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@ Using lessons from idealised predictability experiments, we discuss some issues and
perspectives on the design of operational seasonal to inter-annual Arctic sea-ice
~ prediction systems. We first review the opportunities to use a hierarchy of different
types of experiment to learn about the predictability of Arctic climate. We also examine
O key issues for ensemble system design, such as: measuring skill, the role of ensemble
size and generation of ensemble members. When assessing the potential skill of a set
° ﬁ of prediction experiments, using more than one metric is essential as different choices
can significantly alter conclusions about the presence or lack of skill. We find that
H increasing both the number of hindcasts and ensemble size is important for reliably
assessing the correlation and expected error in forecasts. For other metrics, such as
H dispersion, increasing ensemble size is most important. Probabilistic measures of skill
can also provide useful information about the reliability of forecasts. In addition,
various methods for generating the different ensemble members are tested. The range
of techniques can produce surprisingly different ensemble spread characteristics. The
lessons learnt should help inform the design of future operational prediction systems.
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Introduction predictions on shorter timescales, for example the coming season.
For such forecasts, predicting the seasonal and year-to-year
tic sea-ice has shown a recent decline in extent, especiallyflitctuations in the ice is more important than the long-term
ummer, raising the possibility of increased usage of the regitsand, as recent observed sea-ice variations demonstrate. However,
shipping, resource extraction and tourism. Operational Arctitirrent operational GCM-based prediction systems show limited
ige prediction systems may help manage the risks and inf@bility to make skillful predictions of these fluctuations in
] fecisi ns about such usage of the Arctic region (Eicken 2018)e September extent, especially more than 3-4 months ahead

wever, information on what particular aspects of the sea-i¢@igmondet al. 2013; Wanget al. 2013; Chevallieret al. 2013;
required by users to inform their decisions is still spardderryfield et al. 2013; Guemaset al. 2014a; Msadeket al.
addition, skillful predictions of the sea-ice may also improv2014; Petersoret al. 2015). Is this because the fundamental
< pbdictions of atmospheric variables (e.g. Sceifal. 2014). limits of predictability have already been reached, or because of
One developing method for making sea-ice predictions model inadequacies and lack of observational data with which to
ing dynamical global climate models (GCMs), and the resuitdtialise the predictions? Or a combination of both? It is hard to
initial attempts at making such predictions are encouragingistinguish between these possibilities just using such operational
or example, significant skill in retrospectively predicting (ohindcasts, and therefore difficult to decide what aspects to focus
aindcasting’) September sea-ice extent has been demonstra@dto improve such predictions.
ut substantial issues remain (Sigmaetdal. 2013; Wanget al. In addition, there are key questions about how to design
2013; Chevallieet al. 2013; Merryfieldet al.2013; Guemast al. operational Arctic sea-ice prediction systems. For example, how
4a; Msadelet al.2014; Petersont al. 2015). large an ensemble is required, and how should the different
Much of the prediction skill seen in these operational systemsembers be generated? How many hindcasts need to be
derives from predicting the long-term downward trend in segerformed to get a reliable estimate of the skill, and what metrics
ice extent. However, users of the Arctic region would requirgre appropriate to assess skill?
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We examine some of these practical issues with examples fré&dRPOSITE project (Dat al. 2014b). In these simulations, the
idealised predictions performed for the Arctic Predictability andadiative forcings are held fixed at recent levels (e.g. 1990 or
Prediction on Seasonal-to-Interannual TimEscales (APPOSITE)05), but the precise details vary between simulations (Tietsche
project (see Tietschet al. 2014, for a project description), with et al. 2014).

