pattern of probability, with slight
increases, particularly for ST3 (figure 2e). The PP experiment
(figure 2f), indicates a much higher probability over Western
Europe, particularly over France, where it gives a probability
of upper quintile temperatures of 60-70%. The pattern of
anomalously high air temperature is more consistent with
reanalysis and reports of extreme summer temperatures (where
the largest impacts occurred over France).

Figure 3 shows the PDFs of temperature over Southern
Europe for all four experiments and the control, in each case
comparing the forecasted to the climatological PDF. In the control
experiment there is a clear shift in probability mass in 2003
toward higher temperatures, and in the PP experiment this shift
is even more pronounced, with a much stronger indication of
higher temperatures. The ST1 experiment shows a slight decrease
in probability mass at high temperatures, whilst the ST2 and ST3
both show stronger probabilities, though with smaller magnitude
compared to the PP experiment.

These results imply that the PP experiment is simulating the key
processes leading to the extreme temperatures more realistically
than the control and the stochastic tendency experiments. One
key process, (described previously in section 1) involves negative
soil moisture anomalies, decreased latent and increased sensible
heat flux from the surface, and positive air temperature anomalies.
Anomalies for these fields are shown in figure 4, comparing 2003
JJA anomalies for these variables for the control and the PP

Figure 3. Probability density functions for 2003 JJA 2m air temperature over
Europe (10W-40E, 30-48N), represented by the blue curve (small black lines
indicate individual ensemble members). The grey curve indicates the climatological
distribution, and the red line indicates the observed temperature from ERA-Interim.

Figure 4. 2003 JJA ensemble mean anomalies for the control (left column) and PP
experiment (central column). Reanalysis for JJA 2003 is shown in the right column.
Top-bottom rows for variables top level soil moisture, latent heat flux, sensible
heat flux and 2m air temperature. Reanalysis is ERA-Land for soil moisture, ERA-
Interim otherwise. N.B. Flux anomalies are measured downwards, and the contour
scale is different between the models and reanalysis.

experiment to reanalysis. Though the latent heat flux anomaly for
JJA shown in figure 4 does not show a large difference between
the PP experiment and the control, this is based on an ensemble
mean average for JJA. Looking closer at the individual members
for seperate months reveals an improvement in the ensemble
distribution for July, though no difference in June and August (not
shown).
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Figure 5. JJA biases for top level soil moisture and temperature, in the control and
PP experiments. The minimal impact of land surface perturbations on model biases
demonstrated here is representative of the results for other lead times, experiments
and atmospheric variables (2m air temperature and precipitation).

The PP experiment has a much clearer negative soil moisture
anomaly than the control, in the region that the reanalysis indicates
the driest soil. This improved simulation of negative moisture
anomalies is also seen for lower soil levels (not shown).. There
does not seem to be a corresponding decrease in latent heat
flux, this is also not present in the reanalysis. The large upward
anomaly for sensible heat flux for the PP experiment is more
in agreement with the reanalysis than the control, as is the 2m
air temperature. Improvement is not uniformly positive, as the
simulation of cold air and wet soil east of Europe, and warm air
in Scandinavia are worse in the PP experiment. However in the
region of maximum impact (over France), the experiment better
simulates the extreme event, consistent with soil moisture and
sensible heat flux anomalies.

3.3. Impact on model climatology and forecast skill

Mean summer biases are shown in figure 5 for the control and
PP experiment, for top level soil moisture and temperature. The
atmospheric variables 2m temperature and precipitation are also
disccussed but are not shown for brevity.

In general the control is slightly too cold, particularly over the
tropics, Australia, Russia and South America. This is reflected
in both the soil and air temperature bias. Over most of North
America the air temperature has a slight warm bias, whilst the soil
does not, which suggests that this results from some error in the
simulated atmospheric processes which is not transmitted to the
soil. The control is generally dry in JJA over the tropics, which is
also reflected in the soil moisture bias.

The change in bias from the control for the PP experiment
is not significant. This is also true for the ST experiments (not
shown), and for each of the four forecast months individually,
suggesting that of the land surface perturbations considered, none
make any noticeable impact on the mean state of land surface
fields or the atmosphere. This suggests that perturbations of at
least this magnitude can be applied to the land surface without
degradation of the model climate. Anomaly correlations between
the ensemble mean and observations were also considered for soil
and atmospheric variables (not shown). For these variables the
experiments show no significant change from the control.

