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1 Introduction

There has been much recent interest in macro-forecasting in real-time. By this we mean how

the forecasting model should be specified, estimated, and the resulting forecasts evaluated, once

we acknowledge that the data on which these three activities is based is subject to revision

(for all but a small number of series such as interest rates and exchange rates). A number

of papers have considered modelling the revisions process (see, e.g., Cunningham, Eklund,

Jeffery, Kapetanios and Labhard (2009), Jacobs and van Norden (2011), Kishor and Koenig

(2012)); or using single-equation models with ‘real-time-vintages’(as in Koenig, Dolmas and

Piger (2003), Clements and Galvão (2013b)) which we refer to as RTV-estimation and discuss

below; or modelling multiple vintages of data, as with vintage-based vector autoregressive

models (see, e.g., Patterson (1995, 2003), Clements and Galvão (2013a)). Other papers have

considered whether assessing predictability in real-time may change the conclusions one would

draw concerning putative explanatory forces, or the usefulness of estimates of the output gap

as a guide to monetary policy in real time. On the former, it has been argued that the use of

final-revised data may exaggerate the predictive power of explanatory variables relative to what

could actually have been achieved at the time using the then available data (see, e.g., Robertson

and Tallman (1998), Faust, Rogers and Wright (2003)), and on the latter see Orphanides (2001),

Orphanides and van Norden (2005), Garratt, Lee, Mise and Shields (2009, 2008) and Clements

and Galvão (2012), inter alia. Croushore (2011a, 2011b) provide useful state-of-the-art reviews.

These related strands of research are all concerned with first-moment prediction: either

improving the accuracy of forecasts of the conditional expectation, or of providing a more

realistic appraisal of the accuracy of these predictions. In this paper we instead investigate the

implications of data revisions for assessments of forecast uncertainty, specifically, the accuracy

of prediction intervals. We show that the ‘traditional’ approaches to calculating prediction

intervals will tend to be either too wide, when data revisions ‘add news’, or too narrow, when

the revisions process ‘removes noise’. The standard approach is due to Box-Jenkins (Box and

Jenkins (1970)). The effects of data vintages in real-time analyses are first-order, in the sense

that they do not disappear when the sample size gets large, and are not caused by non-normal

errors. It is recognized in the literature that Box-Jenkins prediction intervals suffer from the

neglect of parameter estimation uncertainty and the possible non-normality of the underlying
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model’s disturbances, and as a result there has been much interest in bootstrapping prediction

intervals (see e.g., Thombs and Schucany (1990)). Yet we show that in real-time prediction

intervals will have incorrect coverage even in the absence of these problems (i.e., in the absence

of parameter estimation uncertainty, and when the disturbances are normal), because of data

vintage effects. We use simple Box-Jenkins intervals to focus on data vintage effects.

Clearly, the effects of data vintages on first and second-moment prediction can be side-

stepped by considering fully-revised data, whence observations are no longer subject to revision.

Of course any observation no matter how far back in time may be changed in response to far-

reaching methodological changes. By fully-revised data we mean data that have undergone the

initial and three annual rounds of revisions (see e.g., Landefeld, Seskin and Fraumeni (2008)

for a description of the revisions process of the US Bureau of Economic Analysis NIPA data).

Pseudo out-of-sample exercises use fully-revised data (e.g., the vintage of data available at the

time of the study), and at each point in time the forecasting models are specified and the

parameters estimated using only data for time periods up to that point in time. Such exercises

are useful as a way of assessing how well the model or models fit or forecast the true data,

and the out-of-sample aspect guards against ‘overfitting’, i.e., the models capturing chance or

non-recurrent sample-specific features. A real-time forecasting exercise mimics the environment

a real-world forecaster faces - at each point in time the forecasting models are specified and

the parameters estimated using only data for time periods up to that point in time, but in

addition the data are taken from the vintages that would have been available at that point in

time. Real-time exercises are required to provide fair assessments of the relative accuracy of

the model forecasts compared to survey expectations, for example.

To illustrate, assume a one period delay in data availability. Then at time t a forecaster will

have access to the vintage-t value of the period t − 1 observation, denoted ytt−1, and similarly

the second estimate of the t − 2 period, ytt−2, and so on. If the forecaster wishes to use only

data which has been revised n times, say, the most recent data that could be used would be

for t − n − 1 (i.e., ytt−n−1, y
t
t−n−2, . . .). It will rarely be optimal to ignore data for periods

t − n − 2, . . . , t − 1 (for large n), so the real-world forecaster will be forced to work with data

subject to revision. This is the environment we seek to mimic in the real-time analysis.

Section 2 presents a simple example to motivate the concerns of the paper: the true model
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is a zero-mean first-order autoregressive process (AR(1)), and the true value of the process is

revealed the period after the first estimate, so only the first estimate is subject to revision.

Further, we ignore estimation uncertainty, so that model parameters take on their population

parameters. We show that the standard approach gives an incorrect assessment of forecast

uncertainty, and consequently incorrectly-sized prediction intervals. We focus on prediction

intervals, but the points we make apply more generally to measures of forecast uncertainty

(such as forecast densities). In section 3 we broaden the analysis of section 2 to an AR(p)

for the true process, and allow a general revisions process with multiple revisions. As in the

simple case, there will in general be a misleading assessment of the uncertainty surrounding

future outcomes. We then suggest a remedy that has been used for first-moment prediction,

and has the virtue of simplicity and does not require that the revisions process be modelled:

section 4. Section 5 supposes the goal is to estimate the uncertainty about future revised

values, as opposed to first-release data. Section 6 provides an empirical illustration, and shows

the improvements that result from using the approach advocated in this paper. We consider 25

macro variables, which exhibit different patterns of revisions, so that the conclusions we draw

are reasonably general and do not rest on a few variables with (possibly) idiosyncratic features.

In section 7 we present a simulation study of the two approaches to calculating prediction

intervals in a controlled environment that abstracts from various factors that might affect the

empirical comparisons, such as parameter non-constancies, for example. Finally, section 8 offers

some concluding remarks.

2 Motivating example

Suppose the true (i.e., fully-revised) values yt follow an AR(1):

yt = αyt−1 + ηt + vt (1)

and the estimates of yt are given by:

yt+1t = yt − vt + εt

yt+nt = yt
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for n = 2, 3, . . .. We assume ηt, vt and εt are mutually uncorrelated, zero-mean iid random

variables. Then the revision yt+2t − yt+1t = vt − εt consists of a noise component (when σ2ε =

E
(
ε2t
)
6= 0) and a news component (when σ2v = E

(
v2t
)
6= 0). The news/noise characterization

of data revisions is due to Mankiw and Shapiro (1986). Suppose that revisions are purely news,

so that σ2ε = 0. Then the first estimate yt+1t = αyt−1+ηt does not contain the news component

vt, but the revised estimate (which is the fully-revised value in this simple illustration) adds

this term: yt+2t = yt = αyt−1 + ηt + vt. A characteristic of news is that the revised value is

unpredictable from information available at the time of the first estimate, or in other words,

the revision yt+2t −yt+1t = vt is not systematically related to yt+1t . But the news revision clearly

is correlated with the true value. For news, later estimates are more accurate estimates of the

true value than earlier estimates (this follows trivially here because yt+2t = yt and so is a perfect

estimate). Suppose now that revisions are solely noise, i.e., σ2ε 6= 0 (but σ2v = 0). For noise, the

revised value removes measurement error: the revisions are predictable (based on period t− 1

information) but are not correlated with the true value.

Consider then a sequence of forecasts made in real time, and in particular, consider the 1-step

prediction interval for the period T observation made at time T , at which time the available data

consists of
{
. . . ,yT−1T−2,y

T
T−1

}
, where yT−jT−j−1 =

[
. . . , yT−jT−j−2, y

T−j
T−j−1

]′
, for j = 0, 1, 2, . . .. The

traditional approach is to specify and estimate the forecasting model using the period T -vintage{
yTT−1

}
, on the grounds that this constitutes the best available estimates of {. . . , yT−2, yT−1},

irrespective of whether revisions add news, remove noise, or are some combination of the two.