a focus on pan-Arctic sea-ice extent and volume. The advantag€ontrol simulations can be used to give an estimate of the
of this idealised approach is that some of the key questiopsedictability by using the diagnostic potential predictability
outlined above can be considered without the complicatimgetric (DPP, Boer 2000). Here we define DPP as the ratio of
effects of uncertain observations and model inadequacies givstgndard deviations of 5-year means and 1-year means (),
rise to biases. For example, D&t al. (2014b) examined an which is a crude estimate of potential skill. This is because it
early-summer predictability ‘barrier’, whereby predictions startegstimates the fraction of variance explained by lower frequency
before June have limited skill for the subsequent September. Tigsiability which is potentially more predictable than the high
‘barrier’ is seen in operational forecast systems (e.g. Sigmofrdquency variability. Diagnostic predictability measures, such
et al. 2013) and is also present in similar idealised predictiongs DPP, can be calculated in the same way for models and
ggesting that there are indeed fundamental limits to predictiogservations and provide a measure of predictability which can
@ sea-ice a few months ahead from certain times of year. ~ be used to directly compare the two.
Here we offer further perspectives on the design of Arctic sea-Fig. 1 shows DPP for both sea-ice concentration and sea surface
prediction systems. In Section 2 we briefly consider the role @mperatures (SSTs) for the August-September-October season, in
different types of experiment in informing the design of improvethe present-day control simulations of various GCMs and for the
operational prediction systems. We consider issues of ensenlsiearly detrended HadISST observational dataset (during 1953-
ign and the generation of ensemble members in Section 3, 2080) (Rayneret al. 2003). In most cases, there is higher DPP
ways of evaluating predictive skill are discussed in Section 4. \Wiear the ocean boundaries of the Arctic, i.e. Bering Strait and the
o ﬁnmarise and discuss the recommendations and implicationéilantic inflows, suggesting these regions are more predictable.

ction 5. However, the magnitude of potential predictability for both sea-ice
Q and SSTs varies significantly across the GCMs and observations,
2.; Role of different experiment types suggesting the variability characteristics are rather different. There

is also coincident potential predictability in both SSTs under the

There are many different experiments with GCMs which can hejge and in the sea-ice concentration itself, suggesting a possible
rm about the predictability of the climate system in generalple for the ocean in producing sea-ice variability. Alternatively,
and which are applicable to the Arctic more specifically. Thesge sea-ice may be influencing SST variability.
es of experiment can be viewed as complementary and as & addition, lagged correlations have been used to determine

hiérarchy, moving towards operational predictions. Arctic predictability from a range of present-day control
simulations (Blanchard-Wriggleswortat al. 2011a; Chevallier

. Terminology and Salas-Mélia 2012; Dast al. 2014b). These analyses suggest

that the GCMs tend to have higher predictability levels than

ﬁf ability to make accurate seasonal predictions is limited by thgnilar estimates derived from the sea-ice observations. However,

near-perfect initial conditions, forecasts would diverge froRhipits the comparison (Blanchard-Wriggleswoetal. 2011a).
real world. The ternpredictability is used to describe the  control simulations provide a way to investigate predictor-
tential to make skillful predictions. predictand relationships where one of the variables is not
w)iﬁerent components of the climate system have differeQfe|l observed. For example, Chevallier and Salas-Mélia (2012)
vels of predictability. For example, sea surface temperatui@nsidered a range of predictors for September sea-ice extent
e larger predictability than land temperatures because t{gya GCM control simulation and found some potential skill
on slower timescales. for a few months. This type of analysis is useful to inform
The term predictability can also be applied to a GCM. In thige design of empirical forecast methodologies which utilise the
case, the ability of the GCM to predict itself is measured - termefhservations (e.g. Lindsast al. 2008; Schroedegt al. 2014) and

‘perfect model’ assumption. For example, a tiny perturbatigflso what aspects of the climate system are potentially useful for
a single grid point is enough to produce a slightly differenjitialisation.

trajectory. The rate of divergence between such trajectories is a
easure of predictability. But note that a GCM might show mo&3. Perfect model experiments

less predictability than the real climate system (Eatel.
4). Another estimate of potential predictability is obtainable

redictability should not be confused wikill which usually by runr\ing so-called . ‘perfect model’ .experim.ents. In these
ers to the ability of an imperfect model to make forecasts of tisgmulations, the GCM is used to predict itself using an ensemble
real world, though the terms are often used interchangably. Téfevirtually identical initial conditions (with tiny perturbations
achieved skill will likely be smaller than the predictability of theonly), allowing the chaotic nature of the climate system to amplify

aotic nature of the climate system. Even with a perfect modgk short observational record and presence of long-term trends
q a!j

| world. the perturbations.
These experiments are useful to determine the predictability
2.2. Control simulations inherent to the model as there are no complicating factors from

