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A Survey of Trefftz Methods for the Helmholtz
Equation

Ralf Hiptmair, Andrea Moiola and Ilaria Perugia

Abstract Trefftz methods are finite element-type schemes whose test and trial func-
tions are (locally) solutions of the targeted differentialequation. They are particu-
larly popular for time-harmonic wave problems, as their trial spaces contain oscillat-
ing basis functions and may achieve better approximation properties than classical
piecewise-polynomial spaces.

We review the construction and properties of several Trefftz variational formula-
tions developed for the Helmholtz equation, including least squares, discontinuous
Galerkin, ultra weak variational formulation, variational theory of complex rays and
wave based methods. The most common discrete Trefftz spacesused for this equa-
tion employ generalised harmonic polynomials (circular and spherical waves), plane
and evanescent waves, fundamental solutions and multipoles as basis functions; we
describe theoretical and computational aspects of these spaces, focusing in particu-
lar on their approximation properties.

One of the most promising, but not yet well developed, features of Trefftz meth-
ods is the use of adaptivity in the choice of the propagation directions for the basis
functions. The main difficulties encountered in the implementation are the assem-
bly and the ill-conditioning of linear systems, we briefly survey some strategies that
have been proposed to cope with these problems.
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1 Introduction

Given a linear PDE, a Trefftz method is a volume-oriented discretisation scheme, for
which all trial and test functions, when restricted to any element of a given mesh, are
solutions of the PDE under consideration. The name comes from the work [112] of
E. Trefftz, dating back to 1926, where this idea was applied to the Laplace equation.
Since then, several versions of Trefftz methods have been proposed and applied to a
range of PDEs by different groups of mathematicians, engineers and computational
scientists, often unaware of each other. Typical PDEs addressed arelinear, with
piecewise-constant coefficientsandhomogeneous, i.e. with vanishing volume source
term.

Trefftz methods are related to both finite element (FEM) and boundary element
methods (BEM). With the former they have in common that they provide a dis-
cretisation in the volume. With the latter they share some characteristics such as the
need of integration on lower-dimensional manifolds only. Compared to conventional
FEMs, Trefftz methods have attracted attention mainly for two reasons:(i) they may
need much fewer degrees of freedom than standard schemes to achieve the same ac-
curacy, and(ii) they incorporate some properties of the problem’s solution(such as
oscillatory character, wavelength, maximum principle, boundary layers) in the trial
spaces, and thus also in the discrete solution. In addition,compared to BEMs, an
advantage of Trefftz schemes is that they do not require the evaluation of singular
integrals.

Comparing with finite and boundary elements, in 1997 Zienkiewicz [121] stated:
“. . . it seems without doubt that in the future Trefftz type elements will frequently
be encountered in general finite element codes.. . . It is the author’s belief that the
simple Trefftz approach will in the future displace much of the boundary type anal-
ysis with singular kernels.”While this prediction has not yet come true, in the last
years more and more work has been devoted to the formulation,the analysis and the
validation of these methods and substantial progress has been accomplished.

In this chapter we survey Trefftz finite element methods for the homogeneous
Helmholtz equation(−∆u− k2u= 0), which models acoustic wave propagation in
time-harmonic regime. For medium and high frequencies, i.e. for values ofkL in a
range of 102 to 104, wherek> 0 is the wavenumber, andL a characteristic length of
the region of interest, the numerical solution of the Helmholtz equation in 2D and
3D is particularly challenging. A main reason is that Helmholtz solutions oscillate
with a wavelength proportional to the inverse ofk. Hence, piecewise polynomials do
not provide efficient approximation. Trefftz schemes are thus particularly relevant
as they can improve on the point where (polynomial) FEMs fail: the approximation
properties of the basis functions. Moreover, some Trefftz methods can remedy other
shortcomings that often haunt discretisations of time-harmonic problems, such as
the lack of coercivity and the presence of minimal resolution conditions to guarantee
unique solvability. Theorem 2 in this chapter is an example.Earlier overviews of
Trefftz schemes for the Helmholtz equation, together with numerous references,
can be found in [98], [85, Ch. 1] and [76, Ch. 3]. Surveys of Trefftz schemes for
other equations are in [67,75,99,121].
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For most of the Trefftz spaces used, continuity across interfaces separating mesh
elements cannot be enforced strongly, as Trefftz functionsare not as “flexible” as
piecewise polynomials. As a consequence, the standard Helmholtz variational for-
mulation posed in subspaces of the Sobolev spaceH1 is not applicable and discreti-
sations must be used that can accommodate discontinuous trial functions. A wide
array of different variational formulations has been proposed and in§2 we attempt
a classification and a comparison of the best known. We identify three main classes
of formulations:(i) least squares(LS, §2.1), where squares of suitable norms of
residuals are minimised;(ii) discontinuous Galerkin(DG, §2.2), whose formula-
tions arise from local integration by parts and which may or may not use Lagrange
multipliers on mesh interfaces;(iii) weighted residual(§2.3), which are defined by
testing residuals against suitable traces of test functions. The methods discussed
include: the Trefftz-discontinuous Galerkin (TDG), the ultra weak variational for-
mulation (UWVF), the discontinuous enrichment method (DEM), the variational
theory of complex rays (VTCR) and the wave based method (WBM). Moreover, in
the spirit of the symposium that led up to the present volume,to “build bridges” with
a wider portion of the literature and of the computational PDE community, in§2.4
we describe some older Trefftz schemes defined on a single element and in§2.5
we consider some methods that are not Trefftz but use oscillating basis functions
that are “approximately Trefftz”, such as the partition of unity method (PUM). To
easily compare them, we write all formulations for the same Robin–Dirichlet model
boundary value problem (see§1.1).

In §2 we completely gloss over the choice ofbasis functions and discrete spaces
employed, whose description is postponed to§3. This is because, apart from few ex-
ceptions such as unbounded elements, any Trefftz discrete space can be employed in
any Trefftz variational formulation. We believe that separating the discussion of the
two main components in the definition of a Trefftz method, i.e. variational formu-
lations and discrete spaces, will make the presentation clearer. The most common
basis functions for Trefftz methods are plane waves (x 7→ eikd·x for a fixed unit vector
d) and generalised harmonic polynomials (i.e. circular/spherical waves, products of
circular/spherical harmonics and Bessel functions), for which quite a complete ap-
proximation theory exists, see§3.1–3.2. Other basis functions include fundamental
solutions, multipoles, evanescent waves and corner waves.We note that, since the
Helmholtz operator is the sum of a second- and a zero-order term, no non-vanishing
piecewise-polynomial Trefftz function is possible.

In this chapter we state a few theorems, none of them is entirely new. Lemma 1
exemplifies the technique of [89] to control theL2 norm of Trefftz functions with
mesh-dependent norms containing interface jumps. If a Trefftz method is well-posed
in a suitable skeleton norm, this allows to control the errorin the volume; we do this
for the LS method in Theorem 1 and for the TDG method (well-posed by Theo-
rem 2) in Corollary 1. This can be combined with the approximation results for
circular/spherical and plane waves in§3.1–§3.2. In brief: we provide the tools to
derive stability and orders ofL2-convergence in the volume for all Trefftz methods
that are well-posed in suitable skeleton norms.
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Trefftz methods suffer from two main problems:ill-conditioningdue to the poor
linear independence of the basis functions, and the need fornumerical quadrature
for oscillating integrands. On the other hand, since the PDE is solved exactly in each
element, only low-dimensional integrals on the mesh skeleton need to be evaluated,
leading to massively reduced computational cost for the assembly of the linear sys-
tems. Moreover, if plane wave bases are used, on any polygonal/polyhedral mesh
the integrals can be computed analytically in a cheap way. In§4 we briefly review
strategies developed to deal with the computation of matrixentries and to cope with
ill-conditioning.

Some Trefftz methods also provide an attractive framework for implementing
non-standard adaptive policies, like directional adaptivity following dominant wave
directions. This is made possible, because plane wave-typeTrefftz functions natu-
rally encode a direction of propagation. More details are given in§4.2.

As mentioned, in this chapter we only discuss the Helmholtz equation, i.e. acous-
tic problems, and constant material parameters. The discrete Trefftz spaces used
for the Helmholtz equation with variable coefficients are briefly addressed in§3.4.
Other time-harmonic wave problems that have been tackled with Trefftz methods in-
clude electromagnetism (Maxwell equations) [18,85], linearised Euler equation and
general hyperbolic systems [37], linear elasticity (Navier equation) [76], (fourth or-
der) Kirchhoff–Love plates [27,70,76,100], Koiter’s linear shell theory [100], poro-
elasticity [27,§5.4], coupled vibro-acoustic problems [27]. A list of applications
and references can be found in [24,§5.1] (with a focus in vibrational mechanics)
and in [76, 85]. A related application is tackled by themethod of particular solu-
tions (MPS) of [16, 36], which uses Helmholtz solutions to approximate Laplace
eigenvalue problems; in this setting the wavenumber is partof the unknowns. For
recent work on space–time Trefftz methods for wave propagation in time-domain
see [69] and references therein.

Several comparisons of the numerical performances of different Trefftz schemes
for simple model problems have been published, e.g. [7] (PUM, DEM, gener-
alised FEM), [40] (LS, UWVF), [60] (PUM, UWVF), [39] (DG, UWVF, LS), [115]
(DEM, UWVF, PUM), [59] (LS, UWVF, VTCR), where we have included the PUM
even if strictly speaking it is not a Trefftz method. However, from these results it is
difficult to conclude that any formulation is clearly preferable from a computational
point of view. A general conclusion might be that, in order toachieve the best ac-
curacy and conditioning, the choice of the approximation space matters more than
that of the variational formulation. We reiterate that these two choices are mutu-
ally independent: any Trefftz discrete space might be used in any Trefftz variational
formulation. We make some further concluding remarks in§5.

1.1 Model boundary value problem

We rely on a simple model boundary value problem (BVP) for theHelmholtz equa-
tion that will be used to describe and compare the different Trefftz methods. Let
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Ω ⊂ Rn, n= 2,3, be a bounded, Lipschitz, connected domain, with∂Ω = ΓD ∪ΓR,
whereΓD andΓR are disjoint components of∂Ω ; ΓR 6= /0 whileΓD might be empty.
Denote byn the outward-pointing unit normal vector field on∂Ω . We consider the
homogeneous Robin–Dirichlet BVP

−∆u− k2u= 0 in Ω ,

u= gD onΓD,

∂u
∂n

+ ikϑu= gR onΓR.

(1)

HeregD andgR are the boundary data, i is the imaginary unit,k∈R (the wavenum-
ber) andϑ (the impedance parameter) are positive constants. We assume thatΩ , gD

andgR are such thatu ∈ H3/2+s(Ω), for somes> 0. In typical sound-soft acous-
tic scattering problems,ΓD represents the boundary of the scatterer, andΓR stands
for an artificial truncation of the unbounded region where waves propagate; see
e.g. [53,§2].

Simple generalisations of the BVP (1) that can be tackled by Trefftz methods are:

• Neumann boundary conditions∂u/∂n = gN onΓD;
• discontinuous and piecewise-constant wavenumberk;
• piecewise constant and discontinuous tensor coefficientA in the more general

Helmholtz equation−∇ · (A∇u)− k2u= 0, e.g. [61] and [18, Ch. I.5];
• spatially varying impedance 0< ϑ ∈ L∞(ΓR);
• absorbing mediak∈ C;
• inhomogeneous Helmholtz equation−∆u− k2u = f , where the source termf

might be either localised [37,§5], [24,57,58], or not [1,§2.2];
• scattering in unbounded domains;
• scattering by periodic diffraction gratings in [21,119];
• scattering by screens (i.e. manifolds with boundary, leading to non-Lipschitz

computational domains) in [120].

The presence of smoothly varying coefficients is more challenging for Trefftz meth-
ods, as in general no Trefftz functions in analytical form are available; this extension
is briefly addressed in§3.4.

1.2 Notation

We introduce a finite element partitionTh = {K} of Ω , not necessarily conform-
ing. We writenK for the outward-pointing unit normal vector on∂K, andh for
the mesh width ofTh, i.e. h := maxK∈Th hK , with hK := diamK. We denote by
Fh :=

⋃
K∈Th

∂K andF I
h := Fh \ ∂Ω the skeleton of the mesh and its inner part.

We also introduce some standard DG notation. Given two elementsK1,K2 ∈ Th,
a piecewise-smooth functionv and vector fieldτ onTh, we define on∂K1∩∂K2
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the averages: {{v}} := 1
2(v|K1

+ v|K2
), {{τ}} := 1

2(τ |K1
+ τ |K2

),

the normal jumps: [[v]]N := v|K1
nK1 + v|K2

nK2, [[τ]]N := τ |K1
·nK1 + τ |K2

·nK2.