The use of the forecast origin vintage was referred to as end-of-sample (EOS) estimation by

Koenig et al. (2003).

An AR(1) is estimated on the EOS data:

yTt = βyTt−1 + et,EOS , for t = . . . , T − 2, T − 1 (2)

and the forecast of yT is given by:

ŷT ,EOS = βyTT−1. (3)

As the sample gets large relative to the number of data revisions, it follows that OLS

estimation of β in (2) will consistently estimate α in (1), because all but the last observation on
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the dependent variable (t = T − 1) will equal the true values. This clearly holds more generally

for a finite number of data revisions before the truth is revealed, and holds irrespective of

whether revisions are news or noise.

Clements and Galvão (2013b) show that if the forecast is conditioned on the vintage-T data

(for the AR(1) model used here this means conditioning on the single observation yTT−1, as in

(3)) then the optimal value of the parameter β in terms of minimizing the expected squared

forecast error (E
[(
yT+1T − ŷT ,EOS

)2]
) is β = α for news revisions, but β = ασ2y

(
σ2y + σ2ε

)−1,
where σ2y = V ar (yt) and σ2ε = V ar (εt). Hence (3) is the optimal forecast for news, but not for

noise. Clements and Galvão (2013b) show more generally that when the true process follows an

AR(p) with p > 1 then estimation of the model on the vintage-T data (as in the p > 1 analogue

of (2)) will not deliver the optimal parameter vector in a squared error sense for news or noise

revisions.

2.1 News revisions

As the number of observations gets large, the estimated standard error σ̂T−1,EOS from (2) will

approach
√
σ2η + σ2v. This is because E

(
yTt − βyTt−1

)2
= E (yt − αyt−1)2 = E (ηt + vt)

2 = σ2η +

σ2v for t = . . . , T −2, and for t = T −1, E
(
yTt − βyTt−1

)2
= E (yt − vt − αyt−1)2 = E (ηt)

2 = σ2η.

The effect of the last observation will disappear as T gets large. The Box-Jenkins (BJ) (1− γ)

level prediction interval is given by:

{
ŷT ,EOS +z γ

2
σ̂T−1,EOS , ŷT ,EOS +z1− γ

2
σ̂T−1,EOS

}
where zγ is the γ quantile of the standard normal, γ = Φ (zγ), and where Φ denotes the standard

normal distribution function.

The expected squared error of the out-of-sample forecast is given by:

E
(
yT+1T − ŷT ,EOS

)2
= E (yT − vT − α (yT−1 − vT−1))2

= σ2η + α2σ2v. (4)

Assuming that the true values follow a stationary AR(1), |α| < 1, then the in-sample estimate

of uncertainty (σ̂2T−1,EOS = σ2η + σ2v) overstates the true uncertainty surrounding the forecast
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of yT+1T . That is, the prediction intervals are too wide. This is the ‘true uncertainty’for the

model given by (1) when the forecast is conditioned on the vintage-T data, because as noted

above EOS delivers the optimal value of the autoregressive parameter in population (β = α).

The intuitive explanation for the over-estimation of out-of-sample uncertainty is that the in-

sample estimate is based on predicting the revised values, with added news relative to the first

estimate, and so is accomplished with less precision than the forecasting of a first estimate

(yT+1T ) out-of-sample.

We have assumed that the target is the first estimate rather than the fully-revised value (in

our setup, yT+2T = yT ). Real-time forecasting exercises commonly assume that the goal is to

forecast a relatively early vintage value, such as the value available one or two quarters after the

reference quarter. But for the fully-revised estimate, the BJ interval would now under-estimate

the true out-of-sample uncertainty and the actual coverage rate would be less than the nominal:

E (yT − ŷT ,EOS )2 = E (yT − α (yT−1 − vT−1))2

= σ2η +
(
1 + α2

)
σ2v.

2.2 Noise revisions

Now suppose revisions reduce noise (and σ2v = 0). Consider the in-sample fit of the model. For

noise, E
(
yTt − βyTt−1

)2
= E (yt − αyt−1)2 = E (ηt)

2 = σ2η for t = . . . , T − 2, and for t = T − 1,

E
(
yTt − βyTt−1

)2
= E (yt + εt − vt − αyt−1)2 = E (ηt + εt)

2 = σ2η + σ2ε, so for large T the in-

sample error variance will be estimated as σ2η.

Consider now the out-of-sample expected squared error:

E
(
yT+1T − ŷT ,EOS

)2
= E (yT + εT − α (yT−1 + εT−1))

2

= σ2η +
(
1 + α2

)
σ2ε (5)

which exceeds the in-sample error variance. In a reverse of the situation when revisions are

news, when revisions reduce noise the in-sample error variance under-estimates the true out-of-

sample uncertainty, and consequently the actual coverage of the BJ intervals will fall short of the

nominal. Intuitively, when revisions remove noise, the fully-revised data used in the in-sample
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calculation will lead to an under-estimation of the uncertainty that characterizes the out-of-

sample estimate. If instead we target the fully-revised value, E (yT − ŷT ,EOS )2 = σ2η + α2σ2ε,

which still exceeds the in-sample estimate but to a lesser extent.

Note that (5) denotes the out-of-sample uncertainty given by the model estimated by EOS.

However, as noted above it does not reflect the minimum level of out-of-sample uncertainty at-

tainable since α does not minimize the expected squared error loss: use of φ = ασ2y
(
σ2y + σ2ε

)−1
in place of α in the forecast function would result in a smaller expected squared error. (Simple

algebra confirms that δ = φ is the value of δ which minimizes E
(
yT+1T − δyTT−1

)2
). Hence when

there are noise revisions EOS estimation will result in out-of-sample uncertainty being larger

than expected given the model’s in-sample fit, and larger than is feasible (given the information

set consisting of the vintage-T data).

To summarize: prediction intervals will be too wide if data revisions are news (and the aim

is to forecast an early vintage, otherwise they will be too narrow), but too narrow if revisions

reduce noise.

In a pseudo out-of-sample forecasting exercise, e.g., using the data vintage
{
yT+nT−1

}
, n� 0,

to forecast yT , there are no data vintage effects and in-sample and out-of-sample uncertainty

would match save for small-sample effects.

3 A general statistical framework

Having illustrated the effects of data revisions on the coverage of prediction intervals (and the

estimation of forecast uncertainty more generally) in a simple setup, in this section we suppose

the true process follows an AR(p), and allow multiple vintage estimates of each observation.

We use the framework in Jacobs and van Norden (2011), as applied by Clements and Galvão

(2013b). The period t + s vintage estimate of the value of y in period t, denoted yt+st , where

s = 1, . . . , l, consists of the true value yt, as well as news and noise components, vt+st and

εt+st , so that yt+st = yt + vt+st + εt+st . The l vintage estimates of yt, namely, yt+1t , . . . , yt+lt

are stacked in the vector yt =
(
yt+1t , . . . , yt+lt

)′
, and similarly εt =

(
εt+1t , . . . , εt+lt

)′
and vt =(

vt+1t , . . . , vt+lt

)′
, so that:

yt = iyt + vt + εt (6)

7



where i is a l-vector of ones. We suppose yt is an AR(p) with iid disturbances R1η1t, plus a

sum of l news components vi,t:

yt = α0 +

p∑
i=1

αiyt−i +R1η1t +

l∑
i=1

vi,t, (7)

where vi,t = σviη2t,i (for i = 1, ..., l) and both η1t and η2t,i are iid(0, 1). We let α (L) =
∑p

i=1 ρiL
i

and assume that the roots of (1− α (L)) = 0 lie outside the unit circle, so that yt is a stationary

process. The news and noise components of each vintage in yt are:

vt =


vt+1t

vt+2t

...

vt+lt

 = −



∑l
i=1 vi,t∑l
i=2 vi,t
...

vl,t

 , εt =


εt+1t

εt+2t

...

εt+lt

 =


σε1η3t,1

σε2η3t,2
...

σεlη3t,l

 , (8)

where η3t,i is iid(0, 1). The shocks are also mutually independent, that is, if ηt = [η1t,η
′
2t,η

′
3t],

then E (ηt) = 0, with E (ηtη
′
t) = I.