model biases and assimilation of observations. This experimental
Long ‘control’ simulations which have no changes in externalesign has been used extensively in ocean predictability studies
forcing are useful to understand the properties of the GCM, su@hg. Griffies and Bryan 1997; Collinst al. 2006), and more
as the mean state, seasonal cycle and variability characteristiesently applied in both control and externally forced Arctic
Most control simulations are performed with ‘pre-industrialpredictability studies (Koenigk and Mikolajewicz 2009; Holland
levels of greenhouse gases and other radiative forcings, which nedl. 2011; Blanchard-Wriggleswortét al. 2011b; Tietschet al.
be less informative for present-day Arctic conditions. Howeve2014; Dayet al. 2014b).
there are an increasing number of present-day control simulationghese so-called ‘prognostic’ estimates are normally assumed
available, several of which were performed specifically for the provide an upper bound on the potential skill when using a

This article is protected by copyright. All rights reserved.



particular GCM to make predictions. However, Eadeal. (2014) predictions in simpler cases than in the real world. For example,
suggested that certain aspects of climate variability may be maerfect model predictability experiments are useful to understand
predictable in the real world than in the GCMs. If this is the casthie fundamental limits of predictability for the climate variable
then the ‘perfect’ predictability estimates could actually be lowéhat you want to predict. This may give an upper bound on the
than those found when using the same model to predict the rehllity of that same GCMo predict the real world (but see Otto

world. et al. (2013) and Eadest al. (2014) for a discussion of some
of these issues). Such techniques have been successfully applied
2.4. Observation impact experiments to learn about predictability for other climate variables, such as

the ocean circulation (e.g. Colliret al. 2006), and surface air
One set of approaches to testing the value of various observatigffperature (e.g. Liat al. 2012).
in providing skill consists of adding or denying certain data More specifically for the Arctic, if an operational system found
types in forecasts or simulated forecasts. Such experimefiat forecasts of September sea-ice extent started before May
are variously termed observing system experiments (OSES)h@ke low skill (e.g. Sigmondt al. 2013), it cannot be known
observing system simulation experiments (OSSEs), dependingdthout further experiments whether this is an inherent limit, or
e exact approach adopted. due to model biases or observational inadequacies. Using a set of
or example, operational assimilation techniques can be tes¢adilar perfect model experiments would enable a demonstration
i a perfect model framework to highlight the sources aff whether there is an inherent predictability barrier for May
redictability. This has been demonstrated for the ocean (e&f@ecasts. This has since been demonstrated for one GCM (Day
nstone and Smith 2010), and also in the Arctic (e.g. Tietschgal. 2014b).
al.2013a). We also note that simple empirical (or statistical) methods
n example for OSEs is an experiment where the influence gfe regularly used as useful ‘benchmarks’ for the GCM-based
rtain data is removed from the initial conditions and predictioggasonal and decadal predictions of sea surface temperatures (e.g.
eated to examine the importance of that data. This general ‘dafnstonet al. 1994; Hoet al. 2013) and have also been used
denial’ technique has been applied in both idealised predictiofs Arctic sea-ice (Lindsayet al. 2008; Schroedeet al. 2014).
operational forecast systems. In addition, both Wangt al. (2013) and Merryfielcet al. (2013)
For example, by removing information about the initial sea-ic@emonstrated that damped persistence hindcasts had some skill for
kness state in a set of idealised predictions, the importangiedicting Arctic sea-ice extent a month or two ahead, but that the
of thickness for providing skill in perfect GCM predictionGCMs performed better. This finding has also been replicated in a
eriments has been demonstrated on seasonal timescales (Jéd¢ct model experiment (Day al. 2014b). Further development

etal.2014a). This approach has highlighted that new observatiastghese empirical techniques could prove valuable as a benchmark
a assimilation of sea-ice thickness would likely improvewvel of skill.

ecasts of the subsequent sea-ice conditions.
Alternatively, Junget al. (2014) demonstrated the impact of3, |ssues of ensemble design
reanalysis data from the Arctic in an operational forecast system,
hlighting the need to maintain and improve observation®e now explore how some perfect model predictability
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erage in the region. experiments can help inform the design of operational prediction
systems.
Hindcasts and forecasts Assessments of the skill of seasonal forecast systems are

performed using sets of ensemble hindcasts (e.g. Grattaah

nally, GCMs can be used to try and predict the real climate @005). Here we consider key questions of the number of hindcasts

sonal to decadal timescales in order to assess the predictaliiy might be necessary to reliably assess skill, as well as the

f the system. In this case, the skill is measured by performingmber of ensemble members required and how the different
ospective forecasts of past cases (or ‘hindcasts’). Itis generaligmbers are generated.