We denote by∇h the element-wise application of the gradient∇, and write∂n =
n ·∇h on ∂Ω and∂nK = nK ·∇h on ∂K for the normal derivatives.

Fors> 0, define the broken Sobolev spaceHs(Th) and theTrefftz space T(Th):

Hs(Th) :=
{

v∈ L2(Ω) : v|K ∈ Hs(K) ∀K ∈ Th
}
,

T(Th) :=
{

v∈ H1(Th) : −∆v− k2v= 0 in K and∂nK v∈ L2(∂K) ∀K ∈ Th
}
.

The discrete Trefftz spaceVp(Th) is a finite-dimensional subspace ofT(Th) and
can be represented asVp(Th) =

⊕
K∈Th

VpK (K), whereVpK (K) is a pK-dimensional
subspace ofT(Th) of functions supported inK. We use the termsh-convergence to
mean the convergence of a sequence of numerical solutions tou when the meshTh

is refined, i.e.h → 0, p-convergence to designate the convergence when the local
spaces are enriched, i.e.p := minK∈Th pK → ∞, andhp-convergence to mean the
convergence for a suitable combination of the two refinementstrategies. We remark
that when non-polynomial spaces are used, as it is the case for Trefftz methods in
frequency domain, it is not obvious how to define the “degree”of a space, thuspK

denotes the local number of degrees of freedom. Finally, we denote by Re{·}, Im{·}
and · the real part, the imaginary part and the conjugate of a complex value.

We note that some of the methods in§2, such as the TDG, the UWVF and the
VTCR, involve sesquilinear forms (i.e. test functions are conjugated) while others,
such as the DEM and the WBM, involve bilinear forms (test functions are not con-
jugated). Any method (if no unbounded elements are used) canbe modified to either
form, even though sesquilinear forms are more amenable to stability and error anal-
ysis; for each method we follow the conventions of the references we cite.

1.3 Estimation of the L2(Ω) norm of (piecewise) Trefftz functions

Given two uniformly positive functionsλ ∈ L∞(F I
h ∪ΓD) andσ ∈ L∞(F I

h ∪ΓR), we
introduce the followingskeletonseminorm (defined e.g. onH3/2+ε(Th), ε > 0):

|||v|||2λ ,σ :=‖σ [[∇hv]]N‖
2
L2(F I

h)
+ ‖λ [[v]]N‖2

L2(F I
h)

(2)

+ ‖σ(∂nv+ ikϑv)‖2
L2(ΓR)

+ ‖λv‖2
L2(ΓD)

.

A special property of the Trefftz spaceT(Th) is that this seminorm is actually a
norm for it, and that it controls theL2(Ω) norm, as it was first proved by P. Monk
and D.Q. Wang using a special duality technique in [89, Th. 3.1].

Lemma 1. ||| · |||λ ,σ is a norm in T(Th). Moreover, all Trefftz functions v∈ T(Th)∩

H3/2+ε(Th), ε > 0, satisfy the estimate



A Survey of Trefftz Methods for the Helmholtz Equation 7

‖v‖L2(Ω) ≤C∗|||v|||λ ,σ ,

with a constant C∗ > 0 depending only on k,λ ,σ ,ϑ ,Ω andTh. Setting

σK := essinfx∈∂K\ΓD
σ(x), λK := essinfx∈∂K\ΓR

λ (x) ∀K ∈ TK ,

we can express the dependence of C∗ on the relevant parameters in the following
situations:

(i) If ∂Ω = ΓR andΩ is either convex or smooth and star-shaped with respect to a
ball, then

‖v‖L2(Ω) ≤C1 diamΩ max
K∈Th

(( 1

σ2
Kk

+
k

λ 2
K

)(
1+

1
khK

))1/2

|||v|||λ ,σ ,

where C1 > 0 depends onϑ , the shape-regularity of the mesh and the shape ofΩ .
(ii) If k > 1, Ω ⊂ R

2 has diameterdiamΩ = 1 and satisfies

x ·n ≥ γ > 0 a.e. onΓR and x ·n ≤ 0 a.e. onΓD, (3)

and each element K is star-shaped with respect to a ball of radiusρKhK , we have

‖v‖L2(Ω) ≤C2 max
K∈Th

(( 1

σ2
Kk

+
k

λ 2
K

)(
(khK)

2t +
1

khK

))1/2

|||v|||λ ,σ ,

where0 < t < sΩ ≤ 1/2, sΩ being the “elliptic regularity parameter” of [53,
eq. (6)], and C2 > 0 depends only onΩ , ϑ , t, and on the shape-regularity
infK∈Th ρK of the mesh.

The bound in part(i) of Lemma 1 can be verified following the proof of [85,
Lemma 4.3.7], while that in part(ii) requires also the stability and trace estimates
of [54, eq. (7), (20)] (see also [54, Lemma 4.5] and a weaker but more general bound
in [53, Lemma 4.4]). Conditions (3) on the shape ofΩ are satisfied ifΓR is bound-
ary of a domain star-shaped with respect to a ball centred at0 andΓD is boundary
of a smaller domain (a scatterer, or a “hole” inΩ ) star-shaped with respect to0,
see [53,§2, Fig. 2]. The value of the bounding constants arise only from (a) trace
estimates for mesh elements, and(b) stability bounds for an inhomogeneous Helm-
holtz BVP onΩ , thus more general shapes ofΩ give different dependencies onk
(using e.g. thek-explicit H1(Ω) bounds in [30, Th. 2.4], [106, Th. 1.6], and bounds
in higher-order norms as in [41, Lemma 2.12]). This result isrelevant because, for
Trefftz methods that allow a priori stability or error estimates, these are typically in
a skeleton norm similar to||| · |||λ ,σ . Thus Lemma 1 can lead to error estimates in
the mesh- and parameter-independentL2(Ω) norm; we pursue this in§2.1,§2.2.1.
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2 Trefftz variational formulations

2.1 Least squares (LS) methods

Least squares methods are perhaps the simplest kind of Trefftz formulations. They
allow simple error and stability analysis, are easy to implement, lead to sign-definite
Hermitian (or symmetric) linear systems, at the price of a possibly worse condition-
ing. A description of Trefftz LS schemes for the Helmholtz equation with numerous
references is given by M. Stojek in [107]. The same method is namedframeless
Trefftz elementsin [99, §3.6] andweighted variational formulation(WVF) in [59].
In [89], Monk and Wang proposed the following Trefftz LS method for the BVP (1):

find uLS = argmin
vhp∈Vp(Th)

J(vhp;gR,gD), where

J(v;gR,gD) : =
∫

F I
h

(
λ 2
∣∣[[v]]N

∣∣2+σ2
∣∣[[∇hv]]

∣∣2
)

dS (4)

+
∫

ΓR

σ2
∣∣∂nv+ ikϑv−gR

∣∣2dS+
∫

ΓD

λ 2
∣∣v−gD

∣∣2dS,

where[[∇v]] := ∇hv|K1
−∇hv|K2

on ∂K1∩∂K2 is the jump of the complete gradient
(whose “sign” depends on a choice of the ordering of the elements in Fh). The
LS methods in [107, eq. (7)] and [75, Ch. 10] differ from (4) (apart from the use
of different boundary conditions) in that only the normal component of the jump
of the gradient[[∇hv]]N is penalised onF I

h, as opposed to the entire jump[[∇hv]].
Obviously, every Galerkin discretisation of the variational problem arising from (4)
will give rise to a Hermitian linear system, which is a clear advantage of LS methods.

The choice of the relative weights 0< λ ,σ ∈ L∞(Fh) between the terms in (4)
is a crucial point for the conditioning and the accuracy of LSmethods. Different
choices have been proposed (for 2D problems):σ = 1 andλ = k or λ|e = 1/he

in [89, §2]; λ = 1 and σ|e = he/(pK1 + pK2) in [107, §3.2]; λ = 1 and σ|e =

O(max{pK1, pK2}
−1/2) in [75, Th. 10.3.4]. Here,e= ∂K1∩∂K2 denotes a mesh in-

terface,he its length,pK1 andpK2 the dimensions of the local Trefftz spacesVpK1
(K1)

andVpK2
(K2) on the adjacent elementsK1 andK2. In 2D and 3D, [59] suggests to

chooseσ = 1 andλ = k and, for BVPs with singular solutions,σ|ΓR
= k1/2.

The LS method computes the elementuLS in Vp(Th) that minimises the error
u−uLS measured in the skeleton norm‖v‖2

LS := J(v;0,0), thus orders of converge
in this norm follow immediately from approximation bounds for the specific discrete
Trefftz spaceVp(Th) chosen, see e.g.§3 below or [89]. Since|||v|||λ ,σ ≤‖v‖LS (with
equality if J in (4) is defined with[[∇hv]]N instead of[[∇hv]]), Lemma 1, following
[89, Th. 3.1], guarantees that theL2(Ω) norm of the error of the LS solution is
controlled by the value of the LS functional, thus convergence follows also inΩ .
This is summarised in Theorem 1, see§1.3 for the extension to different domains.
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Theorem 1.Let u be the solution of(1) and uLS ∈ Vp(Th) the discrete LS solution
of (4). Then, for C∗ > 0 depending only on k,λ ,σ ,ϑ ,Ω andTh,

‖u−uLS‖LS = inf
vhp∈Vp(Th)

∥∥u− vhp

∥∥
LS
,

‖u−uLS‖L2(Ω) ≤C∗ inf
vhp∈Vp(Th)

∥∥u− vhp

∥∥
LS
.

If λ = k, σ = 1, ∂Ω = ΓR andΩ is either convex or smooth and star-shaped, then

‖u−uLS‖L2(Ω) ≤C0 diamΩ k−1/2
(

1+
(
k min

K∈Th

hK
)−1/2

)
inf

vhp∈Vp(Th)

∥∥u− vhp

∥∥
LS
,

where C0 > 0 depends only onϑ , the shape ofΩ and the shape-regularity ofTh.

Thehp-convergence theory of [54] easily extends to the LS method.In 2D, if the LS
parameters are defined asλ 2

|e = kh/min{hK1,hK2} for e= ∂K1∩∂K2, λ 2
|e = kh/hK

for e⊂ ∂K∩ΓD, andσ2 = 1/k, under the assumptions onΩ and on the discretisation
stipulated in [54], then the‖·‖LS norm of the LS error is estimated as in [54, eq. (48)]
and theL2(Ω) norm of the same error converges to zero exponentially in thesquare
root of the total number of degrees of freedom used.

In [75, Ch. 10], the Trefftz LS scheme is analysed for pure Dirichlet boundary
conditions (ΓR = /0); the crucial parameter in the analysis is the relative distance
betweenk2 and the closest Dirichlet eigenvalue of−∆ . Error bounds in the broken
Sobolev normH1(Th) are derived.

In the numerical tests in [39] and [40], the LS method appearsto be slightly less
accurate than the UWVF (see§2.2.2 below) and a DG method, all employed with
the same discrete space. On the other hand, in the examples in[59], the performance
of the LS method is comparable to that of the UWVF and considerably better than
that of the VTCR.

2.1.1 The method of fundamental solutions (MFS)

A popular class of LS Trefftz methods is the method of fundamental solutions. A
lucid introduction to the MFS for Helmholtz problems, together with numerous ref-
erences, is in [31]. The MFS is considered a special case ofsource simulation tech-
niquein [92]. The characteristic features of the most common formof the MFS are:
(i) the domain is not meshed;(ii) the N basis functions are fundamental solutions
(H(1)

0 (k|x− yℓ|) in 2D, ℓ = 1, . . . ,N, whereH(1)
0 is a Hankel function of the first

kind and order zero andyℓ ∈R2\Ω , see§3.3);(iii) the minimisation of theL2(∂Ω )
norm of the error is substituted by the minimisation of the squared error overM ≥N
pointsx j ∈ ∂Ω , j = 1, . . . ,M. If M = N, the MFS is not an LS method but it simply
interpolates the boundary conditions with Trefftz functions.

The same method with plane wave bases is compared to the MFS in[1]. A variant
that is popular in acoustics is theHelmholtz equation least-squares(HELS) method,
which uses spherical-wave and multipole basis functions, see the recent book [117]
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and references therein. LS variants of MFS relying on higherorder multipoles in
addition to simple Hankel functions have a long history in wave simulations [90,§2].

The locationsyℓ of the basis singularities are either obtained numericallytogether
with the coefficients multiplying the basis functions usingnon-linear LS solvers [31,
eq. (7)] (leading to a highly adaptive method), or can be fixeda priori on a smooth
boundary inRn\Ω , e.g. using complex analysis techniques (in 2D) as in [9], orare
determined based on heuristic criteria [90,§3].

