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A Survey of Trefftz Methods for the Helmholtz
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Abstract Trefftz methods are finite element-type schemes whosenédstial func-
tions are (locally) solutions of the targeted differengguation. They are particu-
larly popular for time-harmonic wave problems, as thealtspaces contain oscillat-
ing basis functions and may achieve better approximatiopegaties than classical
piecewise-polynomial spaces.

We review the construction and properties of several Tzefitiational formula-
tions developed for the Helmholtz equation, including lesagiares, discontinuous
Galerkin, ultra weak variational formulation, variatidttzeory of complex rays and
wave based methods. The most common discrete Trefftz spaeddor this equa-
tion employ generalised harmonic polynomials (circulat spherical waves), plane
and evanescent waves, fundamental solutions and mublipsleasis functions; we
describe theoretical and computational aspects of thesmspfocusing in particu-
lar on their approximation properties.

One of the most promising, but not yet well developed, festaf Trefftz meth-
ods is the use of adaptivity in the choice of the propagatioections for the basis
functions. The main difficulties encountered in the implatagon are the assem-
bly and the ill-conditioning of linear systems, we briefly'gely some strategies that
have been proposed to cope with these problems.
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1 Introduction

Given a linear PDE, a Trefftz method is a volume-orientedmissation scheme, for
which all trial and test functions, when restricted to argneént of a given mesh, are
solutions of the PDE under consideration. The name comestie work [112] of
E. Trefftz, dating back to 1926, where this idea was appbati¢ Laplace equation.
Since then, several versions of Trefftz methods have bempoged and applied to a
range of PDEs by different groups of mathematicians, emgs@nd computational
scientists, often unaware of each other. Typical PDEs addokardinear, with
piecewise-constant coefficiemtsdhomogeneouyse. with vanishing volume source
term.

Trefftz methods are related to both finite element (FEM) andridary element
methods (BEM). With the former they have in common that theyvijgle a dis-
cretisation in the volume. With the latter they share sonsatteristics such as the
need of integration on lower-dimensional manifolds onlgntpared to conventional
FEMs, Trefftz methods have attracted attention mainlyviar teasons(i) they may
need much fewer degrees of freedom than standard schenwsdveathe same ac-
curacy, andii) they incorporate some properties of the problem’s solutoich as
oscillatory character, wavelength, maximum principleyidary layers) in the trial
spaces, and thus also in the discrete solution. In additiompared to BEMs, an
advantage of Trefftz schemes is that they do not requirethkiation of singular
integrals.

Comparing with finite and boundary elements, in 1997 Zienlde [121] stated:
“...it seems without doubt that in the future Trefftz typenaénts will frequently
be encountered in general finite element codes.... It is thiea's belief that the
simple Trefftz approach will in the future displace muchhef boundary type anal-
ysis with singular kernels ¥While this prediction has not yet come true, in the last
years more and more work has been devoted to the formulétieanalysis and the
validation of these methods and substantial progress teasdmomplished.

In this chapter we survey Trefftz finite element methods ferhomogeneous
Helmholtz equatiofi—Au — k?u = 0), which models acoustic wave propagation in
time-harmonic regime. For medium and high frequenciesfarevalues ofkL in a
range of 18 to 10*, wherek > 0 is the wavenumber, arida characteristic length of
the region of interest, the numerical solution of the Helitthequation in 2D and
3D is particularly challenging. A main reason is that Heltthsolutions oscillate
with a wavelength proportional to the inversekoHence, piecewise polynomials do
not provide efficient approximation. Trefftz schemes angstharticularly relevant
as they can improve on the point where (polynomial) FEMs faé approximation
properties of the basis functions. Moreover, some Trefitthods can remedy other
shortcomings that often haunt discretisations of timevtwanic problems, such as
the lack of coercivity and the presence of minimal resolutionditions to guarantee
unigue solvability. Theorefin 2 in this chapter is an examBklier overviews of
Trefftz schemes for the Helmholtz equation, together witimerous references,
can be found in[[98],[[85, Ch. 1] and [[76, Ch. 3]. Surveys offfizeschemes for
other equations are in [67,/75,/99,121].
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For most of the Trefftz spaces used, continuity acrossfartes separating mesh
elements cannot be enforced strongly, as Trefftz functamesnot as “flexible” as
piecewise polynomials. As a consequence, the standardhdéiimvariational for-
mulation posed in subspaces of the Sobolev sptds not applicable and discreti-
sations must be used that can accommodate discontinualiBitictions. A wide
array of different variational formulations has been pregmband irfi2 we attempt
a classification and a comparison of the best known. We ifyethtiee main classes
of formulations:(i) least squaregLS, §2.1), where squares of suitable norms of
residuals are minimisedji) discontinuous GalerkinDG, §2.2), whose formula-
tions arise from local integration by parts and which may aymot use Lagrange
multipliers on mesh interface€iji) weighted residual§2.3), which are defined by
testing residuals against suitable traces of test funstidhe methods discussed
include: the Trefftz-discontinuous Galerkin (TDG), théralweak variational for-
mulation (UWVF), the discontinuous enrichment method (DEMe variational
theory of complex rays (VTCR) and the wave based method (WBMyeover, in
the spirit of the symposium that led up to the present volumguild bridges” with
a wider portion of the literature and of the computationaEPE&mmunity, in§2.4
we describe some older Trefftz schemes defined on a singieeateand ing2.3
we consider some methods that are not Trefftz but use dswijldasis functions
that are “approximately Trefftz”, such as the partition oity method (PUM). To
easily compare them, we write all formulations for the sarmbiR-Dirichlet model
boundary value problem (sé&.1).

In 2 we completely gloss over the choicelisis functions and discrete spaces
employed, whose description is postponefoThis is because, apart from few ex-
ceptions such as unbounded elements, any Trefftz disqgate £an be employed in
any Trefftz variational formulation. We believe that segtarg the discussion of the
two main components in the definition of a Trefftz method, variational formu-
lations and discrete spaces, will make the presentati@raleThe most common
basis functions for Trefftz methods are plane wawes €% for a fixed unit vector
d) and generalised harmonic polynomials (i.e. circularésjgal waves, products of
circular/spherical harmonics and Bessel functions), fhiclv quite a complete ap-
proximation theory exists, se8.7£3.2. Other basis functions include fundamental
solutions, multipoles, evanescent waves and corner waViesiote that, since the
Helmholtz operator is the sum of a second- and a zero-ordwar te non-vanishing
piecewise-polynomial Trefftz function is possible.

In this chapter we state a few theorems, none of them is gntiesv. LemmdlL
exemplifies the technique df [89] to control thé norm of Trefftz functions with
mesh-dependent norms containing interface jumps. If dtZmefethod is well-posed
in a suitable skeleton norm, this allows to control the eimahe volume; we do this
for the LS method in Theorefd 1 and for the TDG method (wellggbby Theo-
rem[2) in Corollan[dl. This can be combined with the approxiararesults for
circular/spherical and plane waves§8.1-43.2. In brief: we provide the tools to
derive stability and orders df-convergence in the volume for all Trefftz methods
that are well-posed in suitable skeleton norms.
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Trefftz methods suffer from two main problenilé:conditioning due to the poor
linear independence of the basis functions, and the needufoerical quadrature

for oscillating integrandsOn the other hand, since the PDE is solved exactly in each

element, only low-dimensional integrals on the mesh s&alated to be evaluated,
leading to massively reduced computational cost for therabdy of the linear sys-
tems. Moreover, if plane wave bases are used, on any poly/gotyedral mesh
the integrals can be computed analytically in a cheap wa§dliwe briefly review
strategies developed to deal with the computation of matitxies and to cope with
ill-conditioning.

Some Trefftz methods also provide an attractive frameworkimplementing
non-standard adaptive policies, like directional adafytiollowing dominant wave
directions. This is made possible, because plane waveTngféz functions natu-
rally encode a direction of propagation. More details avegin §4.2.

As mentioned, in this chapter we only discuss the Helmhajtagon, i.e. acous-
tic problems, and constant material parameters. The désdmefftz spaces used
for the Helmholtz equation with variable coefficients ariefly addressed i§3.4.
Other time-harmonic wave problems that have been tackldgdmefftz methods in-
clude electromagnetism (Maxwell equations)/[18, 85],dinged Euler equation and
general hyperbolic systenis |37], linear elasticity (Nagiguation)[[76], (fourth or-
der) Kirchhoff-Love plates [2/7, 70,116, 100], Koiter’s laneshell theory([100], poro-
elasticity [27,85.4], coupled vibro-acoustic problems [27]. A list of aggliions
and references can be found in][35.1] (with a focus in vibrational mechanics)
and in [76[ 85]. A related application is tackled by timethod of particular solu-
tions (MPS) of [16/36], which uses Helmholtz solutions to appnaaie Laplace
eigenvalue problems; in this setting the wavenumber is gfatie unknowns. For
recent work on space—time Trefftz methods for wave propagat time-domain
see[[69] and references therein.

Several comparisons of the numerical performances ofrdiffeTrefftz schemes
for simple model problems have been published, é.g. [7] (PD¥M, gener-
alised FEM),[[40] (LS, UWVF),[[60] (PUM, UWVF)[39] (DG, UWW, LS), [115]
(DEM, UWVF, PUM), [59] (LS, UWVF, VTCR), where we have inclad the PUM
even if strictly speaking it is not a Trefftz method. Howevieom these results it is
difficult to conclude that any formulation is clearly predbte from a computational
point of view. A general conclusion might be that, in ordeatthieve the best ac-
curacy and conditioning, the choice of the approximaticecgpmatters more than
that of the variational formulation. We reiterate that #¢néso choices are mutu-
ally independent: any Trefftz discrete space might be usedy Trefftz variational
formulation. We make some further concluding remarkg&n

1.1 Mode boundary value problem

We rely on a simple model boundary value problem (BVP) fortleémholtz equa-
tion that will be used to describe and compare the differeafffzc methods. Let
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Q c R", n= 2,3, be a bounded, Lipschitz, connected domain, Wi€h= p U TR,
wherelp andlr are disjoint components &fQ; 'r # 0 while 'p might be empty.
Denote byn the outward-pointing unit normal vector field o2. We consider the
homogeneous Robin-Dirichlet BVP

—Au—ku=0 inQ,
u=gp onlp, 1)

Ju .
%Jrlkﬁu_gR onlg.

Heregp andgr are the boundary data, i is the imaginary uki R (the wavenum-
ber) and$ (the impedance parameter) are positive constants. We agband, gp
andgr are such that € H3/25(Q), for somes > 0. In typical sound-soft acous-
tic scattering problemsp represents the boundary of the scatterer, fgnstands
for an artificial truncation of the unbounded region whereve@gpropagate; see
e.g. [63,82].

Simple generalisations of the BVB (1) that can be tackledr§ffE methods are:

e Neumann boundary conditiodsi/dn = gy on/p;

e discontinuous and piecewise-constant wavenurkper

e piecewise constant and discontinuous tensor coeffiéentthe more general
Helmholtz equation-0- (AQu) — k?u = 0, e.g.[61] and[18, Ch. I.5];

e spatially varying impedanceQ & € L*(Ir);

e absorbing medi& € C;

¢ inhomogeneous Helmholtz equatiemu — k?u = f, where the source terrh
might be either localised [3%5], [24/57/58], or not[1§2.2];

e scattering in unbounded domains;

e scattering by periodic diffraction gratings in |21, 119];

e scattering by screens (i.e. manifolds with boundary, legdd non-Lipschitz
computational domains) in [120].