ed that future predictive skill will be similar to hindcast

owever, the interpretation of hindcast skill is complicate8.1. Number of ensemble members and start years

bythe long-term trends, the changing observing network, and by
predictability itself changing over time (e.g. Hollaadal. Due to the large computational requirements of seasonal forecast

011). systems, resource availability limits the number of ensemble
everal operational Arctic hindcast and forecast systems h&yembers and number of start dates. Thus, it is important for
ently been developed, based on individual models (Sigmdiagiecast centres to know whether to prioritise running more start
al.2013; Wanget al. 2013; Chevallieet al. 2013; Germeet al.  dates or more ensemble members (e.g. Buizza and Palmer 1998;
4; Msadeket al. 2014; Petersoret al. 2015) and a multi- Chenet al. 2013).

odel system (Merryfielcet al. 2013), and they demonstrate For seasonal predictions of the Arctic, little has been done to
ouraging levels of skill. look at this trade off between the number of start dates and number
uch ensembles of hindcasts can also be used as pote®figgnsemble members. We consider these issues for predictions
predictability experiments by using each ensemble member in t@hpan-Arctic sea-ice extent (SIE) and volume (SIV) using a set
the ‘truth’. Wanget al. (2013) demonstrated larger potentiaPf perfect model simulations with the HadGEM1.2 GCM (Johns
prédictability than actual predictive skill in their forecast systengt al. 2006; Shaffreyet al. 2009).

suggesting that the limits of predictability have not yet been For ten different years, ensembles of sixteen members were
reached. However, their interpretation is slightly complicated i¥itialised on each of Jan 1st, May 1st and July 1st with initial
the forced trends, and potential ‘drifts’ or ‘shocks’ in the hindcasg®nditions from a control run, with the members differing only

te

LG

A\

when the GCM is initialised from observations. by spatial white noise applied to the SSTs (with magnitude
10~*K). More details are given in Tietschat al. (2014) and Day
2.6. Learning from the experimental hierarchy etal.(2014b). In this idealised situation we can consider questions

of ensemble design without the issue of non-stationarity of
The primary reason for considering such a hierarchy observations or forecast error, albeit with a relatively small sample
experiments is to learn about the ability of each GCM to maksd start dates and ensemble members. We calculate the RMSE

This article is protected by copyright. All rights reserved.



between the ensemble mean and the reference control siomjlatremain unperturbed. Finally, the SST-noise perturbat8T)
but considering different subsets of ensemble memberstand ssimply adds a tiny amount of spatially uncorrelated noiséhto
years to examine the sensitivity of the RMSE to ensemblesside global sea-surface temperatures. This last method is t@§en
number of start dates respectively. equivalent to assuming perfect knowledge of the initialditions,
Figure 2 shows box and whisker plots of RMSE for sea-icgs the magnitude of the noise £ 10~ K in our example) is
extent (top) and volume (bottom) from forecasts startedsdbddly smaller than any globally achievable measurement unogytai
for the September mean (forecast month 3). When considerimgis methodology should produce the smallest ensembladpre
ensemble size (left), the quantiles are calculated fronryeveyt |east for short lead times.
combination of N ensemble members for all 10 start dates. For
the start date panels (right), the quantiles are calcul&tad di
the RMSE values when using all 16 ensemble members GE‘
S

@ery combination of\/ start years. The crosses mark the RM

Fig. 4 shows pan-Arctic SIV for a case study using three
Herent ensembles started on 1st July of the same year with
e MPI-ESM-LR GCM, with each of the perturbation methods
escribed above applied. Note that the initial conditiamsefach
nsemble members). ensemble are the same except for the added perturbatio. It i