The MFS with fixed nodes can be interpreted as a discretisation of a compact
transfer operator related to a single layer potential representation. For this rea-
son it yields ill-conditioned linear systems; however thisdoes not rule out effi-
cient computations as demonstrated and analysed in [9] and in [10, §7]. Accord-
ing to [31, p. 766], the larger the distance between the nodesandΩ , the more ill-
conditioned the linear system and the more accurate the solution (though this might
seem counter-intuitive).

A strength of the MFS is its simplicity of implementation, asno mesh is needed
and all geometric information is contained in only two pointsets{yℓ}N

ℓ=1 ⊂Rn\Ω ,
{x j}

M
j=1 ⊂ ∂Ω . Since fundamental solutions satisfy Sommerfeld radiation condi-

tion, the MFS is often used for scattering problems in unbounded domains.
In [9], the convergence of the MFS for Dirichlet problems on acircular domain

is analysed in great detail, and a special design of the curvesupporting the funda-
mental solutions is proposed for general domains with analytic boundaries. With
this choice, extremely accurate and cheap computations arepossible.

In [10], Barnett and Betcke present a finite element scheme that couples the LS
formulation of [107] with the MFS in 2D. They consider the scattering by sound-soft
(non-convex) polygons; the total field is approximated inside an artificial boundary
and the scattered field outside of it. Singular Fourier–Bessel basis functions de-
pending on the scatterer’s corners (see§3.4) are used on all elements adjacent to
the scatterer, strongly enforcing the (homogeneous) Dirichlet boundary conditions;
due to this, no terms on∂Ω appear in the method formulation. Exponential orders
of convergence are proved. The strong enforcement of boundary conditions may be
substituted by an LS approach to deal with more general linear boundary conditions,
curved boundaries and transmission problems.

2.2 Discontinuous Galerkin (DG) methods

The discontinuous Galerkin (DG) methods constitute a wide class of numerical
schemes for the approximation of PDEs, employing discontinuous test and trial
functions [6]. A great number of tools for their design, implementation and error
analysis have been devised, so they are a natural setting forTrefftz methods. In [55]
we showed that when the interior penalty (IP) method, one of most common DG
schemes, is applied to the Laplace equation, the use of Trefftz spaces (made of
harmonic polynomials) offers better accuracy than standard spaces also in anhp-
context. Similar considerations were made in [74] for theh-convergence of the local
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DG (LDG) method. To our knowledge, nostandardDG variational formulation (e.g.
any of those in [6]) has been proposed in the literature to discretise time-harmonic
problems with Trefftz basis functions. Possible reasons for this are that the error
analysis of standard DG schemes requires inverse estimates, which are well-known
for polynomial spaces but harder in the Trefftz case (however, see [46,§3.2] for
h-explicit inverse estimates for plane waves in 2D), and thatthe application of for-
mulations designed for the Laplace equation to the Helmholtz case requires some
problematic minimal resolution condition to ensure uniquesolvability [82].

In the next subsections we outline some DG formulations thathave been designed
specifically for Trefftz discretisations; some of these have later been employed also
with polynomial approximating spaces, e.g. [82,88].

A note on terminology: all Trefftz methods presented in thissurvey involve the
discretisation of variational formulations based on discontinuous functions, how-
ever with “DG” we denote only those methods that arrive at local variational for-
mulations by applying integration by parts to the PDE to be approximated. On the
contrary, least squares and weighted residual methods simply enforce (weakly) con-
tinuity and boundary conditions, irrespectively of the considered PDE.

2.2.1 The Trefftz-DG (TDG) method

Originally, Trefftz-discontinuous Galerkin (TDG) methods (or plane wave DG,
PWDG, when used in combination with plane wave basis functions) were in-
troduced as a way of recasting the ultra weak variational formulation (UWVF)
of [18, 19] (see§2.2.2 below) in a framework that would facilitate its theoretical
analysis [17,46]. A similar, but more general, Trefftz-DG framework was proposed
in [37,39], arising from methods for hyperbolic equations;see Remark 1 below.

We first derive the TDG formulation as in [53]. We multiply theHelmholtz equa-
tion (1) by a test functionv and integrate by parts twice on eachK ∈ Th:

0=

∫

K
(−∆u− k2u)vdV =

∫

K
(∇u ·∇v− k2uv)dV −

∫

∂K
∇u ·nK vdS

=
∫

K
u(−∆v− k2v)dV +

∫

∂K
u∂nK vdS−

∫

∂K
∂nK uvdS.

We then replaceu andv by discrete functionsuhp,vhp ∈ Vp(Th), the trace ofu on
∂K by the numerical flux̂uhp, and the trace of∇u by the numerical flux ikσ̂hp (both
defined below), obtaining the elemental TDG formulation:

∫

∂K
ûhp∂nK vhpdS−

∫

∂K
ikσ̂hp ·nK vhpdS= 0, (5)

where the volume integral vanishes as the test functionvhp ∈VP(Th) ⊂ T(Th) is a
Trefftz function. Variants of DG methods are distinguishedby the underlying nu-
merical fluxes. Here we opt for theprimal fluxes:
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ikσ̂ hp=





{{∇huhp}}−α ik[[uhp]]N on faces inF I
h,

∇huhp− (1− δ )
(
∇huhp+ ikϑuhpn− gRn

)
on faces inΓR,

∇huhp−α ik(uhp−gD)n on faces inΓD,

(6)

ûhp=





{{uhp}}−β (ik)−1[[∇huhp]]N on faces inF I
h,

uhp− δ
(
(ikϑ)−1∇huhp ·n+uhp− (ikϑ)−1gR

)
on faces inΓR,

gD on faces inΓD,

(7)

where the flux parametersα > 0,β > 0, 0< δ ≤ 1/2, are bounded functions defined
on suitable unions of edges/faces (see also Table 1). Addingover all elements, we
obtain the following formulation of the TDG method:

find uTDG ∈Vp(Th) s.t. ATDG(uTDG,vhp) = ℓTDG(vhp) ∀vhp ∈Vp(Th), where

ATDG(u,v) := (8)
∫

F I
h

(
{{u}}[[∇hv]]N −{{∇hu}} · [[v]]N +α ik[[u]]N · [[v]]N −β (ik)−1[[∇hu]]N[[∇hv]]N

)
dS

+

∫

ΓR

(
(1− δ )ikϑuv+(1− δ )u∂nv− δ∂nuv− δ (ikϑ)−1∂nu∂nv

)
dS

+
∫

ΓD

(
− ∂nuv+α ikuv

)
dS,

ℓTDG(v) :=
∫

ΓR

gR

(
(1− δ )v− δ (ikϑ)−1∂nv

)
dS+

∫

ΓD

gD

(
α ikv− ∂nv

)
dS.

The TDG method was introduced in the primal form described here in [44,46] and in
mixed form in [56], under the name ofplane wave DG (PWDG) method, following
the derivation of [6] of general DG schemes for elliptic equations. In [46], first-
order convergence in the meshwidth was established, using Schatz’ argument, for
2D Robin problems with source termf ∈ L2(Ω), plane wave discrete spaces and
quasi-uniform families of meshes. This was extended to higher orders inh in [84],
p-convergence in [52], three dimensions in [85], locally-refined meshes in [53], and
finally the exponential convergence in the number of degreesof freedom of itshp-
version was proved in [54]. Its dispersion analysis was performed in [44,45].

For polynomial discrete spaces, the advantages of using theformulation under-
lying the TDG method, compared to standard DG schemes, were analysed in [82].
In [15], the TDG formulation was utilised with (non-Trefftz) bases defined from os-
cillating functions from high-frequency asymptotics modulated with polynomials;
problems with varying coefficients were also considered.

The TDG formulation (8) can be seen as a modification of eitherthe interior
penaltymethod, or of thelocal DG (LDG) method (see e.g. [6]): with respect to
the interior penaltymethod, the stabilisation term multiplied byβ is added in the
TDG fluxes (7), while with respect to the LDG method, in the TDGfluxes (6), the
consistency term is written in terms of the primal variable ({{∇huhp}}) instead of
in terms of the auxiliary variable ({{ikσhp}}) and the additional stabilisation of the
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jumps ofσhp is removed. In [105], the TDG and the UWVF are seen as special
instances of a family of methods arising from integration byparts.

The a priori error analysis of the TDG relies on Theorem 2 below (e.g. [53,§4]),
which makes use of the following mesh- and flux-dependent seminorms:

|||v|||2TDG := k−1
∥∥∥β

1
2 [[∇hv]]N

∥∥∥
2

L2(F I
h)
+ k
∥∥∥α

1
2 [[v]]N

∥∥∥
2

L2(F I
h)

+ k−1
∥∥∥δ

1
2 ϑ− 1

2 ∂nv
∥∥∥

2

L2(ΓR)
+ k
∥∥∥(1− δ )

1
2 ϑ

1
2 v
∥∥∥

2

L2(ΓR)
+ k
∥∥∥α

1
2 v
∥∥∥

2

L2(ΓD)
;

|||v|||2TDG+ := |||v|||2TDG+ k
∥∥∥β− 1

2{{v}}
∥∥∥

2

L2(F I
h)
+ k−1

∥∥∥α− 1
2{{∇hv}}

∥∥∥
2

L2(F I
h)

+ k
∥∥∥δ− 1

2 ϑ
1
2 v
∥∥∥

2

L2(ΓR)
+ k−1

∥∥∥α− 1
2 ∂nv

∥∥∥
2

L2(ΓD)
.

Theorem 2.The seminorms||| · |||TDG and||| · |||TDG+ are norms in the Trefftz space
T(Th). The TDG sesquilinear form is continuous and coercive:

|ATDG(v,w)| ≤ 2|||v|||TDG+ |||w|||TDG, Im
{
ATDG(v,v)

}
= |||v|||2TDG

for all v,w∈ T(Th), thus there exists a unique solution uTDG ∈Vp(Th) to the TDG
formulation(8) and the quasi-optimality bound holds:

|||u−uTDG|||TDG ≤ 3 inf
vhp∈Vp(Th)

|||u− vhp|||TDG+ .

Choosingλ 2 = αk on F I
h ∪ΓD, σ2 = β/k on F I

h andσ2 = min{δ ,1− δ}/2kϑ
on ΓR, the norm (2) is controlled as|||v|||λ ,σ ≤ |||v|||TDG for all v ∈ T(Th). Thus,
by Lemma 1, theL2(Ω) norm of the TDG error can be controlled by its||| · |||TDG

norm, and so by the discrete space approximation properties. This result has been
stated in several slightly different forms, depending on the regularity of the solu-
tion u, the type of mesh used, the choice of the numerical flux parametersα,β ,δ ;
see [85, Lemma 4.3.7], [53, Lemma 4.4] and [54, Lemma 4.5]. Tostrike a balance
between the size of the constants arising from the duality argument of Lemma 1
and approximation errors, different flux parameters have been chosen on different
meshes and aiming at different types of convergence estimates, see Table 1. For il-
lustration, we state the result in the case of constant flux parameters, quasi-uniform
meshes, and domains that guarantee sufficiently smooth solutions for the dual prob-
lems; this follows from Lemma 1 and Theorem 2 (cf. [85, Cor. 4.3.8]).

Corollary 1. Let u be the solution of(1), whereΩ is either convex or smooth and
star-shaped, and let uTDG ∈ Vp(Th) be the solution of the TDG method with flux
parameters chosen as in the second row of Table 1. Then

‖u−uTDG‖L2(Ω) ≤C0 diamΩ
(

1+
(
k min

K∈Th

hK
)−1/2

)
inf

vhp∈Vp(Th)
|||u− vhp|||TDG+ ,
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where C0 > 0 depends only onϑ , the shape ofΩ and the shape-regularity of the
mesh, but is independent of k and Vp(Th).

The combination of the abstract error analysis outlined above and approximation
estimates for plane, circular and spherical waves (see§3) leads to a priorih-, p-
andhp-convergence estimates in||| · |||TDG andL2 norms, see [46, 52–54, 85]. The
dependence of the error bounds on the wavenumberk is explicit, as in Corollary 1.

α β δ
Quasi-uniform meshes,h-convergence [46]a/khK bkhK dkhK

Quasi-uniform meshes,p-convergence [52]a b d

UWVF (see§2.2.2) [19]1/2 1/2 1/2
Locally refined meshes,hp-convergence [53]ah/hK bh/hK dh/hK

Geometrically graded meshes, exponentialhp-convergence [54]ah/hK b d

Polynomial (non Trefftz) basis,hp-convergence [82]aq2
K/khK bkhK/qK dkhK/qK

Table 1: Different TDG flux parameters in (6) and (7) that havebeen considered.
Here a,b,d are positive functions independent of the other parameters; k is the
wavenumber;hK is the local meshwidth;h= maxK∈Th hK is the global meshwidth;
qK is the local polynomial degree (for the non-Trefftz version).