The presence of smoothly varying coefficients is more chglteg for Trefftz meth-
ods, as in general no Trefftz functions in analytical formavailable; this extension
is briefly addressed ifi3.4.

1.2 Notation

We introduce a finite element partitio?, = {K} of Q, not necessarily conform-

ing. We writeng for the outward-pointing unit normal vector @K, andh for

the mesh width of%,, i.e. h := maxc 5 hk, with h¢ := diamK. We denote by

Ih = Ukeg 0K and.7 = %\ 0Q the skeleton of the mesh and its inner part.
We also introduce some standard DG notation. Given two altsie, K, € %,

a piecewise-smooth functiorand vector fieldr on %, we define ordK; N oK,
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the averages: {{V}} == 3(Vik, + Vik,), {rh = 3(Tik, + Tiy)

the normal jumps: [[V][n := Vjk, Ky + Vik,Nkp, (TN = Ty - Nig + Tk, - Nk -

We denote by, the element-wise application of the gradiéhtand writed, =
n-0OpondQ anddy, = nk - Oy ondK for the normal derivatives.
Fors> 0, define the broken Sobolev spadg .%,) and theTrefftz space T.%,):

H( %) = {veL*(Q): vk € H¥(K) VK € Fh},
T(%h) = {veHY(F): —Av—-Kv=0inK anddy v € L?(dK) VK € Fp}.

The discrete Trefftz spad(.7h) is a finite-dimensional subspace™f.7,) and
can be represented ¥§(7h) = @k e 4, Vi (K), whereVy, (K) is a pk-dimensional
subspace of (%,) of functions supported iK. We use the termis-convergence to
mean the convergence of a sequence of numerical solutianaen the mests,
is refined, i.eh — 0, p-convergence to designate the convergence when the local
spaces are enriched, i.p.= minkc 5, px — », andhp-convergence to mean the
convergence for a suitable combination of the two refinersategies. We remark
that when non-polynomial spaces are used, as it is the caJedfitz methods in
frequency domain, it is not obvious how to define the “degied space, thupk
denotes the local number of degrees of freedom. Finally,emeté by R¢-}, Im{-}
and~ the real part, the imaginary part and the conjugate of a cexnlue.

We note that some of the methods$®, such as the TDG, the UWVF and the
VTCR, involve sesquilinear forms (i.e. test functions anejagated) while others,
such as the DEM and the WBM, involve bilinear forms (test tiows are not con-
jugated). Any method (if no unbounded elements are used)eamodified to either
form, even though sesquilinear forms are more amenablaldist and error anal-
ysis; for each method we follow the conventions of the refees we cite.

1.3 Estimation of the L?(Q) norm of (piecewise) Trefftz functions

Given two uniformly positive functions € L™ (% Ulp) ando € L®(Z#} UTR), we
introduce the followingskeletorseminorm (defined e.g. da%/2+t¢( %), € > 0):
M1 o = o TOIN N2 50) + 1A IMIND 2 ®)
+[|0(OnV+ k) [Pz + A V2 -
A special property of the Trefftz spadg %) is that this seminorm is actually a

norm for it, and that it controls the?(Q) norm, as it was first proved by P. Monk
and D.Q. Wang using a special duality techniqué_in [89, Th]. 3.

Lemma 1. ||-|||» o is @ normin T(.%,). Moreover, all Trefftz functionse T (.7,) N
H3/2t¢(9), € > 0, satisfy the estimate
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IVllLz(@) < ClIMITA .0,
with a constant C> 0 depending only on.,R , 0,3, Q and.%,. Setting
Ok = essinfcok\mp, 0(X), Ak = essinfcok\ kA (X) VK € k,

we can express the dependence oD@ the relevant parameters in the following
situations:

() If 0Q =R and Q is either convex or smooth and star-shaped with respect to a
ball, then

. 1k 1\\"?
< 1.
Vllz(q) < Ca diame Q%((G£k+ 52) (1 kh()) Ivl1x.0-

where G > 0 depends o#, the shape-regularity of the mesh and the shape .of
(i) Ifk > 1, Q c R? has diametediamQ = 1 and satisfies

x-n>y>0 ae.onf[rand x-n<0 a.e.onlp, €))

and each element K is star-shaped with respect to a ball atisgak hx , we have

1k 1 \\Y?
Iy < Corx( (g + 3) (002 4 25 ) ) il

where0 <t < sgp < 1/2, sp being the “elliptic regularity parameter” of[[58,
eq. (6)], and G > 0 depends only o2, &, t, and on the shape-regularity
infke 7, Pk Of the mesh.

The bound in par{i) of Lemma[l can be verified following the proof of |85,
Lemma 4.3.7], while that in paffi) requires also the stability and trace estimates
of [64, eq. (7), (20)] (see alsb [64, Lemma 4.5] and a weakemure general bound
in [53, Lemma 4.4]). Condition§13) on the shapebfre satisfied ifr is bound-
ary of a domain star-shaped with respect to a ball centr€dbad 5 is boundary

of a smaller domain (a scatterer, or a “hole” @) star-shaped with respect @
see[[5352, Fig. 2]. The value of the bounding constants arise onlynf(a) trace
estimates for mesh elements, gbjistability bounds for an inhomogeneous Helm-
holtz BVP onQ, thus more general shapes®fgive different dependencies én
(using e.g. thé-explicit H(Q) bounds in[[30, Th. 2.4][T106, Th. 1.6], and bounds
in higher-order norms as in [41, Lemma 2.12]). This resutelsvant because, for
Trefftz methods that allow a priori stability or error estites, these are typically in
a skeleton norm similar tfj| - ||| 5. Thus Lemmall can lead to error estimates in
the mesh- and parameter-independ€(f2) norm; we pursue this i§2.1, §2.2.1.
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2 Trefftz variational formulations

2.1 Least squares (LS) methods

Least squares methods are perhaps the simplest kind ofZlfeffnulations. They
allow simple error and stability analysis, are easy to imyat, lead to sign-definite
Hermitian (or symmetric) linear systems, at the price of ssitdly worse condition-
ing. A description of Trefftz LS schemes for the Helmholtziation with numerous
references is given by M. Stojek in [107]. The same methocaimedframeless
Trefftz elementm [99, §3.6] andweighted variational formulatiogWVF) in [59].
In [89], Monk and Wang proposed the following Trefftz LS medfor the BVP[(1):

find Uis = argmin J(Vhp; 9r,90), where
Vhp€Vp(Th)
. . ' 2 2 2 2
Ivigroo) = [, (A2[n[*+ 0?0 ) oS (4)
“h

+/ azyaanrikSv—gR\zdSJr/ A2|v—gp|’ds,
JIR o

where[[0V] := Opvik, — Onhvik, on 9K N Ky is the jump of the complete gradient
(whose “sign” depends on a choice of the ordering of the etesnim .%,). The
LS methods in[[107, eq. (7)] and[75, Ch. 10] differ frohd (4jpdat from the use
of different boundary conditions) in that only the normahgmonent of the jump
of the gradienf0nv]n is penalised onZ], as opposed to the entire junff,v].
Obviously, every Galerkin discretisation of the variatibproblem arising froni{4)
will give rise to a Hermitian linear system, which is a cledvantage of LS methods.
The choice of the relative weights©A, 0 € L*(%#,) between the terms inl(4)
is a crucial point for the conditioning and the accuracy ofm8thods. Different
choices have been proposed (for 2D problenss)- 1 andA =k or A =1/he
in [89, §2]; A =1 and ge = he/(pk, + Px,) in [107, §3.2]; A = 1 and )¢ =
O (max{ px,, Pk, } */?) in [75, Th. 10.3.4]. Heree = dK; N IK, denotes a mesh in-
terface he its length,pk, andpk, the dimensions of the local Trefftz spac.q,gl (K1)
andeKz(Kz) on the adjacent elemenits andKj. In 2D and 3D, [[59] suggests to

chooseo = 1 andA = k and, for BVPs with singular solutionsjr, = k%/2.

The LS method computes the elemeis in Vp(h) that minimises the error
u—u.s measured in the skeleton noanES :=J(v;0,0), thus orders of converge
in this norm follow immediately from approximation bounds the specific discrete
Trefftz space/p( %) chosen, see e.g3 below or [89]. Sincé||V||[y < ||V|| s (With
equality if J in (4) is defined with[O,v] instead of[yv]), Lemmall, following
[89, Th. 3.1], guarantees that th&(Q) norm of the error of the LS solution is
controlled by the value of the LS functional, thus convergefollows also inQ.
This is summarised in Theordm 1, $fe3 for the extension to different domains.
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Theorem 1.Let u be the solution off)) and u s € V(%) the discrete LS solution
of @). Then, for G > 0 depending only on,k ,0,3,Q and %,

lu=vslls = ot llu=vol .

lu— ULSHLZ(Q) <C vhpei\r):(%) Hu - VthLS'

IfA =k, o=1,0Q =IrandQ is either convex or smooth and star-shaped, then

. _ . -1/2 .
lu— sl 20y < Co diamQ k2 (1+ (kmin hi) )vhpel\r)pf(%) [|u—=Vapll s

where @ > 0 depends only o#, the shape of2 and the shape-regularity off,.

Thehp-convergence theory df [54] easily extends to the LS metho2D, if the LS
parameters are defined ﬁ% = kh/min{hk,,hg, } for e= dK; N Kz, /\‘Ze = kh/hg
forec dKNIp, ando? = 1/k, under the assumptions éhand on the discretisation
stipulated in[[54], then thg||, s norm of the LS error is estimated as(in [54, eq. (48)]
and theL.?(Q) norm of the same error converges to zero exponentially isgoare
root of the total number of degrees of freedom used.

In [75, Ch. 10], the Trefftz LS scheme is analysed for puradblet boundary
conditions (r = 0); the crucial parameter in the analysis is the relativaagice
betweerk? and the closest Dirichlet eigenvalue-efA. Error bounds in the broken
Sobolev normH(.%,) are derived.

In the numerical tests in [39] and [40], the LS method apptabe slightly less
accurate than the UWVF (sé€g.2.2 below) and a DG method, all employed with
the same discrete space. On the other hand, in the exami&3,ithe performance
of the LS method is comparable to that of the UWVF and conalagrbetter than
that of the VTCR.

2.1.1 The method of fundamental solutions (MFS)

A popular class of LS Trefftz methods is the method of fundatalesolutions. A
lucid introduction to the MFS for Helmholtz problems, toget with numerous ref-
erences, is in[31]. The MFS is considered a special casewte simulation tech-
niguein [92]. The characteristic features of the most common foftine MFS are:
(i) the domain is not meshedii) the N basis functions are fundamental solutions
(Hél)(k|x—yg|) in2D,¢=1...)N, WhereHél) is a Hankel function of the first
kind and order zero ang € R?\ Q, see§3.3); (iii) the minimisation of th&?(9Q)
norm of the error is substituted by the minimisation of theasgd error ovel > N
pointsx; € dQ, j=1,...,M. If M =N, the MFS is not an LS method but it simply
interpolates the boundary conditions with Trefftz funogo

The same method with plane wave bases is compared to the MESAwariant
thatis popular in acoustics is thelmholtz equation least-squar@$ELS) method,
which uses spherical-wave and multipole basis functiagestlse recent book [117]
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and references therein. LS variants of MFS relying on higitrder multipoles in
addition to simple Hankel functions have a long history ivevaimulations [9052].