ﬁlt is clear that increasing both the number of start dates aﬁ\é'dentbtlhat the sétart]e-la%ged rf) erturbatlorrz(l;lg. 4a) em;argg |
ensemble members leads to a reduction in the uncertaintyein gnsemble spread than the other two methods, even in thesacst

estimate of RMSE, with a slight indication that increasinarts month, because of the strong seasonal ra_te ofchar_lge e Aet
tes is more important than ensemble size. Forecastdfemedit & @round the start date (1st July). The difference |n38INaeted
ingividual years have very different error sizes, rangingnf [Tom the climatological seasonal cycle is abaao km*/day (or
ﬁ?—O.Skl@ km2 for SIE. Eor different individual ensemble0-2 x 102 m?/day) (Tietscheet al.2014), which fully explains the
mbers the range is 0.19-0:480° km?. However, the relative spread of the ensemble in the first forecast month.
Hmportance of the two aspects of ensemble size will vary \eiial To add confidence and detail to the findings from the
time, verification month, and climate variable. test ensemble shown above, we perform three more ensemble
For anomaly correlation (see Eqn. 4 later), increases predictions in the same fashion, but starting in differeeang.
semble size can produce a significantly higher skill (Bjg. This samples the variability in ensemble spread acroserdiit

ng the full set of simulations\{ = 10 start dates an&/ = 16

although this small effect has largely saturated with ado8n climate states, so that we can estimate robustness of teadspr
ensemble members for both SIE and SIV when considering df¥erences. Fig. 5 shows how ensemble spread develop$aadr
rt dates. However, a larger ensemble size is likely to beemtime for pan-Arctic SIE and SIV on average and how it varies
important for assessing the spread or dispersion of thegti@d petween different years.
system (see Sect. 4.2). Note the increase in correlatioshfanter . .
. P - As concluded above, sea-ice volume ensemble spread is much
ad times (compare rows in Fig. 3) highlights the levels %f -
" : TR igher for SL than for either AL or NSST. The same holds for
‘ ditional skill closer to the verification time (also seeyl@4 al. - . o
014b)). sea-ice extent, albeit only for the first five month;. We no& the
It should also be noted that we have only considered imegrapﬁferencestbztwieer:.SL a?d AL mﬁy btehsma:Ier]if tEe expe;:tenen.
perties of Arctic sea-ice, e.g. pan-Arctic extent. Fegional were repleia edatatime otyearwhen the rate ot change oteea-i
recasts where there is larger variability the ensemhtessi was smafler.
Huired will be larger. This type of analysis would be usefu Additionally, we now see that there are in fact also differs
for operational centres to perform with their existing syss to between AL and NSST. As expected, AL spread is at least as
rm future developments (e.g. Scaéeal.2014). large or larger than NSST spread at all times. For the first lea
month, this difference is small but consistent, which iitages
2 the immediate impact of weather patterns on sea-ice extaht a
volume. For SIE, this difference between AL and NSST grows

other key choice in ensemble design is how to generate ®er the whole melt season (months 2 and 3), but then becomes
ifferent ensemble members. In seasonal forecasting,aftém marginal.
< fi
r

Ensemble generation

nd that the ensemble spread is not large enough to enssmpa |nterestingly, SIV spread after the first lead month shoves th
_subsequent observations (e.g. Weisheite. (2009)), and  gpposite behaviour: AL spread is not significantly higher fo
ious methods are used to gengrate additional epsem‘e@lspmomhs 2 and 3, but during the freeze-up (months 4 to 6), AL
tg) ensure the forecasts are ‘reliable’ (see Section 4.2)Jatenread grows much faster than NSST spread. This is a pdigntia
r examP'e' smgular.vec.tors (e.g. szzg 1997) or StdxlIh"’ls‘important result. Although we cannot exclude the poss$ybihat
rturbations (e.g. Welshe|metal.2011; Jurlgkeet al.2013). it is due to only sampling four different start years and alsma
Here,_ we compare the__lmpact Of the s!mplest methq_ds f((—?Flsemble size, we speculate that it arises because theedifts
generating ensemble |n|_t_|_al condlpon_s:_ .('). st_ate-laggen?)_ in the atmospheric state present in AL but not in NSST have an
osphere-lagged, and (iii) SST-noise initialisatiortivds (ii)
& (iii) are widely used in predictability studies. Previdysthe
differences which may arise from choosing one methodology o
another have not been discussed for sea-ice predictioms, e
show that for seasonal predictions of Arctic sea-ice, théhous
do show some striking differences. As ensemble spread is crucial to ensuring reliable forecast
The state-lagged perturbation method (SL) takes the sfate(@so see Section 4.2 later), operational prediction syste
the GCM from days adjacent to the actual start date as initRlready consider the generation of ensemble members as a key
conditions. This constitutes a sizable perturbation to gtte component of their ensemble design. These results sugugst t
of the atmosphere, but only a small perturbation to the stdedtial differences in the atmosphere, ocean and sea-iate st
of the ocean and the sea-ice cover (see figure 7 in Tiets@ikecontribute to increasing ensemble spread. In many iagist
et al. (2013b)). The atmosphere-lagged perturbation methfarecast systems the sea-ice initial conditions are ctiyren
(AL) applies the same lagged perturbation but only to thenperturbed, but prediction systems with multiple seahidtéal

