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Using lessons from idealised predictability experiments, we discuss some issues and
perspectives on the design of operational seasonal to inter-annual Arctic sea-ice
prediction systems. We first review the opportunities to use a hierarchy of different
types of experiment to learn about the predictability of Arctic climate. We also examine
key issues for ensemble system design, such as: measuring skill, the role of ensemble
size and generation of ensemble members. When assessing the potential skill of a set
of prediction experiments, using more than one metric is essential as different choices
can significantly alter conclusions about the presence or lack of skill. We find that
increasing both the number of hindcasts and ensemble size is important for reliably
assessing the correlation and expected error in forecasts. For other metrics, such as
dispersion, increasing ensemble size is most important. Probabilistic measures of skill
can also provide useful information about the reliability of forecasts. In addition,
various methods for generating the different ensemble members are tested. The range
of techniques can produce surprisingly different ensemble spread characteristics. The
lessons learnt should help inform the design of future operational prediction systems.
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1. Introduction

Arctic sea-ice has shown a recent decline in extent, especially in
summer, raising the possibility of increased usage of the region
for shipping, resource extraction and tourism. Operational Arctic
sea-ice prediction systems may help manage the risks and inform
decisions about such usage of the Arctic region (Eicken 2013).
However, information on what particular aspects of the sea-ice
are required by users to inform their decisions is still sparse.
In addition, skillful predictions of the sea-ice may also improve
predictions of atmospheric variables (e.g. Scaifeet al.2014).

One developing method for making sea-ice predictions is
using dynamical global climate models (GCMs), and the results
of initial attempts at making such predictions are encouraging.
For example, significant skill in retrospectively predicting (or
‘hindcasting’) September sea-ice extent has been demonstrated,
but substantial issues remain (Sigmondet al. 2013; Wanget al.
2013; Chevallieret al.2013; Merryfieldet al.2013; Guemaset al.
2014a; Msadeket al.2014; Petersonet al.2015).

Much of the prediction skill seen in these operational systems
derives from predicting the long-term downward trend in sea-
ice extent. However, users of the Arctic region would require

predictions on shorter timescales, for example the coming season.
For such forecasts, predicting the seasonal and year-to-year
fluctuations in the ice is more important than the long-term
trend, as recent observed sea-ice variations demonstrate. However,
current operational GCM-based prediction systems show limited
ability to make skillful predictions of these fluctuations in
the September extent, especially more than 3-4 months ahead
(Sigmondet al. 2013; Wanget al. 2013; Chevallieret al. 2013;
Merryfield et al. 2013; Guemaset al. 2014a; Msadeket al.
2014; Petersonet al. 2015). Is this because the fundamental
limits of predictability have already been reached, or because of
model inadequacies and lack of observational data with which to
initialise the predictions? Or a combination of both? It is hard to
distinguish between these possibilities just using such operational
hindcasts, and therefore difficult to decide what aspects to focus
on to improve such predictions.

In addition, there are key questions about how to design
operational Arctic sea-ice prediction systems. For example, how
large an ensemble is required, and how should the different
members be generated? How many hindcasts need to be
performed to get a reliable estimate of the skill, and what metrics
are appropriate to assess skill?
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We examine some of these practical issues with examples from

idealised predictions performed for the Arctic Predictability and
Prediction on Seasonal-to-Interannual TimEscales (APPOSITE)
project (see Tietscheet al. 2014, for a project description), with
a focus on pan-Arctic sea-ice extent and volume. The advantage
of this idealised approach is that some of the key questions
outlined above can be considered without the complicating
effects of uncertain observations and model inadequacies giving
rise to biases. For example, Dayet al. (2014b) examined an
early-summer predictability ‘barrier’, whereby predictions started
before June have limited skill for the subsequent September. This
‘barrier’ is seen in operational forecast systems (e.g. Sigmond
et al. 2013) and is also present in similar idealised predictions,
suggesting that there are indeed fundamental limits to predicting
the sea-ice a few months ahead from certain times of year.

Here we offer further perspectives on the design of Arctic sea-
ice prediction systems. In Section 2 we briefly consider the role of
different types of experiment in informing the design of improved
operational prediction systems. We consider issues of ensemble
design and the generation of ensemble members in Section 3, and
ways of evaluating predictive skill are discussed in Section 4. We
summarise and discuss the recommendations and implications in
Section 5.

2. Role of different experiment types

There are many different experiments with GCMs which can help
inform about the predictability of the climate system in general,
and which are applicable to the Arctic more specifically. These
types of experiment can be viewed as complementary and as a
hierarchy, moving towards operational predictions.

2.1. Terminology

Our ability to make accurate seasonal predictions is limited by the
chaotic nature of the climate system. Even with a perfect model
and near-perfect initial conditions, forecasts would diverge from
the real world. The termpredictability is used to describe the
potential to make skillful predictions.