The locationy, of the basis singularities are either obtained numeritcafigther
with the coefficients multiplying the basis functions usirep-linear LS solvers [31,
eg. (7)] (leading to a highly adaptive method), or can be fixguliori on a smooth
boundary inR"\ Q, e.g. using complex analysis techniques (in 2D) aslin [94rer
determined based on heuristic critefial[§8].

The MFS with fixed nodes can be interpreted as a discretisafi@ compact
transfer operator related to a single layer potential sgrtation. For this rea-
son it yields ill-conditioned linear systems; however tbiges not rule out effi-
cient computations as demonstrated and analysed in [9]rafitDi §7]. Accord-
ing to [31, p. 766], the larger the distance between the nadds$2, the more ill-
conditioned the linear system and the more accurate thé@olthough this might
seem counter-intuitive).

A strength of the MFS is its simplicity of implementation,ras mesh is needed
and all geometric information is contained in only two paiats{y,} ; c R"\ Q,
{xj}'j\":1 C 0Q. Since fundamental solutions satisfy Sommerfeld radmationdi-
tion, the MFS is often used for scattering problems in unilegrdomains.

In [9], the convergence of the MFS for Dirichlet problems ocirgular domain
is analysed in great detail, and a special design of the @upporting the funda-
mental solutions is proposed for general domains with aicaboundaries. With
this choice, extremely accurate and cheap computationsomssible.

In [10], Barnett and Betcke present a finite element scheltecthuples the LS
formulation of [107] with the MFS in 2D. They consider the #eeing by sound-soft
(non-convex) polygons; the total field is approximateddesin artificial boundary
and the scattered field outside of it. Singular Fourier—Blebasis functions de-
pending on the scatterer’s corners (§8ed) are used on all elements adjacent to
the scatterer, strongly enforcing the (homogeneous) Eletdoundary conditions;
due to this, no terms 08 Q appear in the method formulation. Exponential orders
of convergence are proved. The strong enforcement of bayiedaditions may be
substituted by an LS approach to deal with more generaldin@andary conditions,
curved boundaries and transmission problems.

2.2 Discontinuous Galerkin (DG) methods

The discontinuous Galerkin (DG) methods constitute a wildsscof numerical
schemes for the approximation of PDEs, employing discootiis test and trial
functions [6]. A great number of tools for their design, implentation and error
analysis have been devised, so they are a natural settiigdfitz methods. IN[55]
we showed that when the interior penalty (IP) method, one aétrsommon DG
schemes, is applied to the Laplace equation, the use oftZgfaces (made of
harmonic polynomials) offers better accuracy than stahdpaces also in amp-
context. Similar considerations were made: in [74] fortikeonvergence of the local
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DG (LDG) method. To our knowledge, tandardDG variational formulation (e.g.
any of those in([B]) has been proposed in the literature torelise time-harmonic
problems with Trefftz basis functions. Possible reasomgHis are that the error
analysis of standard DG schemes requires inverse estimateh are well-known
for polynomial spaces but harder in the Trefftz case (howese= [46,§3.2] for
h-explicit inverse estimates for plane waves in 2D), and thatapplication of for-
mulations designed for the Laplace equation to the Helralealse requires some
problematic minimal resolution condition to ensure unigakvability [82].

In the next subsections we outline some DG formulationgthet been designed
specifically for Trefftz discretisations; some of theseédkater been employed also
with polynomial approximating spaces, elq.l[82, 88].

A note on terminology: all Trefftz methods presented in gsvey involve the
discretisation of variational formulations based on diggwous functions, how-
ever with “DG” we denote only those methods that arrive atlo@riational for-
mulations by applying integration by parts to the PDE to berapimated. On the
contrary, least squares and weighted residual methods$ysemforce (weakly) con-
tinuity and boundary conditions, irrespectively of the siolered PDE.

2.2.1 The Trefftz-DG (TDG) method

Originally, Trefftz-discontinuous Galerkin (TDG) meth®dor plane wave DG,
PWDG, when used in combination with plane wave basis funsjiovere in-
troduced as a way of recasting the ultra weak variationahédation (UWVF)
of [18,[19] (seej2.2.2 below) in a framework that would facilitate its thetiral
analysis[[11,46]. A similar, but more general, Trefftz-D@rhework was proposed
in [37,39], arising from methods for hyperbolic equatiosse Remarkl1 below.

We first derive the TDG formulation as in [53]. We multiply thelmholtz equa-
tion (1) by a test functionr and integrate by parts twice on ed€he :

0:/(—Au—k2u)\7dv _ /(Du-ﬁ/—kzuv)dv— ' Ou-nvdS
JK K JIK
= / u(—A\_/—kz\_/)dV+/ uandeS—/ On, UvdS.
JK JIK JOoK

We then replace andv by discrete functionsinp, Vhp € Vp(Zh), the trace olu on
JK by the numerical fluXi,p, and the trace dflu by the numerical fluxkonp (both
defined below), obtaining the elemental TDG formulation:

AK G O Vi IS — /‘?Kikahp-nthpdsz 0, (5)
where the volume integral vanishes as the test funaiigre Vp(7,) C T(%) is a

Trefftz function. Variants of DG methods are distinguishmsdthe underlying nu-
merical fluxes. Here we opt for th@imal fluxes
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{Onunp)t — aik[uppn on faces in%},

ikGhp = { Onhp— (1= 8) (OnUnp—+ ikd Unpn — grN) onfacesing, (6)
Onunp— aik(upp—gp)n on faces inp,
{{unp}} — B(iK) " [Chunpn on faces in%,

Uhp= 4 Unp— & ((ikd) *Dnlnp-n+unp— (ikd) 'gr) onfacesin®z, (7)
9o on faces inp,

where the flux parameteos> 0, 3 > 0,0< 6 < 1/2, are bounded functions defined
on suitable unions of edges/faces (see also Tdble 1). Adniegall elements, we
obtain the following formulation of the TDG method:

f|nd uTDG 6 Vp(yh) St MTDG(UTDGthp) = gTDG(Vhp) vVhp E Vp(%), Whel’e
Hroe(U,V) 1= (8)

/yl ({{U}} [OrviIn — {Onu}} - [Vin + aik[u]n - [VNn — B(ik)*l[[DhU]]N[[D—m/]]N) dsS
+ ((1—5)ik§uv+(1—5)um—5anuv—5(ik§)*lanum) ds

+ I_D(—dnu\‘/+aikuv)ds,

lro6(V) ::ﬁgR((l—a)v—a(iks)*lm) ds+/r' gD(aikv—m) ds

The TDG method was introduced in the primal form described el44/46] and in
mixed form in [56], under the name pfane wave DG (PWDG) methgpfibllowing
the derivation of([6] of general DG schemes for elliptic etipras. In [46], first-
order convergence in the meshwidth was established, usihgt8 argument, for
2D Robin problems with source terfne L?(Q), plane wave discrete spaces and
quasi-uniform families of meshes. This was extended todvigihders irh in [84],
p-convergence in [52], three dimensionslinl[85], locallfirred meshes in [53], and
finally the exponential convergence in the number of degpéé®edom of itshp-
version was proved in [54]. Its dispersion analysis wasqraréd in [44, 45].

For polynomial discrete spaces, the advantages of usinfptheilation under-
lying the TDG method, compared to standard DG schemes, walgsed in([82].
In [15], the TDG formulation was utilised with (non-Trefjtzases defined from os-
cillating functions from high-frequency asymptotics méatad with polynomials;
problems with varying coefficients were also considered.

The TDG formulation[(B) can be seen as a modification of eitheiinterior
penaltymethod, or of thdocal DG (LDG) method (see e.g.[[6]): with respect to
theinterior penaltymethod, the stabilisation term multiplied ilyis added in the
TDG fluxes [T), while with respect to the LDG method, in the TB&es [6), the
consistency term is written in terms of the primal variabigJgunp}}) instead of
in terms of the auxiliary variable{{ikan,}}) and the additional stabilisation of the
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jumps of g, is removed. In[[105], the TDG and the UWVF are seen as special
instances of a family of methods arising from integratiorphyts.

The a priori error analysis of the TDG relies on Theofém 2 Wwdke.g. [53,54]),
which makes use of the following mesh- and flux-dependenirsams:

2 . -1|p3 i
IMFoe = k|82 00N [, -+ o
2 12
Tk Hazs 20nv’ +kH1 5)29%v +kHasz :
L2(MR) L2(MR) L2(p)
1o o= 1Moo + kB2 0, e JET 0
2
+kH6’2z92v L A
L2(TR) L2(Mp)
Theorem 2. The seminorm§| - |||roc and||| - |||roe+ @re norms in the Trefftz space

T(%). The TDG sesquilinear form is continuous and coercive:
| 106 (%W)| < 2/|[Vllroe+ W[ [1os, 1M {os(wV)} = [[|Vl]|7o6

for all v,w € T (%), thus there exists a unique solutiofby € Vp(.J5) to the TDG
formulation(8) and the quasi-optimality bound holds:

I||u— Urpg|||tpe < 3vhpeir:)f(% [[[u=Vhpll[rpe+-

ChoosingA2 = ak on Z! U, 02 = B/k on .Z} and 02 = min{,1— &} /2k9
on IR, the norm[() is controlled agivl[y o < |||v|||TDG for all ve T(%,). Thus,
by Lemmdl, the-2(Q) norm of the TDG error can be controlled by & |||roc
norm, and so by the discrete space approximation propeftigs result has been
stated in several slightly different forms, depending oa itbgularity of the solu-
tion u, the type of mesh used, the choice of the numerical flux paemse, 3, J;
see([85, Lemma 4.3.7], [53, Lemma 4.4] ahd|[54, Lemma 4.5ktflike a balance
between the size of the constants arising from the dualgyraent of Lemmall
and approximation errors, different flux parameters hawnlmhosen on different
meshes and aiming at different types of convergence estimsee Tablgl 1. For il-
lustration, we state the result in the case of constant fluampaters, quasi-uniform
meshes, and domains that guarantee sufficiently smoottismddor the dual prob-
lems; this follows from Lemmial 1 and Theor&ind. (85, Cor. 4.3.8]).

Corollary 1. Let u be the solution offl), whereQ is either convex or smooth and
star-shaped, and letigs € Vp(Jh) be the solution of the TDG method with flux
parameters chosen as in the second row of Table 1. Then

: : ~1/2
Ju=roclz ) < Codiame (1+ (kmint) %) inf _ [lu=vhollroot
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where @ > 0 depends only o#?, the shape of2 and the shape-regularity of the
mesh, but is independent of k ang{¥r,).