Results for the spread/error are shown in figure 6 for tropical
land points (30◦S to 30◦N). These scores are shown with 95%
confidence intervals from bootstrapping, for targets corresponding
to all monthly and three-monthly averages corresponding to
four-month forecasts issued in May. All of the perturbation

Figure 6. Ratio of spread to RMSE over tropical land points for (a) soil
moisture, (b) soil temperature, (c) 2m air temperature and (d) precipitation, for all
experiments, monthly and seasonal targets. Bars indicate 95% confidence intervals
from bootstrapping.

experiments generally increase the spread of the soil variables,
which tend toward underdispersion in the control. However the PP
experiment increases the spread in soil moisture too much after
the first month, resulting in overdispersion (figure 6a). For soil
moisture, the ST experiments also increase the spread, though not
to the same extent as the PP experiment. The ST experiments with
more weighting on longer scales (i.e. ST2 and ST3) show more of
a tendency toward overdispersion.

This overdispersion of the experiments when the perturbation
is weighted toward larger scales is also seen for soil temperature
(figure 6b). The effect is quite significant, increasing the
spread/error ratio for ST3 from around 0.9 in the control to over 2.
This is clearly undesirable, suggesting that this perturbation is not
appropriate for soil temperature. Results for PP and ST1 are more
reasonable, with only slight increases in the spread.

The spread is also increased for 2m air temperature (figure 6c)
following the same pattern for the experiments as seen in soil
temperature. This is likely driven by the large dispersion in soil
temperature being transmitted to the atmosphere through sensible
heating. Results for precipitation are also shown (figure 6d), but
there is no noticeable impact on the spread here.

Brier skill scores for wet soil events are shown in figure 7. There
are limited areas where the score is significantly above zero in
the control: part of the Middle East, Western USA, central South
America, Southern Africa, Indonesia and East Australia. The
PP experiment shows improvement over the control for Central
and South America and the Middle East (figure 7e) with slight
increases in the Brier skill score, consistent with the hotspot
regions indicated in figure 1, though it remains below significance
in these areas. For the ST3 experiment the score slightly increases
for South America, but for other regions and the other two ST
experiments there is little impact. A similar pattern of skill is seen
in the control for dry soil events (not shown), and again the PP
experiment shows similar improvements in South America and
the Middle East.

Results for warm soil events are shown in figure 8. Scores
for the control are higher than for soil moisture, with largest
scores over South America, equatorial Africa, Greenland, the
Middle East, Central Asia and Indonesia. All experiments seem
to show an improvement in skill over Africa, particularly the ST3
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Figure 7. Brier skill score for upper tercile soil moisture JJA for the control and
experiments. Stippling indicates where score is significant at 95% level.

experiment (figure 8d), which shows a score greater than zero
across the continent, whilst the control has many areas where the
score is below climatology. The ST3 experiment also shows a
slight increase across the whole of Asia. Results for lower tercile
soil temperature are not shown, but are similar to those for upper
tercile events.

Scores for upper tercile 2m air temperature are not shown, but
indicates skill in the control in similar places to soil temperature,
with scores significant at the 95% level over much of the Middle
East, Central and Southeast Asia, Greenland, South America and
parts of Africa. The largest improvement seems to be with the PP
experiment for North/Central America, where the small area with
scores significantly above zero in the control increases, and the
area with scores below zero decreases. Results for precipitation

Figure 8. As figure 7, for upper tercile soil temperature.

have also been analysed, and indicate that the perturbations have
a negligible impact on the probabilistic skill (not shown).

4. Discussion and Conclusions

The land is an important component of the climate system and is a
key player in the development of extreme warm events. However
there are uncertainties in the land surface, which are not normally
represented in global coupled models.

Since improvements in seasonal forecast skill and reliability
have resulted from explicit representation of uncertainty in the
atmosphere (Weisheimer et al. 2014), we have attempted to follow
a similar approach for the land surface component of the ECMWF
model. Three stochastic tendency experiments have been carried
out, based on the SPPT scheme used operationally in the ECMWF
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atmospheric model, with each having a different weighting of
the scales used in the pattern generating the stochastic fields. As
well as this, one further experiment has been run, where key soil
parameters have been perturbed.

Regions with strong atmospheric coupling (hotspots) have been
estimated in the experiments, demonstrating quite similar pattern
of coupling in the control experiment as observed for the ERA-
Interim reanalysis, which itself is similar to results from modelling
systems reported previously (Koster et al. 2004; Seneviratne
et al. 2006), with hotspots reported over central North and South
America, the Sahel, India, central and east Asia. For most areas
the perturbations show little difference in coupling from the
control, except over North America, where the perturbations are
closer to the reanalysis, with a slightly decreased extent negative
correlation compared to the control.

Hotspot regions in models must be interpreted with caution
however, as it has been demonstrated that land-atmosphere
feedbacks can be highly dependent on parameterization.
For instance, results demonstrated a positive soil moisture-
precipitation feedback with convective parameterization was used
and negative feedback when convection was explicitly simulated
(Taylor et al. 2013). This raising questions about the accuracy
of land-atmosphere feedback and coupling assessed with models
using convective parameterizations, including those here and
elsewhere (Koster et al. 2004; Seneviratne et al. 2006).