This generalizes the analysis in section 2 in a straightforward way. Note that yt+1t =

α0+
∑p

i=1 αiyt−i+R1η1t+εt+1t , whereas later estimates include news. For the nth estimate, for

example, where 1 < n < l, we have yt+nt = α0+
∑p

i=1 αiyt−i+R1η1t+σεnη3t,n+
∑n−1

i=1 vi,t, which

is a more accurate estimate of yt than yt+1t , as it includes the news terms (
∑n−1

i=1 vi,t) which

comprise yt. As noted by Mankiw and Shapiro (1986), news revisions imply that var(yt+1t ) <

var(yt+lt ), while noise revisions imply that var(yt+1t ) > var(yt+lt ), assuming that later estimates

are less ‘noisy’ (σεi > σεi+1). If σvl = 0 and σεl = 0 the l-vintage value is the true value,

yt+lt = yt. The assumption that yt is a stationary process ensures that yt is a stationary process

from (6), as both the news and noise terms are stationary. We have assumed for simplicity that

both noise and news revisions are zero mean.

The model to be estimated is now given by:

yTt = β0 +

p∑
i=1

βiy
T
t−i + et,EOS , for t = . . . , T − 2, T − 1, (9)

which generalizes (2) to include p autoregressive lags and an intercept. As in section 2, we make
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the simplifying assumption that EOS is equivalent to estimating the model on fully-revised data.

Hence βi = αi for i = 0, 1, . . . , p. Formally this requires that the estimation sample T is large

relative to l, and that σvl = σεl = 0. This allows us to focus on the first-order effects of data

revisions on prediction intervals. Then the population value of the in-sample standard deviation

for (9) is equivalent to that from (7), and is given by:

σ̂T−1,EOS =

√√√√√E

(R1η1t +
l∑

i=1

vi,t

)2 =

√√√√R21 +
l∑

i=1

σ2vi . (10)

The 1-step ahead expected squared forecast error is given by:

E

[(
yT+1T − ŷT,EOS

)2]
= E

( p∑
i=1

αi
(
yT−i − yTT−i

)
+R1η1T + εT+1T

)2
=

p∑
i=1

α2i

σ2εi +
l∑
j=i

σ2vi

+R21 + σ2ε1 (11)

assuming the forecast-origin vintage is dated T , and where we have substituted for yT+1T and

ŷT,EOS = α0+
∑p

i=1 αiy
T
T−i, the latter using the true process parameter values, but conditioning

the forecast on the T -vintage observations. The expression also assumes l > p.

Now consider news revisions. The expression (11) simplifies to E
[(
yT+1T − ŷT,EOS

)2]
=∑p

i=1 α
2
i

∑l
j=i σ

2
vj +R21. Hence out-of-sample uncertainty will be less than in-sample uncertainty

(σ2T−1,EOS defined by (10)) when:

p∑
i=1

α2i

l∑
j=i

σ2vj <

l∑
i=1

σ2vi .

As shown in section 2 this holds when p = l = 1, given that |α1| < 1, but need not hold more

generally. For p > 1, the expected squared error may exceed (the square of) (10) when the |αi|

are large, but generally, one might expect the prediction intervals based on EOS would tend to

overstate the uncertainty surrounding future observations when revisions are news.

When revisions are noise, the reverse is true, as then E
[(
yT+1T − ŷT,EOS

)2]
=
∑p

i=1 α
2
iσ
2
εi+

R21+σ2ε1 > σ2T−1,EOS = R21. These findings match those in section 2: the analysis in that section
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is a special case of the results presented here, with p = 1 and l = 1.

As shown by Clements and Galvão (2013b), given that the forecasts condition on yTT−1, y
T
T−2, . . . y

T
T−p,

the EOS population parameters (which equal those of the true process) are not optimal for news,

when p > 1, or for noise for all p. Hence EOS prediction intervals are too narrow for the model-

implied out-of-sample uncertainty when there is noise, and may be too wide or narrow when

there is news, although for variables with moderate dependence will be too wide. Moreover, the

results of Koenig et al. (2003) and Clements and Galvão (2013b) suggest that EOS forecasts

are not optimal in population in a squared-error sense.

A solution to the problem of obtaining correctly-sized prediction intervals in real-time is to

use RTV-estimation. This was suggested by Koenig et al. (2003) for first-moment prediction,

and further considered by Clements and Galvão (2013b) with an emphasis on autoregressive

processes. In the following section we discuss RTV-estimation, and show that it provides

intervals with correct coverage.

4 RTV-estimation

US NIPA data are typically subject to revision for up to three and a half years after the first

estimate is published. Koenig et al. (2003) note that EOS implies that a large part of the

data used in model estimation has been revised many times, while the forecast is conditioned

on data that has been just released or only revised a few times. That is, the data vector

yTT−1 =
[
. . . , yTT−2, y

T
T−1

]′
comprises the first estimate of yT−1, the first revision (i.e., the second

estimate) of yT−2, and so on up to mature data for the earlier data periods. They show that

more accurate forecasts can be achieved (in principle) by not mixing mature and lightly-revised

data, and instead advocate using ‘real-time vintage’(RTV). The forecasting model is estimated

on data of a similar maturity to the data on which the forecast is conditioned. This is Strategy

1 of Koenig et al. (2003), p.620, which we refer to throughout as RTV-estimation, or the use of

RTV data.

We maintain the assumption made throughout that forecasts will be conditioned on data

estimates from the latest-available vintage at the time the forecasts are made. For an AR(p),

this means that the forecast will be conditioned on yTT−1 =
[
yTT−1, y

T
T−2, . . . y

T
T−p

]′
. The RTV
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approach estimates the AR(p) on matching early-release data:

ytt−1 = β0 +

p∑
i=1

βiy
t−1
t−1−i + et,RTV , for t = . . . , T − 1, T, (12)

and the forecast of yT is ŷT ,RTV = β0 + β1y
T
T−1 + . . . + βpy

T
T−p. For notational simplicity, let

β =
[
β1 . . . βp

]′, so that we can equivalently write ŷT ,RTV = β0 + β′yTT−1. Clements and

Galvão (2013b) show that for a general model of data revisions, as in Jacobs and van Norden

(2011), the solution (φ∗0,φ
∗) of:

arg min
φ0,φ

E

[(
yT+1T − φ0 − φ′yTT−1

)2]
(13)

is satisfied by the RTV-population values: β0 = φ∗0, and β = φ∗. That is, given that the

forecast is conditioned on yTT−1, RTV will deliver (in population) the values of the intercept and

autoregressive parameters which minimize the expected squared error. Clements and Galvão

(2013b) show that (φ∗0,φ
∗) depend on the nature of data revisions (news or noise, whether they

are zero mean, etc.).

It follows immediately that RTV-estimation will provide correct assessments of out-of-

sample uncertainty. The population values of the OLS estimators of the unknown parameters

in (12) are the same as the solution to:

(β∗0,β
∗) = arg min

β0,β
E
[(
yt+1t − β0 − β′ytt−1

)2]
. (14)

A typical observation on the LHS and RHS variables in (12) is
{
yt+1t ,ytt−1 =

(
ytt−1 . . . y

t
t−p
)′},

which is a covariance stationary process.

The estimation loss function (14) is identical to the real-time forecast loss function (13).

Clements and Galvão (2013b) stress that the solutions to the two in terms of (φ0,φ) and (β0,β)

coincide, β∗0 = φ∗0 and β
∗ = φ∗, and thus RTV-estimation delivers optimal forecasts. For our

purposes, note that the values of the functions in (13) and (14) evaluated at the RTV population

parameters are identical, implying in addition that the in-sample estimate of uncertainty from

RTV-estimation will provide a reliable guide to out-of-sample forecasting. This holds for general

revisions processes, such as that considered by Jacobs and van Norden (2011), provided the true
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process and the data revisions are stationary.