The combination of the abstract error analysis outlined/alamd approximation
estimates for plane, circular and spherical waves {8gdeads to a priorh-, p-
andhp-convergence estimates fifi- |||rpc andL? norms, see[[46,52-54.185]. The
dependence of the error bounds on the wavenuikiseexplicit, as in Corollarj11.

o B o
Quasi-uniform meshe-convergence [46h/khe  |bkhg dkhg
Quasi-uniform mesheg-convergence [52% b d
UWVF (see§2.2.2) [19]1/2 1/2 1/2
Locally refined meshesp-convergence [B3kh/hg  |bh/hg  |ah/hk
Geometrically graded meshes, exponerttiagconvergencel [54kh/h  |b d
Polynomial (non Trefftz) basifip-convergence [82hq? /kh [bkhye /g |dkhy /gx

Table 1: Different TDG flux parameters ibl (6) arid (7) that heeen considered.
Here a,b,d are positive functions independent of the other paramekeis the
wavenumbert is the local meshwidthh = maxc 7, hk is the global meshwidth;
gk is the local polynomial degree (for the non-Trefftz verdion

Remark 1The Helmholtz equation may be written as the first order hypi
system—iku + 3"_; 3 (AWu) = 0, whereu := (u;0u/(ik)) and AU) are the
(1+n) x (1+ n) symmetric matrices whose only non-zero elementsﬁéfr}ql =

Agﬁm =1, for 1< j < n. Then, similarly to[[37, eq. (22)] oF [39, eq. (5)], a general
Trefftz-DG method can be written as:

seeku € Vp(9h) i={(u,0) : U€Vp(Th),0 =0u/(ik)} s.t. W e Vp(F)

F' u, — F u,) - (Vi — Vi, ds+/ F"u—g)-vdS=0
Kl,é%,/‘mlm'@( |Kq [Ka K2 \Kz) ( [Ka \Kz) dQ( 9)
Ki#K2

where the flux-splitting matricés", F are defined ofijx < 5 JK and satisfyF" <

0, FoUt> 0 (i.e. are negative and positive semi-definite, respdg)iye™ + FOUt =

(n?< ”OE )ondk, andF{Q1 = —F&‘;‘ ondK 1N dK,. The boundary data are represented
by a suitable vector field= —F°Uu. The TDG in [8) (up to a factorik) is obtained

by choosing:
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Fin _ F&ut:
_ 1nT 1nT
1 T Mk . 1a 2"k . ondKN.Z,
5Nk —Bn®n 3Nk Bn®n
—(1-06)8 dng (1-0)3 (1-9)n{ ondk Nk
(1-8n —%nen’ 5n $naen’ ’
_ T T
Oa n0|<> na 00> ondKNIp.
K
The right-hand side is represented by the vegtes —%((5;f1‘f1K)gR on g and

9= —(ng)9p ONIp.

2.2.2 The ultra weak variational formulation (UWVF)

The ultra weak variational formulation (UWVF) has beenadiiced in the 1990’s
by O. Cessenat and B. Desprésl[inl[18, 19]. Since then it v a great deal
of attention and has been applied to numerous PDEs and B\ésefer to [61]
for a description of its computational aspects and _td g&65.2] for an extensive
bibliography. Different derivations can be found e.g i [19/ 37, 39, 46]; in partic-
ular [17]46] obtain the UWVF in the setting of DG schemes ftiptc problems
of [6], while [37,[39] derive it for general first-order hypmalic systems using a
flux-splitting approach as we did for the TDG in Remialk 1. Nibi&t different pa-
pers use different sign conventions. The extension of the/BWb problems with
smooth coefficients has been tackled. in [65].

To write its formulation for the BVH{1) in the Robin case, I'g = 0, we first de-
fine the trace spacé := [k 4 L%(9K), and the operatoi : L?(dK) — L?(9K),
mapping the boundary datuyn of a local adjoint-impedance Helmholtz BVP into
the impedance trace of the BVP solutigqitself:

—Aex —k2ex =0 inkK,

Fe(yk) := (dn¢ +ik)ex,  where {(_anK+ik)a<:yK ondK.

The Helmholtz BVP is written as a transmission problem actios mesh interfaces,
i.e., forallK,K' € %,

—Au—Ku=0 inkK,
OncU+iku= —0dn ,u+iku ondKNIK’,
OnU+ikdu=gr ondKNrg.

Then, after multiplying the first equation By, e € T(%,), integrating by parts
twice, taking into account transmission and boundary dgrd, and introducing
X,y € X defined ax|gx = —nU+ikuandy|gx = —0n,e+ike the UWVF of prob-
lem (@) [19, (1.4)] reads: find € X such that, for every € X,
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Z ./5K Xok Yok 05— K,KZE.

[ X Ry s ©
k&, o7,/ OKnoK!

- > / ﬁX\md:K(y\ﬁK)dS: > / zﬁgRFK(y\ﬁK)dS

KeZh* OKNIr 1+9 KEZ, JKNIR 1+

(Note that ford = 1 the term ordK NIk at left-hand side vanishes and(2+ 3 ) =

1.) The expression[9) is a variational formulation for tkelston unknowrx; after

the equation is solved fox, the Helmholtz solutioruk can be recovered in the
interior of each element by solving a local () adjoint-impedance Helmholtz
BVP with datum(—dny +ik)uk = X9« If the formulation is discretised choosing
a finite dimensional subspaég of X corresponding to the impedance traces of a
Trefftz space, namely

X = {Xn € X1 Xnjgk = (—0n +iK)Vk YK € Fh, Ve V() },

then the action oFk and the reconstruction ef in K are immediately computed.

Theorem 2.1 of [19] states that the discrete problem obdryesubstitutingxy,
to X in (@) is solvable, independently of the meshdize€orollary 3.8 shows that,
for plane wave discrete spaces, the Dirichlet and Robirfatthe UWVF solution
converge to the corresponding tracesuafith algebraic orders of convergence in
L?(IR). In [17, §4], these results have been used together with the duatityiigue
of [89] to prove orders of convergence for th& Q) norm of the error.

The UWVF has been recast as a DG method with Trefftz basistibmecin
several different ways in_[17, 87,139,/146]. In particularg[Remark 2.1] shows
thatthe UWVF is a special case of the TOf@&mulation [8) for flux parameters
a =f3=090=1/2. As a consequence, the orders of convergenbeaind p proved
for the TDG on quasi-uniform meshes [n_[46] 52] carry overte UWVF (with
suboptimal orders im); on the other hand, thep-type results of([53, 54] require
variable numerical flux parameters to cope with elementsffefrdnt sizes (see Ta-
ble[T), so they do not apply to the UWVF. Thus, the TDG can beetstdod as the
extension of the UWVF to non quasi-uniform meshes. Altevedy, in [88, §4.3,
5.2], the UWVF is employed on meshes refined towards soligiogularities by
choosing Trefftz spaces on large elements and polynomaakspon small ones. No
applications of the TDG combining mesh-dependent paraseted polynomial
spaces in small elements have been documented.

2.2.3 DG schemes with Lagrange multipliers

The DG schemes described so far enforce weak continuitydegtwlements using
numerical fluxes, in the spirit of [6]. A different approachtd enforce continuity
using Lagrange multipliers. This was probably first progb&® Trefftz methods
in [63, §2.3], for the 1D Helmholtz equation.

This strategy has been followed in thiscontinuous enrichment meth@aEM),
introduced by C. Farhat, |. Harari and L.P. Francalin [32nbiing a space of
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piecewise-constant Lagrange multipliers on mesh intedaxith a discrete space
composed by sums of continuous piecewise polynomials asmbdiinuous plane
waves. Subsequently, ih [33], the polynomial part of thal tspace was dropped,
leaving a plane wave trial space and thus reducing to a Zneféithod; in this ver-
sion, the DEM was renamatiscontinuous Galerkin methaq@®GM) and the La-
grange multipliers were approximated by oscillatory fims. This formulation
performed very well for test cases and was later extendedighér order ele-
ments” (i.e. elements containing more plane waves) and &De&s. We refer again
to [78, §3.5.3] for a comprehensive bibliography.
Here we briefly describe the formulation of the DGM followif88, §2]:

find (u,A) € HY( %) x W(.F) s.t.
MDGM(uvv) “r(%DGM(A,V) - /I_ gRVdS VVE Hl(%),
JIR

%%GM(M,U)=/r HgpdS Ve W(h),
JID
where

Goem(W,V) 1 = z /(DW-DV—kqu)d\/-I— 'ikz9wvdS,
KE(%'K JIR

PBoeu(U,W) = Z / /“(W\K/_W\K)ds‘f'/ pwds,
K.KE % JKNIK JIp
W(%) : = < H-12(9K m?K’)> x H™Y2(Ip).
K.,K'e %

Itis immediate to verify that the solutianto BVP (1) satisfies this formulation, and
that the multiplierA represents the normal derivative wbn the mesh interfaces
and onlp. This formulation is then discretised by restricting it toite dimensional
space¥/y(h) C HY(9h) andWy(Zh) € W(.Zh). In the DEM of [32],Vp( %) is the
direct sum of a continuous polynomial and a plane wave spatee DGM of [33
and subsequent papers only the plane wave part is retainégl,.$,) C T (7). The
volume degrees of freedom, i.e. those correspondivg({dh), are then eliminated
by static condensation in order to reduce the computatwostlof the scheme.

A stability and convergence analysis of the simplest varsibthe DGM (four
plane waves per element and piecewise-constant mulplierattempted in_[4]:
for a Robin—-Neumann BVP on a domain decomposed in rectangteier a mesh
resolution condition, the scheme is shown to be well-poaad,a priori orders of
convergence are proved (it(.Z,) norm for the primal variable and ic? (%) for
the multipliers), along with residual-type a posterioroebounds. We are not aware
of any error analysis for the DGM method holding in more gahsituations (e.g.
more than four plane waves per elements, propagation dinsctot aligned to the
mesh, non-rectangular mesh elements).

A similar formulation, namedhybrid-Trefftz finite element methad described
in [99, §3.5] (deriving the functional in eq. (65) therein): the safoem peu
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above is used, whil&Bpgy is substituted byA.: (U, w) = _.fﬂ M [Opw]N dS—
Jr, HhwdS, where now the multipliep approximates the Dirichlet trace of the
right-hand sides and the spatk.%,) are changed accordingly. A further variant of
hybrid-Trefftz methods is presented [n [109] and relateplpsa.

Another DG method with Trefftz basis, calledodified DG methogmDGM),
has been proposed in [48]. The Lagrange multipliers are ldevddued on the in-
terfaces (differently from the DEM/DGM of [32, 33]) and bapto[kc 4, L2(9K \
IR). A two-step procedure is adopted. First, for each basiseteine L2(9K \ IR)
of the discrete Lagrange multiplier space, a well-posedriieltz BVP onK with
impedance datum is solved in the local Trefftz spadé, (K) using the classical
H(K)-conforming variational formulation. Second, these laszUtions are com-
bined in a global LS formulation leading to a positive serafidite system whose
unknowns are the Lagrange multipliers themselves. The mD#&id further im-
proved in [2] leading to thetable DG methodSDGM), which differs from the
mDGM in that the local impedance problems are solved wittaatisquares formu-
lation posed oK, which gives local Hermitian matrices.

Lagrange multipliers are also used to tackle problems wgbahtinuous coeffi-
cients by means of the partition of unity method, see [73]%h8 below.

2.3 Weighted residual methods

Trefftz discretisations lend themselves well to weightesidual formulations: the
discrete solution is automatically a local solution of tHeE only the residual on
interfaces (the jumps) and on the boundary (the mismat¢htwaitindary conditions)
need to be enforced by multiplying them to suitable tracetesf functions. The
choice of these traces leads to different variational fdatnens, the most developed
of which are the VTCR and the WBM described in the followinghiW it is simple
to design weighted residual methods, their error analgstsyyino means easy, as
they arise neither from integration by parts, nor from a misation principle.

An earlier weighted-residual Trefftz formulation is thveak element methaaf
[47], where the integral averages of Dirichlet and Neumammgs on mesh faces
are set to zero (equivalently, test functions are constaeeh mesh face).

We note that some of the earliest Trefftz schemes, e.gntlieect approximation
of [22, eq. (35)], are of weighted-residual type, even thotagting was confined to
the boundary of the domain only, s§&4 below.