Different components of the climate system have different
levels of predictability. For example, sea surface temperatures
have larger predictability than land temperatures because they
evolve on slower timescales.

The term predictability can also be applied to a GCM. In this
case, the ability of the GCM to predict itself is measured - termed
the ‘perfect model’ assumption. For example, a tiny perturbation
to a single grid point is enough to produce a slightly different
trajectory. The rate of divergence between such trajectories is a
measure of predictability. But note that a GCM might show more
or less predictability than the real climate system (Eadeet al.
2014).

Predictability should not be confused withskill which usually
refers to the ability of an imperfect model to make forecasts of the
real world, though the terms are often used interchangably. The
achieved skill will likely be smaller than the predictability of the
real world.

2.2. Control simulations

Long ‘control’ simulations which have no changes in external
forcing are useful to understand the properties of the GCM, such
as the mean state, seasonal cycle and variability characteristics.
Most control simulations are performed with ‘pre-industrial’
levels of greenhouse gases and other radiative forcings, which may
be less informative for present-day Arctic conditions. However,
there are an increasing number of present-day control simulations
available, several of which were performed specifically for the

APPOSITE project (Dayet al. 2014b). In these simulations, the
radiative forcings are held fixed at recent levels (e.g. 1990 or
2005), but the precise details vary between simulations (Tietsche
et al.2014).

Control simulations can be used to give an estimate of the
predictability by using the diagnostic potential predictability
metric (DPP, Boer 2000). Here we define DPP as the ratio of
standard deviations of 5-year means and 1-year means (σ5/σ1),
which is a crude estimate of potential skill. This is because it
estimates the fraction of variance explained by lower frequency
variability which is potentially more predictable than the high
frequency variability. Diagnostic predictability measures, such
as DPP, can be calculated in the same way for models and
observations and provide a measure of predictability which can
be used to directly compare the two.

Fig. 1 shows DPP for both sea-ice concentration and sea surface
temperatures (SSTs) for the August-September-October season, in
the present-day control simulations of various GCMs and for the
linearly detrended HadISST observational dataset (during 1953-
2010) (Rayneret al. 2003). In most cases, there is higher DPP
near the ocean boundaries of the Arctic, i.e. Bering Strait and the
Atlantic inflows, suggesting these regions are more predictable.
However, the magnitude of potential predictability for both sea-ice
and SSTs varies significantly across the GCMs and observations,
suggesting the variability characteristics are rather different. There
is also coincident potential predictability in both SSTs under the
ice and in the sea-ice concentration itself, suggesting a possible
role for the ocean in producing sea-ice variability. Alternatively,
the sea-ice may be influencing SST variability.

In addition, lagged correlations have been used to determine
Arctic predictability from a range of present-day control
simulations (Blanchard-Wrigglesworthet al. 2011a; Chevallier
and Salas-Mélia 2012; Dayet al.2014b). These analyses suggest
that the GCMs tend to have higher predictability levels than
similar estimates derived from the sea-ice observations. However,
the short observational record and presence of long-term trends
inhibits the comparison (Blanchard-Wrigglesworthet al.2011a).

Control simulations provide a way to investigate predictor-
predictand relationships where one of the variables is not
well observed. For example, Chevallier and Salas-Mélia (2012)
considered a range of predictors for September sea-ice extent
in a GCM control simulation and found some potential skill
for a few months. This type of analysis is useful to inform
the design of empirical forecast methodologies which utilise the
observations (e.g. Lindsayet al.2008; Schroederet al.2014) and
also what aspects of the climate system are potentially useful for
initialisation.

2.3. Perfect model experiments

Another estimate of potential predictability is obtainable
by running so-called ‘perfect model’ experiments. In these
simulations, the GCM is used to predict itself using an ensemble
of virtually identical initial conditions (with tiny perturbations
only), allowing the chaotic nature of the climate system to amplify
the perturbations.

These experiments are useful to determine the predictability
inherent to the model as there are no complicating factors from
model biases and assimilation of observations. This experimental
design has been used extensively in ocean predictability studies
(e.g. Griffies and Bryan 1997; Collinset al. 2006), and more
recently applied in both control and externally forced Arctic
predictability studies (Koenigk and Mikolajewicz 2009; Holland
et al.2011; Blanchard-Wrigglesworthet al.2011b; Tietscheet al.
2014; Dayet al.2014b).

These so-called ‘prognostic’ estimates are normally assumed
to provide an upper bound on the potential skill when using a
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particular GCM to make predictions. However, Eadeet al. (2014)
suggested that certain aspects of climate variability may be more
predictable in the real world than in the GCMs. If this is the case,
then the ‘perfect’ predictability estimates could actually be lower
than those found when using the same model to predict the real
world.