Remark 1.The Helmholtz equation may be written as the first order hyperbolic
system−iku + ∑n

j=1 ∂xj (A
( j)u) = 0, where u := (u;∇u/(ik)) and A( j) are the

(1+ n)× (1+ n) symmetric matrices whose only non-zero elements areA( j)
1, j+1 =

A( j)
j+1,1 = 1, for 1≤ j ≤ n. Then, similarly to [37, eq. (22)] or [39, eq. (5)], a general

Trefftz-DG method can be written as:

seek u ∈ Vp(Th) :=
{
(u,σ) : u∈Vp(Th),σ = ∇u/(ik)

}
s.t. ∀v ∈ Vp(Th)

∑
K1,K2∈Th,

K1 6=K2

∫

∂K1∩∂K2

(
Fin
|K1

u|K1
−Fin

|K2
u|K2

)
·
(
v|K1

− v|K2

)
dS+

∫

∂Ω
(Finu−g) ·vdS= 0

where the flux-splitting matricesFin,Fout are defined on∏K∈Th
∂K and satisfyFin ≤

0, Fout ≥ 0 (i.e. are negative and positive semi-definite, respectively), Fin +Fout =

( 0 n⊤K
nK 0

) on∂K, andFin
K1

=−Fout
K2

on∂K1∩∂K2. The boundary data are represented

by a suitable vector fieldg=−Foutu. The TDG in (8) (up to a factor−ik) is obtained
by choosing:
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Fin
K = Fout

K =




(
−α 1

2n⊤
K

1
2nK −βn⊗n⊤

)

(
−(1− δ )ϑ δn⊤

K

(1− δ )n − δ
ϑ n⊗n⊤

)

(
−α n⊤

K

0 0

)





(
α 1

2n⊤
K

1
2nK βn⊗n⊤

)
on∂K ∩F I

h,

(
(1− δ )ϑ (1− δ )n⊤

K

δn δ
ϑ n⊗n⊤

)
on∂K ∩ΓR,

(
α 0⊤

nK 0

)
on∂K ∩ΓD.

The right-hand side is represented by the vectorg = − 1
ik(

1−δ
δϑ−1nK

)gR on ΓR and

g=−( α
nK )gD onΓD.

2.2.2 The ultra weak variational formulation (UWVF)

The ultra weak variational formulation (UWVF) has been introduced in the 1990’s
by O. Cessenat and B. Després in [18, 19]. Since then it has received a great deal
of attention and has been applied to numerous PDEs and BVPs; we refer to [61]
for a description of its computational aspects and to [76,§3.5.2] for an extensive
bibliography. Different derivations can be found e.g. in [17,19,37,39,46]; in partic-
ular [17, 46] obtain the UWVF in the setting of DG schemes for elliptic problems
of [6], while [37, 39] derive it for general first-order hyperbolic systems using a
flux-splitting approach as we did for the TDG in Remark 1. Notethat different pa-
pers use different sign conventions. The extension of the UWVF to problems with
smooth coefficients has been tackled in [65].

To write its formulation for the BVP (1) in the Robin case, i.e. ΓD = /0, we first de-
fine the trace spaceX := ∏K∈Th

L2(∂K), and the operatorsFK : L2(∂K)→ L2(∂K),
mapping the boundary datumyK of a local adjoint-impedance Helmholtz BVP into
the impedance trace of the BVP solutioneK itself:

FK(yK) := (∂nK + ik)eK , where

{
−∆eK − k2eK = 0 in K,

(−∂nK + ik)eK = yK on∂K.

The Helmholtz BVP is written as a transmission problem across the mesh interfaces,
i.e., for allK,K′ ∈ Th,

−∆u− k2u= 0 in K,

∂nK u+ iku=−∂nK′ u+ iku on∂K ∩∂K′,

∂nK u+ ikϑu= gR on∂K ∩ΓR.

Then, after multiplying the first equation bye|K , e∈ T(Th), integrating by parts
twice, taking into account transmission and boundary conditions, and introducing
x,y∈ X defined asx|∂K =−∂nK u+ ikuandy|∂K =−∂nK e+ ike, the UWVF of prob-
lem (1) [19, (1.4)] reads: findx∈ X such that, for everyy∈ X,
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∑
K∈Th

∫

∂K
x|∂K y|∂K dS− ∑

K,K′∈Th

∫

∂K∩∂K′
x|∂K′ FK(y|∂K)dS (9)

− ∑
K∈Th

∫

∂K∩ΓR

1−ϑ
1+ϑ

x|∂K FK(y|∂K)dS= ∑
K∈Th

∫

∂K∩ΓR

2
1+ϑ

gRFK(y|∂K)dS.

(Note that forϑ = 1 the term on∂K∩ΓR at left-hand side vanishes and 2/(1+ϑ) =
1.) The expression (9) is a variational formulation for the skeleton unknownx; after
the equation is solved forx, the Helmholtz solutionu|K can be recovered in the
interior of each element by solving a local (inK) adjoint-impedance Helmholtz
BVP with datum(−∂nK + ik)u|K = x|∂K . If the formulation is discretised choosing
a finite dimensional subspaceXh of X corresponding to the impedance traces of a
Trefftz space, namely

Xh :=
{

xh ∈ X : xh|∂K = (−∂nK + ik)v|K ∀K ∈ Th, v∈Vp(Th)
}
,

then the action ofFK and the reconstruction ofuK in K are immediately computed.
Theorem 2.1 of [19] states that the discrete problem obtained by substitutingXh

to X in (9) is solvable, independently of the meshsizeh; Corollary 3.8 shows that,
for plane wave discrete spaces, the Dirichlet and Robin traces of the UWVF solution
converge to the corresponding traces ofu with algebraic orders of convergence in
L2(ΓR). In [17,§4], these results have been used together with the duality technique
of [89] to prove orders of convergence for theL2(Ω) norm of the error.

The UWVF has been recast as a DG method with Trefftz basis functions in
several different ways in [17, 37, 39, 46]. In particular, [46, Remark 2.1] shows
that the UWVF is a special case of the TDGformulation (8) for flux parameters
α = β = δ = 1/2. As a consequence, the orders of convergence inh andp proved
for the TDG on quasi-uniform meshes in [46, 52] carry over to the UWVF (with
suboptimal orders inh); on the other hand, thehp-type results of [53, 54] require
variable numerical flux parameters to cope with elements of different sizes (see Ta-
ble 1), so they do not apply to the UWVF. Thus, the TDG can be understood as the
extension of the UWVF to non quasi-uniform meshes. Alternatively, in [88, §4.3,
5.2], the UWVF is employed on meshes refined towards solutionsingularities by
choosing Trefftz spaces on large elements and polynomial spaces on small ones. No
applications of the TDG combining mesh-dependent parameters and polynomial
spaces in small elements have been documented.

2.2.3 DG schemes with Lagrange multipliers

The DG schemes described so far enforce weak continuity between elements using
numerical fluxes, in the spirit of [6]. A different approach is to enforce continuity
using Lagrange multipliers. This was probably first proposed for Trefftz methods
in [63, §2.3], for the 1D Helmholtz equation.

This strategy has been followed in thediscontinuous enrichment method(DEM),
introduced by C. Farhat, I. Harari and L.P. Franca in [32], combining a space of
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piecewise-constant Lagrange multipliers on mesh interfaces with a discrete space
composed by sums of continuous piecewise polynomials and discontinuous plane
waves. Subsequently, in [33], the polynomial part of the trial space was dropped,
leaving a plane wave trial space and thus reducing to a Trefftz method; in this ver-
sion, the DEM was renameddiscontinuous Galerkin method(DGM) and the La-
grange multipliers were approximated by oscillatory functions. This formulation
performed very well for test cases and was later extended to “higher order ele-
ments” (i.e. elements containing more plane waves) and other PDEs. We refer again
to [76,§3.5.3] for a comprehensive bibliography.

Here we briefly describe the formulation of the DGM following[33, §2]:

find (u,λ ) ∈ H1(Th)×W(Th) s.t.




ADGM(u,v)+BDGM(λ ,v) =
∫

ΓR

gRvdS ∀v∈ H1(Th),

BDGM(µ ,u) =
∫

ΓD

µ gD dS ∀µ ∈W(Th),

where

ADGM(w,v) : = ∑
K∈Th

∫

K
(∇w ·∇v− k2uv)dV +

∫

ΓR

ikϑ wvdS,

BDGM(µ ,w) : = ∑
K,K′∈Th

∫

∂K∩∂K′
µ(w|K′ −w|K)dS+

∫

ΓD

µ wdS,

W(Th) : =

(
∏

K,K′∈Th

H̃−1/2(∂K ∩∂K′)

)
×H−1/2(ΓD).

It is immediate to verify that the solutionu to BVP (1) satisfies this formulation, and
that the multiplierλ represents the normal derivative ofu on the mesh interfaces
and onΓD. This formulation is then discretised by restricting it to finite dimensional
spacesVp(Th)⊂ H1(Th) andWp(Th)⊂W(Th). In the DEM of [32],Vp(Th) is the
direct sum of a continuous polynomial and a plane wave space,in the DGM of [33]
and subsequent papers only the plane wave part is retained, soVp(Th)⊂ T(Th). The
volume degrees of freedom, i.e. those corresponding toVp(Th), are then eliminated
by static condensation in order to reduce the computationalcost of the scheme.

A stability and convergence analysis of the simplest version of the DGM (four
plane waves per element and piecewise-constant multipliers) is attempted in [4]:
for a Robin–Neumann BVP on a domain decomposed in rectangles, under a mesh
resolution condition, the scheme is shown to be well-posed,and a priori orders of
convergence are proved (inH1(Th) norm for the primal variable and inL2(Fh) for
the multipliers), along with residual-type a posteriori error bounds. We are not aware
of any error analysis for the DGM method holding in more general situations (e.g.
more than four plane waves per elements, propagation directions not aligned to the
mesh, non-rectangular mesh elements).

A similar formulation, namedhybrid-Trefftz finite element method, is described
in [99, §3.5] (deriving the functional in eq. (65) therein): the sameform ADGM
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above is used, whileBDGM is substituted byBHT(µ ,w) := −
∫
F I

h
µ [[∇hw]]N dS−

∫
ΓN

µ ∂nwdS, where now the multiplierµ approximates the Dirichlet trace ofu, the
right-hand sides and the spaceW(Th) are changed accordingly. A further variant of
hybrid-Trefftz methods is presented in [109] and related papers.

Another DG method with Trefftz basis, calledmodified DG method(mDGM),
has been proposed in [48]. The Lagrange multipliers are double-valued on the in-
terfaces (differently from the DEM/DGM of [32,33]) and belong to∏K∈Th

L2(∂K \

ΓR). A two-step procedure is adopted. First, for each basis elementλ ∈ L2(∂K \ΓR)
of the discrete Lagrange multiplier space, a well-posed Helmholtz BVP onK with
impedance datumλ is solved in the local Trefftz spaceVpK (K) using the classical
H1(K)-conforming variational formulation. Second, these localsolutions are com-
bined in a global LS formulation leading to a positive semi-definite system whose
unknowns are the Lagrange multipliers themselves. The mDGMwas further im-
proved in [2] leading to thestable DG method(SDGM), which differs from the
mDGM in that the local impedance problems are solved with a least squares formu-
lation posed on∂K, which gives local Hermitian matrices.

Lagrange multipliers are also used to tackle problems with discontinuous coeffi-
cients by means of the partition of unity method, see [73] and§2.5 below.

2.3 Weighted residual methods

Trefftz discretisations lend themselves well to weighted residual formulations: the
discrete solution is automatically a local solution of the PDE, only the residual on
interfaces (the jumps) and on the boundary (the mismatch with boundary conditions)
need to be enforced by multiplying them to suitable traces oftest functions. The
choice of these traces leads to different variational formulations, the most developed
of which are the VTCR and the WBM described in the following. While it is simple
to design weighted residual methods, their error analysis is by no means easy, as
they arise neither from integration by parts, nor from a minimisation principle.

An earlier weighted-residual Trefftz formulation is theweak element methodof
[47], where the integral averages of Dirichlet and Neumann jumps on mesh faces
are set to zero (equivalently, test functions are constant on each mesh face).

We note that some of the earliest Trefftz schemes, e.g. theindirect approximation
of [22, eq. (35)], are of weighted-residual type, even though testing was confined to
the boundary of the domain only, see§2.4 below.