2.3.1 The variational theory of complex rays (VTCR)
The VTCR is a weighted residual Trefftz method introducedha 1990’s by

P. Ladevéze and coworkers for problems arising in comjmurtat mechanics and
later extended to the Helmholtz caselin [101]. Recent swraey[70, 71, 100].
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Several VTCR formulations, slightly different from eacthet, have been pre-
sented. A general VTCR formulation for the BB (1) can beteritas:

f|nd uVTCR EVp(yh) St 'Q{VTCR(UVTCRavhp) == ZVTCR(Vhp) vVhp E Vp(%), Whel’e

oren(u)i=im{ [ (Iul- () - [ ) 8 (10)

" " Cl
ds —
+ [_DuanV +.['R(Ik1.9

Jp s \ikd

(Gnu+ ik U)Fpv -+ Ca(nu + ik u)v) dS},

where we have reported the formulation with only the imagimert of the left- and
right-hand side, following the VTCR convention; howeveojpping "Im” does not
modify the method.

The formulations in[[100, eq. (21)] and in [71, eq. (5)] cepend to the choice
of coupling parameter€; = 1/2 andC, = —1/2 (up to an overall factok and
using Rd—iz} = Im{z}); that in [102, eq. (6)] taC; = 1/2 andC, = 1/2; that
in [68, eq. (4)] toC; = 1 andC; = 0. The choice of the coupling parameters does
not affect the consistency of the method as all termisih (i®peoducts of residuals
(internal jumps and boundary conditions) and traces offtagsttions. In some of
the papers cited, using §ab} = —Im{ab}Vva,b € C, the conjugation is written
on the trial, rather than test, functions in some of the temithout affecting the
formulation.

The VTCR (and similarly the WBM) does not correspond to anthefclassical
DG schemes listed in [6]. Indeed, to derive it from the elef@eDdG equation[(5),
one would need to choose numerical fluxes that, in the tedogyoof [6], are nei-
ther consistent (they do not equal the fields andu when applied to the exact
solutionu itself) nor conservative (they are not single-valued onititerfaces).

Following [68,§2.2], it is possible to show that if absorption is presennttie
VTCR is well-posed. More precisely, provided tlat= 1, C, = 0, Rek > 0 and
Im{k?} > 0, the VTCR bilinear form satisfies

Rek

Hyrer(VV) = —Im{k’} HVHEZ(Q) T K2

Hsfl/zanv

2
YWe T(%
ey T
thus the VTCR solution is unique in the Trefftz space and@eity in L?(Q) norm
holds (the analogous result fof = —C, = 1/2is proved in[[71, Prop. 2]). However,
this does not extend to the setting we considered so fapropagating waves with
k € R: in this case it can easily be shown thdf;cx(v,v) = 0 for allv e T (%) such
thatv = 0 on all elements adjacent to the Robin boundaand for any choice
C1,C; € C, thus well-posedness can not be ensured using a coercigityreent.
Following [71, Prop. 2], folC; =1/2,C, = —1/2,k € R, we have:
_ L lygae, P
Avrer(VV) = Z(k HS o],

+kHz91/2u
(Tr)

2(r;

° WWe T (%
LZ(FR)) veT(h),
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thus (using Holmgren’s theorem [20, Th. 2.4]) uniquenegbefsolution of[(ID) is
proved if all mesh elements are adjacenfio For more general cases, coercivity
appears to be too strong an argument. We conjecture tha¢thisnf-sup conditions
might be a more viable way for proving well-posedness of ti€R.

Section 3 of [71] considers the application of the VTCR fotation, cor-
rected with suitable volume terms, with non-Trefftz (pi@tze-polynomial) discrete
spaces. This variation is termeakak Trefftand analysed therein.

2.3.2 The wave based method (WBM)

The WBM is a weighted residual Trefftz method, analogoush YTCR, first
introduced in the dissertation of W. Desrriet|[26] and latéeeded to a wide variety
of engineering applications, mainly in the realm of vibimpeastics. Recent reviews
of the state of the art of the research on the WBM can be fourf@ddn27]. The
discrete space typically used together with the WBM is coseploof propagating
and evanescent plane waves, as outlinefBig.

The basic variational formulation of the WBM applied to BVB),(translating
84.1.4 of [27] to our notation and multiplying all terms byik), reads

f|nd uWBM 6 Vp(c%) St MWBM(UWBMavhp) == gwsm(Vhp) VVhp 6 Vp(%), Whel’e

Huan(u) = [ (20N + 7T [ ) S

+ (dnu—i—ikﬁu)vdS—/ udnvds
r )

lwem (V) i= /r gRVdS—/I_ gp dhvdS,
JIr D

whereZ;, is an interior coupling factor. In some works, a slightlyfeient formula-
tion is used, e.qg. in [98, eq. (81)] different terms are usethe internal interfaces.
We are not aware of any rigorous stability or error analyste®@ WBM formulation.

2.4 Single-element direct and indirect Trefftz methods

Most schemes described so far were introduced not earker thid 1990’s, but
a lot of research on Trefftz methods has been carried ou¢ shvec late 1970's by
I. Herrera, J. Jirousek, A.P. Zielifiski, O.C. Zienkiewezd numerous co-workers,
mainly for static elasticity problems. General reviewshafte works are in [67,121];
the Helmholtz case is described in detaillinl[22]. A majofatiénce between these
methods and those we described in the previous sectioratigmtimany instances of
the former ones no mesh is introduced on the donaiiso that the unknowns are
defined ondQ only. For this reason, these Trefftz methods more closelgmble
standard boundary element methods rather than finite elesnkames.
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There are two main classes of these Trefftz methods: diretirairect. (We use
the terms “direct” and “indirect” as in [22,67] and [985.1].) We describe them for
a modification of BVP[(IL) where we drop the Robin bound&gyand we consider
instead a Neumann boundary portigpnwith boundary conditiod,u = gx.

Theindirect methods the simplest kind of weighted residual scheme:

/ UdhvdS— / gauvdS— / 9o nvdS— / gnvdS, (11)
) I'n ) I'n

(seel22, eq. (35)] for sound-hard scattering problems bounded domaing, [98,
eq. (47)],[121, eq. (16)]L[67, eq. (16), (26)]). For Diriehexterior problems this
is also the method of [8,3]. In most references the test function is not conjugated.
We note that the indirect method is nothing else than the WBN2a3.2 posed
on a single element, i.e%, = {Q} and.%! = 0. In the indirect method, the trial
functions approximatingl are global solutions of the Helmholtz equation on the
whole of Q; on the other hand the test functigronly needs to be defined a2.
If the Trefftz test and trial spaces coincide, then the ofgdistiffness matrix is
symmetric (by Green'’s second identity). If the signs of #rerts oy are changed,
asin [67, eq. (22)], a non-symmetric formulation is obtdine

Subtracting from[{T1) the second Green’s identfy, (UdnV — d,uV)dS = 0,
which holds for all HeImholtz solutionsandv in Q, we derive thalirect method

/ anuvdS— [ udpvdS— / 9o FvdS— / gnvdS (12)
) ' ) I'n

(seell22, eq. (42)].198, eq. (50)]). The direct method fer Ehrichlet problem may
be viewed as the TDG df2.2.1 witha = 0 posed on a single elemekt= Q.
Conversely to the indirect method, consistency of (12) @rgnteed only if the test
functions are Helmholtz solutions i@, while the trial functions might be defined
(and often are) 0@ Q only, for better computational efficiency; the solutiontisn
evaluated im2 with a representation formula in a post-processing stepraBEMs.
The stiffness matrix arising from the direct formulati@@)1s the transpose to that
of the indirect method (11). Theorem 6.44 [in [105] gives sidfit conditions for
the well-posedness of the direct method. Theorem 7.19 jrpi@ives that, for well-
posed Dirichlet problems witH (9 Q) data, if the Neumann traces of the trial space
coincide with the Dirichlet traces of the test space, thendinect method is well-
posed and computes the best approximation of the exact@ointL?(dQ) norm.
If Q is unbounded, the direct and the indirect methods can tilided choosing
discrete functions that satisfy Sommerfeld radiation ¢orat however in [IR) the
conjugation on the test function must be dropped to preseswesistency. In this
case, if a multipole basis is used, Watermamifi-field method is obtained, see |78,
Ch. 7], which is a special instance of thanatrixmethod[[7857.9]. (Note that[92]
uses the namaull-field methodfor the indirect method with non-conjugated test
functions, andCremer equationfor the same with conjugated test functions.)

For a special choice of Trefftz test functiomsndexed by a complex param-
eter (see the last paragraph@2), method[(12) is calledgiobal relatiori and
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is the variational formulation at the heart of thekas transform methodee [23,
eg. (2)], [105, eq. (6.142-143)] ar [21, eq. (7.156)]. Irstbdntext, this formulation
is typically discretised using piecewise-polynomial @€) trial functions, even
though Trefftz functions may be used as well.

2.5 Non-Trefftz methods with oscillatory basis functions

The main reason for the success of Trefftz methods in theegbof time-harmonic
wave problems is that the oscillatory basis functions mésrahuch better approx-
imation properties than piecewise polynomials used indsteshFEMs. On the other
hand, similar approximation can also be achieved if therdiscfunctions are not
exact local solution of the PDE to be discretised, but ar@ahg “approximate so-
lutions”. If basis functions of this kind are used, the Tieformulations described
in the previous sections cannot be employed as they standube the residual in
the elements will not vanish any more and consistency willl fa

Approximate Trefftz functions are especially attractiwegroblems with smooth-
ly varying material parameters, where no analytic Trefftzdtion might be known.
Trefftz formulations, possibly with additional volume es, can be used with ba-
sis functions that are solutions of the equation only up toedain order; see
[15)65[110], where this idea is pursued for DG, UWVF and DEivirfulations.

In the following we briefly discuss a few methods that havenbe®posed em-
ploying oscillatory anck-dependent basis functions that are not Trefftz.

A very well-known scheme of this kind is thgartition of unity methodPUM or
PUFEM), introduced by |. BabuSka and J.M. Melenk in the n880Q’s, see e.g.[81].
The PUM combines the approximation properties of Trefftachions with the stan-
dard variational formulation of the problem, e.g. for theB{) with; =0

/ (Dhu-D_hv—kqu)dVJr/ k9 uvds— / grvdS  WeHY(Q). (13)
Q rR rR

This requires the use &f1(Q)-conforming trial and test functions, thus continuity
on interfaces needs to be enforced strongly, which is ndileia Trefftz spaces.
The PUM uses as basis a set of Trefftz functions multiplied partition of unity
defined on a FEM mesh, e.g. piecewise linear/multilineaympainial FEMs on sim-
plicial/tensor elements. Theorem 2.1 in|[81] ensures thatttial space obtained
enjoys the same approximation properties of the Trefftzspmanployed. If gp-
dimensional local Trefftz space is used in each elemengthay with a piecewise
linear/multilinear partition of unity, the total number dégrees of freedom used
equalsp times the number of mesh vertices, while for a similar Teefiftethod on
the same mesh (providing comparable accuracy) it wouldlegtianes the num-
ber of mesh elements; this means that on tensor meshes d@hmeostme number
of DOFs would be employed by the two methods, while on triaagind tetrahedra
a saving of a factor up to two or six, respectively, can beaadd by the PUM. A
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shortcoming of the PUM is that the formulatién]13) is notsitgfinite and its well-
posedness requires a scale resolution condition, whigeishiot needed for some
Trefftz schemes such as the TDG/UWVF presentef2i@.1 andj2.2.2. Differently
from Trefftz schemes, the implementation of the PUM reauifhee computation of
volume integrals; moreover, the numerical integrationhef PUM basis functions
may be more expensive than that of genuine Trefftz funcfisesi.1.