An alternative to using RTV data is to use models that draw on the multiple estimates

of each observation which are typically available. There are many such models, e.g., Harvey,

McKenzie, Blake and Desai (1983), Howrey (1984), Patterson (1995, 2003), Jacobs and van

Norden (2011), Cunningham et al. (2009) and Garratt et al. (2009, 2008). In terms of first-

moment prediction, Clements and Galvão (2013b) compare the accuracy of RTV with forecasts

from a vector autoregression (VAR), that models the relationships between the multiple-vintage

estimates (in the spirit of recent work by Garratt et al. (2008, 2009)), and with the approach

of Kishor and Koenig (2012), which specifies a model for the data revisions process which is

estimated along side a VAR for the ‘post-revision’data. They find the performance of these

more elaborate models is on a par with RTV-estimation of the AR (for first-moment prediction).

In this paper we do not examine the potential usefulness of these multiple-vintage models for

calculating prediction intervals.

To end this section, we illustrate the general results using the simple example of section

2, that is, a zero-mean AR(1) with a single revision. In section 2 this example was used to

motivate the problems with the standard approach. Here we show that RTV provides correctly-

sized prediction intervals in this setup.

4.1 News revisions

The population value of β in the RTV-regression model:

ytt−1 = βyt−1t−2 + et

is β = Cov
(
ytt−1, y

t−1
t−2
)
/V ar

(
yt−1t−2

)
= α. This comes from:

Cov
(
ytt−1, y

t−1
t−2
)

= E
[(
αyt−2 + ηt−1

)
(yt−2 − vt−2)

]
= ασ2y − ασ2v,

V ar
(
yt−1t−2

)
= V ar (yt−2 − vt−2) = σ2y + σ2v − 2Cov (yt−2, vt−2) = σ2y − σ2v

This result is a special case of the general formulae presented in Clements and Galvão (2013b).

Further, the RTV parameter β only equals the autoregressive parameter of the true process (α)

for the AR(1) with news, as here. Then the in-sample error variance is based on V ar
(
ytt−1 − αyt−1t−2

)
12



which on substituting for ytt−1 and y
t−1
t−2 is equal to σ

2
η+α2σ2v. It is a simple matter to show that

this equals the out-of-sample uncertainty: E
[(
yT+1T − ŷT ,RTV

)2]
= E

[
(yT − vT − α (yT−1 − vT−1))2

]
=

σ2η + α2σ2v.

4.2 Noise revisions

When there are noise revisions, it follows that in population:

β = φ∗ = α
σ2y

σ2y + σ2ε
. (15)

The in-sample error variance and the out-of-sample squared forecast error are equal, and pre-

diction intervals based on the former will have correct conditional coverage. The in-sample

error variance is:

V ar
(
ytt−1 − βyt−1t−2

)
= V ar [yt−1 + εt−1 − β (yt−2 + εt−2)]

and the out-of-sample squared forecast error is:

V ar
(
yT+1T − ŷT ,RTV

)2
= V ar [yT + εT − β (yT−1 + εT−1)] .

The two variances are equal given the assumed stationarity of {yt} and {εt}.

Note that for both news and noise revisions, the equality of the in and out-of-sample error

variances rests on forecasting the first estimate of yT .

5 Predicting revised data

So far we have focused on predicting the first data release, and have shown that RTV as

implemented in section 4 is a simple and viable method of obtaining correctly-sized prediction

intervals. In the motivating discussion of the shortcomings of EOS in section 2 we showed that

EOS intervals would also be incorrectly-sized for assessing the uncertainty around the fully-

revised data. In this section we establish that EOS intervals are invalid in the general setup of

section 3, where we allow an AR(p) and multiple revisions. For forecasting fully-revised data,

i.e., yT+lT , where yT+lT = yT , the expression for the 1-step ahead expected squared forecast error

13



(corresponding to (11)) is given by:

E
[
(yT − ŷT,EOS)2

]
= E

( p∑
i=1

αi
(
yT−i − yTT−i

)
+R1η1T − vT+1T

)2
=

p∑
i=1

α2i

σ2εi +
l∑
j=i

σ2vi

+R21 +
l∑

i=1

σ2vi (16)

which exceeds the in-sample uncertainty (the square of (10)) by the first term. Hence whether

revisions are news or noise, the standard approach to estimating out-of-sample uncertainty

about the revised value will tend to underestimate that uncertainty, resulting in prediction

intervals which are too narrow. This differs from the results obtained for forecasting the first

release, when intervals were too wide for news but too narrow for noise.

Equation (16) also suggests the EOS intervals might be expected to be relatively more

accurate for revised data than first-release data, because the first term in this expression will

be small when the |αi| are small (e.g., consider a variable modelled by an AR(1) with α1 = 0.3).

This contrasts the findings for predicting first-release values in section 3, where the difference

between the EOS in-sample and out-of-sample uncertainty estimates do not vanish as the |αi|

get small. (For example, compare (10) with (11)).

Intuitively, when EOS is used and the goal is to predict revised data, the only distortion

(between the model’s in-sample estimate of uncertainty and out-of-sample uncertainty) is from

the forecast being conditioned on early-vintage observations: were the forecasts conditioned on

the (unknown at the time of forecasting) fully-revised values of the observations, the intervals

would have the correct coverage in population. This contrasts with forecasting the first-release

value, where conditioning on fully-revised data would not deliver correctly-sized intervals.

The logic of the RTV approach in section 4 suggests a simple modification for forecasting

revised data. Suppose we wish to forecast yT+nT (where n ≤ l, and n = l corresponds to

forecasting the fully-revised data), then (12) is adapted to:

yt+n−1t−1 = β0 +

p∑
i=1

βiy
t−1
t−1−i + et,RTV . (17)

That is, the dependent variable ytt−1 is replaced y
t+n−1
t−1 . When the forecast origin data vintage is
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T , the estimation sample is of necessity reduced from t = . . . , T−1, T to t = . . . , T−n, T−n+1,

with the loss of the last n − 1 observations, relative to when the goal is to forecast the first

release.

It follows immediately that the adapted RTV-estimation will provide correct assessments

of out-of-sample uncertainty. The population values of the OLS estimators of the unknown

parameters in (17) are the same as the solution to:

(β∗0,β
∗) = arg min

β0,β
E
[(
yt+nt − β0 − β′ytt−1

)2]
. (18)

Writing the forecast as ŷT ,RTV = β∗0 + β∗′yTT−1, the expected squared-error out-of-sample is

given by:

E

[(
yT+nT − β∗0 − β∗′yTT−1

)2]
(19)

Then the expected squared error out-of-sample (19) matches the in-sample error variance (eval-

uated at the adapted RTV population values), and prediction intervals based on the adapted

RTV method are correctly-sized for the nth data vintage value of yT . Because the in-sample

estimation criterion matches the out-of-sample loss function, the resulting forecasts are optimal

for yT+nT given that the forecasts are conditioned on yTT−1.

Although not explicitly shown, it also follows that the RTV method described in section 4

for predicting the first release would not generate correctly-sized intervals for forecasting revised

data irrespective of whether revisions are news or noise.

In practice setting n = 14, say, to include the 3 rounds of annual revisions to which US

Bureau of Economic Analysis data are subject might have a negative impact in terms of para-

meter estimation uncertainty from the loss of data. A pragmatic response is to set n = 3 when

we consider forecasting revised data (as opposed to n = 1 for the first release) as the third

estimates are based on reasonably complete data relative to the first release.
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6 BJ prediction intervals for AR models estimated using RTV

and EOS

We consider 25 US macro variables which are subject to data revisions. The variables are

described in table 1. The data vintages are taken from the Real-Time Data Set for Macro-

economists (RTDSM) of Croushore and Stark (2001). Our first ‘vintage-origin’is 1996:Q2, and

the last is 2011:Q1, so that we have 15 years of quarterly forecast origins. However, the 1999:Q4

and 2009:Q3 vintages contain missing values for many series and these forecast origins are ex-

cluded. In order to estimate the models by EOS, we require that each data vintage provides a

long enough history of past observations. We use a rolling-window forecasting scheme, where

for the first vintage origin of 1996:Q2, we use data from 1984 onwards. However, for RTV, we

need data vintages going back to 1984 to have data over the same historical period. That is,

we require an additional 12 years of data-vintages for RTV estimation. This requirement was

satisfied for the 25 variables forecast in this study.