atmosphere, and the other components of the climate systeonditions are now being developed (e.g. Guestad. 2014Db).
This article is protected by copyright. All rights reserved.

impact on the seasonal ocean dynamics south of the summer sea
ice edge. When the ice edge advances to those regions dheng t
freeze-up, the differences in the ocean state then transiad
differences in sea-ice volume.



4. Evaluating prediction ensembles relationship between ACC and MSESS (Murphy 1988; Goddard
et al. 2013). As a consequence, MSESS shows exactly the same

Once a set of hindcasts has been produced, there are furihgirmation as ACC, and we do not discuss it separately.
details to be decided about how to assess the skill. Theseror the perfect model approach employed here, there are in
issues include whether to use the ensemble mean andriaciple two different ways of verifying ensemble foretsag(i)
deterministic (i.e. single prediction) measure of skiliwhether verification against the control run, and (i) verificatiogainst
to examine the skill probabilistically (i.e. considerirtgetwhole any one ensemble member. The advantage of method (ii) is that
predicted distribution). Using more ‘perfect-model’ exales, we the data can be used more efficiently by verifying againstyeve
illustrate some additional subtleties to be considerechinskill ensemble member in turn, which increases the effective lsamp
assessment. size and gives more robust estimates of the metrics (CADOR).

All metrics defined below use method (ii), except for ACGee
Deterministic skill metrics below), which uses method (i).

We define the predictability metrics using the following
rst, we consider deterministic skill metrics, which aesed on notation: letz;; be the value of sea-ice extent or volume for the
alysing the skill of the ensemble mean. Even in a ‘perfegtth member of thej-th ensemble prediction, and;, ando; the
model’ framework, such deterministic skill metrics can agivclimatological mean and standard deviation calculatethftbe
biguous results because their value depends on hownegerecontrol run at the time of thg-th ensemble prediction.
rameters like the climatological mean and standard tlenia  Thepotential prognostic predictabilittPPP) compares average
arg defined. Here we illustrate this by directly comparinges@l  ensemble spread with the reference variabititf the control run:
oices of commonly used metrics and reference parameters.

le

1G

.1.1. Choice of reference period PPP=1- <gj2>j ’ (@)

I1

consider two choices of how to define the climatologicehme

; - e wherez; = (z;;). is the ensemble mean of theth prediction
and the climatological standard deviatiof !

ensemble, and(-)i denotes the expectation value, to be
1. The ‘maximum knowledge'-approach (MK): The besi:alculated by summing over the specified index with appeteri

linear fit to the whole control run serves as the timer]ormalisation:
dependent mean state; the variability is calculated fraen th Thenormalized RMSENRMSE) compares forecast RMSE to

time series after subtracting the linear fit. climatological variability:

. The ‘operational’ approach (OP): In practice, at the time 5
when an ensemble prediction is started, only observations NRMSE— 1 _ \/<(wij ~ ) >i7j-,k¢i
from the last 30 years or so are available. Additionally, in m ’
the case of Arctic sea-ice, these observations have strong 773
”enc_’s- To mimic th's situation we base th? Cl'mat0|°gy Ahere the denominator is the climatological RMSE betweem tw
the time series during the 30 years preceding the pred'Ct'f?'l?jependent realisations.

start date: the climatological mean is the time series mean 4 intra-ensemble anomaly correlation coefficieneasures

and the climatological standard deviation is the standafily jnra-ensemble correlation of predicted anomalies:
deviation after linear detrending.

@)

ted A

the operational approach is feasible in actual prexist ACC; = (Cwag — ) ns “J)>i7j,k7fi7 3)

f the'observed climate, because it is impossible to utflizere <(ﬂ7z‘j - Hj)2>i,j

observations to estimate; and ;. However, comparing these . . ] .