2.3.1 The variational theory of complex rays (VTCR)

The VTCR is a weighted residual Trefftz method introduced inthe 1990’s by
P. Ladevéze and coworkers for problems arising in computational mechanics and
later extended to the Helmholtz case in [101]. Recent surveys are [70,71,100].
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Several VTCR formulations, slightly different from each other, have been pre-
sented. A general VTCR formulation for the BVP (1) can be written as:

find uVTCR ∈Vp(Th) s.t. AVTCR(uVTCR,vhp) = ℓVTCR(vhp) ∀vhp∈Vp(Th), where

AVTCR(u,v) := Im

{∫

F I
h

(
[[u]]N · {{∇hv}}− [[∇hu]]N{{v}}

)
dS (10)

+
∫

ΓD

u∂nvdS+
∫

ΓR

( C1

ikϑ
(∂nu+ ikϑu)∂nv+C2(∂nu+ ikϑu)v

)
dS

}
,

ℓVTCR(v) := Im

{∫

ΓD

gD∂nvdS+
∫

ΓR

( C1

ikϑ
gR∂nv+C2gRv

)
dS

}
,

where we have reported the formulation with only the imaginary part of the left- and
right-hand side, following the VTCR convention; however dropping ”Im” does not
modify the method.

The formulations in [100, eq. (21)] and in [71, eq. (5)] correspond to the choice
of coupling parametersC1 = 1/2 andC2 = −1/2 (up to an overall factork and
using Re{−iz} = Im{z}); that in [102, eq. (6)] toC1 = 1/2 andC2 = 1/2; that
in [68, eq. (4)] toC1 = 1 andC2 = 0. The choice of the coupling parameters does
not affect the consistency of the method as all terms in (10) are products of residuals
(internal jumps and boundary conditions) and traces of testfunctions. In some of
the papers cited, using Im{ab} = − Im{ab}∀a,b ∈ C, the conjugation is written
on the trial, rather than test, functions in some of the terms, without affecting the
formulation.

The VTCR (and similarly the WBM) does not correspond to any ofthe classical
DG schemes listed in [6]. Indeed, to derive it from the elemental DG equation (5),
one would need to choose numerical fluxes that, in the terminology of [6], are nei-
ther consistent (they do not equal the fields∇u andu when applied to the exact
solutionu itself) nor conservative (they are not single-valued on theinterfaces).

Following [68,§2.2], it is possible to show that if absorption is present then the
VTCR is well-posed. More precisely, provided thatC1 = 1, C2 = 0, Rek > 0 and
Im{k2}> 0, the VTCR bilinear form satisfies

AVTCR(v,v) =− Im{k2}‖v‖2
L2(Ω)−

Rek
|k|2

∥∥∥ϑ−1/2∂nv
∥∥∥

2

L2(ΓR)
∀v∈ T(Th),

thus the VTCR solution is unique in the Trefftz space and coercivity in L2(Ω) norm
holds (the analogous result forC1 =−C2 = 1/2 is proved in [71, Prop. 2]). However,
this does not extend to the setting we considered so far, i.e.propagating waves with
k∈R: in this case it can easily be shown thatAVTCR(v,v) = 0 for all v∈ T(Th) such
that v = 0 on all elements adjacent to the Robin boundaryΓR and for any choice
C1,C2 ∈ C, thus well-posedness can not be ensured using a coercivity argument.
Following [71, Prop. 2], forC1 = 1/2,C2 =−1/2,k∈ R, we have:

AVTCR(v,v) =−
1
2

(1
k

∥∥∥ϑ−1/2∂nu
∥∥∥

2

L2(ΓR)
+ k
∥∥∥ϑ 1/2u

∥∥∥
2

L2(ΓR)

)
∀v∈ T(Th),
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thus (using Holmgren’s theorem [20, Th. 2.4]) uniqueness ofthe solution of (10) is
proved if all mesh elements are adjacent toΓR. For more general cases, coercivity
appears to be too strong an argument. We conjecture that discrete inf-sup conditions
might be a more viable way for proving well-posedness of the VTCR.

Section 3 of [71] considers the application of the VTCR formulation, cor-
rected with suitable volume terms, with non-Trefftz (piecewise-polynomial) discrete
spaces. This variation is termedweak Trefftzand analysed therein.

2.3.2 The wave based method (WBM)

The WBM is a weighted residual Trefftz method, analogous to the VTCR, first
introduced in the dissertation of W. Desmet [26] and later extended to a wide variety
of engineering applications, mainly in the realm of vibro-acoustics. Recent reviews
of the state of the art of the research on the WBM can be found in[24, 27]. The
discrete space typically used together with the WBM is composed of propagating
and evanescent plane waves, as outlined in§3.2.

The basic variational formulation of the WBM applied to BVP (1), translating
§4.1.4 of [27] to our notation and multiplying all terms by(−ik), reads

find uWBM ∈Vp(Th) s.t. AWBM(uWBM,vhp) = ℓWBM(vhp) ∀vhp ∈Vp(Th), where

AWBM(u,v) :=
∫

F I
h

(
2[[∇hu]]N{{v}}+

ik
Zint

[[u]]N · [[v]]N

)
dS

+
∫

ΓR

(
∂nu+ ikϑu

)
vdS−

∫

ΓD

u∂nvdS

ℓWBM(v) :=
∫

ΓR

gRvdS−
∫

ΓD

gD ∂nvdS,

whereZint is an interior coupling factor. In some works, a slightly different formula-
tion is used, e.g. in [98, eq. (81)] different terms are used on the internal interfaces.
We are not aware of any rigorous stability or error analysis of the WBM formulation.

2.4 Single-element direct and indirect Trefftz methods

Most schemes described so far were introduced not earlier than mid 1990’s, but
a lot of research on Trefftz methods has been carried out since the late 1970’s by
I. Herrera, J. Jirousek, A.P. Zieliński, O.C. Zienkiewiczand numerous co-workers,
mainly for static elasticity problems. General reviews of these works are in [67,121];
the Helmholtz case is described in detail in [22]. A major difference between these
methods and those we described in the previous sections is that in many instances of
the former ones no mesh is introduced on the domainΩ , so that the unknowns are
defined on∂Ω only. For this reason, these Trefftz methods more closely resemble
standard boundary element methods rather than finite element schemes.
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There are two main classes of these Trefftz methods: direct and indirect. (We use
the terms “direct” and “indirect” as in [22,67] and [98,§5.1].) We describe them for
a modification of BVP (1) where we drop the Robin boundaryΓR and we consider
instead a Neumann boundary portionΓN with boundary condition∂nu= gN.

The indirect methodis the simplest kind of weighted residual scheme:
∫

ΓD

u∂nvdS−
∫

ΓN

∂nuvdS=

∫

ΓD

gD ∂nvdS−
∫

ΓN

gNvdS, (11)

(see [22, eq. (35)] for sound-hard scattering problems in unbounded domains, [98,
eq. (47)], [121, eq. (16)], [67, eq. (16), (26)]). For Dirichlet exterior problems this
is also the method of [8,§3]. In most references the test function is not conjugated.
We note that the indirect method is nothing else than the WBM of §2.3.2 posed
on a single element, i.e.Th = {Ω} andF I

h = /0. In the indirect method, the trial
functions approximatingu are global solutions of the Helmholtz equation on the
whole ofΩ ; on the other hand the test functionv only needs to be defined on∂Ω .
If the Trefftz test and trial spaces coincide, then the obtained stiffness matrix is
symmetric (by Green’s second identity). If the signs of the terms onΓN are changed,
as in [67, eq. (22)], a non-symmetric formulation is obtained.

Subtracting from (11) the second Green’s identity
∫

∂Ω (u∂nv− ∂nuv)dS= 0,
which holds for all Helmholtz solutionsu andv in Ω , we derive thedirect method:

∫

ΓD

∂nuvdS−
∫

ΓN

u∂nvdS=

∫

ΓD

gD ∂nvdS−
∫

ΓN

gN vdS, (12)

(see [22, eq. (42)], [98, eq. (50)]). The direct method for the Dirichlet problem may
be viewed as the TDG of§2.2.1 with α = 0 posed on a single elementK = Ω .
Conversely to the indirect method, consistency of (12) is guaranteed only if the test
functions are Helmholtz solutions inΩ , while the trial functions might be defined
(and often are) on∂Ω only, for better computational efficiency; the solution is then
evaluated inΩ with a representation formula in a post-processing step as for BEMs.
The stiffness matrix arising from the direct formulation (12) is the transpose to that
of the indirect method (11). Theorem 6.44 in [105] gives sufficient conditions for
the well-posedness of the direct method. Theorem 7.19 in [21] proves that, for well-
posed Dirichlet problems withH1(∂Ω ) data, if the Neumann traces of the trial space
coincide with the Dirichlet traces of the test space, then the direct method is well-
posed and computes the best approximation of the exact solution in L2(∂Ω ) norm.
If Ω is unbounded, the direct and the indirect methods can still be used choosing
discrete functions that satisfy Sommerfeld radiation condition; however in (12) the
conjugation on the test function must be dropped to preserveconsistency. In this
case, if a multipole basis is used, Waterman’snull-fieldmethod is obtained, see [78,
Ch. 7], which is a special instance of theT-matrixmethod [78,§7.9]. (Note that [92]
uses the namenull-field methodfor the indirect method with non-conjugated test
functions, andCremer equationsfor the same with conjugated test functions.)

For a special choice of Trefftz test functionsv indexed by a complex param-
eter (see the last paragraph of§3.2), method (12) is called “global relation” and
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is the variational formulation at the heart of theFokas transform method, see [23,
eq. (2)], [105, eq. (6.142–143)] or [21, eq. (7.156)]. In this context, this formulation
is typically discretised using piecewise-polynomial (on∂Ω ) trial functions, even
though Trefftz functions may be used as well.

2.5 Non-Trefftz methods with oscillatory basis functions

The main reason for the success of Trefftz methods in the context of time-harmonic
wave problems is that the oscillatory basis functions may offer much better approx-
imation properties than piecewise polynomials used in standard FEMs. On the other
hand, similar approximation can also be achieved if the discrete functions are not
exact local solution of the PDE to be discretised, but are areonly “approximate so-
lutions”. If basis functions of this kind are used, the Trefftz formulations described
in the previous sections cannot be employed as they stand, because the residual in
the elements will not vanish any more and consistency will fail.

Approximate Trefftz functions are especially attractive for problems with smooth-
ly varying material parameters, where no analytic Trefftz function might be known.
Trefftz formulations, possibly with additional volume terms, can be used with ba-
sis functions that are solutions of the equation only up to a certain order; see
[15,65,110], where this idea is pursued for DG, UWVF and DEM formulations.

In the following we briefly discuss a few methods that have been proposed em-
ploying oscillatory andk-dependent basis functions that are not Trefftz.

A very well-known scheme of this kind is thepartition of unity method(PUM or
PUFEM), introduced by I. Babuška and J.M. Melenk in the mid 1990’s, see e.g. [81].
The PUM combines the approximation properties of Trefftz functions with the stan-
dard variational formulation of the problem, e.g. for the BVP (1) withΓD = /0
∫

Ω

(
∇hu ·∇hv− k2uv

)
dV +

∫

ΓR

ikϑuvdS=

∫

ΓR

gRvdS ∀v∈ H1(Ω). (13)

This requires the use ofH1(Ω)-conforming trial and test functions, thus continuity
on interfaces needs to be enforced strongly, which is not viable in Trefftz spaces.
The PUM uses as basis a set of Trefftz functions multiplied toa partition of unity
defined on a FEM mesh, e.g. piecewise linear/multilinear polynomial FEMs on sim-
plicial/tensor elements. Theorem 2.1 in [81] ensures that the trial space obtained
enjoys the same approximation properties of the Trefftz space employed. If ap-
dimensional local Trefftz space is used in each element, together with a piecewise
linear/multilinear partition of unity, the total number ofdegrees of freedom used
equalsp times the number of mesh vertices, while for a similar Trefftz method on
the same mesh (providing comparable accuracy) it would equal p times the num-
ber of mesh elements; this means that on tensor meshes almostthe same number
of DOFs would be employed by the two methods, while on triangles and tetrahedra
a saving of a factor up to two or six, respectively, can be achieved by the PUM. A
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shortcoming of the PUM is that the formulation (13) is not sign-definite and its well-
posedness requires a scale resolution condition, while this is not needed for some
Trefftz schemes such as the TDG/UWVF presented in§2.2.1 and§2.2.2. Differently
from Trefftz schemes, the implementation of the PUM requires the computation of
volume integrals; moreover, the numerical integration of the PUM basis functions
may be more expensive than that of genuine Trefftz functions, see§4.1.