Considering now the impact of explicit representations of
uncertainty on the forecast of the extreme European summer of
2003, results here suggest an improvement in the forecast for
the perturbed parameter experiment. The result is mechanistically
consistent, arising from improved simulation of negative soil
moisture anomalies and increased sensible heat flux from the
surface. The same improvement in the forecasted probability of
higher temperatures is observed to a lesser extent for the larger-
scale stochastic tendency experiments.

Some improvement in probabilistic skill is also detected for
the perturbed parameter experiment when measured across the
hindcast, though not for Europe, for which skill is low. Note
that this lack of skill is entirely consistent with the improvement
for the individual year. Since the land-atmosphere coupling was
especially strong for this year we would expect improvements in
the land to impact the atmosphere here, whilst for other years
when coupling is weaker or absent, this impact would be lower
or non-existent. Improvements may not therefore be visible when
looking across the entire hindcast range.

Improvements in probabilistic skill for the perturbed parameter
experiment however are visible for soil moisture in regions of
strong land-atmosphere coupling. That is, over Central/South
America and the Middle East and for air temperature in
North/Central America. The only improvement for the stochastic
tendency experiments occurs for the largest scale experiment
(ST3), which shows some improvement over Africa and Asia for
soil temperature, though the score is still below 95% significance
in these regions.

We observe no significant impact on the mean state of soil or
atmospheric fields, or any impact on deterministic scores, though
the stochastic tendency experiments slightly decrease the anomaly
correlation for soil temperature. In terms of the spread/error ratio,
all experiments act to increase the spread of the soil fields, which
are generally underdispersive in the control. However they go
too far and cause overdispersion. For soil moisture this is largest
with the perturbed parameter experiment, though the stochastic
tendency experiments also increase the spread, particularly for
experiment ST3.

For soil temperature the perturbed parameter experiment
increases the spread so that the spread/error ratio is close to
1 (compared to an underdispersed control) for the first month,

though it is slightly overdispersed after this. The stochastic
tendency experiments also have an impact on the spread of soil
temperature, and introduce overdispersion from the first month.
This is dependent on the weighting of the scales used - with the
most dispersion occurring again for ST3, for which the spread is
increased to over twice the error.

It is not clear why the ST3 experiment, in which the largest
temporal and spatial scales are the most prominent, shows the
most dispersion, particularly so for soil temperature. This may be
related to the interaction between the timescale of the evolution
of the tendency and the decorrelation timescale of the stochastic
forcing. For example, in a situation where both are equal it would
be possible for the tendencies and the stochastic forcing to ‘lock’,
so that occasionally the sign of the tendency and the forcing act
in complement for a period of time, resulting in a large dispersion
of the ensemble. Conversely, in a situation when the decorrelation
timescale of the forcing and the autocorrelation of the tendency act
on different timescales, periods in which the sign of the tendency
acts in one direction would be perturbed over time in contradictory
ways by a more-quickly varying forcing. This would act over time
to dampen the effect of the perturbation and create relatively less
dispersion than the case in which the timescales are equal.

Whilst this hypothesis will be tested theoretically in future
work, practically this overdispersion suggests that the perturbation
of soil temperatures directly is somewhat unrealistic. Furthermore,
a consideration of the approximations in the land surface models
used in climate models suggests that the main uncertainties
lie in the hydraulic characteristics of the soil, i.e. the way
moisture interacts with different soil types. This indicates that
representation of uncertainty in the hydraulic equations directly
is more consistent with the nature of model imperfections.

These results can be contrasted with previous work assessing
representations of model uncertainty in monthly and seasonal
forecast ensembles, which looked at the impact of atmospheric
perturbed parameter and stochastic parameterization schemes
(Weisheimer et al. 2011b). These results suggest that stochastic
parameterization gives the most improvement in model skill
for precipitation, particularly in the first month. Whilst this is
not quite consistent with results in this paper, the stochastic
physics scheme used for comparison in the atmosphere has been
developed over the past decade, whilst the stochastic schemes
tested here are new and relatively ad hoc. It is likely then that there
is potential for this stochastic land surface scheme to be refined.

Furthermore, as these results show, incorporating uncertainty
directly into the land surface hydrology equations has serious
potential to improve seasonal forecasts, for regions and periods
of strong land-atmosphere coupling. This is demonstrated here
for the 2003 European summer, with the perturbed parameter
experiment giving an improved anticipation of this high-impact
societally-relevant event. We plan to continue this work toward
explicitly represented land surface uncertainties by developing
more sophisticated methods (e.g. stochastic parameters) and
considering their impact on seasonal forecasts for Europe and
beyond.
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