0 methods demonstrates how the predictability estimasiny Where x; is the climatological mean at the time of theth

P might mislead about the true predictability. ensemble prediction. . o

here are also two more caveats for predictability estimate 1h€ensemble mean anomaly correlation coefficikmgasures

tained with MK: (i) it factors in the role of multi-decadalthe correlation of the ensemble-mean predicted anomaly thet

riability which may not be predictable, and so MK predigigy ~@hemaly in the control run (pseudo-observations):

imates are likely to be biased high, and (ii) in the presen _ "

strong secular trends, estimates,gf and o; obtained with ACC,, = {5 — )z - “j)>j 7 4)
might be contaminated by remote climate states that ate no \/<(ij - uj)2>j<(x:f - uj)2>j

relevant for the time the ensemble prediction is startedo§Se

et al. 2009). where 2} is the value of the control run at verification time

(pseudo-observation).

4.1.2. Choice of metric NRMSE and ACG, are regularly used for assessing
operational predictions.

)
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A

Several different predictability and skill metrics are eligl used

in seasonal to decadal prediction literature, includingteptial 4.1.3. Sensitivity of estimated skill

prognostic predictability (Pohlmaret al. 2004), normalised root

mean square error (Collins 2002; Collias al. 2006), anomaly Each GCM is likely to produce skill estimates which are stresi

correlation coefficient (ACC, e.g. Goddaetlal. 2013) and mean to choice of metric and reference period. We illustrate g¢hes

square error skill score (MSESS, e.g. Goddatrdl. 2013). sensitivities using the HadGEM1.2 GCM (as in Section 3.1)
While the first two have mainly been used in idealised studiegcause, for this model, the differences between the pedulicy

of potential predictability, the latter two are standardasw@es estimates when choosing different reference periods andosie

for operational seasonal to decadal forecasts. Note thatui are large.

idealised setup, ensemble forecasts have neither comalitimr For the MK approach (upper row in Fig. 6), there is a good

unconditional biases, and hence there is a simple algebragreement between the metrics, but for both SIE and SIV, the
This article is protected by copyright. All rights reserved.



NRMSE tends to lie below the other metrics. This is a triviabhere f; is the forecast probability of a certain event, ands a
consequence of taking the square root in Eq. (2). WitholR? binary outcome (0 or 1) depending on whether the predictedtev
and NRMSE would be virtually identical (not shown). The atheoccurred or not. There ar€, forecasts over a time
difference is that ACG; tends to lie above the other estimates for The ‘event’ selected for our example is whether the sea ice
SIE in the second lead year, but this might be due to insufficiestate is above climatology. In this case, a trivial preditibf 50%
sampling as for ACG; only 10 data points are used to construathance for above climatology would produce BS=0.25. BSeslu
the correlation. smaller than this are therefore providing more informatiten a
The picture changes quite dramatically when comparing thévial climatological forecast.
predictability estimates for the OP approach. While the ACC Fig. 8 (top row, black lines) shows the BS for both pan-
metrics are comparable with the MK approach, PPP and NRM@lrctic sea-ice extent and volume in the ‘perfect’ predidigh
are much lower. In fact, they quickly reach the limit of zer@xperiments with MPI-ESM-LR. For sea-ice extent, the BSugro
il after a year or so, whereas for the MK approach they argpidly over the first forecast year, but is still providindgitional
Gnificantly above zero for at least three years. This isabse probabilistic information in year 3 as the BS remains belo250
e estimatedr; with the MK approach are generally muchFor sea-ice volume, the growth of BS is slower. For a regional
ﬂher than estimates obtained with the OP approach (20% 4@verge of the eastern Arctic (bottom row), the BS is moreynois
higher depending on season, not shown). As mentioned athis'e, and the growth of BS is faster, as might be expected for a small
erence corresponds to the choice whether to includedkc region.
Ueven multi-decadal variability. However, OP might proela. |t is also possible to separate the BS into three components:

pessimistic estimate of the true predictability. reliability, resolution and uncertainty (Murphy 1973):
o hese sensitivities highlight the need to consider mutghill
| ?trics in any assessment of predictability. For exampelging BS = REL - RES + UNC (6)
timescales of predictability estimated from a singlerro@hay