The PUM for the Helmholtz and other frequency-domain equations was further
developed by R.J. Astley, P. Bettes, A. El Kacimi, O. Laghrouche, M.S. Mohamed,
E. Perrey-Debain, J. Trevelyan and collaborators, see e.g.[72, 96]. When a PUM
and a standard FEM discrete spaces are combined, e.g. using formulation (13), the
method obtained is termedgeneralised finite element method(GFEM); e.g. [108]
employs high-order tensor-product polynomials summed to products of plane waves
and bilinear functions. In problems with discontinuous wavenumberk, the PUM can
be applied by coupling the homogeneous regions by means of Lagrange multipliers
as in [73]; this is not necessary as formulation (13) holds onthe whole domain, but
enhance the accuracy as in each subdomain only basis functions oscillating with the
correct local wavelength are used. In [51] and related papers, thetrigonometric finite
wave elements(TFWE) is described: the PUM is used with special basis functions
adapted to waveguides, lasers and geometries with a single dominant wave propa-
gation direction. Thefinite ray element methodof [79] consists in the use of a PUM
basis in afirst order system of least squares(FOSLS) formulation; as the unknown
is constituted by bothu and its gradient, more unknowns are needed but the system
matrix is Hermitian. Finally, in thehybrid numerical asymptotic methodof [42], the
PUM space is constructed by multiplying nodal finite elements to oscillating func-
tions whose phases are derived from geometrical optics (GO)or geometrical theory
of diffraction (GTD), e.g. by solving the eikonal equation,cf. §4.2.

Plane wave bases have been combined in [97] with thevirtual element method
(VEM) framework [11], in order to design a high-order, conforming method for the
Helmholtz problem, in the spirit of the PUM, but allowing forgeneral polytopic
meshes. The main ingredients of the resulting PW-VEM are(i) a low frequency
space made of low order VEM functions, which do not need to be explicitly com-
puted in the element interiors,(ii) a proper local projection operator onto a high-
frequency space made of plane waves, and(iii) an approximate stabilisation term.
The implementation of the PW-VEM does not require computation of volume in-
tegrals, and no quadrature formulas are required for the assembly of the stiffness
matrix, for meshes with flat interelement boundaries.

Thehybridizable DGmethod of [91] employs two discontinuous discrete spaces
(one scalar and one vector) and a space of Lagrange multipliers on the mesh in-
terfaces. Though Trefftz spaces might be used with this formulation, the authors
consider basis functions constructed as products of polynomials and geometrical
optics-based oscillating functions, similar to those in [42] but discontinuous.

A Trefftz approach has been proposed in the context of finite difference schemes
in theflexible local approximation method(FLAME) by I. Tsukerman, see e.g. the
comprehensive review [113]. In the FLAME, the Taylor expansion of the solution
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to be approximated used to define classical finite differenceschemes is substituted
by an expansion in a series of Trefftz basis functions, leading to better accuracy.

Oscillatory basis functions have been successfully used inboundary element
methods, in particular for scattering problems, see the review on thehybrid numer-
ical-asymptotic BEM(HNA-BEM) [20], the plane-wave basis boundary elements
[96, §3] and theextended isogeometric boundary element method(XIBEM) [93].

3 Trefftz discrete spaces and approximation

Given a Trefftz variational formulation of a BVP, as those in§2, the definition of a
Trefftz finite element method is completed by the choice of a discrete space

Vp(Th) =
{

v∈ T(Th) : v|K ∈VpK (K)
}
⊂ T(Th),

whereVpK (K) is apK-dimensional space of functionsv onK such that∆v+k2v= 0.
We describe next the main features of the most common local Trefftz spacesVpK (K);
we do not consider Lagrange multiplier spaces on mesh faces for the methods in
§2.2.3. The discussion of the conditioning properties of thebasis functions described
and of the techniques for their numerical integration is postponed to§4.

3.1 Generalised harmonic polynomials (GHPs)

Generalised harmonic polynomials are smooth Helmholtz solutions that are separa-
ble in polar and spherical coordinates in 2D and 3D, respectively, i.e.circular and
spherical waves(also called Fourier–Bessel functions or Fourier basis). The local
spacesVpK (K) are defined as follows:

2D: VpK (K) =
{

v : v(x) =
qK

∑
ℓ=−qK

αℓ Jℓ(k|x− xK|)eiℓθ , αℓ ∈ C

}
,

3D: VpK (K) =
{

v : v(x) =
qK

∑
ℓ=0

ℓ

∑
m=−ℓ

αℓ,m jℓ(k|x− xK|)Y
m
ℓ

( x− xK

|x− xK|

)
, αℓ,m ∈C

}
,

wherexK ∈ K (e.g. is the mass centre ofK), θ is the angle ofx in the local polar
coordinate system centred atxK , Jℓ is the Bessel function of the first kind and order
ℓ, {Ym

ℓ }ℓm=−ℓ is a basis of spherical harmonics of orderℓ (see e.g. [85, eq. (B.30)]),

and jℓ is the spherical Bessel function defined byjℓ(z) =
√

π
2z Jℓ+ 1

2
(z). The space

dimensionpK is given bypK = 2qK +1 in 2D and bypK = (qK +1)2 in 3D. We call
qK , the maximal index of the (spherical) Bessel functions used, the “degree” of the
GHP space, as it plays the same role of the polynomial degree in the approximation
theory. A particular feature of GHP spaces is that they are hierarchical.
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The name “generalised harmonic polynomials” was coined in [80] and comes
from the fact that they are images ofharmonic polynomialsunder the operator that
maps harmonic functions into Helmholtz solutions, in the framework of Vekua–
Bergman’s theory [12, 114] (see also [50, 87]). The same theory allows to transfer
approximation results for harmonic functions by spaces of harmonic polynomials
into results on the approximation of Helmholtz solutions byGHPs. The density of
GHPs in a space of Helmholtz solutions was proved in [50, Th. 4.8] and [114,§22.8].
Approximation estimates in two dimensions were first provedin [28, Th. 6.2] (in
L∞ norm) and in [80] (in Sobolev norms), and later sharpened andextended to three
dimensions in [86]. We summarise here the estimates of [86, Th. 3.2].

Let D∈R
n, n= 2,3, be a bounded, open set with Lipschitz boundary and diame-

terhD, containingBρhD(xD) (the ball centred at somexD ∈ D and with radiusρhD),
and star-shaped with respect toBρ0hD(xD), where 0< ρ0 ≤ ρ ≤ 1/2. Assume that
u∈ Hs+1(D), s∈ N, satisfies∆u+ k2u= 0 in D and define thek-weighted Sobolev
norm‖u‖ j ,k,D := (∑ j

m=0k2( j−m) |u|2m,D)
1/2, j ∈ N, where|·|m,D is the Sobolev semi-

norm of orderm onD.

i) If n= 2 andD satisfies the exterior cone condition with angleλDπ [86, Def. 3.1]
(λD = 1 if D is convex), then for everyL ≥ s there exists a GHPQL of degree at
mostL such that, for everyj ≤ s+1, it holds

‖u−QL‖ j ,k,D ≤C
(
1+(hDk) j+6)e3

4 (1−ρ)hDk
(( log(L+2)

L+2

)λD
hD

)s+1− j

‖u‖s+1,k,D ,

where the constantC > 0 depends only on the shape ofD, j ands, but is inde-
pendent ofhD, k, L andu.

ii) If n= 3, there exists a constantλD > 0 depending only on the shape ofD, such
that for everyL ≥ max{s,21/λD} there exists a GHPQL of degree at mostL such
that, for everyj ≤ s+1, it holds

‖u−QL‖ j ,k,D ≤C
(
1+(hDk) j+6)e3

4 (1−ρ)hDkL−λD(s+1− j)hs+1− j
D ‖u‖s+1,k,D ,

where the constantC > 0 depends only on the shape ofD, j ands, but is inde-
pendent ofhD, k, L andu.

The main difference between the two results is that the positive shape-dependent
parameterλD entering the exponent ofL (thus thep-convergence order) is explicitly
known in 2D (it depends on the largest non-convex corner ofD) but not in 3D.

Exponential convergence of the GHP approximation of Helmholtz solutions that
possess analytic extension outsideD were proved in [85, Prop. 3.3.3] and improved
in 2D in [54], based upon the corresponding result for harmonic functions of [55].
Roughly speaking, the error is bounded by a negative exponential of the form

Cexp(−bL) ∼ Cexp(−bp1/(n−1)
D ), while classical bounds for polynomials achieve

at mostCexp(−bp1/n
D ), since the dimensionpD of the GHP space of orderL is

O(Ln−1), while the dimensionpD of the polynomial space of degreeL is O(Ln).
Thus, Trefftz methods based on GHPs (and similarly on PWs) can achieve better
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asymptotic order than standard schemes; however the value of the positive coeffi-
cientsb,C and their dependence on the BVP and discretisation are not entirely clear.

Approximation estimates in the (discontinuous) spacesVp(Th) immediately fol-
low from the local approximation estimates withD = K, for all K ∈ Th. In case
of (H1-conforming) partition of unity spaces enriched with GHPs,global estimates
follow from combining the local estimates with [81, Th. 2.1].

GHPs have been proposed in numerous Trefftz formulations: LS [89, 107],
UWVF [77], VTCR [68], hybrid-Trefftz [99, eq. (62)], directand indirect single-
element schemes [22,121], HELS [117], MPS [16,36].

3.2 Plane waves (PWs)

Plane waves probably constitute the most common choice of Trefftz basis functions.
In this case, the local spaceVpK (K) is defined by

VpK (K) =
{

v : v(x) =
pK

∑
ℓ=1

αℓeikdℓ·(x−xK), αℓ ∈ C

}
, (14)

where{dℓ}
pK
ℓ=1 ⊂ Rn, |dℓ| = 1, are distinct propagation directions. To obtain iso-

tropic approximations, in 2D, uniformly-spaced directions on the unit circle can be
chosen (i.e.dℓ = (cos(2πℓ/pK),sin(2πℓ/pK))); in 3D, [103] and [94] provide di-
rections that are “almost equally spaced” (see [1,§3.4] for a simpler version). In
these cases, the PW spaces are not hierarchical. However, one of the potential bene-
fits of PW approximations is the possibility to depart from the isotropic case and to
adapt the basis propagation directions to the specific BVP athand and to different
elements, either a priori or a posteriori, see§4.2.

The linear independence of arbitrary sets of plane waves (and of their traces)
is proved in [1, 21]. PW bases whose linear independence doesnot degenerate for
small values ofkhK were introduced in [46,§3.1] in 2D and in [86,§4.1] in 3D (see
also [85,§3.4.1]) for analysis purposes. These stable PW bases converge to GHP
bases in the low-frequency limit [86, p. 815]. The existenceof these stable bases,
which is instrumental to the derivation of approximation estimates for Helmholtz
solutions in PW spaces in [86], is guaranteed, provided thatthe set of directions
{dℓ}

pK
ℓ=1 constitutes a fundamental system for certain harmonic polynomials. In 2D,

any choice ofpK = 2qK + 1 distinct directions,qK being the maximal degree of
the considered harmonic polynomials, guarantees this property. In 3D, sufficient
conditions onpK = (qK +1)2 directions are stated in [86, Lemma 4.2].

Approximation estimates in PW spaces can be derived from similar bounds for
GHPs such as those in§3.1. In [80, Ch. 8], GHPs were approximated by PWs
by approximating their smooth Herglotz kernel with delta functions, leading top-
estimates in 2D, while in [86] the Jacobi–Anger expansion was used to link PWs
and GHPs in 2D and 3D. Theorems 5.2 and 5.3 of [86] (see also [85, §3.5]) show
that Helmholtz solutions of given Sobolev regularity can beapproximated in PW
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spaces withhp-estimates similar to those shown in§3.1 for GHPs. For PWs, these
estimates hold withL = qK , so thatqK plays the role of a “degree” for the consid-
ered PW space. As mentioned, for these bounds to hold in 3D, the PW directions
have to satisfy some further conditions. A different derivation of h-approximation
estimates based on a Taylor argument can be found in [19, Th. 3.7]. In [95], the
PW approximation of Helmholtz solutions on the unit disc is analysed in detail,
together with the conditioning of different linear systemsused for its computation
(least squares and collocation for a Dirichlet problem on the disc) and the implica-
tions on the accuracy of the approximation computed in finite-precision arithmetic.
We refer again to [54,§5.2] for the exponential convergence in 2D of PW approx-
imations of analytic Helmholtz solutions (see also [85, Rem. 3.5.8] which holds in
2D and 3D).

Similar to PWs are theevanescent waves: the basis elements have the same ex-
pressionv(x) = eikd·x but with a more generald ∈Cn, d ·d= 1. If d= dR+ idI , with
dR,dI ∈ Rn, thenv oscillates in the directiondR (with wavenumberk|dR| ≥ k) and
decays exponentially in the orthogonal directiondI (i.e. |v(x)| = e−kdI ·x). Evanes-
cent waves are used in combination with plane waves to approximate interface prob-
lems in the DEM [111] and the UWVF [77], and to represent outgoing waves in a
2D unbounded half-strip of the form{a< x< b,y> c} in [21,119].