For all but one of the variables (ruc - the unemployment rate) we model, and evaluate

forecasts of, the first difference of the natural logarithm. The variable ruc is modelled and

forecast untransformed.

To focus on the RTV versus EOS issue, in all cases we use AR(2) models (i.e., two autore-

gressive lags), although the number of lags could be selected for each variable at each forecast

origin using an information criterion such as BIC. The real-time (EOS) forecasting performance

of the AR models (estimated by EOS) has been shown to be improved by discarding the pre-

Great Moderation data (Clements (2015)), which is the reason we set the initial start point

of the estimation period to 1984. In the first instance we use first-release actual values. The

analysis in section 5 suggests that the distortionary effects of EOS estimation will be relatively

muted for forecasting revised data, so we begin with forecasting first-release values where we

expect the problems with EOS to be clearest. So the actual values are taken from the vintage

available one quarter after the target quarter. To evaluate the forecast of 1996:Q2, from the

first vintage origin of 1996:Q2, for example, we take the observation from the 1996:Q3 data

vintage.

Table 2 records our first set of results: the relative magnitudes of the models’estimated
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standard errors for RTV and EOS estimation; t-statistics of the null that revisions are news;

t-statistics of the null that revisions are noise; and the actual coverage rates of one-step ahead

BJ intervals. The tests for news and noise are based on the revisions between the first-estimates

yt+1t , and the data available some three and a half years later yt+15t , which includes the three

rounds of annual regular revisions. We test for news and noise revisions using, respectively:

yt+1t − yt+15t = α+ βney
t+1
t + ωt

and:

yt+1t − yt+15t = α+ βnoy
t+15
t + ωt.

We find that 9 of the 25 variables have data revisions which are news, in that we do not

reject βne = 0, but we do reject βno = 0, at conventional levels. For all of these variables the

in-sample standard deviation estimated by EOS exceeds the RTV estimate. For the 7 variables

for which we do not reject βno = 0 but do reject βne = 0, implying noise revisions, we find

the reverse - the EOS standard deviation is smaller than the RTV estimate. Hence for the 16

variables which can be categorized as news or noise, the relative magnitudes of the in-sample

standard deviations are as expected given the analysis in section 4. The remaining variables

cannot be characterized as purely news or noise, so it is not clear what one would expect to find.

Aruoba (2008) and Corradi, Fernandez and Swanson (2009) provide recent extensions to testing

for the properties of data revisions, but for our purpose of providing a broad classification of

each series as being subject to news or noise revisions the standard approach suffi ces.

In terms of out-of-sample performance, for around 80% of the variables the RTV intervals are

more accurate than the EOS intervals, in the sense that the actual coverage rates are closer to

the nominal rates. The actual coverage rates are shown for each variable for the RTV and EOS

intervals in table 2, but summarizing across all variables, we find that the coverage rates of RTV

intervals are closer to the nominal for 20, 21 and 18 variables for the 50%, 75% and 90% nominal

intervals, respectively. Furthermore, our analysis suggests EOS-interval coverage should exceed

that of RTV intervals for variables with news revisions, with the opposite holding for noise

revisions. Of the 9 variables categorized as having news revisions, EOS-interval coverage is

greater for either all, or all but one, of these variables (depending on the nominal interval size).
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Of the 7 variables with noise revisions, the RTV coverage rate is greater for all 7 variables for

the 50% and 75% intervals (and for all but one for the 90% intervals).

As a robustness check, we calculated the statistics reported in table 2 for models with an

autoregressive order of one, and found the results were qualitatively unchanged (not reported

to save space).

We then supposed the goal of the analysis was to forecast the revised data, either the

third estimate, or the fully-revised data (taken to be the value in the 2012:Q3 vintage). We

compared the accuracy of intervals based on adapted RTV estimation (with n = 3 in (17),

so optimal in population for the third estimate) against intervals based on EOS estimation,

for the 25 variables in our study, and using the same setup as for forecasting the first-release

data. We found that the adapted RTV interval coverage rates were closer to the nominal rates

than the EOS intervals for 18, 22 and 16 variables, for the 50%, 75% and 90% coverage-rate

intervals, respectively. Hence RTV based on (17) works reasonably well in terms of estimating

the uncertainty surrounding the third estimates. For forecasting the fully-revised there was

little to choose between RTV (with n = 3) and EOS, with the RTV intervals now being more

accurate for 14, 12 and 11 of the variables. In principle n should be set to include the three

rounds of annual revisions embodied in the final data (so n = 14, say), but this would have

meant omitting the last 3 and a half years of quarterly data from the estimation sample at each

forecast origin.

RTV estimation is expected to generate more accurate BJ-intervals than EOS because the

RTV-estimate of the in-sample standard deviation more accurately reflects the out-of-sample

uncertainty. Table 2 is designed to show the relationship between the in-sample standard

deviations, and the average interval coverage rates. However, obtaining the correct coverage

‘on average’ is a minimal requirement of a sequence of prediction intervals. To see this, let

Lt|t−1(p) and Ut|t−1(p) denote the lower and upper limits of a 1-step ahead prediction interval

with nominal coverage p, and let It = 1 denote a ‘hit’, defined as:

It =

 1 if yt ∈
(
Lt|t−1(p), Ut|t−1(p)

)
,

0 otherwise
(20)

for a sequence of forecasts (
{
Lt|t−1(p), Ut|t−1(p)

}
) and realizations ({yt}), t = 1, 2, . . . , N . Cor-
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rect unconditional coverage holds when E (It) = p, assessed by whether the sample mean

1
N

∑N
t=1 It is close to p. A more stringent criterion is that the occurrences of 1’s and 0’s are un-

predictable - for a given information set It (where It = {It, It−1, . . .} at a minimum) we require

E (It|It−1) = p. When It = {It, It−1, . . .}, this is equivalent to saying that {It} is iid Bernoulli

with parameter p. This is a joint test, and Christoffersen (1998) presents simple likelihood-

based tests of the component parts: correct unconditional coverage (E (It) = p); independence

(against a first-order Markov chain structure for {It}); as well as of the joint hypothesis of

correct conditional coverage. The test for independence will have power to detect (unmodelled)

changes in the volatility (because hits will tend to be clustered during the relatively low volatil-

ity periods) as well as dynamic mis-specification of the model generating the forecasts. For

example, prediction intervals generated by an AR(1) (say), when the data generating process is

an AR(2) with gaussian disturbances, will have correct unconditional coverage but not correct

conditional coverage. Corradi and Swanson (2006) provide a related discussion in the context

of density forecasting.

Table 3 reports the p-values for the tests of correct unconditional coverage (UC), indepen-

dence (IND) and conditional coverage (CC) for each variable, for intervals of three nominal

sizes (50%, 75% and 90%). The table assumes the goal is to predict the first-release values.

The penultimate row of the table reports the number of variables for which the null of the

corresponding test is rejected (when the test is conducted at the 5% level). The EOS intervals

are rejected for more variables than the RTV intervals, and the rejections are mainly of correct

unconditional coverage (or ‘bias’), rather than of the test for independence. This indicates

that many of the differences between the nominal and actual coverage rates recorded in table

2 for the EOS intervals are statistically significant. When we used adapted-RTV to predict the

third-estimates, there was little to choose between RTV and EOS in terms of rejection rates

across the set of 25 variables (see last row of table).

Interval coverage rates may also differ because the interval is located about an inaccurate

point forecast, and not just because of the scale of the predictive distribution underlying the

interval. However, not withstanding the superiority of RTV-estimation in principle for first-

moment prediction (see Koenig et al. (2003) and Clements and Galvão (2013b)), for our setup

we find little to choose between the two for the majority of variables, when the point forecasts
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of the first-release values are evaluated by RMSE: see table 4.

Table 4 shows that RTV improves accuracy by 5% on RMSE for forecasting output growth.

But with one or two exceptions, this is at the top end of the gains to RTV, and a number of

the entries exceed one, suggesting EOS is more accurate for those variables. This suggests that

the RTV-intervals chiefly benefit from more accurate estimates of scale rather than location.

The general point is that RTV estimation in practical forecasting may matter more for second-

moment type forecasts (such as prediction intervals) than for point forecasting.