The PUM for the Helmholtz and other frequency-domain eaqustivas further
developed by R.J. Astley, P. Bettes, A. El Kacimi, O. Laglttee; M.S. Mohamed,
E. Perrey-Debain, J. Trevelyan and collaborators, sed&96]. When a PUM
and a standard FEM discrete spaces are combined, e.g. osinglétion [IB), the
method obtained is termegkneralised finite element meth(@@FEM); e.g. [108]
employs high-order tensor-product polynomials summedaddycts of plane waves
and bilinear functions. In problems with discontinuous mymbek, the PUM can
be applied by coupling the homogeneous regions by meansgphhge multipliers
as in [73]; this is not necessary as formulation (13) holdthenwhole domain, but
enhance the accuracy as in each subdomain only basis fuscseillating with the
correct local wavelength are used.[Inl[51] and related gapeetrigonometric finite
wave elementéTFWE) is described: the PUM is used with special basis fonst
adapted to waveguides, lasers and geometries with a singléent wave propa-
gation direction. Théinite ray element methaaf [79] consists in the use of a PUM
basis in dirst order system of least squafiSOSLS) formulation; as the unknown
is constituted by both and its gradient, more unknowns are needed but the system
matrix is Hermitian. Finally, in théybrid numerical asymptotic methad [42], the
PUM space is constructed by multiplying nodal finite elersgatoscillating func-
tions whose phases are derived from geometrical optics @B@g¢ometrical theory
of diffraction (GTD), e.g. by solving the eikonal equatiaf,§4.2.

Plane wave bases have been combined_ih [97] withvitieal element method
(VEM) framework [11], in order to design a high-order, comfing method for the
Helmholtz problem, in the spirit of the PUM, but allowing fgeneral polytopic
meshes. The main ingredients of the resulting PW-VEM (§re low frequency
space made of low order VEM functions, which do not need toxpdiatly com-
puted in the element interior§j) a proper local projection operator onto a high-
frequency space made of plane waves, @ii}dan approximate stabilisation term.
The implementation of the PW-VEM does not require compatatf volume in-
tegrals, and no quadrature formulas are required for thengsly of the stiffness
matrix, for meshes with flat interelement boundaries.

Thehybridizable DGmethod of[[91] employs two discontinuous discrete spaces
(one scalar and one vector) and a space of Lagrange mutiglie the mesh in-
terfaces. Though Trefftz spaces might be used with this ditation, the authors
consider basis functions constructed as products of pafyale and geometrical
optics-based oscillating functions, similar to those: ig][dut discontinuous.

A Trefftz approach has been proposed in the context of firiiterdnce schemes
in theflexible local approximation methd@LAME) by I. Tsukerman, see e.g. the
comprehensive review [113]. In the FLAME, the Taylor exganf the solution



24 Ralf Hiptmair, Andrea Moiola and llaria Perugia

to be approximated used to define classical finite differexsbemes is substituted
by an expansion in a series of Trefftz basis functions, legth better accuracy.

Oscillatory basis functions have been successfully useldoimdary element
methods, in particular for scattering problems, see thiewewn thehybrid numer-
ical-asymptotic BEMHNA-BEM) [20], the plane-wave basis boundary elements
[96, §3] and theextended isogeometric boundary element me{ixé8EM) [93].

3 Trefftz discrete spaces and approximation

Given a Trefftz variational formulation of a BVP, as thosef# the definition of a
Trefftz finite element method is completed by the choice osaréte space

Vo(Zh) = {ve T (%) : vk € Vi (K)} C T(S),

whereV,, (K) is apk-dimensional space of function®nK such thaiv+k?v = 0.
We describe next the main features of the most common loeéftZ space¥p, (K);
we do not consider Lagrange multiplier spaces on mesh farehdé methods in
§2.2.3. The discussion of the conditioning properties otihgis functions described
and of the techniques for their numerical integration istposed tod4l.

3.1 Generalised harmonic polynomials (GHPs)

Generalised harmonic polynomials are smooth Helmholtztgwis that are separa-
ble in polar and spherical coordinates in 2D and 3D, respagtii.e. circular and
spherical wavegalso called Fourier—Bessel functions or Fourier basibg bcal
spaced/p, (K) are defined as follows:

gk .
2D: Vp (K) = {v: vx) =y aJy(k|x —xk|) €, a, € (C},
f=—0k

ak ¢ _
3D: Vi (K) = {v: v(x) = > z[az,mjmx—xumm(ﬁ), ameC},
=0m=—

wherexk € K (e.g. is the mass centre Kf), 0 is the angle ok in the local polar
coordinate system centredxg, J, is the Bessel function of the first kind and order
l, {ng}ﬁﬁ,g is a basis of spherical harmonics of orddsee e.g/[85, eq. (B.30)]),

and j, is the spherical Bessel function defined pyz) = 2—7;J£+%(Z). The space

dimensionp is given bypk = 2qk 41 in 2D and bypk = (gk +1)? in 3D. We call
Ok, the maximal index of the (spherical) Bessel functions uieal“degree” of the
GHP space, as it plays the same role of the polynomial degrieiapproximation
theory. A particular feature of GHP spaces is that they ageahthical.
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The name “generalised harmonic polynomials” was coine@®@] pnd comes
from the fact that they are imagesludirmonic polynomialsinder the operator that
maps harmonic functions into Helmholtz solutions, in thenfework of Vekua—
Bergman'’s theoryl [12, 114] (see al$o [50, 87]). The samerthalows to transfer
approximation results for harmonic functions by spacesasfrtonic polynomials
into results on the approximation of Helmholtz solutions@GiyPs. The density of
GHPs in a space of Helmholtz solutions was provedin [50, T8].ahd [114§22.8].
Approximation estimates in two dimensions were first prowef28, Th. 6.2] (in
L norm) and in[[80] (in Sobolev norms), and later sharpenedeaitehded to three
dimensions in[[86]. We summarise here the estimatés of [B632].

LetD e R", n= 2,3, be abounded, open set with Lipschitz boundary and diame-
ter hp, containingB,n, (Xp) (the ball centred at some € D and with radiugphp),
and star-shaped with respectBg, (Xp), where 0< pg < p < 1/2. Assume that
ue HS(D), se N, satisfiesAu+ k“u = 0 in D and define thé-weighted Sobolev
norm [ul]; o == (T ik ™™ Jul5p)¥2, j € N, where|:|;, ; is the Sobolev semi-
norm of ordemonD.

i) If n=2 andD satisfies the exterior cone condition with angitgt [86, Def. 3.1]
(Ap = 1 if D is convex), then for everly > sthere exists a GHB_ of degree at
mostL such that, for every < s+ 1, it holds

ey 31 log(L+2)\ 4o, ST
||U—QLHJ-,k,DSC(1+(th)J+6)ez‘(l p)hok<(g|_(f2)) hD) [Ullsi 1D

where the constai@@ > 0 depends only on the shapedf j ands, but is inde-
pendent ohp, k, L andu.

i) If n= 3, there exists a constahp > 0 depending only on the shapeDf such
that for evenL > max{s, 21/20} there exists a GHR)_ of degree at modt such
that, for everyj <s+1, it holds

. 3 _ _ s 17-
lu—QLlljxp < C(1+ (hok)I+€)eat-Phok “olsH=Dgt=d ) )y b

where the constai@@ > 0 depends only on the shapef j ands, but is inde-
pendent ohp, k, L andu.

The main difference between the two results is that the ipesthape-dependent
parameteAp entering the exponent &f(thus thep-convergence order) is explicitly
known in 2D (it depends on the largest non-convex corn&)djut not in 3D.
Exponential convergence of the GHP approximation of Helilzhemlutions that
possess analytic extension outsidlgvere proved in[[85, Prop. 3.3.3] and improved
in 2D in [54], based upon the corresponding result for harm@mctions of [55].
Roughly speaking, the error is bounded by a negative exp@hef the form

Cexp(—bL) ~ Cexp(—bpé/("fl)), while classical bounds for polynomials achieve

at mostCexp(—bpé/”), since the dimensiopp of the GHP space of orddr is
(L1, while the dimensiorpp of the polynomial space of degréeis &/(L").
Thus, Trefftz methods based on GHPs (and similarly on PWs)achieve better
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asymptotic order than standard schemes; however the valhe positive coeffi-
cientsb,C and their dependence on the BVP and discretisation are ticglgrclear.

Approximation estimates in the (discontinuous) spaggs) immediately fol-
low from the local approximation estimates with= K, for all K € %,. In case
of (H1-conforming) partition of unity spaces enriched with GH§lsbal estimates
follow from combining the local estimates with [81, Th. 2.1]

GHPs have been proposed in numerous Trefftz formulatio$s:[89,/107],
UWVF [77], VTCR [68], hybrid-Trefftz [99, eq. (62)], direcnd indirect single-
element schemeis [22, 121], HELUS [117], MPPS|[16, 36].

3.2 Plane waves (PW5s)

Plane waves probably constitute the most common choicesfitZ basis functions.
In this case, the local spadg, (K) is defined by

Pk .
Vi (K) = {v: v(x) = /Z a, €k xk) g, e (C}, (14)
=]

where{d,}/*; C R", |d,| = 1, are distinct propagation directions. To obtain iso-
tropic approximations, in 2D, uniformly-spaced direc8am the unit circle can be
chosen (i.ed, = (cog2m?/pk),sin(21¢/ p«))); in 3D, [103] and [[94] provide di-
rections that are “almost equally spaced” (see§B.4] for a simpler version). In
these cases, the PW spaces are not hierarchical. Howeeesf the potential bene-
fits of PW approximations is the possibility to depart frora thotropic case and to
adapt the basis propagation directions to the specific BMiauatl and to different
elements, either a priori or a posteriori, $8e2.

The linear independence of arbitrary sets of plane waved ¢artheir traces)
is proved in[1, 211]. PW bases whose linear independencenimtedegenerate for
small values okhg were introduced in [4653.1] in 2D and in[[86§4.1] in 3D (see
also [85,§3.4.1]) for analysis purposes. These stable PW bases gmt@GHP
bases in the low-frequency limit [86, p. 815]. The existentéhese stable bases,
which is instrumental to the derivation of approximatiotiraates for Helmholtz
solutions in PW spaces in_[B6], is guaranteed, provided ttiatset of directions
{dg}fil constitutes a fundamental system for certain harmonicyaotyals. In 2D,
any choice ofpk = 2gx + 1 distinct directionsgk being the maximal degree of
the considered harmonic polynomials, guarantees thiseptppn 3D, sufficient
conditions onpx = (gk + 1) directions are stated in [86, Lemma 4.2].

Approximation estimates in PW spaces can be derived froniasitmounds for
GHPs such as those §B.1. In [80, Ch. 8], GHPs were approximated by PWs
by approximating their smooth Herglotz kernel with deltadtions, leading tg-
estimates in 2D, while in_[86] the Jacobi—Anger expansios wsed to link PWs
and GHPs in 2D and 3D. Theorems 5.2 and 5.3 of [86] (see lal$d;$85]) show
that Helmholtz solutions of given Sobolev regularity candpproximated in PW
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spaces witthp-estimates similar to those shownd&.1 for GHPs. For PWSs, these
estimates hold with. = gk, so thatgx plays the role of a “degree” for the consid-
ered PW space. As mentioned, for these bounds to hold in 2DPW directions
have to satisfy some further conditions. A different deia of h-approximation
estimates based on a Taylor argument can be found_ in [19,.Th.18 [95], the
PW approximation of Helmholtz solutions on the unit disc glgsed in detalil,
together with the conditioning of different linear systeused for its computation
(least squares and collocation for a Dirichlet problem andlsc) and the implica-
tions on the accuracy of the approximation computed in fipigcision arithmetic.
We refer again td [5455.2] for the exponential convergence in 2D of PW approx-
imations of analytic Helmholtz solutions (see alsal [85, R8rB.8] which holds in
2D and 3D).