A special combination of propagative and evanescent waves is typically used in
the WBM. We describe a 2D version of this space as in [24, eq. (14)–(21)] (see
[27, §4.1] for 3D). This space is not invariant under rotation but depends on the
choice of the Cartesian axes. For a mesh elementK, we fix a truncation parameter
N > 0 (typically 1≤ N ≤ 6) and defineLx := sup(x1,y1),(x2,y2)∈K |x1− x2| andLy :=
sup(x1,y1),(x2,y2)∈K |y1− y2| as the edge lengths of the smallest rectangle containing
K and aligned to the Cartesian axes. Two sets of basis functions are used:

cos(kx jx)e
±i
√

k2−k2
x j y

, kx j :=
jπ
LK

x
, j = 0, . . . ,⌊NkLK

x /π⌋,

e
±i
√

k2−k2
y j x

cos(ky jy), ky j :=
jπ
LK

y
, j = 0, . . . ,⌊NkLK

y /π⌋,

for a total dimensionpK = 4+ 2(⌊NkLx/π⌋+ ⌊NkLy/π⌋). Each basis function is
half the sum of two plane (or evanescent) waves, symmetric toone another with

respect to thex or y axis: e.g. cos(kx jx)exp(i
√

k2− k2
x jy) =

1
2(e

ikd+x j ·x + eikd−x j ·x),

with d±
x j := (±kx j/k,

√
1− (kx j/k)2). A maximum of 4+ 2(⌊kLx/π⌋+ ⌊kLy/π⌋)

basis functions are propagative PWs, this number designed to keep the conditioning
under control. IfN > 1, then roughly a fraction(N−1)/N of the total basis func-
tions are evanescent waves decaying in a direction parallelto one of the Cartesian
axes. Refinement is obtained by increasingN: for N ≤ 1 only propagative waves are
present, for higher values evanescent waves are introduced.

In 2D, both evanescent and plane waves may be written as exp{ k
2(i(ν +1/ν)x+

(ν −1/ν)y}= exp{ik(xsinθ + ycosθ}, parametrised byν ∈ C or θ ∈ C with ν =
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eiθ ; these waves constitute the test space (but usually not the trial) for the Fokas
method in [23,105] and [21,§7.3.4] (see also§2.4).

3.3 Fundamental solutions and multipoles

Fundamental solutions and multipoles are Helmholtz solution in the complement
of a point and satisfy Sommerfeld radiation condition (limr→∞ r

n−1
2 ( ∂u

∂ r − iku) = 0,
wherer = |x|). They are particularly useful to define Trefftz spaces on unbounded
elements, e.g. for scattering problems.

If the local spaces are spanned by fundamental solutions, simple sources are
located at distinct polesxℓ in the complement ofK:

2D : VpK (K) =
{

v : v(x) =
pK

∑
ℓ=1

αℓH(1)
0 (k|x− xℓ|), αℓ ∈ C

}
,

3D : VpK (K) =
{

v : v(x) =
pK

∑
ℓ=1

αℓ
e−ik|x−xℓ|

|x− xℓ|
, αℓ ∈C

}
,

whereH(1)
0 is the Hankel function of the first kind and of order 0. Different a priori

or a posteriori strategies are used to fix the location of the poles, see§2.1.1 and the
references cited therein. As the distance of the pointsxℓ from K increases, these ba-
sis functions approach plane waves, so they permit flexibility not only in the choice
of the propagation directions but also in the wavefront curvature.

Apart from the MFS and its modifications (see§2.1.1 and [1,9,10,31,92,120]),
spaces of fundamental solutions have been used in connection to the UWVF (see
[58], where ray-tracing is used to determine the poles, and [57]).

Theorem 6 of [104] ensures that Helmholtz solutions inK can be approximated
in Hölder norms by fundamental solutions centred at any “embracing boundary” in
2D and 3D, under weak assumptions on the regularity of∂K. We are not aware of
any result providing orders of convergence.

An alternative approach consists in choosing local spaces generated by multipole
expansions, where multiple sources with increasing order are located at a single pole
x0 (or only at few poles):

2D : VpK (K) =
{

v : v(x) =
qK

∑
ℓ=−qK

αℓH(1)
ℓ (k|x− x0|)eiℓθ , αℓ ∈C

}
,

3D : VpK (K) =
{

v : v(x) =
qK

∑
ℓ=0

ℓ

∑
m=−ℓ

αℓ,mh(1)ℓ (k|x− x0|)Y
m
ℓ

( x− x0

|x− x0|

)
, αℓm ∈C

}
,

whereH(1)
ℓ (h(1)ℓ ) are Hankel functions (spherical Hankel functions, respectively) of

the first kind and orderℓ. As for the GHPs in§3.1,θ is the angle ofx in the local
coordinate system centred atx0, which is located in the complement ofK, and the
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space dimension ispK = 2qK +1 in 2D andpK = (qK +1)2 in 3D. According to [10,
Rem. 2.2], fundamental solutions lead to more stable methods than multipoles.

Multipole spaces have been used in connection to LS schemes [90, 107], WBM
[24, eq. (23)], [27,§4.1.2], hybrid-Trefftz [99, eq. (63)], HELS [117], source simula-
tion techniques [92], null-field [78] and single-element schemes [8,22,121]. In [49]
and related papers, some 2D multipoles with suitably chosenindexℓ (not necessar-
ily integer) are used on infinite sectors, in such a way to ensure continuity of discrete
functions across rays; this might be more efficient than fullmultipole spaces for so-
lutions with a preferred propagation direction.

3.4 Other basis functions

Other discrete Trefftz spaces have been proposed in literature for use with the vari-
ous approaches covered in§2.

In 2D, corner wavessuch asJℓ/α(k|x|)sin(ℓθ/α), with ℓ ∈ N and 0< α < 2,
capture the behaviour of Helmholtz solutions near a domain corner of angleπα.
They have been used e.g. in the WBM [25], in LS methods [10,107,119] and in the
MPS [16, 36]. In [120], they are used withα = 2 on tips of 1D screens to repre-
sent the strong singularities of the solution in a non-Lipschitz domain. Theorem 6.3
of [28] uses Vekua–Bergman theory to give orders of convergence for the approxi-
mation of singular functions by spaces of corner waves and GHPs (see also [10,§5]
and references therein). We are not aware of any use of similar functions in 3D.

The wave band functions, introduced in the VTCR context [101], are Herglotz
functions with piecewise-constant kernel, e.g.

∫ b
a eik(xcosθ+ysinθ)dθ in 2D.

In the presence of a circular hole, suitable combinations ofHankel and Bessel
functionsa priori fulfil homogeneous boundary conditions [107, eq. (13)].

If the wavenumber varies inside an element, the basis functions described so
far do not lead to Trefftz methods. In case of linearly variable wavenumber,Airy
functionscan be used to construct Trefftz spaces [110]. In [64,65]generalised plane
wavesin the form eP(x), for suitable polynomialsP, are introduced and analysed in
a UWVF setting: they solve a perturbed Helmholtz problem andconverge with high
orders inhK . Similar “almost-Trefftz” waves are used in [43] and namedoscillated
polynomials. Modulated plane waves, i.e. products of PWs and polynomials, are
the basis functions of the DG method of [14, 15]; as they are only “approximately
Trefftz”, volume terms appear in the formulation.

Products of (continuous) low-order polynomials and PWs or GHPs constitute the
basis of the PUM [51,73,81,96,108], while products of polynomials and oscillating
functions derived from high-frequency asymptotics are basis elements in [42,91].
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4 Further topics

4.1 Assembly of linear systems

All the Trefftz finite element methods for (1) discussed in§2 give rise to dense
or sparse linear systems of equations. Entries of coefficient matrices are obtained
by integrating products of (derivatives of) trial and test functions over boundedd-
dimensional sub-manifolds ofΩ , d< n. The stable and accurate (approximate) eval-
uation of these integrals is a key implementation issue.

Among all Trefftz approximation spaces and associated bases presented in§3,
plane waves (PWs) eikd·x (either propagative withd ∈ R

n or evanescent withd ∈
Cn) are exceptional, because they allow a closed-form evaluation of their integrals
over any flat sub-manifold with piecewise flat/straight boundary. For instance, in all
variants of PW-based Trefftz methods on polyhedral meshes in 3D, expressing mesh
faces by 2D parametrisations, we eventually encounter integrals of the form

∫

F
exp(w ·x)dV, F ⊂ R

2 a bounded polygon,w ∈ C
2 constant. (15)

Then we can take the cue from [38,§2.1] or [29,§4] and apply integration by parts
in order to reduce (15) to integrals over the straight edgese1,e2, . . .eq, q∈ N of F :

∫

F
exp(w ·x)dV =

1
w ·w

∫

F
w ·∇exp(w ·x)dV =

q

∑
ℓ=1

w ·nℓ

w ·w

∫

eℓ
exp(w ·x)ds,

where nℓ is the exterior normal ateℓ. Then, as in [44, Ch. 2], ifeℓ = [a,b],
a,b∈R2, we find,

∫
eℓ

exp(w ·x)ds= exp(w ·a)|b−a|ψ(w ·(b−a)), whereψ(z) :=
(exp(z)−1)/z. Of course, a numerically stable implementation of this function for
small arguments is essential1. This approach can be generalised to yield analytic for-
mulas for computing integrals of products of PWs times polynomials, see [29, 38],
with increased computational effort, however.

Approximate evaluation of the integrals becomes inevitable for all choices of Tr-
efftz basis functions other than PWs, and even for a PW basis on meshes with curved
elements. Then Gauss–Legendre numerical quadrature seemsto be the most widely
used option. However, the integrands may be oscillatory, which delays the onset of
(exponential) convergence of the quadrature error until the number of quadrature
points surpasses a threshold roughly proportional to the ratio of the local mesh size
and the wavelength. This leads to higher computational costper degree of freedom
for larger values ofkhK . One may think of using special quadrature rules for os-
cillatory integrals, as derived, for instance, in [62]. Those avoid an increase in the
number of quadrature points for growing spatial frequency of the oscillations, but
unfortunately require precise knowledge of the oscillatory term in the integrand.

1 A stable algorithm for point evaluations ofψ even for arguments close to 0 is provided by the
MATLAB function expm1.
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4.2 Adaptive Trefftz methods

Besides classicalh-, p- or hp-adaptivity, Trefftz methods offer scope for more so-
phisticated adaptive strategies consisting in the choice of specific basis functions for
different BVPs and in different mesh elements, either a priori or a posteriori.

The main strand ofa priori adaptive Trefftz methods falls into the category of
hybrid numerical-asymptoticmethods. High-frequency limit models, such as ray
optics or geometric theory of diffraction (GTD), guide the selection of local Trefftz
spaces in the individual cells of a mesh. In a non-Trefftz PUMframework this idea
was pursued in [42], and within the hybridizable DG method in[91], in both cases
for 2D acoustic scattering at a smooth sound-soft object. Inthese works, local phase
factorsx 7→ exp(ikS(x)) derived from reflected and diffracted waves multiply stan-
dard continuous nodal basis functions, in [42], or local polynomials, in [91], thus
generating a basis for (local) trial spaces.

The policy of incorporating local directions of rays is particularly attractive for
PW-based methods, because PW basis functions naturally encode a direction of
propagation. For problems where excitation is due to an incident PW and mate-
rial properties are piecewise constant, ray tracing and related techniques [91,§3.2]
based on geometric optics (specular reflection and Snell’s law of refraction at ma-
terial interfaces) can provide information about the localorientation of wave fronts
for k→ ∞. PWs matching the found ray directions are then used to buildlocal bases,
either exclusively or augmented by a reduced set of generalised harmonic polyno-
mials (GHPs) or “equi-spaced” PWs.

This idea for TDG was first outlined and tested in [14] and further elaborated
and extended in [58, Ch. 5] (for UWVF). In the latter work, in an attempt to resolve
curved wave fronts and take into account diffracted waves from corners, also Han-
kel functionsx 7→ H(1)

0 (k|x− y∗|) with y∗ outside a mesh cell have been proposed
as local basis functions. Approximation of curved wave fronts deduced from GTD
corrections is also attempted in [15]. There the authors move beyond Trefftz meth-
ods and use DG with trial spaces of polynomially modulated PWs, which are more
suitable for approximating propagating circular waves.

In simple 2D situations with convex smooth or polygonal scatterers and incident
plane wave, overall accuracy seems to benefit substantiallyfrom a priori directional
adaptivity. However, if there are more than only a few dominant wave directions
as in the case of more complicated geometries, trapping of waves, dark zones and
shadow boundaries, current directional adaptivity soon meets its limitations. On the
other hand, this strategy appears as the most promising way to achievek-uniform
accuracy with numbers of degrees of freedom that remaink-uniformly bounded
or display only moderate growth ask → ∞. The potential of this idea has been
strikingly demonstrated in the case of BEM for 2D scatteringproblems [20].