This last point is supported by the results in table 4 for bivariate ADL (autoregressive-

distributed lag) models, where again the aim is to predict the first release. For each of the 25

variables we generate EOS and RTV point forecasts for the 24 possible bivariate ADL models,

where we include 2 lags of the dependent variable, and of the explanatory variable. This allow

us to assess the relative point forecasting performance of RTV compared to EOS for models

with explanatory variables which are subject to revision. The results for the ADL models are

no more favourable for RTV than the results for AR models. We present the median, mean,

minimum and maximum of the ratios across the 24 ADL models for each variable. There is an

ADL model (i.e., an explanatory variable) for which RTV is 10% more accurate than EOS for

forecasting output growth. But equally there is a variable for which EOS is 9% more accurate

for forecasting output growth, and this pattern holds across the majority of variables.

In summary, the empirical estimates of coverage rates are generally in line with the analysis

in section 4, and the value of RTV is largely attributable to more accurate estimates of the scale

of the predictive distribution, rather than the location (that is, than of the point prediction).

7 Simulation study

We established in section 4 that BJ intervals based on RTV-estimation would be correctly-sized

in the presence of data revisions, and that intervals based on EOS-estimation of the model

would likely have a coverage in excess of the nominal when data revisions are news, but less

than the nominal when data revisions are noise. These statements hold ‘in population’, that

is, when we ignore parameter estimation uncertainty, and when the aim is to predict the first-

release values. Even in the absence of data revisions, it is well known that BJ-intervals can
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be adversely affected by parameter estimation uncertainty when the sample size is small. In

addition, there will be uncertainty about the model order. Having to select appropriate model

orders may affect the relative merits of RTV and EOS. Model selection issues are especially

pertinent in our context because the optimal model order for RTV-estimation may differ from

that using EOS-estimation. To illustrate with a simple case, consider the example in section 4,

where the true values follow a zero-mean AR(1) and there is a single noise revision. Hence the

data generating process is given by:

yt = αyt−1 + ηt (21)

and the estimates of yt are given by:

yt+1t = yt + εt

yt+nt = yt
(22)

for n = 2, 3, . . .. Let the population first-order RTV-regression be:

yt+1t = βytt−1 + et,RTV . (23)

where from (15) we know that β 6= α when E
(
ε2t
)
6= 0 (i.e., β 6= α when there are noise

revisions). Substituting for yt+1t and ytt−1 from (22) into (23) yields et,RTV = yt − βyt−1 +

εt − βεt−1. Then it follows immediately that the first-order model is dynamically-mis-specified

because the second ‘lag’ytt−2 (here equal to yt−2) is correlated with the error term et,RTV :

Cov (et,RTV , yt−2) = Cov (yt − βyt−1, yt−2) + Cov (εt − βεt−1, yt−2) .

The second covariance on the RHS is zero, and the first is only zero when β = α, in which case

yt − βyt−1 = ηt.

For these reasons we investigate the small-sample properties of the procedures by simula-

tion, allowing that the appropriate model orders need to be selected by an information criterion,

such as BIC. Of interest is whether RTV-estimation provides accurate intervals in these cir-

cumstances.
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Simulating data with revisions requires a complete specification of the data revisions process.

This requires giving values to a relatively large number of parameters, and the concomitant

concern that the results of the simulation study may be specific to the range of values considered.

In order to obtain sensible values for the data generating process, we use the model estimated

by Jacobs and van Norden (2011) for US real output growth as our base case. They allow for

data revisions to be news or noise, with and without ‘spillovers’. We also experiment with a

variant in which the standard deviation of the underlying shock is divided by 4, but the standard

deviations of the news and noise disturbances (and all the other parameters) are left unaltered,

to gauge the impact of data revisions being more prominent (than they are for real output,

as estimated by Jacobs and van Norden (2011)). To save space, we do not repeat the details

of their model, except to note that there are four vintage estimates of each time period, and

the final is not assumed to reveal the truth (i.e., yt+4t 6= yt). The estimated parameter values

that we use are taken from their Table 1 (p.107). We simulate 25, 000 replications of length

T + 1, after discarding initial observations to remove any dependence on initial conditions, and

on each sample we estimate the AR model by EOS and RTV on the first T observations, and

calculate a BJ prediction interval for the first estimate of the T + 1 observation (i.e., yT+2T+1).

The results are recorded in table 5. For the Jacobs and van Norden (2011) data generating

process (top half of table) the RTV intervals are under-sized at small T but approximately

correctly-sized at larger T . The coverage rates are similar (for a given T ) whether revisions

are news of noise, and irrespective of whether there are spillovers: RTV-intervals are largely

immune to the effects of data revisions. This is underlined by comparing these estimated

coverage rates with those when there are no revisions (recorded at the foot of the table): the

two sets are virtually identical. It is well known in the literature that neglecting the uncertainty

inherent in the estimated model parameters will lead to under-sized intervals, and this effect is

obviously more pronounced at small T . By contrast, EOS-estimation is not a reliable method

of generating prediction intervals, giving rise to intervals which are under-sized or over-sized,

depending on T , when revisions are news. When revisions are more prominent (second half

of table), the performance of the EOS intervals worsens, and the EOS intervals are clearly

under-sized when there is noise. Whereas the performance of the RTV intervals is virtually

unaffected. There is little appreciable effect from allowing spillovers.
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Table 6 presents Monte Carlo estimates of coverage rates for forecasting the revised data

(here, the fourth estimate). We report results for experiments matching the second half of table

5 (i.e., the more prominent revisions), as well as when the autoregressive parameters are larger

(at 0.90 and 0.05), in the second half of the table. The table gives the results of using RTV,

EOS and adapted RTV. As expected, the costs to using EOS in terms of biased coverage rates

are reduced relative to forecasting early-release data. In the top half of the table, for example,

the large-sample coverage rates are correct, as are those of adapted RTV (as expected). The

intervals for RTV tuned to first-release forecasting are not correct, even in large samples. The

small-sample performance of the adapted RTV intervals is adversely affected by the loss of

observations. The second half of the table indicates that when the process is highly persistent

the EOS intervals may be incorrectly-sized even in large samples, whereas the adapted RTV

estimates remain correctly-sized .

Table 7 records the rejection frequencies of the tests for unconditional coverage, indepen-

dence and conditional coverages, for forecasting the first-release data. Although we include the

test for independence (and correct conditional coverage), in the absence of unmodelled time-

varying heteroscedasticity we would not expect this test to deviate much from its nominal size,

and that transpires to be the case. The rejection frequencies are based on generated sequences

of 100 prediction intervals and actuals. The initial sample size is recorded in the table, and the

model is re-estimated (by EOS or RTV) on an expanding window of data prior to calculating

the interval. For the resulting vector of hits and misses, we calculate the three tests. The table

records the rejection frequencies across 10,000 replications of this procedure. For the RTV

intervals, there are some minor size distortions at the smaller sample sizes, but otherwise the

tests are correctly sized, while the EOS intervals are clearly inadequate, and this is flagged by

the tests of coverage. For the selected Monte Carlo data-generation process parameter values,

the rejections are greater for noise revisions, and for the 75% and 90% nominal intervals are in

excess of 50%. We conclude that prediction intervals from RTV-estimation with BIC model-

order specification generates intervals with desirable properties, whilst the traditional approach

(EOS-estimation) does not.
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8 Conclusions

We have shown that assessments of future macroeconomic uncertainty based on the in-sample

fit of a model are likely to be misleading when the variable being modelled is subject to revision.

This is particularly true when the aim is to predict an early-vintage estimate of a future obser-

vation. Then the data on which the model is estimated will be for the most part fully-revised

or mature data, whereas the out-of-sample value is a first-release or only lightly-revised data

point. In the context of first-moment prediction Kishor and Koenig (2012) referred to esti-

mating the model on fully-revised data, and conditioning the forecast on only lightly-revised

data, as mixing ‘apples and oranges’. In the context of second-moment prediction the mismatch

results instead from supposing the goodness of fit of the model on the fully-revised data (i.e.,

the in-sample period) is an accurate representation of the out-of-sample fit.