; ﬂﬂt be robust. This comparison also quantifies how the apparghe reliability (REL) measures whether the forecast pritiais
Il of an operational system might give a distorted imptes of match the observed frequencies and should be close to zero fo

the true level of skill. good forecasts. The resolution (RES) is a measure of hoerdift
o ) ) the issued probabilities are from the relative frequencesl is
4.2. Probabilistic skill metrics zero for a climatological forecast. The inherent uncetyaterm

. S . . . (UNC) measures the frequency of the event being tested.
ere are many different probabilistic skill metrics (eByier For thi fect model t th cainty terniw
1950; Candille and Talagrand 2005; Jolliffe and Stephenspn or this perfect modet assessment, the uncertainty ternawou

2012). Here, we discuss ensemble dispersion and the Brige S € 0.25 if. the sample of forecastg was representative of the
examples. climatological frequency, and the reliability f[erm.sh(.)lhiel zero
as there are no model biases. The coloured lines in Fig. 8 gtaiw
2.1. Dispersion _the increase in BS is due to a reduction in res_olution, gsoaegpe
i.e. the forecasts are becoming closer to a climatologmadast
liability is an important and desirable property of angemble over time.
rediction system, i.e. that the forecast probabilities & Considering the numerous ambiguities of real-world sea-ic
rticular event are correct (e.g. Buizza 1997; Kurearal. and Arctic forecasts that arise from strong model biasesaand
2001; Weisheimeret al. 2011). A necessary requirement forrapidly changing mean climate (Sigmord al. 2013; Msadek
iability is that the ensemble has the correct dispersienthe et al. 2014), we advocate the use of the BS score additionally to
ble spread matches the expected RMSE (see e.geJuiliff the widely used anomaly correlation. The additional bemegiild
tephenson 2012). be the ability to diagnose whether a low score is due to proble
ig. 7a shows an example, using the GFDL CM3 GCMyith resolution or a lack of reliability.
‘perfect-model’ ensemble predictions of sea-ice extantl
volume that have high skill, but nevertheless appear wableli On 4.3, Recommendations
allerage, the ensemble predictions are under-dispers&&NISE
ensemble means is larger than the average ensemble $preade have demonstrated here that even the evaluation of gterfe
: joth SIE and SIV. The reason for this is insufficient sampbifig prediction ensembles can give ambiguous results that depen

sfart dates and ensemble members, as illustrated by divitin the choice of the skill metric and the definition of the refere
mplete set of 8 ensemble predictions into a set of 3 whieh alimatology. Therefore, we suggest to use a range of skilfiose

ighly under-dispersive (Fig. 7b) and a set of 5 which haweoal to characterise the prediction ensembles, rather thaimgegn a
ctly the right amount of dispersion to be reliable (Fig). 7 single one.

This example illustrates that sampling error is a problémat Scrutinising ensembles from a probabilistic point of view
ue for sample sizes widely used in seasonal-to-decagfght reveal problems that deterministic skill metrics ad pick
prediction studies, and also highlights where a largerrab&® yp, such as a lack of reliability due to insufficient sampling
may help reduce the chance of a ‘surprise’ by more completedyditionally, we recommend employing probabilistic skitiores
sampling the forecast distribution. like the BS that allow a deeper understanding of a lack of biil

In addition, this example also suggests that the predigiabf  means of decomposition into uncertainty, reliability aesalution
sea-ice may be state dependent, i.e. some situations mawgree raontributions.

predictable than others (also see Fig. 2).

422 Brier Score 5. Summary and conclusions

: : : . The retreat of Arctic sea-ice and growth of industry in thgioa
;:]oebai::ﬁsrticsgl?ilrﬁ (BS, Brier (1950)) is often used to defm‘k%as highlighted the need for improved predictive capahititthe

region (Eicken 2013). We have provided some perspectives on
BS — ¥ Z f — Ot]27 ) the design of Arctic sea-ice prediction systems, usinglisked

. L - . . predictability experiments. To summarise:
This article is protected by copyright. All rights reserved.
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ospheric and oceanic state perturbed by a few days (9L9nly atmospheric state perturbed by a few days (AL), (¢) B&turbed by tiny amount of noise (NSST).
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Figure 8. The Brier Score (black) and decomposed into its three coemisras labelled, for above climatological values of sezident (left) and volume (right) in the
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