Similar to PWs are thevanescent wavethe basis elements have the same ex-
pressionv(x) = &k4* but with a more generalc C", d-d = 1. If d = dr+id;, with
dr,d; € R", thenv oscillates in the directiodg (with wavenumbek|dg| > k) and
decays exponentially in the orthogonal directin(i.e. |v(x)| = e 4¥). Evanes-
centwaves are used in combination with plane waves to apped& interface prob-
lems in the DEM[[111] and the UWVE_[77], and to represent oirfgavaves in a
2D unbounded half-strip of the fordma < x < b,y > c} in [21[119].

A special combination of propagative and evanescent wavggpically used in
the WBM. We describe a 2D version of this space as in [24, ef)—(21)] (see
[27, §4.1] for 3D). This space is not invariant under rotation bepends on the
choice of the Cartesian axes. For a mesh eleremte fix a truncation parameter
N > 0 (typically 1< N < 6) and defindy := SURy, v;),(x.y,)ck X1 — X2 @ndLy =
SURY, y1),(0.y2) €K ly1 — y2| as the edge lengths of the smallest rectangle containing
K and aligned to the Cartesian axes. Two sets of basis fursctienused:

cos(kxjx)eiinLngy, kj i= n j=0,..., [NKLS /7,

LK’

+i k27 2. .T[ .
VR o), k) =4 =0 N/,
y

for a total dimensiorpk = 4+ 2(|NkLy/m] + [NkLy/t|). Each basis function is
half the sum of two plane (or evanescent) waves, symmetrantoanother with

respect to thec or y axis: e.g. codjx)exp(i,/k? —kgy) = %(eikdii'x )

with dffj = (kyj/k, /1 — (kxj/k)?). A maximum of 4+ 2(|kLy/m| + |KkLy/m])
basis functions are propagative PWs, this number designieskp the conditioning
under control. IfN > 1, then roughly a fractio(N — 1) /N of the total basis func-
tions are evanescent waves decaying in a direction patal@ie of the Cartesian
axes. Refinement is obtained by increasihdor N < 1 only propagative waves are
present, for higher values evanescent waves are introduced

In 2D, both evanescent and plane waves may be written a{szkéi)(p +1/v)x+
(v—1/v)y} = exp{ik(xsin@ + ycosO}, parametrised by € C or 6 € C with v =



28 Ralf Hiptmair, Andrea Moiola and llaria Perugia

€9 these waves constitute the test space (but usually notitidefor the Fokas
method in[[23,105] and [2%,7.3.4] (see alsg2.4).

3.3 Fundamental solutions and multipoles

Fundamental solutions and multipoles are Helmholtz soiuin the complement
of a point and satisfy Sommerfeld radiation condition (Limrn‘i‘l (% —iku) =0,
wherer = |x|). They are particularly useful to define Trefftz spaces obaumded
elements, e.g. for scattering problems.

If the local spaces are spanned by fundamental solutionglsisources are
located at distinct poles, in the complement oK :

Pk 1)
2D: VpK(K):{v: v(x):/z agHy” (KX — X)), age(C},
=1

Px efik\x—xk\

3D: Vp(K)= {v: v(x) :; Qg

, ap € (C},
=

X =X
WhereHél) is the Hankel function of the first kind and of order 0. Diffete priori
or a posteriori strategies are used to fix the location of tlleg see€f2.1.1 and the
references cited therein. As the distance of the poinfsom K increases, these ba-
sis functions approach plane waves, so they permit fleiibildt only in the choice
of the propagation directions but also in the wavefront atuxe.

Apart from the MFS and its modifications (s§&1.1 and[[l,9, 10, 3T, 92, 120]),
spaces of fundamental solutions have been used in conndotihe UWVF (see
[58], where ray-tracing is used to determine the poles, [&df

Theorem 6 of([104] ensures that Helmholtz solutionKioan be approximated
in Holder norms by fundamental solutions centred at anytiexoing boundary” in
2D and 3D, under weak assumptions on the regularigkof We are not aware of
any result providing orders of convergence.

An alternative approach consists in choosing local spagesrated by multipole
expansions, where multiple sources with increasing ongeiogated at a single pole
Xo (or only at few poles):

& (1) 1Z]
2D: VpK(K):{v: v(x) = z agH,” (k|x —Xo|) €° ,age(C},

(=—0K
3DV (K)—{V'v(x)—qK x Y (kx— o) Y (- —2 ) aime T}
- Vpg = . —gom:zJ £mlly 0l) Ty |X—X0| y Ufm ’

whereH,fl) (hﬁl)) are Hankel functions (spherical Hankel functions, retipely) of
the first kind and ordef. As for the GHPs irfl3.1, 6 is the angle of in the local
coordinate system centredx, which is located in the complement kf and the
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space dimension igc = 2qk + 1 in 2D andpk = (gk +1)2 in 3D. According to[[10,
Rem. 2.2], fundamental solutions lead to more stable methwah multipoles.

Multipole spaces have been used in connection to LS schédfig§d7], WBM
[24, eq. (23)],127§4.1.2], hybrid-Trefftz[[99, eq. (63)], HELS [117], sourdensila-
tion techniques [92], null-field [78] and single-elemertiemes|[&,22,121]. In [49]
and related papers, some 2D multipoles with suitably chos#x/ (not necessar-
ily integer) are used on infinite sectors, in such a way to ensontinuity of discrete
functions across rays; this might be more efficient thanrfulltipole spaces for so-
lutions with a preferred propagation direction.

3.4 Other basisfunctions

Other discrete Trefftz spaces have been proposed in literér use with the vari-
ous approaches covereddg.

In 2D, corner wavessuch asl; ¢ (kx|)sin(¢6/a), with £ € N and 0< a < 2,
capture the behaviour of Helmholtz solutions near a domainer of anglera.
They have been used e.g. in the WBMI[25], in LS methodE [10[1TE] and in the
MPS [16/36]. In[120], they are used with = 2 on tips of 1D screens to repre-
sent the strong singularities of the solution in a non-Lifigcdomain. Theorem 6.3
of [28] uses Vekua—Bergman theory to give orders of convergéor the approxi-
mation of singular functions by spaces of corner waves anB$(dee alsd [1G5]
and references therein). We are not aware of any use of sifuilations in 3D.

Thewave band functionsntroduced in the VTCR context [101], are Herglotz
functions with piecewise-constant kernel, effelk(xcose+ysiné) 4g in 2D,

In the presence of a circular hole, suitable combinationdarikel and Bessel
functionsa priori fulfil homogeneous boundary conditions [107, e®)]1

If the wavenumber varies inside an element, the basis fumstdescribed so
far do not lead to Trefftz methods. In case of linearly vagalvavenumberAiry
functionscan be used to construct Trefftz spaces [110]. I [64g@Bleralised plane
wavesin the form €%, for suitable polynomial®, are introduced and analysed in
a UWVF setting: they solve a perturbed Helmholtz problem@rerge with high
orders inhk. Similar “almost-Trefftz” waves are used in [43] and nanesdillated
polynomials Modulated plane waves.e. products of PWs and polynomials, are
the basis functions of the DG method bf [14), 15]; as they alg @pproximately
Trefftz”, volume terms appear in the formulation.

Products of (continuous) low-order polynomials and PWs ldPG constitute the
basis of the PUM[51, 78,81, 96, 108], while products of polyrials and oscillating
functions derived from high-frequency asymptotics aréadalements in [42, 91].
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4 Further topics

4.1 Assembly of linear systems

All the Trefftz finite element methods fol](1) discussedd give rise to dense
or sparse linear systems of equations. Entries of coefficnatrices are obtained
by integrating products of (derivatives of) trial and tashdtions over bounded-
dimensional sub-manifolds @2, d < n. The stable and accurate (approximate) eval-
uation of these integrals is a key implementation issue.

Among all Trefftz approximation spaces and associatedsbpsesented i3,
plane waves (PWs)K (either propagative witlhl € R" or evanescent witld €
C") are exceptional, because they allow a closed-form evaluaf their integrals
over any flat sub-manifold with piecewise flat/straight bdary. For instance, in all
variants of PW-based Trefftz methods on polyhedral mesh@Bj expressing mesh
faces by 2D parametrisations, we eventually encountegtiate of the form

/ expw-x)dV,  F c R?abounded polygom € C2 constant. (15)
JE

Then we can take the cue from [3R2.1] or [29,54] and apply integration by parts
in order to reducd (15) to integrals over the straight edgees, ... ey, g€ N of F:

. 1 . q w-n, [

/ expw-x)dV = —/ W-Dexp(w-x)dV:; —/ exp(w - x)ds,

F W-W JF = WW ey

where ny is the exterior normal ag,. Then, as in[[44, Ch. 2], i, = [a,b],
a,b € R?, we find, [, expw-x) ds=expw-a)[b—a¢(w- (b—a)), wherey(z) :=
(exp(z) — 1)/z. Of course, a numerically stable implementation of thisction for
small argumentsis essentjar his approach can be generalised to yield analytic for-
mulas for computing integrals of products of PWs times poiyials, seel[29, 38],
with increased computational effort, however.

Approximate evaluation of the integrals becomes inevitébt all choices of Tr-
efftz basis functions other than PWs, and even for a PW basisashes with curved
elements. Then Gauss—Legendre numerical quadrature seémthe most widely
used option. However, the integrands may be oscillatorychvtelays the onset of
(exponential) convergence of the quadrature error ungilthmber of quadrature
points surpasses a threshold roughly proportional to the ohthe local mesh size
and the wavelength. This leads to higher computationalpastiegree of freedom
for larger values okhx. One may think of using special quadrature rules for os-
cillatory integrals, as derived, for instance, [in][62]. Beaavoid an increase in the
number of quadrature points for growing spatial frequerfcthe oscillations, but
unfortunately require precise knowledge of the oscilkaterm in the integrand.

1 A stable algorithm for point evaluations ¢f even for arguments close to 0 is provided by the
MATLAB function expm1.
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4.2 Adaptive Trefftz methods

Besides classicdl-, p- or hp-adaptivity, Trefftz methods offer scope for more so-
phisticated adaptive strategies consisting in the chdispecific basis functions for
different BVPs and in different mesh elements, either arpaoa posteriori.

The main strand o priori adaptive Trefftz methods falls into the category of
hybrid numerical-asymptotimethods. High-frequency limit models, such as ray
optics or geometric theory of diffraction (GTD), guide thedextion of local Trefftz
spaces in the individual cells of a mesh. In a non-Trefftz Pldiework this idea
was pursued in_[42], and within the hybridizable DG metho{Bi, in both cases
for 2D acoustic scattering at a smooth sound-soft obje¢hdse works, local phase
factorsx — exp(ikSx)) derived from reflected and diffracted waves multiply stan-
dard continuous nodal basis functions,[inl[42], or localypoimials, in [91], thus
generating a basis for (local) trial spaces.