A posteriori directional adaptivity seeks to extract information about dominant
wave directions from intermediate approximations ofu. A refine-and-coarsen strat-
egy is embraced in [14]. In each step of the adaptive cycle it first computes a PWDG
solutionu of the scattering problem based on a relatively large numberof local Tr-
efftz basis functions (GHPs and PWs). Subsequently, by solving local non-linear
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L2-least squares problems, the directions of fewer PWs are determined so thatu can
still be well approximated locally.

A p-hierarchical error indicator is studied in [44]. In a step of the adaptive scheme
starting from the approximate solutionu a presumably improved solution ˆu is com-
puted using double the number of local PWs. Then a single local plane wave direc-
tion dK on a mesh elementK is extracted from the errore(x) := û(x)−u(x) through
the projection formula

d̃K := Re
∫

K

∇e(x)
ike(x)

dV, dK :=
d̃K

|d̃K |
.

Detailed numerical experiments are reported in [44, Ch. 6].In the pre-asymptot-
ic regime, when the resolution of the trial spaces is still rather low, one observes
a pronounced gain in accuracy in the case of the adaptive approach compared to
approximation with the same total number of equi-spaced PWs.

Directional adaptivity for Trefftz methods has also been tried in other flavours.
In the context of least squares methods as discussed in§2.1 an offset angle for the
sets of local equi-spaced PWs is introduced as another degree of freedom in [3],
aiming to align them with a local dominant wave direction. For the VTCR method
presented in§2.3.1, an error indicator based on local wave energy is used in [102]
to steer angular refinement of local Trefftz spaces.

A posteriori mesh adaptivity is considered in [66], where classical “elliptic”
error estimation and mesh refinement strategies are adaptedfor the h-version of
TDG. In a low-frequency setting, the method inherits the good performance of the
underlying adaptive mesh refinement algorithms for polynomial DG for the Poisson
equation. However, there is little hope that this carries over to larger wavenumbersk.
A similar error estimator, aimed at adaptive mesh refinement, has been described
in [4, §3.2] for the DEM/DGM presented in§2.2.3.

4.3 Ill-conditioning and solvers

The linear systems of equations spawned by PW-based finite element methods are
highly prone to ill-conditioning, when high resolution trial spaces are used, see
e.g. [61,§5], [37, §4.3], [40], and [72] for a PUM setting. This is largely causedby
an inherent instability of the PW basis on cells, whose size is relatively small com-
pared to the wavelength. Intuitively, for|x| ≪ k−1, the functionsx 7→ eikdℓ ·x from
(14) are almost constant, hence, nearly linearly dependent, cf. [72, §4.2]. The same
heuristics applies, when their density increases; even forcell sizes comparable to the
wavelength, PWs are hardly distinct when their directions are close,cf. [72, §4.3].

Empirically, for the local PW Galerkin matrixMK associated with theL2 inner
product on a single mesh cellK, we find that its spectral condition number grows
like ∼ h−q

K for cell sizehK → 0, whereq > 0 is proportional to the numberpK

of (approximately uniformly spaced) PWs in 2D, and to the square root ofpK in
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3D. Essentially,q is related to the “degree” of the considered set ofpK PWs; see
§3.2. Even worse, the condition number soars exponentially in q: cond2(MK)∼ eαq

for q→ ∞ andα > 0; see Appendix A. A similar explosion of condition numbers
is observed for the full systems matrices as meshes are refined or more PW basis
functions per element are used.

There is circumstantial evidence that direct sparse elimination can cope fairly
well with the ill-conditioned linear systems arising from UWVF or PUM, see [40,
§5.3.3], [77]. Yet, eventually the instability of the basis will impact the quality of
the solution [108,§5.4]. A remedy proposed in [61] for the UWVF is to limitpK

based on monitoring condition numbers of element matrices.Apparently, this also
curbs the condition number of the global system matrix. Alternatively, there exist
different heuristic recipes for choosing a priori the number of PWs per element to
balance accuracy and conditioning: in 2D, the widely cited [60, eq. (14)] suggests
pK = round(khK +C(khK)

1/3) with 3≤ C ≤ 14 for the UWVF, while [71,§5.1.1]
proposespK = ⌊2khK⌋ for the VTCR. For the WBM, [24,§3.2] proposes a rule to
balance propagative and evanescent basis functions, see§3.2.

The most straightforward cure for instability would trade the PW basis ofVpK (K)
from (14) for a more stable basis, found by local orthonormalisation as in the case of
polynomial FEM,cf. the approach from [91,§3.1]. However, instability may sneak
in through the back door and manifest itself in severe impactof round-off errors
during orthonormalisation and recombination of element matrices. The use of high-
precision arithmetic may be advisable, but has never been documented.

For the sake of stability, PWs may be replaced by the generalised harmonics
polynomials introduced in§3.1. In 2D, a scaling of the GHPs has been devised
in [77], in order to lower the condition number of the resulting UWVF:

Jℓ(k|x− xK|)eiℓθ

k
√∣∣J′ℓ(khK)

∣∣2+ |Jℓ(khK)|
2
.

In [77], it is also shown that the conditioning of GHP-based UWVF schemes is
better than for methods based on PWs, and that it improves on regular meshes. This
might be related to the orthogonality of GHPs on balls.

The numerical experiments in [58,§3.7] suggest that the use of fundamental
solutions as basis functions may considerably reduce the conditioning of UWVF
matrices, at the expense of accuracy. Both accuracy and conditioning increase the
further the centres of the fundamental solutions are from the element.

The use of iterative solvers for linear systems generated byTrefftz methods en-
tails preconditioning. For PW basis functions, the first proposal in [19,§2.4] for the
UWVF was a local preconditioner, equivalent to an orthonormalisation of the PW
basis with respect to anL2 inner product on the boundary of mesh cells. An interest-
ing connection of the local preconditioner with non-overlapping optimised Schwarz
domain decomposition methods was discovered in [13]. The local preconditioner
was used in conjunction with a BiCGStab Krylov subspace solver in [61] and aug-
mented by a coarse-grid correction in the spirit of non-overlapping domain decom-
position in [59,118]. The coarse space is again spanned by PWs. This is also true for
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the two-level sub-structuring preconditioner proposed for DEM/DGM (see§2.2.3)
in [34]. Two-level, non-overlapping Schwarz domain decomposition precondition-
ers for PWDG (essentially UWVF) have been tested in [5]; these preconditioners
seem to be robust with respect to the wavenumberk and the local number of PW
directions, although they do not seem to be perfectly scalable with respect to the
number of subdomains.

5 Assessment and conclusion

Faced with a flurry of different Trefftz methods and a wealth of numerical data, we
feel at a loss about making unequivocal statements about themerits of Trefftz meth-
ods, let alone ranking them according to some undisputed criteria. Rigorous theory
is available for LS methods (§2.1), TDG (§2.2.1), and PUM (§2.5). Combined with
approximation results for suitable Trefftz bases, this leads to better asymptotic esti-
mates in terms of orders of convergence in the number of degrees of freedom to what
is available for polynomial FEM (e.g. [52,54]). The dependence of crucial constants
on the wavenumberk is explicit in several cases, but the orders ink are usually not
better than for polynomial methods. Thus theory fails to provide information about
the key issue of “k-robust” accuracy with “k-independent” cost. Moreover, numeri-
cal dispersion will also haunt local Trefftz methods in the case ofh-refinement; thus
they provide no escape from the pollution error.

We also advise caution when reading numerical experiments,because they may
be tarnished by selection bias, making authors subliminally pick test cases matching
the intended message of an article. Disregarding this, even“objective” comparisons
are inevitably confined to a few simple model problems. This is problematic, be-
cause different model problems sometimes seem to support opposite conclusions.

From our experience, the power of Trefftz methods can best harnessed byp-
refinement using approximation by Trefftz functions in regions as large as possi-
ble. In the presence of singularities we recommend either the use of corner basis
functions (§3.4) in 2D, orhp-refinement, maybe using standard polynomial approx-
imation on small elements as in [88]. There is a solid theoretical foundation, when
this is done in the LS, TDG, or PUM framework. The resulting methods should be
able to compete successfully with polynomial FEM even in their more sophisticated
versions tailored to wave propagation problems [30,35,83].

The discussion of adaptive approaches in§4.2 hints that some Trefftz trial spaces
have approximation capabilities well beyond the reach of polynomials. Directional
adaptivity seems to be very promising, but much research will still be required to
convert it into a reliable practical algorithm. The same applies to iterative solvers
and preconditioners for Trefftz schemes, see§4.3, which might also benefit con-
siderably from the extra information contained in Trefftz trial spaces. Hence, we
believe that many exciting possibilities offered by the idea of Trefftz approximation
still await discovery and that the full potential of Trefftzmethods is only gradually
being realised.
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108. Strouboulis, T., Babuška, I., Hidajat, R.: The generalized finite element method for Helm-
holtz equation: theory, computation, and open problems. Comput. Methods Appl. Mech.
Eng.37-40, 4711–4731 (2006)

109. Sze, K.Y., Liu, G.H., Fan, H.: Four- and eight-node hybrid-Trefftz quadrilateral finite element
models for Helmholtz problem. Comput. Methods Appl. Mech. Engrg.199, 598–614 (2010)

110. Tezaur, R., Kalashnikova, I., Farhat, C.: The discontinuous enrichment method for medium-
frequency Helmholtz problems with a spatially variable wavenumber. Comput. Methods
Appl. Mech. Engrg.268, 126–140 (2014)

http://arxiv.org/abs/1505.04965


40 Ralf Hiptmair, Andrea Moiola and Ilaria Perugia

111. Tezaur, R., Zhang, L., Farhat, C.: A discontinuous enrichment method for capturing evanes-
cent waves in multiscale fluid and fluid/solid problems. Comput. Methods Appl. Mech.
Engrg.197(19-20), 1680–1698 (2008)

112. Trefftz, E.: Ein Gegenstuck zum Ritzschen Verfahren. Proc. 2nd Int. Cong. Appl. Mech.,
Zurich, 1926 pp. 131–137 (1926)

113. Tsukerman, I.: A class of difference schemes with flexible local approximation. J. Comput.
Phys.211(2), 659–699 (2006)

114. Vekua, I.N.: New methods for solving elliptic equations. North Holland (1967). Translation
from Russian edition (1948)

115. Wang, D., Tezaur, R., Toivanen, J., Farhat, C.: Overview of the discontinuous enrichment
method, the ultra-weak variational formulation, and the partition of unity method for acoustic
scattering in the medium frequency regime and performance comparisons. Internat. J. Numer.
Methods Engrg.89(4), 403–417 (2012)

116. Womersley, R.S., Sloan, I.H.: Interpolation and cubature on the sphere.
http://web.maths.unsw.edu.au/ ˜ rsw/Sphere

117. Wu, S.F.: The Helmholtz Equation Least Squares Method.Modern Acoustics and Signal
Processing. Springer-Verlag, New York (2015)

118. Yuan, L., Hu, Q.: A solver for Helmholtz system generated by the discretization of wave
shape functions. Adv. Appl. Math. Mech.5(6), 791–808 (2013)

119. Zheng, E., Ma, F., Zhang, D.: A least-squares non-polynomial finite element method for
solving the polygonal-line grating problem. J. Math. Anal.Appl. 397(2), 550–560 (2013)

120. Zheng, E., Ma, F., Zhang, D.: A least-squares finite element method for solving the
polygonal-line arc-scattering problem. Appl. Anal.93(6), 1164–1177 (2014)

121. Zienkiewicz, O.: Trefftz type approximation and the generalized finite element method- his-
tory and development. Comput. Assis. Mech. Eng. Sci.4(3), 305–316 (1997)

Appendix A: Condition numbers of plane wave mass matrices

Given a wave numberk> 0 andp∈N distinct unit vectorsdℓ ∈R
n, ℓ= 1, . . . , p, and

a domainK ⊂ Rn with barycentrexK , the symmetric positive definite plane wave
element mass matrixMK onK is defined as

MK :=

(∫

K
eikdℓ ·(x−xK) ·e−ikdm·(x−xK) dV

)p

ℓ,m=1
.

Forn=2 we computed spectral condition numbers ofMK for equi-spaced directions
dℓ = (cos(2πℓ/p),sin(2πℓ/p)), ℓ= 0, . . . , p−1. Forn= 3 we choose the directions
dℓ as the “minimum norm points” according to I.H. Sloan and R.S.Womersley
[103,116]. These points are indexed by a levelq∈N andp= (q+1)2. The spectral
condition numbers are plotted in Figure 1 forn = 2, K = (−1,1)2, and Figure 2
for n= 3, K = (−1,1)3. They have been computed with MATLAB using the high-
precision arithmetic (200 decimal digits) provided by the Advanpix Multi-Precision
Toolbox2.

2 http://www.advanpix.com/

http://web.maths.unsw.edu.au/~rsw/Sphere
http://www.advanpix.com/
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