2.4. Observation impact experiments

One set of approaches to testing the value of various observations
in providing skill consists of adding or denying certain data
types in forecasts or simulated forecasts. Such experiments
are variously termed observing system experiments (OSEs) or
observing system simulation experiments (OSSEs), depending on
the exact approach adopted.

For example, operational assimilation techniques can be tested
in a perfect model framework to highlight the sources of
predictability. This has been demonstrated for the ocean (e.g.
Dunstone and Smith 2010), and also in the Arctic (e.g. Tietsche
et al.2013a).

An example for OSEs is an experiment where the influence of
certain data is removed from the initial conditions and predictions
repeated to examine the importance of that data. This general ‘data
denial’ technique has been applied in both idealised predictions
and operational forecast systems.

For example, by removing information about the initial sea-ice
thickness state in a set of idealised predictions, the importance
of thickness for providing skill in perfect GCM prediction
experiments has been demonstrated on seasonal timescales (Day
et al.2014a). This approach has highlighted that new observations
and assimilation of sea-ice thickness would likely improve
forecasts of the subsequent sea-ice conditions.

Alternatively, Junget al. (2014) demonstrated the impact of
reanalysis data from the Arctic in an operational forecast system,
highlighting the need to maintain and improve observational
coverage in the region.

2.5. Hindcasts and forecasts

Finally, GCMs can be used to try and predict the real climate on
seasonal to decadal timescales in order to assess the predictability
of the system. In this case, the skill is measured by performing
retrospective forecasts of past cases (or ‘hindcasts’). It is generally
assumed that future predictive skill will be similar to hindcast
skill. However, the interpretation of hindcast skill is complicated
by the long-term trends, the changing observing network, and by
the predictability itself changing over time (e.g. Hollandet al.
2011).

Several operational Arctic hindcast and forecast systems have
recently been developed, based on individual models (Sigmond
et al.2013; Wanget al.2013; Chevallieret al.2013; Germeet al.
2014; Msadeket al. 2014; Petersonet al. 2015) and a multi-
model system (Merryfieldet al. 2013), and they demonstrate
encouraging levels of skill.

Such ensembles of hindcasts can also be used as potential
predictability experiments by using each ensemble member in turn
as the ‘truth’. Wanget al. (2013) demonstrated larger potential
predictability than actual predictive skill in their forecast system,
suggesting that the limits of predictability have not yet been
reached. However, their interpretation is slightly complicated by
the forced trends, and potential ‘drifts’ or ‘shocks’ in the hindcasts
when the GCM is initialised from observations.

2.6. Learning from the experimental hierarchy

The primary reason for considering such a hierarchy of
experiments is to learn about the ability of each GCM to make

predictions in simpler cases than in the real world. For example,
perfect model predictability experiments are useful to understand
the fundamental limits of predictability for the climate variable
that you want to predict. This may give an upper bound on the
ability of that same GCMto predict the real world (but see Otto
et al. (2013) and Eadeet al. (2014) for a discussion of some
of these issues). Such techniques have been successfully applied
to learn about predictability for other climate variables, such as
the ocean circulation (e.g. Collinset al. 2006), and surface air
temperature (e.g. Liuet al.2012).

More specifically for the Arctic, if an operational system found
that forecasts of September sea-ice extent started before May
have low skill (e.g. Sigmondet al. 2013), it cannot be known
without further experiments whether this is an inherent limit, or
due to model biases or observational inadequacies. Using a set of
similar perfect model experiments would enable a demonstration
of whether there is an inherent predictability barrier for May
forecasts. This has since been demonstrated for one GCM (Day
et al.2014b).

We also note that simple empirical (or statistical) methods
are regularly used as useful ‘benchmarks’ for the GCM-based
seasonal and decadal predictions of sea surface temperatures (e.g.
Barnstonet al. 1994; Hoet al. 2013) and have also been used
for Arctic sea-ice (Lindsayet al. 2008; Schroederet al. 2014).
In addition, both Wanget al. (2013) and Merryfieldet al. (2013)
demonstrated that damped persistence hindcasts had some skill for
predicting Arctic sea-ice extent a month or two ahead, but that the
GCMs performed better. This finding has also been replicated in a
perfect model experiment (Dayet al.2014b). Further development
of these empirical techniques could prove valuable as a benchmark
level of skill.

3. Issues of ensemble design

We now explore how some perfect model predictability
experiments can help inform the design of operational prediction
systems.

Assessments of the skill of seasonal forecast systems are
performed using sets of ensemble hindcasts (e.g. Grahamet al.
2005). Here we consider key questions of the number of hindcasts
that might be necessary to reliably assess skill, as well as the
number of ensemble members required and how the different
members are generated.

3.1. Number of ensemble members and start years

Due to the large computational requirements of seasonal forecast
systems, resource availability limits the number of ensemble
members and number of start dates. Thus, it is important for
forecast centres to know whether to prioritise running more start
dates or more ensemble members (e.g. Buizza and Palmer 1998;
Chenet al.2013).