For forecasting revised or mature values of future observations we show that these concerns

are alleviated.

We have shown that a simple solution is to use real-time-vintage (RTV) data. This was pro-

posed by Koenig et al. (2003) in the context of first-moment prediction. Based on the evidence

for the 25 macro variables we consider in this paper, RTV-estimation is more beneficial for

second-moment forecasting. Its validity in population (abstracting from parameter estimation

uncertainty) is easily established. Its good forecast performance has been demonstrated, and

is supported by a simulation study.

We have considered autoregressive models in this paper, but the logic of the arguments

suggests that the findings carry over immediately to models with explanatory variables, so the

problems with using EOS, and the advantages of RTV, are potentially more generally applica-

ble. For example, there has been much interest in measuring macro-uncertainty in the recent

literature, driven in large part by the belief that time-varying uncertainty may play an impor-

tant role in business cycle fluctuations (see, e.g., Bachmann, Elstner and Sims (2013)). Some

of the approaches to measuring macro-uncertainty use ‘data-rich’modelling environments, and

are pseudo real-time, perhaps because of the diffi culties of collecting and managing different

data vintages at each point in time. Two recent closely-related contributions are Jurado, Lud-

vigson and Ng (2015) and Henzel and Rengel (2013). As pseudo-real time exercises, the effects

of data revisions are side-stepped. However, the measures of macro uncertainty are derived
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from the individual variables’forecast errors, rather than the in-sample fits of the models, and

so would be immune to the distorting effects described in this paper if similar exercises were

carried out in real time. For example, Jurado et al. (2015) calculate forecast errors for each of

a large number of variables using a factor model, and then fit a stochastic volatility model to

the forecast errors to obtain individual-variable volatility forecasts, which are then aggregated.

Other approaches which use instead the in-sample fit of the model - as in the standard approach

to calculating prediction intervals illustrated in this paper - are likely to be misleading in the

presence of data revisions.
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Table 1: Data Description

Mnemonic Description
routputq Real GNP/GDP
rconq Real Personal Consumption Expenditures Total
rconndq Real Personal Consumption Expenditures: Nondurable Goods
rcondq Real Personal Consumption Expenditures: Durable Goods
rinvbfq Real Gross Private Domestic Investment: Non-residential
rinvresq Real Gross Private Domestic Investment: Residential
rexq Real Exports of Goods and Services
rimpq Real Exports of Goods and Services
rgq Real Government Consumption and Gross Investment: Total
ruc Unemployment Rate
pq Price Index for GNP/GDP
pconq Price Index for Personal Consumption Expenditures
pimpq Price Index for Imports of Goods and Services
noutputq Nominal GNP/GDP
nconq Nominal Personal Consumption Expenditures
wsdq Wage and Salary Disbursements
oliq Other Labor Income
propiq Proprietors’Income
divq Dividends
pintiq Personal Interest Income
tranrq Transfer Payments
sscontrq Personal Contributions for Social Insurance
npiq Nominal Personal Income
ptaxq Personal Tax and Nontax Payments
ndpiq Nominal Disposable Personal Income

Source: The Real-Time Data Set for Macroeconomists (RTDSM),
http://www.philadelphiafed.org/research-and-data/real-time-center/real-time-data/, see
Croushore and Stark (2001).
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Table 2: RTV and EOS Box-Jenkins Prediction Intervals Coverage Rates for RTV and EOS

Ratio RTV t- stat t- stat 50% interval 75% interval 90% interval
to EOS sd. for ‘news’ for ‘noise’ RTV EOS RTV EOS RTV EOS

routputq 0.87 2.19 -4.23 0.50 0.52 0.72 0.78 0.86 0.93
rconq 1.14 6.29 -0.16 0.52 0.48 0.74 0.66 0.84 0.88
rconndq 1.27 9.46 -0.13 0.48 0.40 0.72 0.60 0.86 0.79
rcondq 1.07 6.44 1.52 0.52 0.45 0.69 0.62 0.83 0.74
rinvbfq 1.18 2.11 -4.53 0.55 0.48 0.76 0.64 0.90 0.86
rinvresq 1.14 2.17 -3.15 0.52 0.43 0.71 0.66 0.84 0.78
rexq 1.04 3.84 -3.32 0.52 0.36 0.72 0.67 0.86 0.84
rimpq 1.13 5.72 -3.20 0.43 0.38 0.62 0.60 0.84 0.72
rgq 1.12 7.50 -1.74 0.66 0.59 0.81 0.78 0.91 0.91
ruc 1.22 0.49 -0.12 0.50 0.41 0.69 0.60 0.79 0.71
pq 1.17 2.60 -1.51 0.52 0.41 0.72 0.66 0.90 0.79
pconq 1.18 3.79 0.87 0.45 0.40 0.67 0.59 0.83 0.79
pimpq 1.10 3.23 -2.68 0.43 0.41 0.78 0.71 0.86 0.81
noutputq 0.96 0.76 -5.43 0.55 0.57 0.76 0.74 0.90 0.91
nconq 1.13 4.91 -0.67 0.62 0.57 0.86 0.74 0.91 0.88
wsdq 0.46 1.29 -10.13 0.64 0.81 0.81 0.91 0.90 0.98
oliq 0.76 1.63 -12.21 0.62 0.71 0.83 0.88 0.88 0.95
propiq 1.13 4.28 -5.74 0.62 0.69 0.86 0.83 0.95 0.90
divq 0.69 1.76 -7.44 0.76 0.86 0.81 0.90 0.88 0.93
pintiq 0.62 0.78 -9.13 0.47 0.66 0.64 0.81 0.78 0.93
tranrq 0.86 1.31 -2.17 0.59 0.55 0.76 0.79 0.83 0.86
sscontrq 1.08 1.51 -1.72 0.60 0.62 0.74 0.79 0.86 0.84
npiq 0.69 0.63 -7.81 0.59 0.74 0.78 0.84 0.86 0.91
ptaxq 0.78 -0.84 -5.59 0.59 0.71 0.83 0.84 0.86 0.88
ndpiq 0.83 1.37 -5.97 0.59 0.67 0.83 0.88 0.90 0.91

The second column reports the ratio of the estimated in-sample standard errors for RTV to
EOS. (The EOS standard deviation is the average of the standard deviations calculated for
each of the 58 rolling window estimation samples. The RTV sd. is calculated similarly). The
third and fourth columns record the t-statistics for tests that the 1st-estimate to 15th-estimate
revisions are news and noise, respectively. These tests are run once for each variable and relate
to observation periods 1970:Q2 to 2007:Q2. The remaining columns record coverage rates for
nominal coverages of 50%, 75% and 90%.
For both AR and EOS the model is an AR(2), estimated on forecasts (vintage) origins 1996:Q2
to 2011:Q1, using a rolling window of observations (and an initial window estimated on post
1984 observations). We omit the 1999:Q4 and 2009:Q3 vintages which contain missing values
for many of the series.
For the Bureau of National Accounts variables the RTDSM contains missing values for the
1996:Q1 estimates of 1995:Q4. These do not affect the EOS forecasts, because the first forecast
origin is 1996:Q2, but these missing values do affect all RTV forecasts. We have simply set the
values for 1995:Q4 to the 1995:Q3 values in the same (1996:Q1) vintage.
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Table 4: RTV and EOS forecasts with AR models and ADL