The policy of incorporating local directions of rays is peutarly attractive for
PW-based methods, because PW basis functions naturalbdere direction of
propagation. For problems where excitation is due to ardami PW and mate-
rial properties are piecewise constant, ray tracing aratedltechniques [9%3.2]
based on geometric optics (specular reflection and SnaWsof refraction at ma-
terial interfaces) can provide information about the lamé¢ntation of wave fronts
for k — 0. PWs matching the found ray directions are then used to gkl bases,
either exclusively or augmented by a reduced set of gesethliarmonic polyno-
mials (GHPs) or “equi-spaced” PWs.

This idea for TDG was first outlined and tested [in][14] andHartelaborated
and extended in [58, Ch. 5] (for UWVF). In the latter work, im@tempt to resolve
curved wave fronts and take into account diffracted waves fcorners, also Han-
kel functionsx — H((,l>(k|x —vV.|) with y, outside a mesh cell have been proposed
as local basis functions. Approximation of curved wave fsateduced from GTD
corrections is also attempted [n [15]. There the authorseni@yond Trefftz meth-
ods and use DG with trial spaces of polynomially modulatedsP¥hich are more
suitable for approximating propagating circular waves.

In simple 2D situations with convex smooth or polygonal tarats and incident
plane wave, overall accuracy seems to benefit substarftiaitya priori directional
adaptivity. However, if there are more than only a few domingave directions
as in the case of more complicated geometries, trapping eésyalark zones and
shadow boundaries, current directional adaptivity sooatemigs limitations. On the
other hand, this strategy appears as the most promising avaghievek-uniform
accuracy with numbers of degrees of freedom that rerkainiformly bounded
or display only moderate growth d&s— . The potential of this idea has been
strikingly demonstrated in the case of BEM for 2D scattepngblems[[20].

A posteriori directional adaptivity seeks to extractinformation about dominant
wave directions from intermediate approximationsiof refine-and-coarsen strat-
egy is embraced in [14]. In each step of the adaptive cyclesitdomputes a PWDG
solutionu of the scattering problem based on a relatively large nurablercal Tr-
efftz basis functions (GHPs and PWs). Subsequently, byirspllocal non-linear
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L2-least squares problems, the directions of fewer PWs aegrdated so that can
still be well approximated locally.

A p-hierarchical error indicator is studied in [44]. In a stéhe adaptive scheme
starting from the approximate solutiora presumably improved solutianis com-
puted using double the number of local PWs. Then a singld jdane wave direc-
tion dx on a mesh eleme#t is extracted from the err@(x) := G(x) — u(x) through
the projection formula

~ Oe(x) dk
dk :=Re | - , dg == —.
« Kk ike(x) T dk]

Detailed numerical experiments are reported.in [44, Chlr6the pre-asymptot-
ic regime, when the resolution of the trial spaces is stithea low, one observes
a pronounced gain in accuracy in the case of the adaptivevapiprcompared to
approximation with the same total number of equi-spaced.PWs

Directional adaptivity for Trefftz methods has also beéediin other flavours.
In the context of least squares methods as discussgfidnan offset angle for the
sets of local equi-spaced PWs is introduced as another @edreeedom in|[[3],
aiming to align them with a local dominant wave directionr Fee VTCR method
presented iff2.3.1, an error indicator based on local wave energy is us¢tZ]
to steer angular refinement of local Trefftz spaces.

A posteriori mesh adaptivity is considered in_[66], where classical “elliptic”
error estimation and mesh refinement strategies are adéptelde h-version of
TDG. In a low-frequency setting, the method inherits thedyperformance of the
underlying adaptive mesh refinement algorithms for polyia®G for the Poisson
equation. However, there is little hope that this carriesr ¢@ larger wavenumbeks
A similar error estimator, aimed at adaptive mesh refinemnteag been described
in [4] §3.2] for the DEM/DGM presented i§2.2.3.

4.3 1ll-conditioning and solvers

The linear systems of equations spawned by PW-based fieiteegit methods are
highly prone to ill-conditioning, when high resolutionatispaces are used, see
e.g. [61,55], [37, §4.3], [40], and[[72] for a PUM setting. This is largely caudsd
an inherent instability of the PW basis on cells, whose sizelatively small com-
pared to the wavelength. Intuitively, fox| < k™1, the functionsx — €4 from
(I4) are almost constant, hence, nearly linearly dependgfit2, £4.2]. The same
heuristics applies, when their density increases; evetelibsizes comparable to the
wavelength, PWs are hardly distinct when their directiolescdose cf. [72, §4.3].
Empirically, for the local PW Galerkin matrid k associated with the? inner
product on a single mesh cél, we find that its spectral condition number grows
like ~ h,zq for cell sizehx — 0, whereq > 0 is proportional to the numbeuk
of (approximately uniformly spaced) PWs in 2D, and to theasquoot ofpk in
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3D. Essentiallyg is related to the “degree” of the considered seppfPWSs; see
§3.2. Even worse, the condition number soars exponentiallyéonc (Mg ) ~ e

for g — » anda > 0; see Appendix A. A similar explosion of condition numbers
is observed for the full systems matrices as meshes are dedinmore PW basis
functions per element are used.

There is circumstantial evidence that direct sparse eéition can cope fairly
well with the ill-conditioned linear systems arising fromALYF or PUM, see([4D,
§5.3.3], [77]. Yet, eventually the instability of the basidlimpact the quality of
the solution[[108§5.4]. A remedy proposed in_[61] for the UWVF is to limik
based on monitoring condition numbers of element matrigpparently, this also
curbs the condition number of the global system matrix. vakiively, there exist
different heuristic recipes for choosing a priori the numbePWs per element to
balance accuracy and conditioning: in 2D, the widely ciied, [eq. (14)] suggests
pk = roundkhy +C(kh¢)Y3) with 3 < C < 14 for the UWVF, while[[71§5.1.1]
proposegk = | 2khk | for the VTCR. For the WBM,[[24§3.2] proposes a rule to
balance propagative and evanescent basis function§3ske

The most straightforward cure for instability would tratle PW basis 0¥, (K)
from (14) for a more stable basis, found by local orthonoisadibn as in the case of
polynomial FEM,cf. the approach from [913.1]. However, instability may sneak
in through the back door and manifest itself in severe impéacbund-off errors
during orthonormalisation and recombination of elementives. The use of high-
precision arithmetic may be advisable, but has never beemrdented.

For the sake of stability, PWs may be replaced by the gesedlharmonics
polynomials introduced i3.1. In 2D, a scaling of the GHPs has been devised
in [77], in order to lower the condition number of the resuitiUWVF:

Jo(k|x —xk|) €@
ky/ |95 (khe) [P + 3 (k) P

In [[77], it is also shown that the conditioning of GHP-based/\JF schemes is
better than for methods based on PWs, and that it improvesguiar meshes. This
might be related to the orthogonality of GHPs on balls.

The numerical experiments ih [583.7] suggest that the use of fundamental
solutions as basis functions may considerably reduce thditoning of UWVF
matrices, at the expense of accuracy. Both accuracy andticoridg increase the
further the centres of the fundamental solutions are fragretement.

The use of iterative solvers for linear systems generatetréfjtz methods en-
tails preconditioning. For PW basis functions, the firstgosal in [19,52.4] for the
UWVF was a local preconditioner, equivalent to an orthoraisation of the PW
basis with respect to drf inner product on the boundary of mesh cells. An interest-
ing connection of the local preconditioner with non-ovpgdang optimised Schwarz
domain decomposition methods was discovered_in [13]. Thal lpreconditioner
was used in conjunction with a BIiCGStab Krylov subspaceesdlv [61] and aug-
mented by a coarse-grid correction in the spirit of non-taming domain decom-
position in [59,118]. The coarse space is again spanned ks; Pis is also true for
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the two-level sub-structuring preconditioner proposedd&M/DGM (seef2.2.3)
in [34]]. Two-level, non-overlapping Schwarz domain decosifjon precondition-
ers for PWDG (essentially UWVF) have been tested_ in [5]; ¢heeconditioners
seem to be robust with respect to the wavenunkbend the local number of PW
directions, although they do not seem to be perfectly séakafth respect to the
number of subdomains.

5 Assessment and conclusion

Faced with a flurry of different Trefftz methods and a wealtmamerical data, we
feel at a loss about making unequivocal statements abouoi¢hiés of Trefftz meth-
ods, let alone ranking them according to some undisputégfieri Rigorous theory
is available for LS method$2.1), TDG 2.2.1), and PUM{2.8). Combined with
approximation results for suitable Trefftz bases, thisi$et® better asymptotic esti-
mates in terms of orders of convergence in the number of degrfidreedom to what
is available for polynomial FEM (e.d.[52,54]). The depemckeof crucial constants
on the wavenumbdkis explicit in several cases, but the orderkiare usually not
better than for polynomial methods. Thus theory fails tovte information about
the key issue ofK-robust” accuracy withK-independent” cost. Moreover, numeri-
cal dispersion will also haunt local Trefftz methods in tase ofh-refinement; thus
they provide no escape from the pollution error.

We also advise caution when reading numerical experimbatguse they may
be tarnished by selection bias, making authors sublinyimédk test cases matching
the intended message of an article. Disregarding this, ‘®lgactive” comparisons
are inevitably confined to a few simple model problems. Thiproblematic, be-
cause different model problems sometimes seem to suppeosdp conclusions.

From our experience, the power of Trefftz methods can bestdsaed byp-
refinement using approximation by Trefftz functions in et as large as possi-
ble. In the presence of singularities we recommend eitheeluie of corner basis
functions §3.4) in 2D, orhp-refinement, maybe using standard polynomial approx-
imation on small elements as in [88]. There is a solid thécakfoundation, when
this is done in the LS, TDG, or PUM framework. The resultinginoels should be
able to compete successfully with polynomial FEM even inrtiidre sophisticated
versions tailored to wave propagation problems|[30, 35, 83]

The discussion of adaptive approache$4id hints that some Trefftz trial spaces
have approximation capabilities well beyond the reach dfqamials. Directional
adaptivity seems to be very promising, but much researdhstilll be required to
convert it into a reliable practical algorithm. The sameleggpto iterative solvers
and preconditioners for Trefftz schemes, §4€3, which might also benefit con-
siderably from the extra information contained in Trefftalt spaces. Hence, we
believe that many exciting possibilities offered by theaaé Trefftz approximation
still await discovery and that the full potential of Trefftzethods is only gradually
being realised.
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Appendix A: Condition numbers of plane wave mass matrices

Given a wave numbée> 0 andp € N distinct unit vectorsl, c R", /=1,...,p, and
a domainK C R" with barycentrexx, the symmetric positive definite plane wave
element mass matrid k onK is defined as

: p
My = (/ alkd - (x—xc) .eikdm-(xxK)d\/)
JK

/,m=1

Forn =2 we computed spectral condition numberdif for equi-spaced directions
d; = (cog2m?/p),sin(2m¢/p)), £ =0,...,p—1. Forn= 3 we choose the directions
dy as the “minimum norm points” according to I.H. Sloan and RA&mersley
[103/116]. These points are indexed by a layelN andp = (q+ 1)?. The spectral
condition numbers are plotted in Figurk 1 foe= 2, K = (—1,1)?, and Figurd R
for n=3,K = (—1,1)3. They have been computed with MATLAB using the high-
precision arithmetic (200 decimal digits) provided by thévAnpix Multi-Precision
Toolboxl.

2 http:/lwww.advanpix.com/
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