For seasonal predictions of the Arctic, little has been done to
look at this trade off between the number of start dates and number
of ensemble members. We consider these issues for predictions
of pan-Arctic sea-ice extent (SIE) and volume (SIV) using a set
of perfect model simulations with the HadGEM1.2 GCM (Johns
et al.2006; Shaffreyet al.2009).

For ten different years, ensembles of sixteen members were
initialised on each of Jan 1st, May 1st and July 1st with initial
conditions from a control run, with the members differing only
by spatial white noise applied to the SSTs (with magnitudeσ =

10−4 K). More details are given in Tietscheet al. (2014) and Day
et al.(2014b). In this idealised situation we can consider questions
of ensemble design without the issue of non-stationarity of
observations or forecast error, albeit with a relatively small sample
of start dates and ensemble members. We calculate the RMSE

This article is protected by copyright. All rights reserved.
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between the ensemble mean and the reference control simulation,
but considering different subsets of ensemble members and start
years to examine the sensitivity of the RMSE to ensemble sizeand
number of start dates respectively.

Figure 2 shows box and whisker plots of RMSE for sea-ice
extent (top) and volume (bottom) from forecasts started on 1st July
for the September mean (forecast month 3). When considering
ensemble size (left), the quantiles are calculated from every
combination ofN ensemble members for all 10 start dates. For
the start date panels (right), the quantiles are calculatedfrom
the RMSE values when using all 16 ensemble members and
every combination ofM start years. The crosses mark the RMSE
using the full set of simulations (M = 10 start dates andN = 16

ensemble members).
It is clear that increasing both the number of start dates and

ensemble members leads to a reduction in the uncertainty in the
estimate of RMSE, with a slight indication that increasing start
dates is more important than ensemble size. Forecasts for different
individual years have very different error sizes, ranging from
0.17–0.51×106 km2 for SIE. For different individual ensemble
members the range is 0.19-0.48×106 km2. However, the relative
importance of the two aspects of ensemble size will vary withlead
time, verification month, and climate variable.

For anomaly correlation (see Eqn. 4 later), increases in
ensemble size can produce a significantly higher skill (Fig.3),
although this small effect has largely saturated with around 8
ensemble members for both SIE and SIV when considering 10
start dates. However, a larger ensemble size is likely to be more
important for assessing the spread or dispersion of the prediction
system (see Sect. 4.2). Note the increase in correlation forshorter
lead times (compare rows in Fig. 3) highlights the levels of
additional skill closer to the verification time (also see Day et al.
(2014b)).

It should also be noted that we have only considered integrated
properties of Arctic sea-ice, e.g. pan-Arctic extent. For regional
forecasts where there is larger variability the ensemble sizes
required will be larger. This type of analysis would be useful
for operational centres to perform with their existing systems to
inform future developments (e.g. Scaifeet al.2014).

3.2. Ensemble generation

Another key choice in ensemble design is how to generate the
different ensemble members. In seasonal forecasting, it isoften
found that the ensemble spread is not large enough to encompass
the subsequent observations (e.g. Weisheimeret al. (2009)), and
various methods are used to generate additional ensemble spread
to ensure the forecasts are ‘reliable’ (see Section 4.2 later),
for example, singular vectors (e.g. Buizza 1997) or stochastic
perturbations (e.g. Weisheimeret al.2011; Jurickeet al.2013).

Here, we compare the impact of the simplest methods for
generating ensemble initial conditions: (i) state-lagged, (ii)
atmosphere-lagged, and (iii) SST-noise initialisation. Methods (ii)
& (iii) are widely used in predictability studies. Previously, the
differences which may arise from choosing one methodology over
another have not been discussed for sea-ice predictions. Here, we
show that for seasonal predictions of Arctic sea-ice, the methods
do show some striking differences.

The state-lagged perturbation method (SL) takes the state of
the GCM from days adjacent to the actual start date as initial
conditions. This constitutes a sizable perturbation to thestate
of the atmosphere, but only a small perturbation to the state
of the ocean and the sea-ice cover (see figure 7 in Tietsche
et al. (2013b)). The atmosphere-lagged perturbation method
(AL) applies the same lagged perturbation but only to the
atmosphere, and the other components of the climate system

remain unperturbed. Finally, the SST-noise perturbation (NSST)
simply adds a tiny amount of spatially uncorrelated noise tothe
global sea-surface temperatures. This last method is essentially
equivalent to assuming perfect knowledge of the initial conditions,
as the magnitude of the noise (σ = 10−4 K in our example) is
smaller than any globally achievable measurement uncertainty.
This methodology should produce the smallest ensemble spread,
at least for short lead times.