RMSFE Ratio of RMSFE of RTV to EOS

AR AR ADLmed ADLmea ADLmin ADLmax
routputq 0.53 0.95 0.98 0.98 0.90 1.09
rconq 0.52 1.07 1.08 1.07 0.97 1.14
rconndq 0.85 1.03 1.03 1.04 0.99 1.14
rcondq 2.90 1 1.01 1.01 0.97 1.07
rinvbfq 2.49 1 1.02 1.03 0.96 1.11
rinvresq 3.30 0.95 0.96 0.97 0.93 1.11
rexq 2.48 0.98 0.98 0.99 0.94 1.10
rimpq 2.56 1.01 1.03 1.03 0.94 1.12
rgq 0.75 1.02 1.05 1.08 1 1.63
ruc 0.29 1.03 1.04 1.05 1 1.12
pq 0.25 0.99 1 1.02 0.92 1.40
pconq 0.44 1 1 1.01 0.97 1.09
pimpq 2.51 1.03 1.04 1.05 1 1.14
noutputq 0.55 0.96 0.98 0.99 0.93 1.16
nconq 0.69 0.97 1 1 0.96 1.07
wsdq 0.57 0.78 0.78 0.78 0.62 0.92
oliq 0.50 0.98 0.96 0.96 0.85 1.16
propiq 1.22 1.13 1.14 1.17 1.07 1.77
divq 7.09 1.32 1.36 1.36 1.25 1.46
pintiq 1.29 1 0.96 0.95 0.82 1.11
tranrq 1.66 0.98 0.98 0.99 0.92 1.06
sscontrq 1.56 1 1.01 1.01 0.96 1.06
npiq 0.54 0.99 1 1 0.81 1.10
ptaxq 4.94 1.03 1.04 1.04 0.95 1.15
ndpiq 0.81 1.09 1.09 1.09 0.96 1.31

Notes. The table reports the RMSEs for a rolling forecasting scheme, with initial window
beginning in 1984:Q1. Out-of-sample forecast period is 1996:Q2 to 2011:Q1. The actual values
used to calculate forecast errors are first-release values.
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Table 5: Monte Carlo of small-sample coverage rates of EOS and RTV intervals

50% 75% 90%
EOS RTV EOS RTV EOS RTV

Jacobs and van Norden (2011) parameter values
A. News, no spillovers

15 0.45 0.43 0.68 0.66 0.83 0.81
25 0.49 0.47 0.73 0.71 0.88 0.86
50 0.51 0.48 0.76 0.73 0.91 0.88
200 0.53 0.50 0.78 0.75 0.92 0.90

B. Noise, no spillovers
15 0.43 0.43 0.65 0.66 0.81 0.81
25 0.46 0.46 0.70 0.70 0.85 0.86
50 0.47 0.48 0.72 0.73 0.88 0.88
200 0.49 0.50 0.74 0.75 0.89 0.90

C. News & spillovers
15 0.46 0.43 0.70 0.66 0.84 0.81
25 0.51 0.47 0.75 0.71 0.89 0.86
50 0.53 0.49 0.78 0.73 0.92 0.88
200 0.54 0.50 0.79 0.75 0.93 0.90

D. Noise & spillovers
15 0.43 0.43 0.65 0.66 0.81 0.81
25 0.45 0.46 0.70 0.70 0.85 0.86
50 0.47 0.48 0.72 0.73 0.87 0.88
200 0.49 0.50 0.74 0.75 0.89 0.90

More prominent data revisions
A. News, no spillovers

15 0.46 0.42 0.69 0.64 0.84 0.79
25 0.52 0.47 0.76 0.70 0.90 0.86
50 0.54 0.48 0.79 0.73 0.92 0.88
200 0.56 0.50 0.80 0.75 0.94 0.89

B. Noise, no spillovers
15 0.38 0.43 0.59 0.65 0.75 0.81
25 0.40 0.47 0.63 0.71 0.79 0.86
50 0.41 0.48 0.65 0.73 0.81 0.89
200 0.43 0.50 0.66 0.75 0.82 0.89

C. News & spillovers
15 0.48 0.42 0.71 0.64 0.85 0.80
25 0.53 0.47 0.77 0.70 0.91 0.86
50 0.55 0.48 0.80 0.73 0.93 0.88
200 0.57 0.50 0.82 0.74 0.94 0.89

D. Noise & spillovers
15 0.37 0.43 0.58 0.65 0.74 0.81
25 0.40 0.47 0.62 0.71 0.79 0.86
50 0.41 0.48 0.64 0.73 0.81 0.89
200 0.42 0.50 0.65 0.75 0.82 0.89

‘More prominent data revisions’refers to the case where the standard deviation of the distur-
bance term in the data generating process is multiplied by 0.25, relative to the Jacobs and van
Norden (2011) estimated value.
When there are no revisions, the coverage rates are: 0.43, 0.46, 0.48, 0.50 (for a nominal 50%,
for estimation samples 15 to 200); 0.66, 0.70, 0.73, 0.75 (for a nominal 75%); and 0.82, 0.86,
0.88, 0.89 (for a nominal 90%).
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Table 6: Monte Carlo of small-sample coverage rates of RTV, EOS and adapted RTV intervals
for revised values

50% 75% 90%
RTV EOS RTV(n=3) RTV EOS RTV(n=3) RTV EOS RTV(n=3)

More prominent data revisions
A. News, no spillovers

15 0.39 0.43 0.34 0.60 0.66 0.52 0.76 0.81 0.66
25 0.42 0.47 0.44 0.65 0.70 0.67 0.81 0.86 0.83
50 0.43 0.48 0.47 0.67 0.73 0.72 0.83 0.88 0.88
200 0.45 0.50 0.50 0.68 0.75 0.74 0.85 0.90 0.89

B. Noise, no spillovers
15 0.49 0.43 0.33 0.72 0.65 0.52 0.86 0.81 0.66
25 0.53 0.46 0.44 0.77 0.70 0.67 0.91 0.86 0.83
50 0.55 0.47 0.48 0.80 0.72 0.72 0.93 0.88 0.88
200 0.57 0.49 0.50 0.82 0.74 0.74 0.94 0.89 0.90

C. News & spillovers
15 0.38 0.44 0.34 0.59 0.66 0.53 0.74 0.81 0.66
25 0.41 0.47 0.44 0.63 0.70 0.67 0.80 0.86 0.83
50 0.42 0.48 0.47 0.65 0.73 0.72 0.82 0.88 0.88
200 0.43 0.50 0.50 0.67 0.75 0.74 0.83 0.90 0.89

D. Noise & spillovers
15 0.49 0.43 0.34 0.72 0.65 0.52 0.86 0.81 0.66
25 0.53 0.46 0.44 0.77 0.70 0.67 0.91 0.86 0.83
50 0.56 0.47 0.48 0.81 0.72 0.72 0.93 0.88 0.88
200 0.57 0.49 0.50 0.82 0.74 0.74 0.95 0.89 0.90

More prominent data revisions And Greater Persistence
A. News, no spillovers

15 0.40 0.41 0.28 0.62 0.62 0.44 0.78 0.78 0.57
25 0.45 0.45 0.40 0.69 0.69 0.62 0.84 0.84 0.78
50 0.47 0.47 0.47 0.72 0.72 0.71 0.87 0.88 0.86
200 0.49 0.50 0.50 0.74 0.74 0.75 0.89 0.89 0.90

B. Noise, no spillovers
15 0.44 0.39 0.26 0.67 0.60 0.41 0.82 0.76 0.55
25 0.48 0.42 0.37 0.73 0.65 0.59 0.88 0.82 0.75
50 0.52 0.44 0.44 0.77 0.68 0.68 0.91 0.84 0.84
200 0.56 0.46 0.49 0.81 0.70 0.74 0.94 0.87 0.89

C. News & spillovers
15 0.40 0.41 0.28 0.62 0.62 0.44 0.78 0.78 0.58
25 0.44 0.45 0.40 0.68 0.69 0.62 0.84 0.84 0.78
50 0.47 0.47 0.47 0.71 0.72 0.71 0.87 0.88 0.86
200 0.49 0.50 0.50 0.74 0.75 0.75 0.89 0.90 0.90

D. Noise & spillovers
15 0.44 0.39 0.26 0.67 0.60 0.42 0.82 0.77 0.55
25 0.48 0.42 0.37 0.73 0.65 0.59 0.88 0.82 0.75
50 0.53 0.44 0.44 0.78 0.68 0.68 0.92 0.84 0.84
200 0.56 0.46 0.49 0.82 0.71 0.74 0.94 0.87 0.89

The first half of the table ‘More prominent data revisions’refers to the case where the standard
deviation of the disturbance term in the data generating process is multiplied by 0.25, relative
to the Jacobs and van Norden (2011) estimated value. In the second half of the table in addition
there is ‘Greater persistence’: the autoregressive parameters of the true process are set to 0.90
and 0.05.
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