Fig. 4 shows pan-Arctic SIV for a case study using three
different ensembles started on 1st July of the same year with
the MPI-ESM-LR GCM, with each of the perturbation methods
described above applied. Note that the initial conditions for each
ensemble are the same except for the added perturbation. It is
evident that the state-lagged perturbation (Fig. 4a) creates a larger
ensemble spread than the other two methods, even in the first lead
month, because of the strong seasonal rate of change in Arctic sea-
ice around the start date (1st July). The difference in SIV expected
from the climatological seasonal cycle is about200 km3/day (or
0.2 × 1012m3/day) (Tietscheet al.2014), which fully explains the
spread of the ensemble in the first forecast month.

To add confidence and detail to the findings from the
test ensemble shown above, we perform three more ensemble
predictions in the same fashion, but starting in different years.
This samples the variability in ensemble spread across different
climate states, so that we can estimate robustness of the spread
differences. Fig. 5 shows how ensemble spread develops overlead
time for pan-Arctic SIE and SIV on average and how it varies
between different years.

As concluded above, sea-ice volume ensemble spread is much
higher for SL than for either AL or NSST. The same holds for
sea-ice extent, albeit only for the first five months. We note that the
differences between SL and AL may be smaller if the experiments
were repeated at a time of year when the rate of change of sea-ice
was smaller.

Additionally, we now see that there are in fact also differences
between AL and NSST. As expected, AL spread is at least as
large or larger than NSST spread at all times. For the first lead
month, this difference is small but consistent, which illustrates
the immediate impact of weather patterns on sea-ice extent and
volume. For SIE, this difference between AL and NSST grows
over the whole melt season (months 2 and 3), but then becomes
marginal.

Interestingly, SIV spread after the first lead month shows the
opposite behaviour: AL spread is not significantly higher for
months 2 and 3, but during the freeze-up (months 4 to 6), AL
spread grows much faster than NSST spread. This is a potentially
important result. Although we cannot exclude the possibility that
it is due to only sampling four different start years and a small
ensemble size, we speculate that it arises because the differences
in the atmospheric state present in AL but not in NSST have an
impact on the seasonal ocean dynamics south of the summer sea-
ice edge. When the ice edge advances to those regions during the
freeze-up, the differences in the ocean state then translate into
differences in sea-ice volume.

As ensemble spread is crucial to ensuring reliable forecasts
(also see Section 4.2 later), operational prediction systems
already consider the generation of ensemble members as a key
component of their ensemble design. These results suggest that
initial differences in the atmosphere, ocean and sea-ice state
all contribute to increasing ensemble spread. In many existing
forecast systems the sea-ice initial conditions are currently
unperturbed, but prediction systems with multiple sea-iceinitial
conditions are now being developed (e.g. Guemaset al.2014b).

This article is protected by copyright. All rights reserved.
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4. Evaluating prediction ensembles

Once a set of hindcasts has been produced, there are further
details to be decided about how to assess the skill. These
issues include whether to use the ensemble mean and a
deterministic (i.e. single prediction) measure of skill, or whether
to examine the skill probabilistically (i.e. considering the whole
predicted distribution). Using more ‘perfect-model’ examples, we
illustrate some additional subtleties to be considered in any skill
assessment.

4.1. Deterministic skill metrics

First, we consider deterministic skill metrics, which are based on
analysing the skill of the ensemble mean. Even in a ‘perfect-
model’ framework, such deterministic skill metrics can give
ambiguous results because their value depends on how reference
parameters like the climatological mean and standard deviation
are defined. Here we illustrate this by directly comparing several
choices of commonly used metrics and reference parameters.

4.1.1. Choice of reference period

We consider two choices of how to define the climatological mean
µj and the climatological standard deviationσj :

1. The ‘maximum knowledge’-approach (MK): The best
linear fit to the whole control run serves as the time-
dependent mean state; the variability is calculated from the
time series after subtracting the linear fit.

2. The ‘operational’ approach (OP): In practice, at the time
when an ensemble prediction is started, only observations
from the last 30 years or so are available. Additionally, in
the case of Arctic sea-ice, these observations have strong
trends. To mimic this situation we base the climatology on
the time series during the 30 years preceding the prediction
start date: the climatological mean is the time series mean,
and the climatological standard deviation is the standard
deviation after linear detrending.

Only the operational approach is feasible in actual predictions
of the observed climate, because it is impossible to utilizefuture
observations to estimateµj and σj . However, comparing these
two methods demonstrates how the predictability estimatedusing
OP might mislead about the true predictability.

There are also two more caveats for predictability estimates
obtained with MK: (i) it factors in the role of multi-decadal
variability which may not be predictable, and so MK predictability
estimates are likely to be biased high, and (ii) in the presence
of strong secular trends, estimates ofµj and σj obtained with
MK might be contaminated by remote climate states that are not
relevant for the time the ensemble prediction is started (Goosse
et al.2009).

4.1.2. Choice of metric

Several different predictability and skill metrics are widely used
in seasonal to decadal prediction literature, including: potential
prognostic predictability (Pohlmannet al. 2004), normalised root
mean square error (Collins 2002; Collinset al. 2006), anomaly
correlation coefficient (ACC, e.g. Goddardet al. 2013) and mean
square error skill score (MSESS, e.g. Goddardet al.2013).

While the first two have mainly been used in idealised studies
of potential predictability, the latter two are standard measures
for operational seasonal to decadal forecasts. Note that, in our
idealised setup, ensemble forecasts have neither conditional nor
unconditional biases, and hence there is a simple algebraic

relationship between ACC and MSESS (Murphy 1988; Goddard
et al. 2013). As a consequence, MSESS shows exactly the same
information as ACC, and we do not discuss it separately.

For the perfect model approach employed here, there are in
principle two different ways of verifying ensemble forecasts: (i)
verification against the control run, and (ii) verification against
any one ensemble member. The advantage of method (ii) is that
the data can be used more efficiently by verifying against every
ensemble member in turn, which increases the effective sample
size and gives more robust estimates of the metrics (Collins2002).
All metrics defined below use method (ii), except for ACCI (see
below), which uses method (i).

We define the predictability metrics using the following
notation: letxij be the value of sea-ice extent or volume for the
i-th member of thej-th ensemble prediction, andµj andσj the
climatological mean and standard deviation calculated from the
control run at the time of thej-th ensemble prediction.

Thepotential prognostic predictability(PPP) compares average
ensemble spread with the reference variabilityσ of the control run:

PPP= 1 −

˙

(xij − x̄j)
2
¸

i,j
˙

σ2

j

¸

j

, (1)

where x̄j =
˙

xij

¸

i
is the ensemble mean of thej-th prediction

ensemble, and
˙

·

¸

i
denotes the expectation value, to be

calculated by summing over the specified index with appropriate
normalisation.

Thenormalized RMSE(NRMSE) compares forecast RMSE to
climatological variability:

NRMSE= 1 −

q

˙

(xij − xkj)2
¸

i,j,k 6=i
q

2
˙

σ2

j

¸

j

, (2)

where the denominator is the climatological RMSE between two
independent realisations.

The intra-ensemble anomaly correlation coefficientmeasures
the intra-ensemble correlation of predicted anomalies:

ACCI =

˙

(xij − µj)(xkj − µj)
¸

i,j,k 6=i
˙

(xij − µj)2
¸

i,j

, (3)

where µj is the climatological mean at the time of thej-th
ensemble prediction.

The ensemble mean anomaly correlation coefficientmeasures
the correlation of the ensemble-mean predicted anomaly with the
anomaly in the control run (pseudo-observations):

ACCM =

˙

(x̄j − µj)(x
∗
r − µj)

¸

j
q

˙

(x̄j − µj)2
¸

j

˙

(x∗
r − µj)2

¸

j

, (4)

where x∗
r is the value of the control run at verification time

(pseudo-observation).
NRMSE and ACCM are regularly used for assessing

operational predictions.

4.1.3. Sensitivity of estimated skill

Each GCM is likely to produce skill estimates which are sensitive
to choice of metric and reference period. We illustrate these
sensitivities using the HadGEM1.2 GCM (as in Section 3.1)
because, for this model, the differences between the predictability
estimates when choosing different reference periods and metrics
are large.

For the MK approach (upper row in Fig. 6), there is a good
agreement between the metrics, but for both SIE and SIV, the
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NRMSE tends to lie below the other metrics. This is a trivial
consequence of taking the square root in Eq. (2). Without it,PPP
and NRMSE would be virtually identical (not shown). The other
difference is that ACCM tends to lie above the other estimates for
SIE in the second lead year, but this might be due to insufficient
sampling as for ACCM only 10 data points are used to construct
the correlation.

The picture changes quite dramatically when comparing the
predictability estimates for the OP approach. While the ACC
metrics are comparable with the MK approach, PPP and NRMSE
are much lower. In fact, they quickly reach the limit of zero
skill after a year or so, whereas for the MK approach they are
significantly above zero for at least three years. This is because
the estimatedσj with the MK approach are generally much
higher than estimates obtained with the OP approach (20 to 40%
higher depending on season, not shown). As mentioned above,this
difference corresponds to the choice whether to include decadal
or even multi-decadal variability. However, OP might produce a
pessimistic estimate of the true predictability.

These sensitivities highlight the need to consider multiple skill
metrics in any assessment of predictability. For example, relying
on timescales of predictability estimated from a single metric may
not be robust. This comparison also quantifies how the apparent
skill of an operational system might give a distorted impression of
the true level of skill.

4.2. Probabilistic skill metrics

There are many different probabilistic skill metrics (e.g.Brier
1950; Candille and Talagrand 2005; Jolliffe and Stephenson
2012). Here, we discuss ensemble dispersion and the Brier Score
as examples.

4.2.1. Dispersion

Reliability is an important and desirable property of any ensemble
prediction system, i.e. that the forecast probabilities for a
particular event are correct (e.g. Buizza 1997; Kumaret al.
2001; Weisheimeret al. 2011). A necessary requirement for
reliability is that the ensemble has the correct dispersion, i.e. the
ensemble spread matches the expected RMSE (see e.g. Jolliffe and
Stephenson 2012).

Fig. 7a shows an example, using the GFDL CM3 GCM,
of ‘perfect-model’ ensemble predictions of sea-ice extentand
volume that have high skill, but nevertheless appear unreliable. On
average, the ensemble predictions are under-dispersive: the RMSE
of ensemble means is larger than the average ensemble spreadfor
both SIE and SIV. The reason for this is insufficient samplingof
start dates and ensemble members, as illustrated by dividing the
complete set of 8 ensemble predictions into a set of 3 which are
highly under-dispersive (Fig. 7b) and a set of 5 which have almost
exactly the right amount of dispersion to be reliable (Fig. 7c).

This example illustrates that sampling error is a problematic
issue for sample sizes widely used in seasonal-to-decadal
prediction studies, and also highlights where a larger ensemble
may help reduce the chance of a ‘surprise’ by more completely
sampling the forecast distribution.

In addition, this example also suggests that the predictability of
sea-ice may be state dependent, i.e. some situations may be more
predictable than others (also see Fig. 2).

4.2.2. Brier Score

The Brier Score (BS, Brier (1950)) is often used to define
probabilistic skill:

BS =
1

Nt

X

t

[ft − ot]
2 , (5)

whereft is the forecast probability of a certain event, andot is a
binary outcome (0 or 1) depending on whether the predicted event
occurred or not. There areNt forecasts over a timet.

The ‘event’ selected for our example is whether the sea ice
state is above climatology. In this case, a trivial prediction of 50%
chance for above climatology would produce BS=0.25. BS values
smaller than this are therefore providing more informationthan a
trivial climatological forecast.

Fig. 8 (top row, black lines) shows the BS for both pan-
Arctic sea-ice extent and volume in the ‘perfect’ predictability
experiments with MPI-ESM-LR. For sea-ice extent, the BS grows
rapidly over the first forecast year, but is still providing additional
probabilistic information in year 3 as the BS remains below 0.25.
For sea-ice volume, the growth of BS is slower. For a regional
averge of the eastern Arctic (bottom row), the BS is more noisy
and the growth of BS is faster, as might be expected for a smaller
region.

It is also possible to separate the BS into three components:
reliability, resolution and uncertainty (Murphy 1973):

BS = REL - RES + UNC (6)

The reliability (REL) measures whether the forecast probabilities
match the observed frequencies and should be close to zero for
good forecasts. The resolution (RES) is a measure of how different
the issued probabilities are from the relative frequencies, and is
zero for a climatological forecast. The inherent uncertainty term
(UNC) measures the frequency of the event being tested.

For this perfect model assessment, the uncertainty term would
be 0.25 if the sample of forecasts was representative of the
climatological frequency, and the reliability term shouldbe zero
as there are no model biases. The coloured lines in Fig. 8 showthat
the increase in BS is due to a reduction in resolution, as expected,
i.e. the forecasts are becoming closer to a climatological forecast
over time.

Considering the numerous ambiguities of real-world sea-ice
and Arctic forecasts that arise from strong model biases anda
rapidly changing mean climate (Sigmondet al. 2013; Msadek
et al. 2014), we advocate the use of the BS score additionally to
the widely used anomaly correlation. The additional benefitwould
be the ability to diagnose whether a low score is due to problems
with resolution or a lack of reliability.

4.3. Recommendations

We have demonstrated here that even the evaluation of ‘perfect’
prediction ensembles can give ambiguous results that depend on
the choice of the skill metric and the definition of the reference
climatology. Therefore, we suggest to use a range of skill metrics
to characterise the prediction ensembles, rather than relying on a
single one.

Scrutinising ensembles from a probabilistic point of view
might reveal problems that deterministic skill metrics do not pick
up, such as a lack of reliability due to insufficient sampling.
Additionally, we recommend employing probabilistic skillscores
like the BS that allow a deeper understanding of a lack of skill by
means of decomposition into uncertainty, reliability and resolution
contributions.

5. Summary and conclusions

The retreat of Arctic sea-ice and growth of industry in the region
has highlighted the need for improved predictive capability in the
region (Eicken 2013). We have provided some perspectives on
the design of Arctic sea-ice prediction systems, using idealised
predictability experiments. To summarise:
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1. The sources of sea-ice predictability can be studied

with a hierarchy of experiments with forecast models,
including: control simulations, perfect model predictability
simulations, observing system experiments and hindcasts.

2. Care is needed when assessing predictability and hindcast
skill. Different metrics and choices in the analysis can
significantly alter any conclusions.

3. Ensemble design is a crucial aspect of reliably assessing
any prediction system due to complications from limited
ensemble size, short hindcast periods, the number of
hindcasts available and ensemble generation.

We first note that much of this analysis has been on pan-Arctic
integrated quantities. For operational predictions the regional
distribution of ice is important, and integrated quantities can mask
compensating errors in different regions (e.g. Tietscheet al.2014).
Fig. 8 highlighted that predictability was smaller for a regional
average.

We also consider that it is imperative to issue real-time forecasts
(e.g. Smith et al. 2013; Stroeveet al. 2014) to allow them
to be tested completely out-of-sample. Appropriate empirical
‘benchmarks’ may also aid this assessment of predictive skill.
For example, Schroederet al. (2014) demonstrated that May melt
pond fraction has significant skill for predicting September extent
and Stroeveet al. (2014) highlighted that GCM forecasts were no
better than empirical or heuristical predictions.

In addition, ‘case studies’ of predictability have been very
useful in learning about ocean predictability (Robsonet al.2012)
and could be explored further for sea-ice predictions; Guemas
et al. (2013) is one such example.

Further work on considering how to correct sea-ice forecasts for
model biases may also be required, especially when considering
regional predictions due to the positive definite and non-Gaussian
nature of sea-ice concentration and thickness.

Overall, it is clear that we have yet to reach the full potential
for forecast skill of Arctic sea-ice. Additional observations, better
assimilation techniques and improved models are all likelyto
increase predictive capabilities (also see Guemaset al.2014a).
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Figure 1. Diagnostic potential predictability (DPP,σ5/σ1) for August-September-October (ASO) sea-ice concentration (sic) and sea surface temperature (sst) using
observations (left, HadISST, Rayneret al. (2003)) and present day control simulations for various GCMs as labelled.

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e

Sea Ice Extent RMSE

1 2 4 8 16

N ensemble members

0.10

0.21

0.33

0.44

0.55

R
M

S
E

 (
10

6 K
m

2 )

Sea Ice Extent RMSE

1 2 4 8 16

M start dates

0.10

0.21

0.33

0.44

0.55

R
M

S
E

 (
10

6 K
m

2 )

Sea Ice Volume RMSE

1 2 4 8 16

N ensemble members

0.10

0.19

0.28

0.36

0.45

R
M

S
E

 (
10

3 K
m

3 )

Sea Ice Volume RMSE

1 2 4 8 16

M start dates

0.10

0.19

0.28

0.36

0.45

R
M

S
E

 (
10

3 K
m

3 )

Figure 2. Box and whisker plots showing quantiles (5%, 25%, 50%, 75% and 95%) of RMSE in Arctic sea-ice extent (top) and volume (bottom) for September (forecast
month 3), when averaged over distinct subsets. Left: all possible choices ofN (out of 16) ensemble members. Right: all possible choices ofM (out of 10) start dates.
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Figure 3. Box and whisker plots showing quantiles (5%, 25%, 50%, 75% and 95%) of anomaly correlation of Arctic sea-ice extent (left) and volume (right) for September,
when averaged over all distinct subsets ofN ensemble members (out of 16). The rows use different start months: May (top) and January (bottom), so that September is at
a lead time of 5 and 9 months respectively.
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Figure 4. Arctic sea-ice volume ensembles for a case study predictionstarted on 1st July with MPI-ESM-LR with different types of initial-condition perturbations: (a)
atmospheric and oceanic state perturbed by a few days (SL), (b) only atmospheric state perturbed by a few days (AL), (c) SST perturbed by tiny amount of noise (NSST).

Figure 5. Ensemble spread for different initial perturbations for sea-ice extent (left) and sea-ice volume (right). Ensembles from 4 different start years have been used to
calculate the mean spread (thick solid lines with markers) and the standard deviation of the spread (thin error bars) as an indication of how it varies between different years.
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Figure 6. Comparison of different deterministic prediction skill metrics applied to the same data. Upper row: climatological mean and standard deviation defined from
linear fit of a long control run - the maximum knowledge (MK) approach. Lower row: climatological mean and standard deviation defined from 30 years prior to prediction
start date - the operational approach (OP). Black dots indicate statistical significance of the metric being larger thanzero at the 95% confidence level.
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Figure 7. Comparison of ensemble spread and ensemble-mean RMSE for GFDL CM3. (a) Over all 8 start dates, (b) over the three start dates where ensembles are highly
under-dispersive, and (c) the remaining five start dates.
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Figure 8. The Brier Score (black) and decomposed into its three components as labelled, for above climatological values of sea-ice extent (left) and volume (right) in the
MPI-ESM-LR perfect model predictability experiments for pan-Arctic sea ice extent (top) and the eastern Arctic (bottom).
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